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Identifiability and numerical algebraic geometry

Daniel J. Bates∗ Jonathan D. Hauenstein † Nicolette Meshkat ‡

March 11, 2018

Abstract

A common problem when analyzing models, such as a mathematical modeling of a biological
process, is to determine if the unknown parameters of the model can be determined from given
input-output data. Identifiable models are models such that the unknown parameters can
be determined to have a finite number of values given input-output data. The total number
of such values over the complex numbers is called the identifiability degree of the model.
Unidentifiable models are models such that the unknown parameters can have an infinite
number of values given input-output data. For unidentifiable models, a set of identifiable
functions of the parameters are sought so that the model can be reparametrized in terms
of these functions yielding an identifiable model. In this work, we use numerical algebraic
geometry to determine if a model is identifiable or unidentifiable. For identifiable models,
we present a novel approach to compute the identifiability degree. For unidentifiable models,
we present a novel numerical differential algebra technique aimed at computing a set of
algebraically independent identifiable functions. Several examples are used to demonstrate
the new techniques.

Keywords: Identifiability, Numerical Algebraic Geometry, Numerical Differential Algebra

1 Introduction

Parameter identifiability analysis for dynamical system models consisting of ordinary differen-
tial equations (ODEs) addresses the question of which unknown parameters can be determined
from given input-output data. In this paper, we address structural identifiability, which con-
cerns whether the parameters of a model can be determined from perfect input-output data,
i.e., noise-free and of any time duration required. This is a necessary condition for the practical
or numerical identifiability problem, which involves parameter estimation with real, and often
noisy, data. For this reason, structural identifiability is often referred to as a priori identifiabil-
ity [7]. Even if a model fails to be structurally identifiable, some useful information about the
parameters can still be determined, which is the main motivation for this paper.
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There are two possible outcomes of the structural identifiability check of a mathematical
model. If the parameters of the model have a unique or finite number of values given input-
output data, then the model and its parameters are said to be identifiable. However, if some
subset of the parameters can take on an infinite number of values and yet yield the same input-
output data, then the model and this subset of parameters are called unidentifiable. In the
latter case, we attempt to find a set of identifiable functions of the parameters. These can then
be used to reparameterize the model and also to give additional insight into which parameters
should be experimentally measured [24].

Several methods have been proposed to find identifiable functions. In linear models, this can
be done using the transfer function method [6]. However, in nonlinear models, the problem has
been more challenging with only ad hoc methods proposed, e.g., [12, 15, 24]. For example, the
approach in [24] requires the calculation of many Gröbner bases and can thus be computationally
expensive. It should be noted, however, that even in the linear case, the identifiable functions of
parameters found using the transfer function method are not necessarily (and are usually not)
the simplest identifiable functions of parameters. Since our goal is to reparametrize a model
over identifiable functions of the parameters, simpler functions are preferred.

In this paper, we use techniques from numerical algebraic geometry (e.g., see [4, 40] for a
general overview) to investigate both identifiable and unidentifiable models. For an identifiable
model, we compute the finite number of values of the parameters given input-output data. The
total number of such values over the complex numbers is called the identifiability degree which
is computed in two ways. The first method relies on differential algebra tools to first generate
the input-output equations while the second does not utilize these equations.

For unidentifiable models, we also introduce two novel approaches for finding identifiable
functions of the parameters. The first method relies on knowing the input-output equations
and uses them to find globally identifiable functions of parameters, as in [24]. In the case
where these input-output equations cannot be calculated using conventional differential algebra
techniques, we also introduce a method to compute locally identifiable functions of parameters.
This combination of numerical algebraic geometry and differential algebra could be thought of
as numerical differential algebra. We demonstrate our methods on various models.

The layout of our paper is as follows. Section 2 provides details related specifically to iden-
tifiability. For an identifiable model, Section 3 describes the computation of the identifiability
degree. For unidentifiable models, Section 4 focuses on the use of sampling and exactness recov-
ery methods to construct identifiable functions. Several examples are considered in Section 5.1

2 Identifiability

We consider ODE models of the form:

ẋ(t) = f(x(t),p,u(t), t)
y(t) = g(x(t),p, t)

(1)

where f and g are vectors of rational functions, x(t) is the state variable vector, p is the parameter
vector which is assumed to be constant, u(t) is the input vector, and y(t) is the output vector.
In the following, only the input u(t) and output y(t) vectors are assumed to be known, i.e., the
state variables x(t) and the parameters p are unknown.

1Data for computations available at http://dx.doi.org/10.7274/R03T9F91.
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2.1 Input-output equations

One approach to determine identifiability properties of the model (1) using known input-output
data is via the input-output equations, i.e., equations that relate the input u(t), output y(t), and
parameters p. Thus, the input-output equations result from eliminating the state variables x(t).
Several methods have been proposed to compute the input-output equations for nonlinear ODE
models, e.g., [1, 5, 10, 15, 16, 21, 25, 31, 32, 36], including the so-called differential algebra
approach to identifiability [21, 31, 36]. Using differential algebra, the state variables x(t) are
eliminated using differential elimination techniques. If the number of outputs y(t) is m, this
procedure produces m differential polynomial equations that are solely in input and output
variables with rational coefficients in the parameters so that the jth one can be written as∑

i

cji(p)ψi(u,y) = 0

where each ψi(u,y) is a differential monomial. Each cji(p) is a rational function in the pa-
rameters p, forming a collection c(p) called the coefficients of the input-output equations. The
coefficients of each input-output equation can be determined uniquely by taking each input-
output equation to be monic.

2.2 Deciding identifiability

Let m1 denote the number of independent parameters p and m2 denote the total number of non-
monic coefficients taken from all m input-output equations. Thus, we can treat the coefficients
of the input-output equations as a rational map c : Cm1 → Cm2 . Identifiability refers to whether
it is possible to recover the parameters of the model only by observing the relations among the
input and output variables. In other words, assuming known input-output data for a sufficient
number of time instances so that c can theoretically be computed, identfiability asks whether it
is possible to recover the parameters p.

Definition 2.1. Let c be the coefficients of the input-output equations for a model (1). For
general p ∈ Cm1 , let

Xp = c−1(c(p)) = {q ∈ Cm1 | c(q) = c(p)} ⊂ Cm1 , (2)

` = dimXp ≥ 0, and k = #Xp ∈ N ∪ {∞}. That is, ` is the dimension of a general fiber of c
and c is generically a k-to-one map when ` = 0. The model (1) is identifiable from c if ` = 0,
i.e., k ∈ N, and unidentifiable if ` > 0, i.e., k =∞.

When identifiable, the number k ∈ N is called the identifiability degree. If k = 1, the
model (1) is called globally identifiable and called locally identifiable if 1 < k <∞.

When unidentifiable, the number ` ≥ 1 is called the dimension of unidentifiability.

To distinguish between identifiable and unidentifiable models, one simply needs to compute
the dimension ` of a general fiber of c. As defined in [40, §13.4], the rank of c, denoted rank c,
is the rank of the Jacobian matrix of c evaluated at a general, i.e., random, p ∈ Cm1 . The
corank of c is corank c = m1− rank c. The following, which is [40, Lemma 13.4.1] (see also [27]),
relates ` and corank c.

Proposition 2.2. For a general p ∈ Cm1, ` = dimXp as defined in (2) is equal to corank c
where c is the set of coefficients of the input-output equations. In particular, the model (1) is
identifiable if and only if c has full rank and the dimension of unidentifiability is equal to corank c.
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In particular, Prop. 2.2 indicates a method to distinguish between identifiable and uniden-
tifiable models provided that the coefficients c of the input-output equations can be computed,
which is summarized in the following pseudocode.

Method 1: Computing dimension of unidentifiability from input-output equations

Input: m2 input-output equation coefficients c(q), depending on parameters q ∈ Cm1 .
Output: Dimension of unidentifibility ` = corank c = dim c−1(c(p)) for general p ∈ Cm1 .
Choose random, complex values p of parameters q.
Return ` = corankJc(p) where Jc(p) is the Jacobian matrix of c evaluated at p.

Example 2.3. Linear compartment models are frequently used models arising in pharmacoki-
netics, toxicology, cell biology, physiology, and ecology [8, 9, 13, 30, 41]. The following from [27]
is an example of a linear three-compartment model with input u(t), output y(t), state variables
x(t) = (x1(t), x2(t), x3(t)), and unknown parameters p = (k01, k02, k03, k12, k13, k21, k32):

ẋ1 = −(k01 + k21)x1 + k12x2 + k13x3 + u
ẋ2 = k21x1 − (k02 + k12 + k32)x2
ẋ3 = k32x2 − (k03 + k13)x3
y = x1.

(3)

Figure 1 presents a pictorial representation of this model.

Figure 1: A 3-compartment model with input (represented by the arrowhead) and output (rep-
resented by the line segment with a circle at the end) in the first compartment and “leaks” from
every compartment (represented by arrows leaving the compartments). Here, the input could
represent a drug injection and the first compartment could represent blood, with the other two
compartments representing organs, e.g., tissue and stomach. The unknown parameters represent
rates of transfer from one compartment to another (drawn as arrows in the figure), or in the
case of leaks, from one compartment to outside the system. The state variables represent drug
concentration in the blood and organs, with output from the first compartment representing
measured drug concentration in the blood.

The approach described in [26, 27] yields the input-output equation:

...
y − c1(p)ÿ + c2(p)ẏ − c3(p)y − ü+ c4(p)u̇− c5(p)u = 0
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where

c1(p) = E1(−(k01 + k21),−(k02 + k12 + k32),−(k03 + k13))
c2(p) = E2(−(k01 + k21),−(k02 + k12 + k32),−(k03 + k13))− k12k21
c3(p) = E3(−(k01 + k21),−(k02 + k12 + k32),−(k03 + k13)) + k12k21(k03 + k13) + k21k13k32
c4(p) = E1(−(k02 + k12 + k32),−(k03 + k13))
c5(p) = E2(−(k02 + k12 + k32),−(k03 + k13))

such that Ek(z1, . . . , zm) is the kth elementary symmetric polynomial in z1, . . . , zm. Thus, for
c = (c1, . . . , c5), it is easy to verify that rank c = 5 and corank c = 2 so that this model is
unidentifiable with 2 dimensions of unidentifiability.

For an identifiable model, one approach to distinguish between global and local identifiability
is to solve the system of equations c(q) = c(p) given a general point p ∈ Cm1 . If there is a
unique solution, namely q = p, the model is globally identifiable. If there are a finite number
of solutions, the model is locally identifiable. Such an approach, for example, is implemented in
the software package DAISY [7, 35] which randomly selects a point p and uses Gröbner basis
methods to count the number of solutions to c(q) = c(p) yielding the identifiability degree.
Since such an approach can only be applied when c has first been computed, we will consider
the following problem using numerical algebraic geometric methods.

Problem 2.4. Given a model (1), decide if it is identifiable or unidentifiable. If identifiable,
determine its identifiability degree to decide if it is globally identifiable or locally identifiable.

One technique for determining whether a model is identifiable without computing c is via
the Exact Arithmetic Rank (EAR) approach [20]. In particular, rather than eliminating to
compute the corank of c, one considers projections of a system that still involves the state
variables derived by replacing functions with Taylor series expansions and taking a finite-size
system via the Cartan-Kuranishi Theorem that underlies differential elimination, e.g., see [33].
The following, from [19, Lemma 3], is essential for computing corank c without first computing c.

Proposition 2.5. Let F : CN → Cn be a polynomial system, V ⊂ {x ∈ CN | F (x) = 0} ⊂ CN
be irreducible of multiplicity 1 with respect to F , and π(x1, . . . , xN ) = (x1, . . . , xa) for some
a ≤ N . For general z ∈ V ,

dimπ(V ) = corank0 JF (z)− coranka JF (z)

where JF (z) is the Jacobian matrix of F evaluated at z and corankjM is the corank of the last
N − j columns of M .

Example 2.6. With the setup from Ex. 2.3, write the function x(t), u(t), and y(t) using a
Taylor series expansion centered at t = 0, namely

x(t) =

∞∑
j=0

xj · tj/j!, u(t) =

∞∑
j=0

uj · tj/j!, and y(t) =

∞∑
j=0

yj · tj/j!. (4)

Since (3) holds for all t, one obtains equations by substituting these Taylor series expansions
into (3) and taking coefficients with respect to t. For r ≥ 0, let Fr be the system obtained by
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taking coefficients of 1, t, t2, . . . , tr. For this linear compartment model, the coefficients of tj are

Gj =


−(k01 + k21)xj1 + k12xj2 + k13xj3 + uj − xj+1,1

k21xj1 − (k02 + k12 + k32)xj2 − xj+1,2

k32xj2 − (k03 + k13)xj3 − xj+1,3

yj − xj1

 so that Fr =


G0

G1
...
Gr

 .
Based on the structure of each Gj , it is clear that the Jacobian matrix of Fr has full rank,
namely 4(r + 1), at every point. In fact, Fr = 0 defines an irreducible and smooth solution set
of codimension 4(r+ 1) (dim = 11 + r). We can compute a random point on this solution set by
randomly selecting the following 11 + r values: p, x0, and u0, . . . , ur, and trivially computing
the unique xj+1 and yj sequentially for j = 0, . . . , r via Gj = 0.

Next, one treats the coefficients of the input u(t) and output y(t) as constants in Fr. Thus,
we have that Fr depends upon Nr = 13 + 3r variables and apply Prop. 2.5 to compute

dr = corank0 JFr(p,x0, . . . ,xr+1)− corank7 JFr(p,x0, . . . ,xr+1)

since πr(p,x0, . . . ,xr+1) = p ∈ C7. We trivially know dr ≥ dr+1 since Fr is a subset of Fr+1.
Hence, {dr}∞r=0 is a sequence of nonincreasing nonnegative integers that stabilizes with

lim
r→∞

dr = corank c.

This limit is obtained at a finite value of r in accordance with the Cartan-Kuranishi Theorem
and can be observed by checking for stabilization between the values obtained from r to r + 1
as demonstrated in the following table:

r Nr corank0 JFr corank7 JFr dr
0 13 9 2 7
1 16 8 1 7
2 19 7 0 7
3 22 6 0 6
4 25 5 0 5
5 28 4 0 4
6 31 3 0 3
7 34 2 0 2
8 37 2 0 2
9 40 2 0 2
10 43 2 0 2

We see that d7 = d8 = 2 = corank c and provide the extra rows to show how the entries stabilize.
In particular, this confirms that (3) is unidentifiable with 2 dimensions of unidentifiability.

We summarize this computation of the dimension of unidentifiability without first explicitly
computing the input-output equations c in the following pseudocode.
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Method 2: Computing dimension of unidentifiability without input-output equations

Input: For each r ≥ 0, system Fr(q,x,u,y) consisting of the coefficients of 1, t, t2, . . . , tr

and general point zr such that Fr(zr) = 0 where q consists of m1 parameters.
Output: Dimension of unidentifibility ` = corank c = dim c−1(c(p)) for general p ∈ Cm1 .
For r = 0, 1, 2, . . .

Compute dr = corank 0JFr(zr)− corank Jm1Fr(zr)
If either dr = 0 or r > 0 and dr = dr−1, return dr.

Such an approach naturally extends to problems when the parameters and initial conditions
are restricted to an irreducible component by simply appending to Fr the requested constraints
and taking the test points to be general on the corresponding irreducible component. The
following demonstrates this on [34, Ex. 1].

Example 2.7. Consider the following three-compartment model [42]:

ẋ1 = p13x3 + p12x2 − p21x1 + u
ẋ2 = p21x1 − p12x2
ẋ3 = −p13x3
y = x2

(5)

with state variables x(t) = (x1(t), x2(t), x3(t)), input u(t), output y(t), and unknown parameters
p = (p12, p13, p21). Using a similar setup from Ex. 2.6 summarized in Method 2, the following
table shows that the model (5) is identifiable:

r Nr corank0 JFr corank3 JFr dr
0 9 5 2 3
1 12 4 1 3
2 15 3 0 3
3 18 2 0 2
4 21 1 0 1
5 24 0 0 0

Let F ′r be the system obtained by adding the constraint x3(0) = 0 to Fr. The following table
shows that the model (5) is now unidentifiable with one dimension of unidentifiability:

r Nr corank0 JF
′
r corank3 JF

′
r dr

0 9 4 1 3
1 12 3 0 3
2 15 2 0 2
3 18 1 0 1
4 21 1 0 1

2.3 Identifiable functions

When a model (1) is unidentifiable, one can ask for functions of the parameters p which are
actually functions of the coefficients c(p) of the input-output equations. Such functions are
called identifiable functions. For example, every element of c is itself an identifiable function.
This is algebraically formalized in the following.
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Definition 2.8. Let c be as above. A real-valued function f(p) is identifiable if the field
extension R(f, c)/R(c) is an algebraic field extension.

One can also consider the global and local identifiability of functions.

Definition 2.9. Let c be as above and f be an identifiable function. The function f is called
globally identifiable from c if there exists a function φ such that φ ◦ c = f . The function f is
called locally identifiable from c if there exists a multi-valued function ξ such that ξ ◦ c = f .

Example 2.10. With the setup from Ex. 2.3, the function f(p) = k01+k21 is globally identifiable
with f = φ◦c where φ(x1, . . . , x5) = x4−x1, i.e., f = c4−c1. The function g(p) = k02+k12+k32
is locally identifiable with g2 + c4g + c5 = 0, i.e., ξ ◦ c = g where

ξ(x1, . . . , x5) =
−x4 ±

√
x24 − 4x5

2
.

When a model is unidentifiable with ` = corank c dimensions of unidentifiability, the goal
is to compute d = rank c algebraically independent identifiable functions. The problem of
finding d “nice” algebraically independent identifiable functions can be described in the following
way, where “nice” could be taken to mean low degree, sparse, or are easy to interpret in terms
of the model, depending on the context.

Problem 2.11. For rational functions c with d = rank c, compute a “nice” transcendence basis
of the field extension R(c)/R given by the functions f1, . . . , fd.

One way to locate identifiable functions is by computing Gröbner bases with respect to
various elimination orderings of the ideal 〈c(q)− c(p)〉. This approach is described in [24, 28]
and has been implemented in the web application COMBOS [28]. In addition to requiring c,
e.g., computed using differential elimination techniques, the biggest disadvantage of this method
is that Gröbner basis computations can be computationally expensive. Thus, COMBOS can fail
even for relatively simple models. Alternatively, the program DAISY [7, 35] can sometimes be
used to find identifiable functions. Specifically, the DAISY program gives the solution to the
system of equations c(q) = c(p) for a randomly chosen numerical point p. Sometimes one can
algebraically manipulate the solution to obtain functions of the form f(q) = f(p), but there are
many cases where this cannot be done [24, 28]. Nonetheless, if one is able to obtain such f , the
following shows that they are indeed identifiable functions.

Proposition 2.12. If f(q) − f(p) is an element of the ideal I = 〈c(q)− c(p)〉 ⊂ R[p, q],
then f is an identifiable function. That is, if f is constant on irreducible components of generic
fibers of c, then f is an identifiable function.

Proof. If f(q) − f(p) is contained in I, then the dimension of the image of the combined
map (c, f) is equal to the dimension of the image of the map c. In other words, the field
extension R(f, c)/R(c) is an algebraic field extension showing that f is identifiable.

2.4 Reparametrization and other uses of identifiable functions

If one can solve Problem 2.11, one then tries to use the new basis to reparametrize the model.
In [26], a method to find identifiable scaling reparametrizations is given for a certain class of lin-
ear compartment models where the identifiable functions are monomials. Currently, there is no
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general approach to find identifiable reparametrizations and, for most models, the reparametriza-
tions are found using ad hoc approaches which work on a case-by-case basis.

Even if a reparametrization cannot be found, identifiable functions have other important
uses. From the identifiable functions, one can determine which parameters need to be known
in order to render the entire model identifiable. While this information can also be determined
from the solution to the system of equations c(q) = c(p), identifiable functions give us addi-
tional information if only a subset of those parameters can be determined. In other words, we
can obtain a simpler set of identifiable functions of parameters if a subset of the parameters
are known and, perhaps, for this new set of identifiable functions, computing an identifiable
reparametrization is possible. This is the case for Ex. 5.1 below where knowledge of either the
pair (a34, a43) or the pair (a33, a44) renders all the identifiable functions to be monomials, in
which case the method in [26] can be used to find an identifiable scaling reparametrization.

3 Computing identifiability degree

For a model (1) that is identifiable, Problem 2.4 can be solved by computing the identifiability
degree k ∈ N in order to distinguish between globally identifiable (k = 1) and locally identifiable
(k > 1) models. k is simply the number of solutions of c(q) = c(p) for general p, where c is
the collection of coefficients of the input-output equations. As mentioned in §2.2, the software
package DAISY [7, 35] uses such an approach with Gröbner basis methods to count the number
of solutions. One could also use numerical homotopy methods, e.g., as summarized in [4, 40], to
compute k, as illustrated in the following example.

Example 3.1. As shown in Ex. 2.3, the model (3) has 2 dimensions of unidentifiability. With
the aim of constructing an identifiable model, we modify (3) by adding the extra constraints
k01 = k03 = 0 yielding a new model with only one leak parameter k02. The coefficients c of the
input-output equation for this simplified model are

c(k02, k12, k13, k21, k32) =


k02 + k12 + k13 + k21 + k32

k02k13 + k02k21 + k12k13 + k13k21 + k13k32 + k21k32
k02k13k21

k02 + k12 + k13 + k32
k02k13 + k12k13 + k13k32

 , (6)

which is easily seen to have rank 5, i.e., the model is identifiable. For general αi ∈ C, the system

c(k02, k12, k13, k21, k32)− c(α1, α2, α3, α4, α5) = 0 (7)

consists of 5 equations (1 cubic, 2 quadratic, and 2 linear) in 5 variables. Using a total degree
homotopy (see [4, 40] for more details), one tracks 3 · 22 · 12 = 12, i.e., the total degree of (7),
solution paths. Tracking these paths with homotopy continuation, e.g., via Bertini [3], yields 2
solutions to (7). One can also use a Gröbner basis computation to see that (7) has 2 solutions.
These computations show that the model (3) with k01 = k03 = 0 is locally identifiable with
identifiability degree of 2.

We summarize this most basic approach for computing the identifiability degree when the
input-output equations are known in the following pseudocode.
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Method 3: Computing identifiability degree from input-output equations (direct solving)

Input: m2 input-output equation coefficients c(q), depending on parameters q ∈ Cm1 for
which corank c = 0, i.e., corresponding model is identifiable.

Output: Identifiability degree k ∈ N.
Choose random, complex values p of parameters q.
Use homotopy continuation to compute Z = {q ∈ Cm1 | c(q) = c(p)}.
Return k = #Z.

Rather than using a direct global solving method which is based on knowing the coefficients c,
we next consider an alternative approach based on monodromy computations in numerical al-
gebraic geometry that also can be used without computing c. We first describe the approach
when c is known and then extend to the case when c is not explicitly computed.

3.1 Identifiability degree from input-output equations

Suppose that (1) is identifiable with identifiability degree k ∈ N and c is the set of coefficients of
the input-output equations. Following §2.2, let m1 be the number of independent parameters p
and m2 be the number of entries in c so that c : Cm1 → Cm2 . Assume that the model is
identifiable so that corank c = 0 and rank c = dimX = m1 where X = c(Cm1) ⊂ Cm2 . The
continuity of c yields that X is irreducible. The graph of c, namely

Graph(c) = {(p, c(p)) | p ∈ Cm1} ⊂ Cm1 × Cm2

is also irreducible of dimension m1. In fact, for the projection map π : Cm1 × Cm2 → Cm2 , we
know that X = π(Graph(c)) and π restricted to Graph(c) is generically a k-to-1 map.

One can compute k via a pseudowitness point set [19] for X. To that end, let L2 ⊂ Cm2

be a general linear space of codimension m1. The finite set W = Graph(c) ∩ (Cm1 × L2) is
a pseudowitness point set for X with respect to Graph(c) and π where #W = k · degX and
#π(W ) = degX, i.e., k = #W/#π(W ). In order to compute W , we follow the approach in [17]
using monodromy loops [39], as follows.

We first note that it is trivial to construct one point w ∈ W as follows. One first selects
a general point (p, c(p)) ∈ Graph(c) and then constructs a general linear space L2 ⊂ Cm2 of
codimension m1 that passes through c(p). Hence, w = (p, c(p)) ∈W .

Next, the irreducibility of Graph(c) ensures that pairs of points in W are connected via
smooth paths on Graph(c). We aim to discover such connecting paths using random mon-
odromy loops. For t ∈ [0, 1], let L(t) be a smooth path consisting of general linear spaces of
codimension m1 in Cm2 such that L(0) = L(1) = L2. Hence, this defines paths w(t) defined
by Graph(c) ∩ (Cm1 × L(t)) where w(1) ∈ W is known. Homotopy continuation computes the
endpoint w(0), which must also be a point in W . If w(0) 6= w(1), the resulting loop has produced
a nontrivial monodromy action and potentially yielded a previously unknown point in W .

Example 3.2. For c : C5 → C5 in (6), we know that X = c(C5) = C5, i.e., degX = 1. Hence,
we have that the identifiability degree k = #W where W is a pseudowitness point set for X.

For illustrative purposes, consider p = (−1,−2, 5,−1,−3) with c(p) = (−2,−31, 5,−1,−30)
so L2 = {(−2,−31, 5,−1,−30)} has codimension 5 with c(p) ∈ L2. Consider the loop

L(t) = {(−2,−31− 15s(t), 5 + 5s(t),−1,−30 + 35s(t))}
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where s(t) = 1 − e2πi(1−t) and i =
√
−1. Hence, L(t) is a loop with L(0) = L(1) = L2. For

the path w(t) ∈ Graph(c) ∩ (C5 × L(t)) with w(1) = (p, c(p)), we have w(0) = (q, c(q)) where
q = (5/6,−2,−6,−1, 37/6) and c(q) = c(p) showing {w(0), w(1)} ⊂W and k = #W ≥ 2.

Running finitely many random monodromy loops necessarily yields a set Ŵ ⊂ W that may
fail to achieve the goal of equality. However, information about the model can be obtained even
if Ŵ (W . For example, if (p1, c(p1)) and (p2, c(p2)) are known points in W with c(p1) = c(p2)
and p1 6= p2, then one knows the identifiability degree is larger than 1, i.e., the model is locally

identifiable. A heuristic stopping criterion for when Ŵ = W provided in [17] is simply to have
many different random monodromy loops yielding no new points. We use trace tests [18, 38] to

provide a stopping criterion to recognize when Ŵ = W .
Trace tests can be summarized as follows. Suppose that Y ⊂ Cn is irreducible of dimension r.

Let L(t) be a general family of codimension r parallel linear spaces. For Z ⊂ Y ∩L(0), the trace
test of [38] shows that Z = Y ∩ L(0), i.e., #Z = deg Y , if and only if

∑
z∈Z pz(t) is linear in t

where pz(t) ∈ Y ∩ L(t) with pz(0) = z.
Returning to the setup from above, since X is irreducible, we can apply this so-called “clas-

sical” trace test to verify that π(Ŵ ) = π(W ), i.e., #π(Ŵ ) = #π(W ) = degX.

To verify that Ŵ = W , we need to compute additional points to use the multihomogeneous
trace test of [18]. LetM2 andH2 be general linear spaces in Cm2 of codimension m1−1 and 1, re-
spectively, with L2 =M2∩H2. By [37, Thm. 3.42], C = Graph(c)∩(Cm1×M2) is an irreducible
curve in Cm1 ×Cm2 , say, of multidegree (d1, d2). In particular, d2 = # (C ∩ (Cm1 ×H2)) = #W
meaning that a trace test for validating the completeness of a multihomogeneous witness point
set for C will show the completeness of W . To that end, let H1 ⊂ Cm1 be a general hyperplane
and H(t) be a general family of parallel (1, 1) hypersurfaces in Cm1 × Cm2 with

H(0) = (H1 × Cm2) ∪ (Cm1 ×H2). (8)

For Z ⊂ C ∩H(0), the trace test of [18] shows that Z = C ∩H(0) if and only if
∑

z∈Z σ(pz(t)) is
linear in t where pz(t) ∈ C ∩H(t) and σ : Cm1 ×Cm2 → Cm1m2+m1+m2 is the Segre embedding.

To make these monodromy and trace test computations more efficient, see [11, 14].

Example 3.3. To show that Ex. 3.2 computed both points in W , i.e., the degree of identifiability
k = 2, for illustrative purposes, we consider the following three linear spaces in C5:

H1 = {4x1 + 5x2 − 2x3 + 4x4 − 2x5 − 1 = 0}, H2 = {2y1 + 4y2 − y3 − 6y4 − 4y5 + 7 = 0},
and M2 = {(−2− 5r,−31− 3r, 5− 3r,−1 + 2r,−30 + 4r) | r ∈ C},

with L2 =M2 ∩H2. We take

H(t) = {(4x1 + 5x2 − 2x3 + 4x4 − 2x5 − 1)(2y1 + 4y2 − y3 − 6y4 − 4y5 + 7)− 2t = 0} ⊂ C5 ×C5

which satisfies (8). The irreducible curve C = Graph(c) ∩ (C5 ×M2) has multidegree (5, 2),
which is verified using the multihomogeneous trace test applied to C ∩ H(t). This yields k = 2.

We summarize this computation in the following pseudocode.
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Method 4: Computing identifiability degree from input-output equations (monodromy)

Input: m2 input-output equation coefficients c(q), depending on parameters q ∈ Cm1 for
which corank c = 0, i.e., model is identifiable, and an integer maxUselessLoops.

Output: Identifiability degree k ∈ N or error along with a lower bound on k if the
number of loops in a row that do not yield any new points is more than
maxUselessLoops.

Choose random, complex values p of parameters q and compute c(p).
Form w = (p, c(p)) and W = {w}.
Construct general linear space L2 ⊂ Cm2 of codimension m1 that passes through c(p).
Set numUselessLoops = 0.
While numUselessLoops < maxUselessLoops

Increment numUselessLoops = numUselessLoops + 1.
Construct a general loop of linear spaces L(t) such that L(0) = L(1) = L2.
For each w ∈W

Use homotopy continuation applied to the homotopy Graph(c) ∩ (Cm1 × L(t)) to
track from w at t = 1 to t = 0 yielding w’.

If w’ 6∈W
Update W = {W,w’} and numUselessLoops = 0.
If trace test passes, return k = #W .

Return error with k = #W .

The advantage to using such a monodromy approach is that the structure of c may be
such that k is small but this structure is not known a priori meaning that a homotopy for
solving c(q) = c(p) requires tracking many homotopy paths. The disadvantage is that many
monodromy loops may be needed to find all points necessary for the trace test to validate
completeness when k is large.

3.2 Identifiability degree without input-output equations

In §3.1, we computed the degree of a general fiber of a generically finite-to-one coefficient map.
This is based on the fact that one has the same input-output equation if and only if the coeffi-
cients agree. However, when we are using a truncated system as described in §2.2, namely Fr
which depends upon the parameters p, input U = {u0, . . . ,ur}, output Y = {y0, . . . ,yr}, and
state variables X = {x0, . . . ,xr+1}, it provides necessary conditions to have the same input-
output as shown in the following example.

Example 3.4. The following model is a modification of an HIV model from [29]:

ẋ1 = p1 − p2x1 − p3x1x3
ẋ2 = p3x1x3 − p4x2
ẋ3 = p1p4x2 − p5x3
y = x3

(9)

As in §3.1, the following table shows that the system F7 provides the model (9) is identifiable:
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r corank0 JFr corank5 JFr dr
0 7 2 5
1 6 1 5
2 5 0 5
3 4 0 4
4 3 0 3
5 2 0 2
6 1 0 1
7 0 0 0

For example, consider the sufficiently general truncated output

Y = (y0, . . . , y7) = (0.5,−0.03,−0.15,−0.2,−0.2,−0.17,−0.16,−0.15).

We know that there are finitely many values of the parameters p which yield this output.
Monodromy yields the following 12 values of the parameters (listed to four decimal places):

p1 p2 p3 p4 p5 y8
±0.1253 −2.4825 4.4249 −0.9210 −0.2137 0.1706
±0.2602 −2.4825 4.4249 −0.2137 −0.9210 0.1706

0.3023± 0.0779i −3.5234± 0.5105i 4.2201± 1.9168i −1.3367∓ 0.0298i −0.1080∓ 0.2292i 0.1107∓ 0.4040i
−0.3023± 0.0779i −3.5234∓ 0.5105i 4.2201∓ 1.9168i −1.3367± 0.0298i −0.1080± 0.2292i 0.1107± 0.4040i
0.6847± 0.2133i −3.5234∓ 0.5105i 4.2201∓ 1.9168i −0.1080± 0.2292i −1.3367± 0.0298i 0.1107± 0.4040i
−0.6847± 0.2133i −3.5234± 0.5105i 4.2201± 1.9168i −0.1080∓ 0.2292i −1.3367∓ 0.0298i 0.1107∓ 0.4040i

Table 1: 12 possible values of parameters of system F7 from model (9).

This table shows that there are 3 distinct values of y8, each of which is obtained by 4 values
of the parameters yielding the identifiability degree is 4.

This example shows that even though Fr is enough to show identifiability, we may only need
to consider a subset of the corresponding parameter values which have the same input-output.

The structure of (1) clearly shows that the solution set of Fr = 0 is irreducible, smooth, and
parameterized by p, U, and x0. Thus, it is trivial to construct a generic point (p∗,X∗,U∗,Y∗) in
the solution set of Fr = 0. From this point, we can use Prop. 2.5 to compute the dimension d ≥ 0
of the solution set of Fr(p

∗,X,U∗,Y∗) = 0, i.e., the dimension of the state variables. If d > 0,
we can add d general linear slices in X to Fr to reduce to the case when d = 0.

With this reduction, we repeatedly apply random monodromy loops to compute all values
of p such that there exists X with

Fr(p,X,U
∗,Y∗) = 0.

By testing the finitely many values of the parameters p, the identifiability degree k is the number
of which correspond with the same input-output. To verify the completeness, we simply apply
the multihomogeneous trace test via the parameter space and the input-output space.

To save space, we exclude pseudocode for this method as it is so similar to Method 4. The
primary change is that the set of coefficients c is replaced by the truncated system Fr for some
value of r along with an extra computation to test for the same input-output values.
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Example 3.5. Reconsidering the model (9) in Ex. 3.4 which has no input, we first restrict the
output space to, for illustration purposes, the sufficiently general line

Y(s) = (s+ 0.5, 4s− 0.03, 3s− 0.15,−2s− 0.2,−s− 0.2,−3s− 0.17, 3s− 0.16, 4s− 0.15).

Thus, we apply the multihomogeneous trace test by solving F7 = 0 on this line intersected with
the sufficiently general family of bilinear hyperplanes in the parameter and output space:

H(t) = {(2p1−3p2−4p3−p4−4p5−5)(3y0 +4y1 +5y2 +y3 +y4−4y5 +4y6−y7−0.42)− t = 0}.

Monodromy followed by the trace test confirms that the bidegree is (222, 12). Hence, the number
of elements in Table 1 is complete.

We can simplify this computation, for example, by instead taking the following family

H(t) = {(3p5 − 4)(3y0 + 4y1 + 5y2 + y3 + y4 − 4y5 + 4y6 − y7 − 0.42)− t = 0}.

The bidegree in p5 and the output space is (60, 12) which again shows that Table 1 is complete.

4 Computing identifiable functions

A model (1) is identifiable if and only if every function of the parameters is an identifiable
function. In particular, each irreducible component of a generic fiber of the coefficients c of
the input-output equations is a singleton for an identifiable model. Since every function of
the parameter is trivially constant on each singleton, Prop. 2.2 yields that every function is
identifiable. To be a globally identifiable function, it must take the same constant value on all
of the irreducible components of a general fiber.

Example 4.1. With the setup from Ex. 3.4, the model (9) is identifiable with identifiability
degree 4. Hence, for example, we know that f1 = p4 and f2 = p5 are both identifiable functions.
From the first two rows of Table 1, we see that both f1 and f2 are not globally identifiable since
each of them take two different values. The functions g1 = p2, g2 = p3, and g3 = p4 + p5 are all
globally identifiable since each of them take the same value at all four points.

To compute identifiable functions, we will first use numerical algebraic geometry to sample
points from fibers. Then, given a finite collection of terms, we will use exactness recovery
techniques, e.g., [2], or interpolation to construct identifiable functions from the sample data.
Computing globally identifiable functions simply requires computing points on all irreducible
components and adding additional constraints.

4.1 Sampling

In the case that input-output equations have been computed, let c be the collection of coefficients
of the input-output equations and suppose that d ≥ 0 is the dimension of unidentifiability. Thus,
for a given generic point p, the point q = p is a smooth point on an irreducible component Vp
of dimension d of the solution set defined by c(q) − c(p) = 0. Hence, when d > 0, we can
sample other points in this irreducible component as follows. Let Lp be a general linear space
of codimension d passing through p and L be some other general linear space of codimension d.
By using homotopy continuation, we can track the solution path q(t) defined by q(1) = p and

c(q(t))− c(p) = 0
q(t) ∈ t · Lp + (1− t) · L. (10)
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This yields the point q(0) which is also a generic point in Vp.
One can easily compute other points in this same fiber Vp by repeating with a different linear

space L and sample other fibers by repeating the process with a different generic point p.
With the aim of computing globally identifiable functions, sample points in every irreducible

component of c(q) − c(p) = 0 are needed. In this case, one simply constructs an identifiable
system by restricting the parameters to a general linear space of codimension d and applying
the techniques from §3.1 to the resulting system. That is, if p ∈ Cm1 , we take a general affine
linear mapping b : Cm1−d → Cm1 so that c(b(q̂)) − c(b(p̂)) = 0 has finitely many solutions
for generic p̂, say q1 = b(q̂1), . . . ,qk = b(q̂k), i.e., the model with parameters p = b(p̂) is
identifiable over Cm1−d with identifiability degree k. Applying the slice moving described above,
one can sample points in all components of the fiber over p using the points q1, . . . ,qk.

Example 4.2. Reconsider (3) in Ex. 2.3 for which c shows the model has d = 2 dimensions of
unidentifiability. For illustration, with p = (1, 2, 3, 4, 5, 6, 7), we can take

Lp = {k01−k02+k03−k12+k13−k21+k32 = 4, 2k02−k01+2k03+k12−k13−2k21+2k32 = 10} (11)

and

L =

{
k01 + k02(3− i) + k03(−3 + 2i) + k12(1 + i)− k13(2 + 2i) + k21(2− i)− 2k32 = 1

k01(1− 3i)− 3ik02 + k03(−2 + 2i)− 2k12 − ik13 + k21(3 + 2i)− ik32 = 1

}
(12)

where i =
√
−1. Tracking the path defined by (10) yields the endpoint (to four decimal places):

(0.6709− 2.1940i, 3.6921 + 2.5919i, 2.8774 + 0.5068i, 3.3852− 1.1735i,
5.1226− 0.5068i, 6.3291 + 2.1940i, 5.9227− 1.4185i).

(13)

Hence, we immediately see that each parameter itself is an unindentifiable function.
If, for illustration, we take the affine linear mapping b : C5 → C7 defined by

b(p̂) =



p̂1

p̂2

p̂3

p̂4

p̂5

p̂1 + 3p̂2 − p̂3 − 3p̂4 + 2p̂5 + 4
2p̂1 + 3p̂2 + 5p̂3 + p̂4 − 3p̂5 − 5


the resulting model is identifiable with identifiability degree 8 and the following 7 other points
corresponding with b(1, 2, 3, 4, 5) = (1, 2, 3, 4, 5, 6, 7):

(9.2814,−10.3208, 10.7201,−10.52,−2.7201,−2.2814, 33.8409),
(108.0762,−66.9431, 13.0118,−0.23744,−0.0118,−101.0762, 75.1805),
(2.4938, 0.3612, 4.3645, 5.326, 8.6355, 4.5062, 2.3128),
(52.0709,−31.4763, 8.1035,−0.5325,−0.1035,−45.0709, 45.0087),
(8.6814,−13.22, 14.5081,−14.2737,−1.5081,−1.6814, 35.4937),
(−9.615, 5.8203, 5.6325, 1.4445, 7.3675, 16.615, 0.7352),
(−13.625, 9.5193, 3.6057, 1.1636, 4.3943, 20.625, 2.317).

(14)

Thus, we have computed at least one point in each irreducible component of the fiber over p.
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Without input-output equations, one simply uses a truncated system Fr as described in §2.2
to perform the same computations. The only potential issues were addressed in §3.2, namely
reduction to the case that the state variables are generically zero-dimensional over the parameter-
input-output space and restricting to the irreducible components which have the same input-
output. The latter is accomplished by simply ignoring the components which have different
input-output values.

Example 4.3. To illustrate moving on an irreducible component, we describe the setup to
yield the same corresponding endpoint in (13). To that end, following Ex. 2.6, we utilize F7.
Starting with parameter values p = (1, 2, 3, 4, 5, 6, 7), the structure of F7 makes it trivial to
generate general input, output, and state variables satisfying F7 = 0, i.e., randomly selecting
input U and initial conditions x0 for the state variables trivially yields the values of the other
state variables x1, . . . ,x8 and output Y. Then, by holding the input U and output Y fixed,
we track along the solution path where the variables consist of the model parameters and the
state variables defined by F7 = 0 that deforms Lp in (11) to L in (12). The resulting endpoint
corresponds with the endpoint in (13).

4.2 Functions from samples

From the ability to sample points described in §4.1, we can reconstruct identifiable functions
in a given finite-dimensional vector space of functions, say F = span{f1, . . . , fj}. Following
Prop. 2.2, an identifiable function f ∈ F is constant on irreducible components of generic fibers
of c, which corresponds with computing null spaces of linear equations described as follows.

We can express every f ∈ F as f =
∑j

i=1 aifi where a = (a1, . . . , aj) ∈ Cj . If p is a
generic value of the parameters, using §4.1, we can compute a generic qp in the same irreducible
component Vp. Hence, the condition f(qp) = f(p) imposes a linear constraint on a, namely[

f1(qp)− f1(p) · · · fj(qp)− fj(p)
]
· a = 0.

One option is to keep imposing more such conditions by selecting other general values of p with
corresponding qp. The dimension of the null space reduces by one monotonically with each new
condition until it reaches the dimension of the linear span of the identifiable functions in F .

Alternatively, for computing identifiable functions with integer coefficients, i.e., a ∈ Zj , one
general point is enough via exactness recovery methods [2].

Example 4.4. Let F = span{k01, k02, k03, k12, k13, k21, k32}, p = (1, 2, 3, 4, 5, 6, 7), and qp as
in (13). Then, integer solutions to (qp − p) · a = 0 computed using [2] correspond to:

k01 + k21, k03 + k13, k02 + k12 + k32.

Alternatively, one can sample Vp for five general values of p and observe that the first four
impose a new linear constraint on the coefficients a while the fifth one is redundant. This shows
that there is a three-dimensional linear space of identifiable functions in F spanned by the three
linear functions above.

We bring all methods of §4 together in the following brief high-level pseudocode.
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Method 5: Computing identifiable functions via sampling

Input: Input-output equation coefficients c(q), depending on parameters q ∈ Cm1 (if
available), else the truncated system Fr for some r and a basis f1, . . . , fj for a
linear space of polynomials F of interest.

Output: Identifiable functions in F .
Choose random, complex values p of parameters q.
Compute a point on each irreducible component of c−1(c(p)) using either c or Fr.
Use homotopy sampling to additional points on each irreducible component.
Use the sample points together with exactness recovery methods to find all identifiable

functions in F .
Return all discovered identifiable functions.

Globally identifiable functions are computed by simply adding the condition that the function
takes the same constant value on all irreducible components of general fibers which are sampled
using the methods of §4.1. Since globally identifiable functions are a subset of the identifiable
functions, one need only search inside of the space of identifiable functions in F .

Example 4.5. From the seven points in (14) corresponding with p = (1, 2, 3, 4, 5, 6, 7), we see
that k01 + k21 is globally identifiable (always taking the value 7 on these eight points) whereas
k03 + k13 and k02 + k12 + k32 are not globally identifiable. However, from the sample points, it
is easy to see that their sum, namely k02 + k03 + k12 + k13 + k32, is globally identifiable.

The selection of the test space F is a user-defined input and is based on the structure of the
identifiable functions of interest, e.g., linear functions, polynomials of low degree, or linear span
of rational monomials where the numerator and denominator have low degree.

5 Examples

We now demonstrate our methods on two larger examples. Throughout the paper, for illustrative
purposes, the examples presented typically selected small integer values for random numbers.
In practice, including the following examples, we select random complex numbers.

Example 5.1. The following is a 4-compartment model from [26, Ex. 6.3]:

ẋ1 = a11x1 + a12x2 + u
ẋ2 = a21x1 + a22x2 + a23x3
ẋ3 = a33x3 + a34x4
ẋ4 = a42x2 + a43x3 + a44x4
y = x1.

This model, which has parameters p = (a11, a12, a21, a22, a23, a33, a34, a42, a43, a44), input u(t),
state variables x1(t), x2(t), x3(t), x4(t), and output y(t), does not fit the criteria presented in [26]
for computing identifiable functions. Nonetheless, the method provided in [26, 27] is able to
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compute the input-output equations where the set c : C10 → C7 of coefficients is

a11a23a34a42 + a12a21a34a43 − a11a22a34a43 − a12a21a33a44 + a11a22a33a44

a12a21a33 − a11a22a33 − a23a34a42 + a11a34a43 + a22a34a43 + a12a21a44 − a11a22a44 − a11a33a44 − a22a33a44

−a12a21 + a11a22 + a11a33 + a22a33 − a34a43 + a11a44 + a22a44 + a33a44

−a11 − a22 − a33 − a44

a23a34a42 − a22a34a43 + a22a33a44

−a22a33 + a34a43 − a22a44 − a33a44

a22 + a33 + a44.

Using Prop 2.2, the model is unidentifiable with 4 dimensions of unidentifiability. Therefore, to
solve Problem 2.11, we need to compute 6 algebraically independent identifiable functions.

We utilize the method of §4.1 to sample and that of §4.2 to construct the identifiable func-
tions. For example, sampling yields the following two values of the parameters (rounded to four
decimal places) so that every identifiable function must take the same value on both:

a11 −0.6690− 0.1758i −0.6690− 0.1758i
a12 −0.1669 + 0.3165i 1.3705− 0.4117i
a21 2.3433 + 0.6225i −0.5219 + 0.3086i
a22 −0.6286− 0.1868i −0.6286− 0.1868i
a23 0.4005− 0.5144i 2.5585 + 0.5746i
a33 2.1248− 0.6011i 0.2095− 0.4521i
a34 1.1295− 0.8604i 0.8611 + 0.5272i
a42 −0.4210 + 0.6785i 0.2734− 0.0567i
a43 −1.1126− 0.0416i −0.1132− 0.7724i
a44 −0.6880 + 0.3317i 1.2273 + 0.1827i

In particular, we immediately see that both f1 = a11 and f2 = a22 are identifiable. Applying §4.2
to the space of linear forms also yields the identifiable linear function f3 = a33 + a44.

Considering the space of polynomials of degree at most 2 which are algebraically independent
of f1, f2, f3 yields f4 = a12a21 and f5 = a33a44 − a34a43.

Finally, the space of polynomials of degree at most 3 which are algebraically independent of
f1, . . . , f5 yields f6 = a23a34a42.

To show that f1, . . . , f6 are actually globally identifiable, we use the approach in §4.1 to
sample points from every irreducible component. The result of this process is that a generic
fiber only has one irreducible component thereby showing global identifiability. We could also
have used Defn. 2.9 to show global identifiability. This is demonstrated by the following:

f1 = −(c4 + c7)

f2 =
c26 + c6c

2
7 + c4c6c7 + c3c6 + c5c7 + c1 + c4c5

c2 + c5 + c4c6 + c6c7

f3 = −c2 + c5 + c4c6 + c6c7
c27 + c4c7 + c3 + c6

f4 = −(c27 + c4c7 + c3 + c6)

f5 =
c1 + c4c5 + c5c7
c27 + c4c7 + c3 + c6

f6 = −

c21 + 2c1c4c5 + c1c4c6c7 + 2c1c5c7 + c1c
2
6 + c1c6c

2
7 + c3c1c6 + c24c

2
5 + c4c

2
5c7

− c2c4c5c7 − c25c6 − c3c25 − c2c5c6 − c2c5c27 − c2c3c5
c2c3 + c2c6 + c3c5 + c5c6 + c2c

2
7 + c4c

2
6 + c5c

2
7 + c26c7 + c6c

3
7 + c2c4c7 + c3c4c6

+ c3c6c7 + c4c5c7 + 2c4c6c
2
7 + c24c6c7
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Example 5.2. The following is a model from biochemical reaction network theory for the
mitogen-activated protein kinase (MAPK) pathway [22] which is part of a molecular signaling
network that governs the growth, proliferation, differentiation, and survival of many cell types:

˙KS00 = −a00KS00 + b00KS00 + γ0100FS01 + γ1000FS10 + γ1100FS11
˙KS01 = −a01KS01 + b01KS01 + c0001KS00 − α01FS01 + β01FS01 + γ1101FS11
˙KS10 = −a10KS10 + b10KS10 + c0010KS00 − α10FS10 + β10FS10 + γ1110FS11
˙FS01 = −α11FS11 + β11FS11 + c0111KS01 + c1011KS10 + c0011KS00
˙FS10 = a00KS00 − (b00 + c0001 + c0010 + c0011)KS00
˙FS11 = a01KS01 − (b01 + c0111)KS01
K̇ = a10KS10 − (b10 + c1011)KS10
Ḟ = α01FS01 − (β01 + γ0100)FS01
˙S00 = α10FS10 − (β10 + γ1000)FS10
˙S01 = α11FS11 − (β11 + γ1101 + γ1110 + γ1100)FS11
˙S10 = −a00KS00 + (b00 + c0001 + c0010 + c0011)KS00 − a01KS01

+ (b01 + c0111)KS01 − a10KS10 + (b10 + c1011)KS10
˙S11 = −α01FS01 + (β01 + γ0100)FS01 − α10FS10 + (β10 + γ1000)FS10 − α11FS11

+ (β11 + γ1101 + γ1110 + γ1100)FS11.

This model has 12 state variables

KS00(t),KS01(t),KS10(t), FS01(t), FS10(t), FS11(t),K(t), F (t), S00(t), S01(t), S10(t), S11(t)

and 22 parameters

a00, a01, a10, b00, b01, b10, c0001, c0010, c0011, c0111, c1011,
α01, α10, α11, β01, β10, β11, γ0100, γ1000, γ1100, γ1101, γ1110.

We will consider several different cases of what is measured as output. In all of our examples,
we attempted to first compute input-output equations using differential elimination via the
command RosenfeldGroebner in Maple [23]. In all of our attempts, the differential elimination
failed to terminate meaning that we will just utilize the model equations in the following.

First, for taking the standard 6 measurable outputs:

y1 = K, y2 = F, y3 = S00, y4 = S01, y5 = S10, y6 = S11,

the following table, computed in about a minute on a single processor, shows that the resulting
model is identifiable:

r corank0 JFr corank22 JFr dr
0 28 6 22
1 23 1 22
2 18 0 18
3 13 0 13
4 8 0 8
5 3 0 3
6 0 0 0
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For comparison of methods, neither DAISY [7, 35] nor COMBOS [28] finished the identifiability
computations for this model after running for 24 hours. To the best of our knowledge, this is
the first successful implementation of a structural identifiability test for this model.

Second, if we adjust the model so that we only take the following 2 measurable outputs:

y1 = K, y2 = F,

the following table shows that the resulting model is still identifiable:

r corank0 JFr corank22 JFr dr
0 32 10 22
1 30 8 22
2 28 6 22
3 26 4 22
4 24 2 22
5 22 0 22
6 20 0 20
7 18 0 18
8 16 0 16
9 14 0 14
10 12 0 12
11 10 0 10
12 8 0 8
13 6 0 6
14 4 0 4
15 2 0 2
16 0 0 0

Third, if we take the following 4 measurable outputs:

y1 = S00, y2 = S01, y3 = S10, y4 = S11,

the following table shows that the resulting model is still identifiable:

r corank0 JFr corank22 JFr dr
0 30 8 22
1 26 4 22
2 22 0 22
3 18 0 18
4 14 0 14
5 10 0 10
6 6 0 6
7 2 0 2
8 0 0 0

Finally, we consider 10 new mixing parameters, namely

ms00, mks00, ms01, mks01, mfs01, ms10, mks10, mfs10, ms11, mfs11,
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with the following 4 measurable outputs:

y1 = ms00S00 +mks00KS00
y2 = ms01S01 +mks01KS01 +mfs01FS01
y3 = ms10S10 +mks10KS10 +mfs10FS10
y4 = ms11S11 +mfs11FS11.

The following table shows that the resulting model, which has a total of 32 parameters, is
unidentifiable with one dimension of unidentifiability:

r corank0 JFr corank32 JFr dr
0 40 8 32
1 36 4 32
2 32 0 32
3 28 0 28
4 24 0 24
5 20 0 20
6 16 0 16
7 12 0 12
8 8 0 8
9 4 0 4
10 1 0 1
11 1 0 1

Using the results from §4, we can observe from sampling that each irreducible component of a
general fiber is simply a line and the following 16 parameters are all identifiable:

b00, b01, b10, c0001, c0010, c0011, c0111, c1011, β01, β10, β11, γ0100, γ1000, γ1100, γ1101, γ1110

meaning a00, a01, a10, α01, α10, α11 and the 10 mixing parameters are unidentifiable. In fact, no
nonconstant linear function in these 16 unidentifiable parameters is identifiable.

6 Conclusion

In this article, we considered the problems of determining the identifiability of an ODE model,
computing the identifiability degree in the case that the model is identifiable and identifiable
functions in the case that the model is unidentifiable. To summarize, the results of this article
include numerical methods for the following:

1. compute the dimension of unidentifiability with or without input-output equations;

2. for identifiable models, compute the identifiability degree with or without input-output
equations using basic homotopy continuation or monodromy loops;

3. for unidentifiable models, compute identifiable and globally identifiable functions inside of
a linear family of functions with or without input-output equations.

These methods were illustrated on several examples, including the first known structural iden-
tifiability result for MAPK in Example 5.2.

In the future, we hope to apply similar numerical algebraic geometry methods to other areas
in biological modelling, such as controllability, observability, and indistinguishability.
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