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INTERCELLULAR INTERACTIONS PROMOTE COLLECTIVE BEHAVIOR IN

BACTERIAL COLONIES AND DEVELOPING EPITHELIA

Abstract

by

Aboutaleb Amiri

Collective behavior has been observed in many animal groups including schools

of fish, flocks of birds, as well as in colonies of swarming bacteria, and even in group

of cells in epithelial tissues of Drosophila fruit fly during development. The self-

organizing behavior and adjustment, which results from local interactions, leads to

group behavior at time and space scales that are larger than the scale of interactions

between individual organisms and cells. In this thesis, we study the impact of physical

properties of individual cells and intercellular interactions on the swarming behavior

in bacterial colonies and self-organization of epithelial cells during development. In

particular, by using combination of computational modeling and experimentation,

we explore the role that pili interactions play in expanding swarms of the pathogenic

bacterium Pseudomonas aeruginosa under different environmental conditions. We

find that pili-pili interactions in a colony of wild-type P. aeruginosa slow down the

swarm expansion as well as enable bacteria to alter their movement to avoid an-

tibiotics. We also demonstrated that periodic reversals of motion direction with

periods within the experimentally observed range, high flexibility of bacterial cells

and a moderate level of strength of cell-cell adhesion are crucial for a colony of self-

propelled rod-shaped Myxococcus xanthus to spread protein within the population

efficiently. This contact-mediated protein exchange mechanism is necessary for bac-
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terial self-organization during predation, fruiting body formation and genetic repair

of damaged cells. Finally, we study role of cellular mitotic rounding during growth

of epithelial tissues. Our results show that increase of cortical stiffness and reduction

in cell-cell adhesion are the main factors in increasing cell roundness, and change in

the cytoplasmic pressure is the primary factor that controls the cell size.
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CHAPTER 1

INTRODUCTION

Collective behavior involves coordinated dynamics of a group of organisms or

cells and determines emergent properties at the population level. This can include

self-organization, synchronization, pattern formation as well as spreading of proteins

at the population level [21]. Modeling studies of collective behavior have produced

novel results about dynamics of human populations, flocks of birds, schools of fish,

marching ants, swarming insects, self-organization of epithelial cells and swarming

bacteria [5, 55, 91, 99]. Collective behavior provides effective strategies, among oth-

ers, for predation, avoiding predators, and surviving the harsh conditions such as

starvation and exposure to antibiotics. In this thesis, we use several novel biolog-

ically calibrated computational models coupled with experimental observations to

suggest and test mechanisms used by two types of bacteria and epithelial cells for

self-organization, and determine how the coordinated group behavior benefits the

whole population. More specifically, we study swarming behavior of Pseudomonas

aeruginosa and Myxococcus xantus bacteria, as well as dynamics and micro-mechanics

of the epithelial morphogenesis.

In chapter 2, we study swarming behavior of Pseudomonas aeruginosa, which is

a pathogenic bacterium which can cause skin, gut, eye and lung infection in human

body. This bacterium is stiff and rod-shaped cell with average length of approxi-

mately 2 microns and the diameter of about 0.5 micron. The wild type strain of

bacterium has a single helical flagellum at their pole and several Type IV pili (TFP)

attached to their membrane that are thin appendages with a length varying from
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0.5 micron to 7 microns (see Fig. 1.1a). Most motile bacteria use either flagella or

type IV pili (TFP), but P. aeruginosa is one of few bacteria that possess both of

these motile appendage types. P. aeruginosa TFP or flagella confer multiple motility

modes in addition to swarming, including swimming, twitching, crawling, and walk-

ing [18, 30, 48]. P. aeruginosa requires a functional flagellum to swarm [20]. Both

TFP and flagella are important to P. aeruginosa biofilm formation [97] and mediate

attachment to different surfaces, including eukaryotic epithelial cells [17], but the

role of TFP during swarming and biofilm formation is not fully understood. Given

that P. aeruginosa is among many bacteria that grow as a biofilm during infection,

there is a need to understand how TFP-TFP interactions between individual cells

during swarming help them coordinate their motion to colonize new surfaces and sub-

sequently transition to stationary biofilms. We present evidence that P. aeruginosa

promotes physical cell-cell interactions during swarming via their TFPs to control

their collective motion and limit individual cell’s movement in swarms. Because of

the difficulty of specifically identifying the influence and dynamics of TFPs upon

swarming cells using a traditional experimental approach, a series of coordinated

laboratory and computational experiments were used in [4] to study the physical in-

fluence of TFP among groups of P. aeruginosa cells. Using simulations, it was shown

that prior reports of improved swarming by P. aeruginosa TFP-deficient mutants

can be caused by TFP-deficient cells displaying increased displacement compared

with wild-type cells. This prediction was confirmed by in vitro experiments that

were performed in Dr. Shrout’s lab which demonstrated that a population of TFP-

deficient mutants outcompeted P. aeruginosa wild type in coculture experiments in

reaching the swarm edge first. The benefit of TFP-mediated collective motion was

shown by demonstrating, using combination of model simulations and experiments,

that wild-type, but not TFP-deficient, P. aeruginosa altered its swarming to avoid

high concentrations of the antibiotic carbenicillin. My contribution to this project in-
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clude novel model extensions together with model calibration and running predictive

simulations which provided basis for the conclusions in [4].

Flagellum

~2 microns

Type IV pili

~
0

.5
 m

ic
ro

n

Pseudomonas aeruginosa(a) (b) Myxococcus xanthus

6-10 microns
~

0
.5

 m
ic

ro
n

S-motility:Type IV pili

A-motility: distributed engines

                and Slime secretion

Figure 1.1: Schematic figure of the shape and motility engines of two bacteria that
are studied in this thesis: (a): Pseudomonas aeruginosa, (b): Myxococcus xanthus.

Next, the collective motion exhibited by Myxococcus xanthus is studied. M. xan-

thus is a soil bacterium which is among the most social bacteria. This bacterium has a

shape of a capsular rod that is about 6-10 microns long and has a diameter of 0.5 mi-

cron. M. xanthus bacteria move by gliding motility. Gliding motility is traditionally

described as a movement in the direction of the long axis of the cell at a solid-liquid,

solid-air or an air-liquid interface without the aid of flagella. M. xanthus utilizes two

genetically distinct motility mechanisms (A-motility and S-motility) to swarm and

colonize on a substrate (see Fig. 1.1b). Social (S)-motility facilitates the movement

of bacteria as groups, while adventurous (A)-motility enables the individual bacteria

to move on their own. Social motility is mediated by the extension and retraction of

TFP at the leading pole of the cells, but the mechanism for adventurous motility is

not fully understood. Two distinct mechanisms have been proposed to explain the

adventurous gliding motility: (i) polar secretion of slime and (ii) an unknown mo-

tor that uses cell surface adhesion complexes that form periodic attachments along

the cell length. However, experimental studies support the existence of distributed
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motility engines along the cell body [122], a hypothesis that we use in setting our

computational model (see chapter 3 for more details). It is known that individual M.

xanthus cells regularly reverse their direction of motion [12] which has an important

impact on the swarming expansion rate of the colony [139]. M. xanthus can prey

and lyse on a variety of other bacteria and grow on the released nutrients [57, 69].

They are also known for their interesting response to nutrient depletion, when a large

number (approximately 105) of cells aggregate, reduce their metabolic rate and form

fruiting bodies to survive the harsh condition [38]. During both predation and fruit-

ing body formation they exhibit rippling motility behavior where cells self-organize

into waves with high and low density regions. While chemical cue signaling known

as quorum sensing is well described, swarming bacteria often act and coordinate on

time scales that could not be achieved via these extracellular quorum sensing cues.

In chapter 3 of this thesis, cell-cell contact dependent protein exchange is explored

as a possible novel mechanism of bacterial self-organization for the social bacterium

Myxococcus xanthus. It has been observed that certain outer membrane lipoproteins

can be transferred from one cell to another by direct contact between cells. This

contact-mediated transfer is sufficient to restore function in mutants that are defi-

cient for these specific proteins [62, 64, 95, 111, 112]. Yet a role for protein exchange

as a mechanism to stimulate social behavior and collective motion has not been

determined. Experimental results on M. xanthus protein exchange can be summa-

rized as follows. It is known that cells exchange proteins related to signaling during

development of M. xanthus fruiting bodies under starvation resulting in some cells

differentiating into spores [38, 59, 81, 113, 117]. Also, lipoproteins related to the

motility of cells, such as Tgl, CglB, and CglC, can be exchanged to restore gliding

motility under nutrient rich conditions [64, 95, 101]. M. xanthus cells lacking motility

genes are able to acquire these proteins when in contact with cells expressing them

and become motile through a process known as stimulation.

4



As explained in more details in chapter 3, by performing simulations we quantify

how quickly outer membrane (OM)-protein could spread throughout the populations

of M. xanthus bacteria. We compare the ability of wild-type bacteria of spreading

protein within population with that for different mutants by varying the parameters

that represent physical and behavioral properties of individual cells in the domain

close to the swarm edge. The optimal rate of cell-cell connections and efficiency of

protein transfer was obtained for reversal periods in the range from 4 to 12 minutes

that is the dominant range in experiments. This range has also been reported to

optimize the expansion rate of the swarming M. xanthus population [139]. This

suggests that swarm expansion and the efficiency of the protein spreading could be

related to each other. For example, optimized protein exchange and connection rate

may result in more efficient motility recovery that enhances the expansion rate of

the swarm, or they could be linked to the increase in the orientation correlation

between bacteria [139]. However, this remains a very important open question to be

investigated in future studies. I am the first author of the recent published paper on

these results [3] and developed the model and conducted all predictive simulations

on this project.

Collective behavior and self-organization have also been observed for cells in mul-

ticellular organisms [55, 105, 131]. The coordinated motion of cells play an important

role during the development of tissues as well as in processes such as wound healing

and tumorigenesis [43, 85, 90]. In chapter 4, we study the role of cellular physical and

mechanical properties in morphogenesis of epithelial tissues by using a combination

of experimental observations and detailed biophysical model simulations. Epithelia

are tissues composed of tightly packed cells that provide barriers between internal

cells of organs and the environment. Epithelium is one of four basic tissue types

in the human body [44, 54, 79]. Cell divisions during development must occur ro-

bustly, as mis-segregation of chromosomes leads to severe genetic abnormalities in
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daughter cells. Over 90% of all human tumors are epithelially-derived [89], and the

accumulation of genetic errors during cell division can lead to all of the hallmarks of

cancer [56]. In tissues, mitotic cells must become sufficiently round during division to

avoid the mis-segregation of chromosomes while still remaining connected with their

neighbors [19]. A better understanding of the biophysical mechanisms governing the

behavior of mitotic cells in epithelia will result in a better understanding of many

diseases including cancer.

Therefore, we developed a sub-cellular biophysical model to study the impact of

mechanical interactions between cells in the tissue on the shape and size of cells dur-

ing division and in general on the tissue patterning. Epithelial cells entering mitosis

rapidly undergo structural changes that result in the apical area of the cell becoming

larger and rounder, in a process known as mitotic rounding [87, 125]. The begin-

ning of MR in epithelia coincides with an increased polymerization of actomyosin

at the cell cortex, which results in an increase in cortical tension and is necessary

for MR [107, 124]. Simultaneously, intracellular pressure increases [124], and cells

partially reduce adhesion to their neighbors and the substrate [107]. Experiments

that can specifically target only dividing cells and measure physical properties of

individual cells within tissues are very challenging. Biophysically calibrated com-

putational models can complement current experimental methods by predicting the

response of tissue to mechanical perturbations of individual cells. As explained in

more details in chapter 4, by performing computer simulations we predict that cyto-

plasmic pressure is the dominant factor that leads to the increase in the size of cell

as it goes to mitotic phase. However, increasing the cortical stiffness, decreasing the

cell-cell adhesion during the mitotic phase are crucial for mitotic rounding. Com-

putational modeling environment described in [92] and in this thesis also provides

a strong tool to suggest and test the mechanisms of wound healing without leaving

scars or disturbing the tissue patterning.
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CHAPTER 2

ROLE OF TYPE IV PILI INTERACTIONS ON SWARMING BEHAVIOR OF

PSEUDOMONAS AERUGINOSA

We study in this chapter how the collective behavior of a colony of Pseudomonas

aeruginosa bacteria is influenced by the Type IV pili (TFP) interactions between

individual cells. TFPs are flexible appendages that are attached to the cell body

and have a varying length from 0.5 microns to 7 microns (See Fig. 1.1a). The role

these appendages play when not facilitating motility or attachment to surfaces is

not yet understood. Due to the small size of temporal and spatial scales of TFP-

TFP interactions, it is not possible to investigate the role of TFP interactions by

using only the traditional experimental tools. Therefore, we use a combination of

biophysical modeling, computer simulations and laboratory experiments to study the

swarming behavior at the cellular level and explain the resultant patterns of cells

imaged from in vivo swarms. The results presented in this chapter are published in

[4]. The laboratory experiments are done in collaboration with Joshua Shrout’s lab

at the department of Civil Engineering and Environmental Sciences, University of

Notre Dame.

2.1 Cell based biophysical model

P. aeruginosa cells use a single rotating flagellum located at their lagging pole

to generate the propulsion force that they need to swim in a liquid environment or

swarm within a thin film. A wild type P. aeruginosa bacterium has several TFP

located on their membrane. The cells are rod-shaped and they do not bend while
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interacting with other cells or the environment. Hence, we modeled the cells as

rigid self-propelled capsular rods. The length of the cells L is set to 2 microns and

their diameter D is assumed to be 0.5 microns, as suggested by in vivo experimental

observations. A schematic figure of the cells is shown in Figure 1.1a. Every cell is

self-propelled with a constant velocity vprop along the direction of the cell axis. The

magnitude of self- propulsion velocity is set to 3 µm/sec the average velocity of cells

from in vivo experiments. Wild type cells are assumed to have an external TFP zone

with a relaxed length equal to the average length of pili Lp. As two wild type cells get

closer than the set cutoff distance rm, the springs become compressed and a repulsion

force and torque arises between the cells. The cutoff distance is given by

rm = D + Lp. (2.1)

TFP have a polymer structure and show complex behavior under external forces. In

our model, we approximate TFP-TFP interaction with a linear force as for a spring,

which is based on prior investigation of pili of E. coli and P. aeruginosa. In particular,

Jass et al. [66] studied physical properties of E. coli pili by using an optical trapping

methodology to measure the force applied by a trapped pilus upon a latex bead.

They showed that this force had linear behavior as the pilus was stretched (for the

force not being too large to unfold the polymer structure of the pilus). Touhami et al.

[128] studied the adhesion forces of P. aeruginosa pili using Atomic Force Microscopy.

They fastened bacteria to a mica surface through their pili and measured the force

applied by pili. They reported that slopes of force curves were nearly linear, but

with a little variation for different pilus length. In our model, the magnitude of the

linear force is adjusted to slow down cells and rotate them when they are inside

the TFP interaction range so that the behavior of cells during collisions resembles

to that observed in experiments. This approach has also been applied to modeling
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cross-linked liquid crystals [120]. However, in comparison with cross-linked liquid

crystals, TFP-TFP interactions are generally more transient. In our model, when
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Figure 2.1: (a) Schematic view of criteria used to model interactions of P. aeruginosa
cells. (b) Hypothesized altering of trajectory between two cells due to torque intro-
duced from TFP effects of two swarming cells. (c) A short-range potential between
two cells to avoid overlapping.

the distance between cell i and cell j (dij) is less than the cutoff distance rm a linear

force is used for TFP-TFP interaction and when dij is less than the cell diameter

D, a hard-core potential is used to prevent cells from overlapping and for volume

exclusion (Figure 2.1c), similar to the approach introduced by Glowinski et al. [52].

This approach has been previously used for modeling rigid spheres. Here we modify

the approach to model rigid self-propelled rods representing the P. aeruginosa cells.

Hence, the spring force (~Fspring) and the short-range repulsive force (~Frepulsive) are

determined as follows:

~Fspring = kspring(dij − rm)
~dij
dij
, (2.2)

~Frepulsive =
cij
ε

([
dij−D−ρ

ρ

]−)2
~dij
dij
, (2.3)
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where cij is the characteristic force, ~dij is a vector from cell i to cell j of length

dij, and ρ and ε are parameters for defining the range and strength of the repulsive

force. The notation [a]− = max(0,−a) is used in Eqn. 2.3. This potential is shown

in Figure 2.1c. Due to small size L of bacteria (≈10−6m) and their small velocity

v (≈10−6m/s), the viscous forces dominate the inertial forces and the Reynold’s

number which is the ratio of inertia to viscosity (Re = ρvL/µ) becomes a very small

number (Re � 1), where ρ ≈ 1000Kg/m3 is the density of thin liquid film, and

µ ≈ 10−3Pa.sec is the dynamic viscosity of the liquid. In this regime, we can use

the Stoke’s equation to describe the motion of bacteria. Hence, the force and torque

exerted on the cell i around its center of mass at each time step is calculated by the

following equations [37].

~fi = ~Fi,prop +
∑

j(
~Fji,spring + ~Fji,repulsive) = −

[
ξ⊥vi⊥n̂+ ξ‖vi‖ t̂

]
,

~τi = ~li × (~Fi,spring + ~Fi,repulsive), (2.4)

where t̂ and n̂ are the unit vectors parallel and perpendicular to the cell orientation,

respectively. vi⊥ and vi‖ are the projection of the velocity in the normal and tangent

direction to the cell orientation, respectively. ~li is a vector from the center of mass

of the cell i to the point of collision with neighboring cell j. ξ‖ and ξ⊥ are the resis-

tive drag coefficients in parallel and perpendicular direction to the cell’s orientation,

respectively, and for rod-shaped bacteria are given by

ξ‖ ≈
2πµ

log(2L/D)− 1/2
, ξ⊥ ≈

4πµ

log(2L/D) + 1/2
, (2.5)

where µ is the dynamic viscosity of the thin film [37]. For the rod-shaped bacterium

P. aeruginosa with aspect ratio L/D = 4, we have ξ⊥ ≈ 1.63ξ‖. By obtaining the

linear velocity and the angular velocity of each bacterium around its center of mass

from Eqn. 2.4, the position of bacteria at time t, defined by ~r(t), and their orientation
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θ(t) are updated in the following way

~r(t) = ~r(t− dt) + ~v · dt, (2.6)

θ(t) = θ(t− dt)± ω · dt. (2.7)

Periodic boundary conditions have been used for performing the simulation. The

source code that we developed for these simulations is provided in Appendix A.

2.2 Results

We examined a potential TFP interaction mechanism among cells using the cell-

based computational model (in silico) that is described above. The motion and

interaction of P. aeruginosa was modeled where TFP, distributed uniformly around

a cell, affect cell trajectory but not self-propulsion of the cell. The self-propulsion

velocity of the cells was set to a constant value equal to the average velocity of cells

from in vivo observations (3µm/s). The model was calibrated using experimental

data obtained at different scales for individual P. aeruginosa cells and entire P.

aeruginosa swarms. Simulation experiments were then conducted using this model

to study the importance of specific cellular features to collective motion of swarming

where we could simulate and track the behavior of every cell over time as well as

collective behavior of the population.

Given the observation of our group and others that TFP-deficient P. aerugi-

nosa strains (mutants that do not have TFP) exhibit a superswarming phenotype

[73, 74, 119], we were interested in explaining the role of TFP during swarming. How

do TFP participate during swarming if they do not increase cell motility and are not

conferring attachment to surfaces? We studied P. aeruginosa wild-type and TFP

mutants under conditions where TFP-deficient swarms expand five times faster than

11



wild-type swarms, despite the fact that these strains produce the same levels of rham-

nolipid [119] and show the same swimming (flagellar motility) speed. Rhamnolipids

are biochemicals that are released by bacteria due to quorum sensing (assessing the

change in population density), and it leads to the extraction of water from substrate

which helps them expand the biofilm.
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Figure 2.2: Impact of TFP on P. aeruginosa swarming. (a-c) Whole population
and (d-f) single-cell scales imaged by confocal microscopy during swarming of P.
aeruginosa wild-type and isogenic ∆pilA (TFP-deficient) and ∆pilU (hyperpiliated)
TFP mutant. The scale bars in a-c and d-f represent 12 mm and 2 µm, respectively.
Data are adopted from our publication [4].

2.2.1 TFP affect cell-cell arrangement during swarming.

We found that the presence of TFP affects the arrangement of cells at the advanc-

ing swarm edge (Fig. 2.2). Cells without TFP (∆pilA) appear more systematically

ordered than wild-type cells while hyperpiliated (∆pilU) cells appear less ordered

than wild-type cells. Inspection of cells in swarm tendrils (∼1-2 mm toward the
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swarm center away from the swarm edge) shows a less-marked distinction between

cell-cell patterns for cells with and without TFP.

Alignment of cells was calculated by measuring the parallel orientation of each

cell-cell pair both in our simulations and in our in vivo experimental observations.

The orientation vector for a cell is defined as a vector between two end points of a

cell. The alignment correlation coefficient C(r) for cell pairs was calculated using the

following equation [34]:

C(r) =
1

N(r)

N(r)∑
i,j,i6=j

(
2 cos2(θij)− 1

)
(2.8)

where θij is the difference between orientation vector angles for the ith and jth cells,

and N(r) is the number of pairs of cells separated by a distance r. An alignment

correlation coefficient of 1 indicates that, on average, any two cells that are r cell

lengths apart are perfectly parallel to each other, while a value of 0 indicates that

two cells are perfectly perpendicular to each other.

Swarming cells without TFP exhibited the highest alignment values (Fig. 2.3),

but the trends of the alignment showed similar behavior across different strains. As

expected, cell-cell pairs for all strains tested exhibited the greatest alignment with

their closest neighbors (fewer than five cells apart). At greater distances, cell-cell

alignment decreases for each different strain until reaching a constant alignment value.

Our simulations were able to capture the overall emerging arrangement patterns seen

and measured in our swarm plate assays, but the alignment values and the cluster

size showed differences with those measured from experiments (Fig. 2.3).

We also quantified cell-cell clustering and population density for swarming cells

with and without TFP. We define a cluster as having cells with ≤15◦ difference in

orientation and ≤3 µm separation. The presence of TFP contributed to cluster size,

as TFP-deficient cells were the most likely to form larger clusters of 10 or more
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(a) (b)

Figure 2.3: Cell-cell alignment for swarm edge cells for wild-type, ∆pilA (TFP-
deficient), and ∆pilU (hyperpiliated) swarms. The y axis values of 0-1 represent
a measure of alignment where 1.0 = perfectly parallel cells, while 0 = perfectly
perpendicular cells. The x axis values represent the number of cell lengths between
the compared cells for (a) in vitro swarms calculated from images of swarming bacteria
at the swarm edge obtained using confocal microscopy (for six images containing
122-715 cells each) and (b) in silico computational simulation results of swarming
bacteria. Data are adopted from our publication [4].

cells (Fig. 2.4), while hyperpiliated cells were more likely to exist as single cells.

The majority of cells are not part of a cluster for any strain examined (i.e., cluster

size is one cell). With regard to clustering, the simulations partially captured the

clustering phenotypes observed in vitro (Fig. 2.4). The simulation results did fit

the general pattern observed for wild-type cells with TFP; however, the absence of

TFP did not lead to the greater cluster sizes observed in vitro (Fig. 2.4). Altering

the range (or zone) of TFP interaction did not lead to the emerging cell alignment

or clustering measured in vitro. We also calculated population density as a packing

fraction of cells within the available total space (i.e., cell coverage area divided by total

swarm area). Higher packing fraction indicates that cells are more tightly packed.

TFP-producing wild-type cells exhibited a packing fraction that is 60% of the TFP-

deficient ∆pilA strain at their swarm edge. Within these high-population swarms,

TFP of wild-type cells appear to limit the 2D cell density that can be achieved for

P. aeruginosa. Overall, the differences in alignment and clustering between these
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Figure 2.4: Cell clustering during swarming. Cluster size distribution for (a) in vitro
swarm edge cells (n ≥ 122 frames), where TFP-deficient cells are more likely to form
large clusters (>10 cells) than wild-type cells at the swarm edge, and (b) in silico
simulations. Data are adopted from our publication [4].

in vitro and in silico experiments suggest that these cell-cell arrangement properties

are not causative traits for differences in collective motion of bacteria. Hence, if our

assumption that TFP impact cell-cell motion is correct, the faster collective motion

of TFP-deficient cells must involve cell-cell interactions that promote more than

just parallel cell alignment and cluster size to affect swarming. Since few flagellar-

motile bacteria also have functional TFP, it is possible that traits of collective motion

exhibited by P. aeruginosa to swarm are distinct from those of other bacterial species.

2.2.2 Simulations of swarming cells predict that TFP affect collective motion.

We further analyzed our in silico results to determine how populations with and

without TFP might swarm differently. We calculated the mean squared displacement

(MSD) over time for simulations of cells with and without TFP, and found that the

population of cells exhibited three different types of behavior that can be separated

into phases (or regimes) that have been studied for small self-propelled particles: i)

ballistic, ii) super-diffusive, and iii) diffusive [32, 63, 106]. The diffusion coefficient D

was measured from the following equation by fitting a linear line to the MSD curve
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(a) (b)

(c) (d)

Figure 2.5: Computational simulations of swarming bacteria show MSD of cells
over time to be impacted by TFP. The effective cell density of each simulation was
kept constant at 75%. (a) Monocultures simulated with differing amounts of TFP.
TFP-deficient cells are modeled as having no TFP, whereas wild-type cells have 0.5-
µm-long TFP and hyperpiliated cells have 1.0-µm-long TFP. (b) Monoculture of
wild-type cells with varied probability of TFP-TFP interaction. (c) Monoculture of
cells with varied TFP placement. (d) Coculture simulation of wild-type with TFP-
deficient cells that assumes only TFP-TFP interactions and no TFP-cell interactions.
The total number of cells in this simulation was 360, and they were randomly as-
signed to be either TFP deficient or wild type at the onset of the simulation. The
diffusion coefficient D (µm2/s) for cells in (a) and (d) is measured by linear fit to
data within the diffusive phase indicated by the red line. Data are adopted from our
publication [4].

in the diffusive regime.

MSD = 4Dt (2.9)

Diffusion coefficient D for wild-type cells with TFP was much less than for TFP-

deficient cells (Fig. 2.5a). We also implemented TFP-TFP interaction among swarm-

ing bacteria in a probabilistic manner to consider the possibility that TFP between

neighboring cells may not always interact. Our simulations showed that decreasing
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the probability that TFP interact between neighboring cells leads to increased swarm

expansion and MSD of these cells (Fig. 2.5b). Thus, our in silico results predicted

that P. aeruginosa cells that have minimal TFP-TFP interaction or cells without

TFP should spread more easily (as individual cells) than wild-type cells with consid-

erable TFP interaction at any time during swarm expansion. We also considered the

possible placement of TFP on swarming cells by simulating cells with TFP present

only at one cell pole. We found that TFP placement also impacts swarm expansion,

as cells with more polar TFP exhibited greater swarm expansion and MSD values

(Fig. 2.5c). Lastly, we simulated swarming for a mixture of cells with and without

TFP and again find that the MSD of cells without TFP is greater than cells with

TFP (Fig. 2.5d). We therefore conclude from these in silico results that increasing

parallel alignment does not improve collective motion a priori; rather, cells within

swarms that expand faster tend to exhibit higher alignment. These changes in dis-

placement did not have a linear correlation with alignment or clustering of these cells.

Although previous research has postulated that P. aeruginosa cells must align with

each other to allow swarms to expand in some cases [34, 100], our results suggest

alignment as a consequence of swarming behavior rather than a conditional require-

ment for P. aeruginosa. We attributed the higher expansion rates of TFP-deficient

strains observed in vitro with limiting TFP-TFP interactions between cells within

motile populations.

2.2.3 TFP interact with other TFP during swarming.

We investigated how differently bacteria with or without TFP spread within

swarms by performing simulations of cocultures of P. aeruginosa strains with and

without TFP. We found that cells with TFP largely interacted with other TFP-

producing cells. Swarms composed of a 1:1 ratio of wild-type and TFP-deficient

cells exhibit a swarm phenotype that appears between that of wild-type and TFP-
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deficient swarms. When TFP-deficient cells were introduced to a population of cells

with TFP in a simulation, they were able to move through this population of TFP

cells. Conversely, motile cells with TFP moved in clusters and not as single cells.

The TFP-deficient cells in these simulations traveled farther and more of these cells

reached the swarm edge than wild-type cells (Fig. 2.6). Thus, we explain the reduced

spreading rate of wild-type compared with TFP-deficient cells as caused by TFP in-

teracting primarily, if not solely, with other TFP during swarming. The ability of

TFP-deficient cells to pass through wild-type (TFP-joined) cell clusters was then

observed experimentally when inspecting swarming cells for a few seconds roughly

10 hours after inoculation. We found that wild-type cells remained associated with

each other while TFP-deficient cells moved past wild type to reach the swarm edge

in a manner similar to that predicted in our computational simulations.
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Figure 2.6: Mean squared displacement (a) and average displacement compared be-
tween TF-deficient cells and wild-type (b). The population is a 1:1 mixture of wild-
type and TFP-deficient bacteria. Data are adopted from our publication [4].

Swarms composed of a 1:10 ratio of ∆pilA cells and wild-type cells exhibit an
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overall pattern that is similar to the wild type alone. However, inspection of single

cells within these coculture swarms shows that these strains are not uniformly dis-

tributed. At either inoculation ratio, coculture swarm edges become dominated by

TFP-deficient cells, while swarm centers are almost exclusively populated by wild-

type cells. When wild-type and TFP-deficient cells are present in roughly equal

numbers, TFP-deficient cells concentrate on top of the wild-type cells. In all di-

mensions, interaction between cells with and without TFP appears limited. Overall,

TFP-deficient cells advance more rapidly than wild type when growing in cocul-

ture (Fig. 2.7). Further, we find these differences in swarm expansion are general

for mixing any two strains with differing levels of TFP. For pairwise mixtures of

TFP-deficient, wild-type, and hyperpiliated strains examined in vitro, the ∆pilA

TFP-deficient strain always expands the fastest, the wild type has the next highest

expansion rate, and the ∆pilU hyperpiliated strain has the slowest swarm expansion

rate. This consistent separation between cell types suggests that TFP are impor-

tant to interactions among P. aeruginosa cells during swarming. In coculture these

TFP-deficient cells exhibit a higher diffusivity than their TFP-producing counter-

parts. Because wild-type cells do not cluster with TFP-deficient cells to improve

their spreading, we conclude that wild-type cells display strong associations by using

their TFP, thus excluding the TFP-deficient cells.

Lastly, we demonstrated a benefit of TFP during swarming by monitoring growth

of the wild-type and TFP-deficient strains in the presence of a toxic agent. In plate

assays where we spotted a solution containing the β-lactam antibiotic carbenicillin,

we observed that wild-type cells avoid this region of the plate (Fig. 2.8). Sim-

ilar results showing P. aeruginosa swarms avoiding various inhibitory compounds

have been shown in other studies [10, 77]. Conversely, the TFP-deficient ∆pilA mu-

tant swarmed at its higher expansion rate and proceeded into the region containing

the highest amounts of antibiotic. Within the timeframe of the experiment (∼19
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Figure 2.7: Wild-type (WT) cells (red) do not prevent expansion of TFP-deficient
(∆pilA) (green) cells in coculture swarms. TFP-deficient cells do not colocalize with
WT over time and are most prevalent at the edges of cocultured swarms, while WT
cells dominate the swarm center. This phenotype is observed at inoculation ratios of
either (a-d) 1:1 or (e-h) 1:10 ∆pilA:WT. The scale bars for (a) and (e) represent 10
mm, and the scale bars for (b-d) and (f-h) represent 2 µm. Data are adopted from
our publication [4].

h), viability staining showed many of these cells stain ”dead” by propidium iodide.

However, the uncontrolled TFP-deficient cells exhibited amplified signs of their expo-

sure to carbenicillin for much of its swarm area. The TFP-deficient swarms showed

cell elongation and cell death well away from their advancing swarm edge. Hence,

the TFP-TFP associations that reduced overall swarming allowed P. aeruginosa cell

groups to deviate their overall swarming direction to avoid a toxic environment.

2.3 Discussion

We conclude that P. aeruginosa TFP preferentially interact with TFP of other

cells during swarming to promote cell-cell association and limit lone cell movement

in expanding swarms. We reached this conclusion by studying swarming of P. aerug-

inosa wild-type and TFP-mutant strains using computational simulation (in silico)

experiments and in vitro plate assay swarming experiments in an iterative fashion.

We first detailed differences in cell-cell patterning during swarming for cells with
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Figure 2.8: TFP limit expansion to allow for avoiding toxic environments during
swarming. (a) P. aeruginosa wild type avoids a spot inoculation of 63 µg carbenicillin
(marked by red dot). (e) The isogenic ∆pilA (TFP-deficient) strain swarms over the
carbenicillin. (b-d and f-h) Single-cell scale of swarms imaged by confocal microscopy.
Cell elongation and cell death (i.e., stained red with propidium iodide) is apparent
in maximum-intensity projections of confocal micrographs at the edges for both (d)
wild type and (h) ∆pilA. The impact of carbenicillin is more widespread for the (g)
∆pilA, as exampled ∼25 mm from its swarm edge, compared with (c) wild type ∼4
mm from the swarm edge. The scale bars for (a) and (e) represent 10 mm, and the
scale bars for (b-d) and (f-h) represent 2 µm. Data are adopted from our publication
[4].

and without TFP from in vitro experiments (Fig. 2.2). We then explored poten-

tial mechanism of TFP interactions between cells using a cell-based computational

model to simulate P. aeruginosa swarming. Our simulation results predicted that

displacement properties of single cells should be affected by TFP. Additional simu-

lations predicted that mixtures of cells with and without TFP should separate. We

confirmed the in silico predictions of displacement and separation behavior by show-

ing in vitro that TFP-deficient cells will predominate at swarm edges in coculture

swarm experiments, even when added 1:10 with a wild-type strain harboring more

TFP (Fig. 2.7). Not only did the TFP-deficient (∆pilA) strain spread faster during

swarming, but this strain also consistently separated from the TFP-producing wild

type. Thus, we infer that TFP-TFP interactions between P. aeruginosa cells are a

dominant mechanism of cell-cell interaction during swarming. This mechanism was
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general for P. aeruginosa strains with differing TFP levels, as groups of strains with

more TFP could always be distinguished from strains with fewer (or no) TFP over

time in our experiments. The TFP-TFP interactions we report help explain previ-

ous experimental results that showed increased swarming of TFP-deficient mutant

strains [73, 74, 119] even though the (uninhibited) swim motility of these strains is

the same. Effectively, wild-type P. aeruginosa limit their collective motion because

of TFP interactions. The importance of TFP associations for P. aeruginosa commu-

nities for development of static biofilms is well established [7, 70, 71]. Here we further

extend our knowledge of TFP function by demonstrating that TFP allow swarming

P. aeruginosa some directional control of its collective motion. The direct advantage

of this TFP mechanism during swarming was evidenced when swarms are monitored

in the presence of the antibiotic carbenicillin. A TFP-deficient strain was unable

to alter its radial swarming direction and traveled into a toxic environment that led

to cell death (Fig. 2.8). TFP-intact wild-type cells were able to stop swarming in

the direction of this soluble toxic compound, thus promoting their survival. Based

upon our in silico and in vitro results, we conclude that the TFP influence upon

collective behavior we report is passive and does not require extension and retraction

of TFP. Our simulations were able to capture the results we observed in vitro when

we assumed a high interaction probability between cells with uniformly distributed

TFP. These results are also consistent with a nonretraction TFP mechanism, as P.

aeruginosa cells displaying TFP-mediated motility are reported to have polar TFP

[27, 121]. The duration of the TFP-TFP/cell-cell associations we report remains to

be determined. TFP associations as a precursor to biofilm formation have been ob-

served for Vibrio cholerae [68]. Here, P. aeruginosa may be using TFP as a means of

sensing physical proximity to neighbor cells in addition to sensing population density

via diffusible quorum sensing cues. Such a mechanism is in agreement with evidence

showing swarming as a transition step between initial surface colonization and static
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biofilm development [7, 18, 68, 73, 119]. Further evidence for this transitional role

for swarming was provided by van Ditmarsch et al., who demonstrated that selection

for hyperswarming P. aeruginosa mutations comes at a fitness cost, as these mutants

were at a disadvantage in other phenotypic assays [129]. Importantly, none of the

hyperswarming mutants obtained by van Ditmarsch et al. were TFP deficient. Evolv-

ing to curtail TFP synthesis must come at a cost even for swarming P. aeruginosa

even in the absence of an antagonist, as we have demonstrated in our experiments.

We suggest that this can be explained by the ability of TFP to confer advantageous

cell-cell associations by linking to other TFP.
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CHAPTER 3

REVERSALS AND COLLISIONS PROMOTE PROTEIN SPREADING IN

BACTERIAL SWARMS

In this chapter, we use a biologically calibrated computational model to study the

mechanism that is utilized by a colony of swarming bacteria to efficiently spread the

protein within the population. This work is mainly computational and is accepted

for publication in the journal of Physical Review E [2].

Swarming groups of bacteria coordinate their behavior by self-organizing as a

population to move over surfaces in search of nutrients and optimal niches for col-

onization. Many open questions remain about the cues used by swarming bacteria

to achieve this self-organization. While chemical cue signaling known as quorum

sensing is well described, swarming bacteria often act and coordinate on time scales

that could not be achieved via these extracellular quorum sensing cues [132]. In this

chapter, cell-cell contact-mediated exchange of protein is explored as a possible novel

mechanism of bacterial self-organization using well-known social bacterium Myxococ-

cus xanthus as an example. Spreading of protein within a bacterial colony can be

compared to people at a party randomly exchanging information with one another

in a small group, then moving on to another small group. How long it will take to

inform everyone depends on the population structure, its density, and the specific

strategy of the information exchange. Here, we used Shannon entropy [116] to eval-

uate the dynamics of protein spreading in the population of bacteria. This approach

can be applied for investigating the impact of any molecular exchange between cells

that make transient contact with each other. The Shannon entropy has been pre-
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viously used for studying, among others, diversity of species [110], diversity in the

bacterial and archaeal DNA [60], collective motion of moving animal groups [23, 84]

and interacting non-conservative units such as bubbles in a foam [11].

Myxobacteria are common soil bacteria that are among the most “social” bacteria

in nature [38, 140]. M. xanthus is the most studied of the myxobacteria which was

extensively used to explore collective behavior. It is known that individual M. xanthus

cells regularly reverse their direction of motion [12] which has an important impact

on the swarming expansion rate of the colony [139]. It has been observed that certain

outer membrane lipoproteins can be transferred from one cell to another by direct

contact between cells. This contact-mediated transfer is sufficient to restore function

in mutants that are deficient for these specific proteins [62, 64, 95, 111, 112]. Yet a

role for protein exchange as a mechanism to stimulate social behavior and collective

motion has not been determined.

It is known that cells exchange proteins related to signaling during development

of M. xanthus fruiting bodies under starvation resulting in some cells differentiating

into spores [38, 81, 113, 117]. Also, lipoproteins related to the motility of cells, such as

Tgl, CglB, and CglC, can be exchanged to restore gliding motility under nutrient rich

conditions [64, 95, 101]. M. xanthus cells lacking motility genes are able to acquire

these proteins when in contact with cells expressing them and become motile through

a process known as stimulation. At least one of the cells (donor, recipient or even

another cell that is not directly involved in the outer membrane protein exchange)

must be motile to facilitate the transfer [61, 132]. Outer membrane exchange can also

enable predation [9, 39, 141] and repair of damaged or deficient cell outer membranes

[130]. It has been shown that M. xanthus cells with different levels of outer membrane

protein that come into direct contact, efficiently share an equal amount of outer

membrane material within a relatively short period of time [22, 36, 95, 101, 134].

While the physical properties of M. xanthus have been partially characterized
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in experiments [102, 138], in vivo modification of flexibility or adhesion strength in

a deliberate and controlled way in mutants can not be easily done at this time.

Changing parameters in computer simulations provides one with a fast and efficient

way of producing and testing different hypotheses. Computational modeling of M.

xanthus swarming and collective behavior has previously focused on the emergence

of cell clusters and patterns within a bacterial population [6, 103, 104, 136]. Here,

we study how flexibility, adhesivity and reversals of M. xanthus bacteria could opti-

mize formation of cell-cell connections within a swarming population and the speed

of protein spreading within the population. To achieve this, we extended the Sub-

Cellular Element (SCE) model of bacterial swarming [58] by incorporating a novel

submodel representing mechanism of protein transfer between contacting cells. The

model parameters are calibrated using experimental observations. In order to per-

form simulations involving large number of cells, a Graphical Processing Unit (GPU)

implementation of the SCE model has been developed.

3.1 Biologically calibrated computational model

The SCE method has been introduced to study multi-cellular systems [93], and used

for simulating epithelial cell growth [29], platelets in blood flow [127], and gliding

bacteria [58]. In this approach cells are represented as a collection of interconnected

subcellular elements. The dynamics of each SCE results from the elastic forces in

response to changes in cell shape or cell-cell and cell-environment interactions. The

SCE model of bacterial swarming developed in [58] takes into account adhesive forces

between cells and the substrate they move on as well as the flexibility of individual

cells and frequency of reversals. The inclusion of adhesion and reversal periods in this

computational model sets this approach apart from previous studies [6, 103, 136, 141].

The model that is presented in this chapter is set for studying the A+S- M. xan-

thus mutants. The A+S- mutants only utilize the A-(Adventurous) motility engine
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that enables them to move on their own on the surface, but lack the S- (Social)

motility engine that works by cells attaching their type IV pili to the neighboring

cells and moving together. We model these mutants because it enables us to focus

on protein exchange between self-propelled bacteria without interference from the

S-motility engine. In the model, cells are represented by 16 interconnected SCEs,

and to model the cell motion due to slime A-motility on individual SCEs, distributed

force engine is used. Distributed force engine is implemented by applying force to

every fourth element of the cells. This allowed for greater flexibility of cells because

in highly flexible cells a single lagging force applied to one of the poles can cause

flailing motion. The distributed engine model is also amenable to different models

of A-motility including focal adhesion. We assume that each cell interacts with the

substrate through an adhesive force representing a slime capsule interaction with the

substrate. Cells reverse their motion direction by switching which cell pole is iden-

tified as the head and tail, thus switching the direction of the forces (Fs) applies

on the elements. The directional change is controlled by an internal reversal clock

assigned to every cell with the fixed reversal period (tr). The reversal clock time

increases at every simulation step until it reaches tr. Reflecting boundary conditions

are implemented in the simulations. Cells in our computational model are assumed,

based on experimental observations, to be 5 µm in length with an aspect ratio of

10:1. A random noise in the direction of cell movement, R(t) = krandζ, is used to

model the intrinsic motility fluctuation of bacteria gliding on agar. ζ is a normally

distributed random vector. Because these bacteria glide in a highly viscous slime, we

can make the simplifying assumption that inertia effects can be neglected, resulting

in the following form of the equation of motion

d

dt
x(t) =

1

γ
(R(t)−∇U(x(t))). (3.1)

The second term on the left hand side accounts for the forces due to the interactions
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that are applied on each SCE. The force acting on SCE i can be described by

−∇xU(xi(t)) = F(x(t)) = Fbond + Fbend + FLJ + Fslime (3.2)

where

Fbond =
∑

j∈bonded neighbor

kb(||xi − xj|| − xeq)r̂i, (3.3)

and

FLJ =
∑

j∈non-bonded SCE

ε(12
λ12
ij

||xi − xj||13
− 6

λ6
ij

||xi − xj||7
)r̂i. (3.4)

The sum in Eq. 3.3 is over all bonded neighboring SCEs (i.e. neighboring SCEs that

belong to one cell). All SCEs have two bonded neighbors except for the SCEs at the

ends of the string representing a cell, which only have one. The list of “non-bonded

SCE” in the sum of Eq. 3.4 includes all SCEs that belong to other cells and are within

the LJcutoff distance of SCE i. The strength of the non-bonded interaction between

the ith and jth SCEs of two different cells that are separated by the distance xij is

defined by the parameter ε, which represents the strength of the adhesion interaction

between slime capsules of the cells. Transition from repulsion to attraction takes

place at the distance λij . The value of λij is chosen based on the known width of

bacteria cells and is set to 0.5µm.

The interaction due to bending rigidity is defined by the potential:

Ubend =
1

2
kb(θ − θeq)2, (3.5)

where kb is the bending rigidity coefficient, and θeq = π is the equilibrium angle be-

tween three neighboring nodes. Angles between neighboring segments are calculated

as follows. For SCEs i, j, k, where i is the SCE between j and k, r1 = xj − xi =

(dx1, dy1, dz1) is the vector pointing from i to j and r2 = xk − xi = (dx2, dy2, dz2) is

the vector pointing from i to k. Three components of the bending force Fbend acting
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Figure 3.1: Representation of cells with SCEs. White spheres and segments indicate
positions and bonds of SCEs. The green (outer) shell represents the boundary for
the zone of attraction, the cyan (inner) shell represents the boundary of the repulsive
force. (Repulsion and attraction zones are not to exact scale). Red SCEs highlight
stretching interactions between SCEs. Blue SCEs represent the bending interaction
between SCEs. Figure is adopted from our publication [2].

on the SCEs i, j, k are as follows

F n
i bend = an + bn (3.6)

F n
j bend = −an (3.7)

F n
k bend = −bn (3.8)

where

an =
kb∆θ

r1 sin θ
(
rn2
||r2||

− cos θ
rn1
||r1||

) (3.9)

bn =
kb∆θ

r2 sin θ
(
rn1
||r1||

− cos θ
rn2
||r2||

). (3.10)

Three components refer to the x, y, and z components of the vectors, so that r1
1 =

dx1,r3
2 = dz2, etc. These expressions are obtained by taking derivative of θ(r1, r2)

with respect to xi. The forces acting on all SCEs are then determined and Eq. 3.1 is
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integrated using the forward-Euler method

x(t+ 1) = x(t) +
dt

γ
(R(t)− F(x(t))). (3.11)

TABLE 3.1: 

DEFAULT VALUES OF THE MODEL PARAMETERS USED IN 

SIMULATIONS

Parameter Value

Cell width 0.5 µm
Cell length 5 µm

Compressibility kb 148.0 fJµm−2

Flexibility kθ 0.01 fJ
Friction Coefficient γ 1.0e5 nNµsµm−1

Cell-cell Adhesion ε 0.01 fJ
Repulsion Distance λij 0.5 µm

Adhesion Distance LJcutoff 0.6 µm
Reversal Period tr 480 s

Slime Force Fs 120 pN
Head Noise krand 0.1

Protein Exchange Rate Rp 0.003 sec−1

Number of cells N 512
Size of domain Lx×Ly 100×100 µm2

Biologically calibrated model parameters are provided in the Table 3.1. Reversal

periods, length and width of bacteria were measured by tracking M. xanthus cells in

in vivo experiments. The dynamic curvature analysis algorithm was used to measure

changes in shapes of cells when they collided with each other. A comparison between

these measurements for in vivo and in silico experiments was used in [58] to cali-

brate the values of different model parameters determining the level of cell rigidity,

compressibility, cell-cell and cell-substrate adhesion as well as the magnitude of the
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force produced by A-motility engine. The rate of protein exchange is set specifically

for motility proteins such as Tgl, CglB and CglC based on reported experimental

observations [36, 95, 101, 134].

3.2 Evaluation of protein spreading using Shannon entropy

To test how different physical and behavioral properties could affect protein

spreading within a population of bacteria, in each simulation the level of protein

on cells are initialized from a uniformly random distribution on the interval [0, 1].

This is done to mimic experiments where cells are tagged with a fluorescent protein,

and transfer of this protein is visualized [36, 95, 101, 134]. Experimental observations

show that contacting cells share their protein efficiently within few minutes, and the

rate of protein exchange Rp is set accordingly in our simulations. Two cells are said

to be connected in our simulations if the smallest distance between their SCEs is

less than 0.6 µm. This accounts for the diameter of a cell (0.5 µm) and the slime

capsule surrounding the cells (0.1 µm). An exchange of protein is carried out when

two cells are in contact, with a constant rate Rp from the cell with the higher value

to the cell with the lower value. Thus, the average value of protein is assumed to

remain constant throughout the simulation, and the distribution of protein converges

to the average protein level of the population. Here, we used the concept of Shannon

entropy from information theory [116] which provides a measure of unpredictability,

to determine the dynamics of mixing and spreading of protein in populations of cells

with different physical properties. Our simulations are initialized by randomly dis-

tributing N cells in a two-dimensional (2D) simulation domain of the size Lx × Ly.

The kth cell (1 ≤ k ≤ N) is initially assigned a level of protein nk(t = 0) ∈ [0, 1]

using a uniformly random distribution. The initial configuration of cells in the do-

main is shown in Fig. 3.2. For a system of N cells, the total amount of protein in the

population is
∑N

k=1 nk ≈ N/2. The protein distribution is normalized by the total
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Figure 3.2: Initial cell distributions in simulations of the populations with densities
6.4% (a), 12.8% (b) and 20%(b). The size of simulation domain is set to 100×100
µm2 and the length of cells is 5 µm. The color scale shows the level of the protein on
each cell that is chosen randomly from a uniform distribution from [0, 1].

amount of protein in the population and is given by

ñ(k, t) =
nk(t)∑N
k=1 nk

=
2nk(t)

N
. (3.12)

The entropy of the normalized protein distribution ñ(k, t) in a population at time t

is defined as follows

I(t) = −
N∑
k=1

ñ(k, t) log(ñ(k, t)). (3.13)

The time evolution of the normalized protein distribution is shown in Figure 3.3

for a population of 512 cells. The initial value of entropy in a population of N cells

is as follows:

I(t = 0) = −
N∑
k=1

ñk(t = 0) log(ñk(t = 0)). (3.14)

Cells in model simulations establish physical connections with each other and ex-

change protein at rates observed in experiments [36]. As a result of protein exchange,

the entropy of the system increases with time because mixing of protein in the popu-

lation increases the uncertainty of knowing which cell has specific level of the protein.

Every cell in the population will end up with the same level of protein nk=0.5 over
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Figure 3.3: Normalized protein distribution at time t. Initial protein levels of cells
are chosen from a uniform random distribution. Over time cells make connections
and exchange protein with each other. The level of protein on all cells approaches
the same value nk = 0.5 assuming that enough time is given. Population consists of
512 cells moving inside a 2D simulation domain of the size 100×100 µm2. Data are
adopted from our publication [2].

long enough period of time (Fig. 3.3). Therefore, given enough time, the normalized

protein distribution of the population approaches the value ñ(k) = 1/N . As a result,

the entropy of the system will reach its maximum value

I(t =∞) = −
N∑
k=1

1

N
log(

1

N
) = log(N). (3.15)

Therefore, in a system with N cells, the normalized entropy change from the start of

the simulation (at t=0) to time t is equal to ∆̃I(t) = (I(t)− I(0))/E. Normalization

factor E = I(∞)− I(0) is the maximum amount by which the entropy of the system

could be increased.

3.3 Results

In what follows we identify a range of reversal frequencies and physical properties

of M. xanthus optimizing the ability of the population to make cell-cell connections
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and spread proteins. We test in simulations the effect of varying one parameter while

keeping the others constant to their biologically calibrated values (see Table 3.1.)

3.3.1 Cell-cell connection rate and duration

Distribution of reversal periods observed in experiments was presented in [139]

(see Fig. 3.4). Most of the experimentally observed reversal periods were between 4

and 12 minutes (∼77%) with a skew towards shorter reversal periods in that range

even though the average reversal period was between 8 and 9 minutes. Very few cells

(∼6%) reversed in less than four minutes while some (∼17%) reversals took more

than 12 minutes.

Reversal period tr is varied in our simulations from 1 to 30 minutes. The cu-

mulative number of cell-cell connections (without repeated connections) is calculated

for each cell and is averaged over all cells in the population at time t, resulting in

the average number of cell-cell connections. The rate of cell-cell connections Rc is

calculated using linear fit to the average number of cell-cell connections as a function

of time. The average connection duration τ =
∑Ntot

ev=1 w(ev)D(ev) is calculated for

Ntot = 104 collision events, where w(ev) is the weight for each event (the number

of occurrences divided by Ntot). D(ev) is the duration of each event. Simulations

showed that populations with reversal frequencies in the experimental range had a

maximal rate of cell-cell connections (Fig. 3.4). For example, population of cells that

reversed with a period from the experimentally observed range of 4 to 12 minutes

made connections with the rate Rc =0.65±0.01 min−1 which was 14% more than

Rc of the population of cells reversing every minute and 41% more than Rc for the

population of cells that did not reverse at all. Figure 3.5a shows the average num-

ber of cell-cell connections over t min for different reversal periods. The results

showed very similar behavior for all the reversal periods within the range from 4 to

12 minutes. Therefore, we only show the results for the end points of this range in
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Figure 3.4: Dependence of rate of cell-cell connections Rc on reversal periods. Solid
circles represent Rc for populations in simulations with different reversal periods. Rc

for the population of non-reversing cells was measured to be of the order of 0.46
connections/min. The filling fraction in the simulations was set at 12.8% close to the
average fraction observed in experiments at the swarm edge. Solid squares display
the distribution of reversal periods within a population of bacteria in an experiment
(adopted from [139]).

the Figures 3.5a-b.

Our simulations also predict (see Figure 3.5) that, as the reversal period tr in-

creases, two important transitions occur between the following three different phases:

i) non-motile state, ii) effective swarming state, and iii) jammed state. Namely, in-

creasing the reversal period from a very low value (tr=1min) to the values in the

experimentally observed range (tr from 4 to 12 min) results in increased ability of

bacteria to effectively move in one direction which results in an increased rate of cell-

cell connections Rc. Further increase of tr above the experimental range causes the

formation of traffic jams and reduces Rc since the bacteria that are stuck in traffic

jams can not explore the domain efficiently and make new cell-cell connections. A

qualitative evidence to support this hypothesis is given in the snapshot of the simu-

lations in Figure 3.6B. The phase transition as a result of varying filling fraction has

been previously studied for a population of self-propelled rod-shaped bacteria with
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Figure 3.5: a), c), e), g) Dependence of average number of cell-cell connections on
reversal frequency, flexibility, adhesion and filling fraction, respectively. b), d), f),

h) Change of the normalized Shannon entropy ∆̃I(t) characterizing distribution of
protein over time in bacterial populations with different reversal frequencies, cell
flexibilities, cell-cell adhesions and filling fraction, respectively. Data are adopted
from our publication [2].
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directional reversals [135].

Model simulations also showed that experimentally observed levels of cell flexibil-

ity maximized the rate of cell-cell connections and spread of protein in the population.

Cell rigidity was varied from the high level (corresponding to the bending rigidity con-

stant kθ = 1 fJ1) to the very low level (with kθ = 0.01 fJ). The values of the bending

rigidity less than this range (kθ < 0.01 fJ) caused cells in the simulations to bend

to the extent that they started forming loops and knots. We consider this as a non-

biological behavior since cells have not been observed to form loops and knots in the

experiments. Using the values higher than this range would not change the rigidity of

cells any further (see [58] for details on model calibration). Figure 3.5c demonstrates

that cells with the experimentally calibrated value of flexibility parameter (kθ=0.01

fJ) have a connection rate that is 42% bigger than that for rigid cells (kθ=1 fJ).

This occurs because more flexible cells have slightly higher collision cross-section due

to bending and they explore space more efficiently than rigid cells, resulting in the

increased rate of cell-cell connections. Furthermore, the direction of motion of more

flexible cells can be perturbed (as a result of interaction with the environment) more

easily due to less cost of energy. Once a cell that is adhered to a cluster of cells

experiences this change in the direction of motion, it can split from the cluster and

travel until it reaches to another cluster and start making new connections. Varia-

tion of the bending rigidity parameter kθ was shown to have a negligible impact on

the average connection duration (Fig. 3.6c) and clustering behavior (Fig. 3.6d).

Next, the impact of cell-cell adhesion on the connection rate was investigated.

Adhesion force between two contacting cells comes from the interaction between

capsular polysaccharide that covers bacterial bodies. Figure 3.5e shows that weaker

adhesive interaction between cells (lower ε) results in considerably higher connection

rate. Cells with the experimentally calibrated value of cell-cell adhesion parameter

1Femtojoule (fJ), unit of bending or adhesion energy, is equal to 10−15 Joules.
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(ε=0.01 fJ) make connections at the rate that is 15% less than the rate of less adhesive

cells (with ε=0.001 fJ) and 2.29 times the connection rate of more adhesive cells (with

ε=0.1 fJ). This occurs because strong cell-cell adhesion results in cells holding on to

each other more effectively, sequestering them from the rest of the population. We

found that with the increase of value of the parameter that controls the strength

of cell-cell adhesion from ε = 0.01fJ to ε = 0.03fJ the rate of cell-cell connections

decreased sharply as a result of significant increase in connection duration (Fig. 3.6e).

Namely, duration of a cell-cell connection exceeded the time it took for them to

exchange protein efficiently, resulting in reduction of the number of new cell-cell

connections.

The average rate of cell-cell connections Rc was also shown to increase as a result

of increasing the population number density defined as the two-dimensional filling

fraction (Fig. 3.5g). This happens because bacteria in populations with higher

number density (20%) spend considerably less time (approximately 4.4 times less)

moving freely before making contact with another cell compared to the cells in a

population with number density 2%. Fig. 3.6g demonstrates that varying the filling

fraction does not have a significant impact on the duration of connections and that

improved efficiency of protein spreading is mainly due to increased rate of cell-cell

connections.

3.3.2 Evaluation of protein spreading efficiency.

To quantify the efficiency of protein transfer, we used the Shannon entropy as

a metric indicating the amount of uncertainty in the level of protein in each cell in

the population. The simulations results are represented for different reversal periods

(Fig. 3.5b), levels of flexibility (Fig. 3.5d) and adhesion (Fig. 3.5f), while all other pa-

rameter values were fixed to their experimentally calibrated values listed in Table 3.1.

The entropy of the population eventually approached the same maximum value in
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Figure 3.6: a, c, e, g) Average connection duration for different values of reversal
period, bending rigidity, adhesion strength, and number density, respectively. b, d,
f, h) Clustering behavior for different (low, calibrated with experiments, and high)
values of reversal period, bending rigidity, adhesion strength, and number density,
respectively. Data are adopted from our publication [2].
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all simulations, but over different time intervals. Therefore the time required for a

system to reach half the maximum entropy was used as a measure of the efficiency

of protein spreading.

The optimal efficiency of protein transfer was obtained for reversal periods in

the range observed in experiments from 4 to 12 minutes. In extreme cases of non-

reversing cells or cells reversing very frequently, protein spreading efficiency drops

dramatically (see Fig. 3.5b). This happens because cells that reverse with periods

less than the experimental range move back and forth frequently, hence they are

not able to move on the substrate efficiently to make new cell-cell connections and

exchange protein with new cells. On the other hand, if cells reverse with periods that

are larger than the values of the experimental range, they get stuck in traffic jams

which reduces their ability to swarm efficiently, make new cell-cell connections and

spread the protein within the population. Our simulation results show that for the

population of cells that reverse with periods in the experimentally observed range,

the time required to reach half the maximum entropy is 84% less than that for the

populations that reverse every minute, and 49% less than that for the population of

cells that do not reverse at all.

Figure 3.5d shows that simulations with higher cell flexibility have faster entropy

increase in comparison with simulations with more rigid cells. The time it takes the

population with experimentally calibrated cell flexibility to reach half the maximum

entropy was shown to be 33% less than that for rigid cells (kθ=1 fJ). Changing

adhesion strength between cells in the range from ε = 0.001 fJ (negligible adhesion

force between two neighboring cells) to ε = 0.1 fJ (resulting in cells sticking together

after they get connected) did not have a significant impact on the efficiency of protein

transfer (Fig. 3.5f), although it was shown to significantly impact the rate of cell-

cell connections. As the strength of cell-cell adhesion increases, duration of cell-

cell connections increases monotonically and, as a result, stable clusters of cells are
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formed (Fig. 3.6f). This suggests existence of a balance between the rate of making

cell-cell connections and the duration of the connection between two contacting cells.

Relatively short cell-cell connection due to weak cell-cell adhesion leads to a higher

rate of cell-cell connections with new cells, but protein can not be exchanged efficiently

because of the short connection time.

The efficiency of the protein spreading was also studied for different values of

the filling fraction. Figure 3.5h shows that monotonic increase in the filling fraction

results in the monotonic increases of the efficiency of the protein spreading. This

results from formation of bacterial clusters (Fig. 3.6h) leading to increased rate of cell-

cell connections (Fig. 3.5g). The time it takes the population with filling fraction

2% to reach half the maximum entropy is about 5 times bigger than that for the

population with filling fraction 20%.

3.4 Discussion

Previous studies have demonstrated the important role of cell reversals and phys-

ical properties of cells in optimizing the swarming expansion rate of a M. xanthus

population. We studied in this chapter, by using a detailed biologically calibrated

computational model and Shannon entropy, their impact on the rate of cell-cell con-

nections and spread of proteins in the population.

It has been shown experimentally that exchange of outer membrane proteins can

be beneficial to the bacterial population in several ways such as rescuing the glid-

ing motility of motility mutants under nutrient-rich conditions [61, 64, 95, 101, 111],

predation [9, 39], and genetic repair of damaged cells [130]. It is not currently pos-

sible to control flexibility or adhesion strength in vivo with an isogenic M. xanthus

mutant strain. Therefore, a detailed computational model was used to study how

quickly outer membrane (OM)-protein could spread throughout the populations of

M. xanthus A+S- mutants with different physical and behavioral properties of indi-
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vidual cells at the swarm edge. Cells at the swarm edge are monolayered, exposed

to a maximum level of nutrient and oxygen and behave distinctively compared to

the interior cells [31, 139]. The optimal rate of cell-cell connections and efficiency of

protein transfer was obtained for reversal periods in the range from 4 to 12 minutes

observed in experiments. This range has also been reported to optimize the expan-

sion rate of the swarming M. xanthus population [139]. This suggests that swarm

expansion and the efficiency of the protein spreading could be related to each other.

For example, optimized protein exchange and connection rate may result in more

efficient motility recovery that enhances the expansion rate of the swarm, or they

could be linked to the increase in the orientation correlation between bacteria [139].

However, this remains a very important open question to be investigated in future

studies.

Higher cell-cell connection rates were also obtained for populations with more

flexible cells. Tracking cells from in vivo experimental movies confirmed cells to be

very flexible. Although it was shown that decreasing the strength of cell-cell adhesion

considerably increased the rate of cell-cell connections, it had a negligible effect on

the protein spreading. Fig. 3.6 shows that this happens because cells in a population

with high strength of cell-cell adhesion (ε = 0.1 fJ) on average make connections that

last 6.4 minutes, while cells in a population with low strength of cell-cell adhesion

(ε = 0.001 fJ) on average stay connected for about 2 minutes. Therefore, although

longer connection duration enables two connected cells to efficiently exchange their

proteins, the efficiency of the protein spreading at the population level is penalized

by reduction of the average rate of cell-cell connections. Consequently, the positive

effect of longer connection duration between cells is reduced by the decrease of the

average rate of the cell-cell connections. As a result, the efficiency of the protein

spreading does not depend significantly on the strength of the cell-cell adhesion.

The rate of collisions between rod-shaped particles such as M. xanthus can be
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estimated by using analogy with molecular gases as follows: rc = fvσ/V , where

f is the volume fraction, v is the average particle speed, σ is the collision cross-

section, and V is the particle volume. In two dimensions σ ≈ L, where L particle

length, and V ≈ dL, d is particle width. For typical simulation conditions of L = 5

µm, d = 0.5 µm, f = 0.128, and v = 4.3 µm/min, we obtain the collision rate

rc ≈ 1.1 min−1. This value has the same order of magnitude as the experimentally

measured connection rate Rc (see Fig. 3.4). It implies that under the assumption that

M. xanthus bacteria do not follow slime trails left by other bacteria, the mechanism

based on mostly uncorrelated collisions between bacteria is primarily responsible for

forming connections and protein spreading.

Figure 3.4 shows a large increase in value of Rc from tr=3 minutes to tr=4 minutes

which can be explained as follows. Cells need some minimal time to move in one

direction before they reverse, in order to make enough physical connections with

different cells in the population to spread protein. The sum of the estimated time

that two cells stay in contact (2.2±0.07 minutes) with the time that is required for a

cell to move freely before reaching another cell (1.1±0.05 minutes) is approximately

3.3 minutes which is very close to the time of the sharp increase in the value of Rc

in Fig. 3.4.

Most bacteria grow in a mixed (and potentially hostile) environment. Many

bacteria use extracellular signals via a variety of quorum sensing mechanisms to

coordinate actions at the species level. However, the chemical signals for most of

these quorum sensing systems are insufficient to coordinate action on time scales

that lead to collective motion and swarming on surfaces. Thus the ability to use

protein cues to coordinate collective actions is very appealing. In this work, we

have demonstrated that experimentally observed physical properties and multicellular

behavior of M. xanthus favor population with an efficient spread of protein. Our

findings suggest that organisms with accelerated protein spreading should have a
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competitive advantage in a swarm environment. Periodic reversals of movement

have been reported for several bacterial species besides M. xanthus [8, 51, 72, 82].

Therefore, given the importance of reversals for M. xanthus swarming and potential

mechanism of extracellular signaling that is investigated here, we suggest that more

species might utilize periodic reversal strategies to optimize their collective behavior.

Furthermore, our findings suggest that predesigned motion reversal can be employed

to enhance the collective behavior of biological synthetic active systems. An extension

of our computational environment can also provide an efficient platform for studying

the phase separation in bacterial colonies [47], and the edge geometry of microbial

population [41].
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CHAPTER 4

COMPUTATIONAL STUDY OF DEVELOPING EPITHELIA

In this chapter we investigate the impact of intercellular mechanical interactions

on the mitotic rounding during cell division and on dynamics of tissue morphogen-

esis, by developing a biologically calibrated computational model. The experiments

that are used to calibrate the model parameters and the data analysis are done in

collaboration with Professor Jeremiah Zartman’s lab in the Department of Chemical

and Biomolecular Engineering at the University of Notre Dame. The work presented

in this chapter is being considered for publication in a journal [92]. The first four

authors Ali Nematbakhsh, Wenzhao Sun, Pavel Brodskiy and Aboutaleb Amiri have

made equal contributions to this work. Wenzhao Sun started the development of the

basic structure of the simulation code. Ali Nematbakhsh and Aboutaleb Amiri con-

tributed to the development and extension of the code for studying the development

of epithelial tissues of Drosophila fruit fly. The experimental data used for calibrating

the model were obtained by Cody Narciso with technical assistance from Luis Lazalde

at Dr. Zartman’s lab. Aboutaleb Amiri performed the simulations and analyzed the

data for quantifying the roundness and size of cells during mitotic rounding. Pavel

Brodskiy developed the multiple linear regression analysis, including the the design

of experiments, response surface methods and sensitivity analysis described in [92]

and in Appendix B of this thesis. All first four authors contributed to discussion of

the results, figure generation and writing of the text.

Epithelia are tissues composed of tightly adherent cells (Fig. 4.1a-d) that provide

barriers between internal cells of organs and the environment. Epithelial tissues are
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one of the four basic tissue types in the human body [44, 54, 79]. Epithelial expansion

is driven by cell proliferation during development, but it also occurs in early stages

of cancer. Robust and precise cell divisions are crucial during development, as mis-

segregation of chromosomes leads to severe genetic abnormalities in daughter cells.

It is known that over 90% of all human tumors are epithelially-derived [89], and the

accumulation of genetic errors during cell division can lead to all of the hallmarks

of cancer [56]. In tissues, mitotic cells must become sufficiently round to avoid the

mis-segregation of chromosomes, while still remaining connected with their neighbors

[19]. Epithelial cells entering mitosis rapidly undergo structural changes that result

in the apical area of the cell becoming larger and rounder, in a process known as

mitotic rounding (MR) [87, 125]. Although the precise function of mitotic rounding

in different systems remains to be investigated in more details, it is likely that the

round shape provides a suitable environment for the spindle1 to assemble, while

also delimiting the space in which microtubules have to search to find the mitotic

chromosomes [78]. In addition, by simplifying cell geometry, mitotic rounding might

contribute to the accurate partitioning of cellular contents into the two daughter

cells. A deeper understanding of the biophysical mechanisms governing the behavior

of mitotic cells in epithelia will result in a better understanding of many diseases

including cancer.

MR occurs in detached cells, cells adherent to a substrate as well as in epithelial

cells within tissues [123, 124]. The beginning of MR in epithelia coincides with an

increased polymerization of actomyosin at the cell cortex, which results in an increase

in cortical tension and is necessary for MR [107, 124]. Simultaneously, as a result of

osmotic swelling the intracellular pressure increases [124], and cells partially reduce

adhesion to their neighbors and the substrate [107]. Experiments that can specif-

ically target only dividing cells and measure physical properties of individual cells

1The spindle helps split the sister chromatides from a parental cell into two daughter cells.
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Experimental data from literature 

-Wartlick et al.: Cell’s growth speed

-Ramkumar et. al.: Cell’s adhesivity

-Kuznetsova et al.: Cell’s elasticity

Experimental data (this work) 

- Area ratio of mitotic cells to interphase cells (Fig. 4.5)

- Roundness of interphase and mitotic cells (Fig. 4.5)

In silico experiment

-Stretch test (Fig. 4.4)

Physical constraints

-Conservation of momentum

Model verification (tissue scale) 

-Polygon class distribution of cells (Fig. 4.6)

-Euler, Lewis and Aboav-Weaire laws (Fig. 4.6)

Predictions

-Quantified the contribution of pressure, cortical

 stiffness, and adhesion on the expansion and

 roundness of mitotic cells (Fig. 4.7).

 

-Volume exclusion of cells (Fig. 4.2)

-Adhesivity test (Fig. 4.4)

(e)

Figure 4.1: (a) Apical surface of epithelial cells within the Drosophila wing
imaginal disc that are marked by E-cadherin tagged with fluorescent GFP (DE-
cadherin::GFP). Multiple cells within the displayed region are undergoing mitotic
rounding with a noticeable decrease in fluorescent intensities of E-Cadherin. (b) Ex-
perimental image of cross-section of wing disc marking levels of actomyosin (Myosin
II::GFP) and cartoon abstraction of epithelial cells, which are polarized with apical
and basal sides. Actomyosin and mechanical forces during mitotic rounding are pri-
marily localized near the apical surface. (c) At the molecular scale, the boundary
between cells consists of a lipid bilayer membrane for each cell, E-cadherin molecules
that bind to each other through homophilic interactions, and adaptor proteins that
connect the adhesion complexes to an underlying actomyosin cortex that provides
contractile forces along the cell cortex. Arrows indicate mitotic cells. Scale bars are
10 micrometers. (e) Workflow of our computational model.
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within tissues are currently impossible. Consequently, computational simulations

provide a critical means in which the interplay between multiple physical regulatory

mechanisms during the cell division process can be investigated.

Computational modeling coupled with experimentation can provide a power-

ful tool for investigating the biophysical principles governing organogenesis2 [14].

Biophysically-derived computational models can complement current experimental

methods by predicting the response of tissue to mechanical perturbations of individ-

ual cells. Here, MR is investigated by using a novel multi-scale sub-cellular element

model (SEM) that simulates epithelial cells in growing tissues. Novel biologically

relevant features of the model include: i) detailed representations of cell-cell inter-

actions; ii) a decoupled description of mechanical properties of cells during mitotic

rounding; and iii) a systematic calibration of model parameters to provide accurate

biological simulations of tissue growth. We performed a sweep study on the model

parameters that control the strength of cell-cell adhesion, membrane stiffness, or cy-

toplasmic pressure during mitotic rounding. Consequently, we analyzed the impacts

of such parameter variations on cross-sectional areas of mitotic cells at the apical

surface as well as the roundness of mitotic cells right before division.

This chapter is organized as follows (and is also depicted in Fig. 4.1e). The

modeling background and model development is first described. Then, the Results

section provides details of model calibration of single cell parameters using quantita-

tive biophysical data. The calibrated model predicts emergent properties of epithelial

topology. The model is then used to investigate the relative contributions of cell-cell

adhesion, membrane stiffness and intracellular pressure in controlling the size and

shape of mitotic cells. Finally, we discuss the possible future extensions of the com-

putational model, for studying a variety of different important biological problems

including wound healing.

2The process of organ production during development.
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4.1 Modeling background

Multiple computational approaches have been used to model the growth of ep-

ithelial tissue, each with its particular focus and applications [83]. For example, the

cellular Potts modeling (CPM) approach has been used successfully to take into ac-

count cell adhesivity to study cell aggregation as well as cell morphogenesis [25, 26].

Finite element models (FEMs) have also been implemented to investigate epithelial

cell behavior [15, 142]. Vertex based models (VBM) provided an efficient approach

to study the regulation of cell topology, tissue-size regulation, tissue morphogen-

esis, and the role of cell contractility in determining tissue patterning and shape

[40, 42, 96, 108, 109].

In VBMs cells are defined by the several vertices that represent the meeting

points of shared cell-cell contacts (as reviewed in [109]). The implementation and

comparison of the five popular cell-based modelling approaches for simulating the

self-organization of multicellular tissues has been described in [1, 67].

The Subcellular Elements Model (SEM) was initially developed by Newman’s

group [126] for simulating multi-cellular systems to encompass multiple length scales.

SEMs have been extended to predict how mechanical forces generated by cells are

redistributed in a tissue and for studying tissue rheology, and cell-cell signaling.

SEM was also used to study the mechanical properties of epithelial cells without

making pre-defined assumptions about cell shapes [94]. For example, SEM model

was used to compare multiple mechanisms governing the formation of stratified layers

of the epidermis [115] as well as mechanisms governing intestinal crypt homeostasis

[127]. Each cell in a SEM consists of a set of nodes representing a coarse-grained

representation of subcellular components of biological cells. Node-node interactions

are represented by potential energy functions. Another SEM developed by Jamali et

al. [65] represents the membrane and nucleus of the cell by nodes that are connected

by overdamped springs. Gardiner et al. [45] described a SEM with locally-defined
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mechanical properties. Christely et al. [29] have developed an efficient computational

implementation of the SEM simulating role of Notch signaling in cell growth and

division, on GPU cluster to decrease computational time. A particular advantage of

the SEM approach is that it can provide local representations of mechanical properties

of individual cells which can be directly related to the experimental data [35].

4.2 SEM computational model

We developed a multi-scale SEM, to study the development of epithelia with

the focus on the two-dimensional (2D) planar cell shapes near the apical surfaces of

cells. This is a simplifying approximation that was used in many previous models of

wing disc growth [40, 42, 45, 65]. In particular, it is reasonable to use a 2D model

for studying many epithelial processes in the Drosophila wing disc pouch because

it consists of a single layer of cells and the essential structural components of those

cells, including E-cadherins and actomyosin, are concentrated on the apical surface

of the epithelia (Fig. 4.1c-d). E-cadherin is responsible for adhesion between two

neighboring cells, and actomyosin, which is concentrated at the apical surface drives

cell contractility. The nucleus and most of the cytoplasm are pushed up to the apical

surface during cell division. Using a 2D approximation also allows us to model a

large number of cells with high resolution and special attention to mechanical cell

properties. Future development of our simulation platform implemented on GPU

clusters, will also enable 3D simulations with reasonable computational costs.

In what follows, we first describe different types of the subcellular elements that

are used to simulate each cell, and the interactions between them. Then, the equa-

tions of motion of each subcellular element are provided. Finally, approaches for

modeling cell’s growth, transition to mitotic phase, and division are described.
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Figure 4.2: Diagram of the underlying physical basis of model simulations. (a) Intra-
cellular and intercellular interactions between different elements of the model. Sym-
bols and notations are indicated in the legend. (b) Implementation of the simulation
of cell cycle in the model.
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4.2.1 Subcellular elements

Individual cells are represented as collections of two types of interacting subcel-

lular elements: internal nodes and membrane nodes (Fig. 4.2a). The internal nodes

account for the cytoplasm of the cell, and the membrane nodes represent both plasma

membrane and associated contractile actomyosin cortex. The internal and membrane

nodes are placed on a 2D plane, representing the apical surface of epithelia.

Interactions between internal and membrane nodes account for the cyotplasmic

pressure and are modeled using potential energy functions as depicted in Fig. 4.2a.

The internal-internal nodes interactions represent the cytoplasmic materials inside a

cell, and the interactions between membrane nodes of the same cell are used to model

the cortical stiffness. Cell-cell adhesion is modeled by membrane-membrane nodes

interactions between two neighboring cells. A list of all potential functions that are

used to model mechanical properties of cells and epithelial tissue and description of

their biological relevance are provided in Table 4.1.

TABLE 4.1: 

POTENTIAL ENERGY FUNCTIONS IN THE MODEL

Potential function Type Biological concept

Internal-internal nodes (EII) Morse Cytoplasmic materials
Membrane-internal nodes

(EMI)
Morse Internal pressure

Membrane-membrane nodes
of neighboring cells EMMD Morse Volume exclusion

Membrane-membrane nodes
of neighboring cells Eadh Linear spring Cell-cell adhesion

Membrane-membrane nodes
of same cell EMMS Linear and torsional springs Cortical stiffness
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Linear and torsional springs are used for modeling interactions Eadh
ik and EMMS

ik ,

while Morse potential functions are used for modeling interactions EMI
ij , EII

ik and

EMMD
ik (Fig. 4.2a). Morse potential consists of two terms, generating short-range

repulsive and long-range attractive forces [126]. For example, the Morse potential

function between a membrane node i and an internal node j of the same cell (EMI
ij )

is described as following:

EMI
ij =

[
UMIexp

(
xi − xj
ξMI

)
−WMIexp

(
xi − xj
γMI

)]
(4.1)

where UMI , WMI , ξMI , and γMI are the morse parameters for EMI
ij and are carefully

calibrated using specific experimental data. The same form of the potential with

different sets of parameters is also used for EII
ij and EMMD

il (Table B.1). These

potential functions govern the motion of internal and membrane nodes inside the

cells resulting in the deformation and rearrangement of cells within the tissue.

4.2.2 Equations of motion

Equations of motion differ for membrane nodes and internal nodes since they

experience different types of interactions. Due to small size and speed of cells, we

assume in the model that nodes are in an overdamped regime [42, 45] where inertia

forces acting on the nodes can be neglected compared to the viscous effects. This

leads to the following equations of motion describing movements of membrane and

internal nodes, respectively:

ηẋIi = −
(∑

j∇EII
ij +

∑
k∇EMI

ik

)
, (4.2)

ηẋMj = −
(∑

i∇EMI
ij +

∑
k∇EMMS

kj +
∑

l∇EMMD
lj +∇Eadh

i(j)−j

)
, (4.3)

where η is the damping coefficient, xI and xM are positions of internal and membrane

nodes, respectively. The dot represents a time derivative.
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Eqns. 4.2 and 4.3 are discretized in time using forward Euler method and po-

sitions of nodes xIi and xMi are incremented at discrete times. The forward Euler

discretization of the equation of motion of internal nodes (Eqn. 4.2) has the form:

xIi (t+ ∆t) = xIi (t)−

(∑
j

∇(EII
ij )(t) +

∑
k

∇(EMI
ik )(t)

)
∆t

η
(4.4)

where ∆t is the time step size. The same discretization technique is used for the

equation of motion of the membrane nodes.

The model is implemented on a cluster of Graphical Processing Units (GPUs).

This enabled us to run large number of simulations with subcellular resolution at

the micro-scale with low computational cost and to study the impact of changes in

individual cell physical properties on the tissue development at the macro-scale.

4.2.3 Cell cycle

Many of the model parameters were set based on experimental values determined

from studies of the Drosophila wing disc development, which is an established ge-

netically accessible model of organ development [16]. The growth of the wing disc

is relatively spatially uniform, and the growth rate decreases over time as the tissue

reaches to its final size [118]. The growth rate for cell i is modeled by an exponen-

tially decaying function fit to the specific experimental data [118], with a random

term representing stochastic variation among cells:

gi(t) =
(
g0avg +Rand[−g0, g0]

)
e−kgt (4.5)

where g0avg is the average growth rate of cells in the beginning of a simulation and

Rand[−g0, g0] is a random number chosen from a uniform distribution in the range

[−g0, g0]. kg is the decay constant of the growth rate. The growth progress of the

cells at time t is represented by CP (t). The variable Cell Progress (CP ∈ [0, 1])
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evolves with the rate gi(t) from the beginning of interphase CP = 0 to the end of

the cell division CP = 1 as described by the following:

CPi(t+ ∆t) = CPi(t) + gi(t) ·∆t (4.6)

The number of internal nodes inside the cell increases as the cell grows (Fig. 4.2).

It has been shown experimentally that epithelial cells undergoing mitosis increase

their intracellular pressure by adjusting their osmolarity relative to their surroundings

[107]. Additionally, the actomyosin cortex is enriched, and cellular adhesion to the

substrate and to neighboring cells are downregulated [107, 133]. Since these changes

in mitotic cells occur concurrently, the relative impact on mitotic cells cannot easily

be decomposed into separable effects in experiments.

To simulate mitotic rounding, parameters regulating cell-cell adhesion, actomyosin

cortex, and internal pressure of cells in the mitotic phase (M phase) are modified

(Table B.1), representing changes of cell physical properties during mitosis [107].

Mitosis is modeled by a linear transition from the interphase parameter range to the

mitotic parameter range determined based on the experimental observations. For

example UMI , a Morse parameter used for representing cytoplasmic pressure on the

membrane of the cell, is varied from the interphase value UMI
Inter to the mitotic value

UMI
Mit, by using the following function of CP:

UMI = UMI
Inter

1− CP
1− CPMit

+ UMI
Mit

CP − CPMit

1− CPMit

(4.7)

where U II
Mit is the parameter value in the mitosis range, and CPMit is the threshold of

growth progress at which the mitotic phase starts. Similar linear variations of param-

eter values are used for representing enrichment of actomyosin cortex and reduction

in cell-cell adhesion with neighboring cells in mitotic phase (see Table B.1).

Cells in the mitotic (M) phase - which lasts approximately 30 minutes - divide into
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two daughter cells (Fig. 4.2b). As CP becomes equal to 1, cytokinesis occurs that is

modeled by separating internal and membrane elements of the mother cell into two

sets representing daughter cells. The axis of division is implemented perpendicular to

the cell’s longest axis, following Hertwig’s rule [75], prior to the initiation of mitotic

rounding [78]. New membrane elements are created along the cleavage plane for each

daughter cell. After division, cell parameters for nodes of each daughter cell are set

to calibrated interphase values. CP is reset to zero for both daughter cells.

Membrane nodes in the beginning of a simulation are arranged in a circle for

each cell, and internal nodes randomly placed within each cell (Fig. 4.3a). After

initialization, internal nodes rapidly rearrange in a simulation, and cells self-organize

into a polygonal network (Fig. 4.3b), similar to the experimentally observed cell

packing geometry of epithelia. Cells constantly grow, divide and interact with each

other resulting in a detailed simulation of the developing epithelial tissue (Fig. 4.3c-

d).

4.2.4 Model calibration

Before running predictive model simulations, the model parameters, described in

previous section, were calibrated using experimental data for the Drosophila wing

disc, which is a powerful model for studying organ formation.

Mechanical stiffness of the actomyosin cortex is primarily responsible for the mod-

ulus of elasticity E and the Poisson’s ratio of the cells [86]. E is experimentally

obtained by applying stretching forces to the opposite sides of a cell, and measuring

the cell’s deformation due to stretching [76, 88]. This experiment can be reproduced

in silico by applying forces to membrane nodes on either side of a simulated cell,

and measuring the deformation (Fig. 4.4a-a”, 4.4c). Model parameters that control

cortical stiffness (kStInter and LStInter) were calibrated such that the cell deformations

match the experimental data. The calibrated parameters lead to E= 19 kPa, which
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(a) (b)

(c) (d)

Figure 4.3: Initial conditions and sample simulation output. (a) Initial condition of a
simulation with seven initially non-adherent circular cells. Each cell starts with 100
membrane elements and 20 internal elements. (b) Initial formation of an epithelial
sheet after cells adhere to each other. An equilibrium distribution of internal nodes
is reached for each cell. (c) Epithelial sheet after 55 simulated hours of proliferation.
(d) Enlarged view of the selected region showing different cell shapes and sizes due
to interactions between cells. The large cell is undergoing mitotic rounding (MR).
Arrow indicates a mitotic cell before devision.
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Our model

Our model fit

Wartlick et al.

Figure 4.4: Calibration of model parameters through simulations. (a-a′′) Calibration
test to determine parameters for cell elasticity, analogous to experimental single cell
stretching tests [88], (a) Initial condition t=0, (a′) 6 minutes after simulation with no
force applied, (a′′) after 72 minutes cell is completely on tension (b-b′′) Cell adhesivity
test, analogous to experimental tests [76] for calibrating the level of cell-cell adhesion
between adjacent cells. (b) Initial condition t=0, (b′) 6 minutes after simulation
begins with no force applied, (b′′) after 72 minutes, 15 nN force is applied. (c)
Stress versus strain for single cell calibration (red line) and stress versus strain for
calibrating the level of adhesivity between the two cells (blue line). Initial negative
strain in adhesivity test is due to strong adhesion between two cells. (d) Force and
strain as a function of time for adhesivity test. (e) Tissue growth rate calibration by
comparing with the experimental data by Wartlick et al. [133].
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is within the biological range of 10 - 55 kPa measured for epithelial cells [76, 88].

The cell-cell adhesive force Fadh, or the force needed to detach two adhered cells

from each other, can be adjusted in our model by varying the model parameter that

control the strength of cell-cell adhesions (kAdhInter). Fadh is experimentally obtained by

measuring the force needed to detach two adhered epithelial cells from each other [76].

This experiment can be reproduced in silico by applying forces to membrane nodes on

either side of two adhered cells (Fig. 4.4b-b”). Parameters corresponding to cell-cell

adhesion (kadhInter and Ladh) were calibrated such that for a cell with apical perimeter p

we have Fadh/p = 20nN/µm (Fig. 4.4d), which is in the range of experimental results

for epithelial cells [13, 50] .

Cells in the wing disc have spatially-uniform growth-rates that slow down as

the tissue approaches its final size [133]. The growth rate parameter described by

Eqn. 4.5 was calibrated such that the number of cells in time as the tissue grows

matches experimental data [133] (Fig. 4.4e). Cells in mitosis deviate from cells in

interphase in their area and roundness (Fig. 4.5a). Force parameters such as the

internal pressure, cortical stiffness, and adhesivity of cells were linearly increased

from the start of mitosis to the end of mitosis (Fig. 4.5b-d). Model parameters

were selected such that the ratio of mitotic area to interphase area (Aratio), and cell

roundness (R) were calibrated to data from the wing disc. Details on measurements

of Aratio and R are provided in Appendix B.1.

4.3 Results

4.3.1 Tissue topology emerges from self-organization driven by cellular mechanics.

After model calibration, simulations were run to determine whether this cellular-

scale calibration was sufficient to recapitulate expected topological properties of the

tissue (Fig. 4.6). One way to confirm that our simulations generate reasonable results
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Sim.
Exp.

Sim.
Exp.

Figure 4.5: (a-a′′′) Time-lapse confocal images of cell undergoing mitosis in the wing
disc with E-Cadherin:GFP-labeled cell boundaries. Scale bar is 5 µm. Arrows indi-
cate daughter cells. (b-d′′′) Time series from Epi-Scale simulation of a cell undergoing
mitosis and division with illustration of: (b) adhesive spring stiffness, (c) cortical
spring stiffness, and (d) internal pressure, normalized to their interphase values. (e-
f) Comparison of size and roundness of mitotic cells with experimental data for the
Drosophila wing disc. Arrow represents mitotic cell.
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is to confirm that the simulated tissues satisfy through evaluation of the three laws

describing topological relationships: Euler’s law, Lewis law, and Aboav-Weaire Law.

Euler’s law states that, on average, cells forming a packed sheet should be hexagonal

[114]. The Lewis law states that cells with more neighbors should have a larger

normalized area [80]. The Aboav-Weaire law states that the average polygon class of

each cell’s neighbors decreases as the cell’s polygon class increases [80]. Simulation

results obtained using the calibrated model show the average side of cells to be equal

to 5.96 in a very good agreement with the Euler’s law. The model simulations also

satisfy the other two laws as shown in Fig. 4.6b.

Another metric for tissue topology is the distribution of cell neighbor numbers, or

polygon class distribution [28, 80]. Based on the simulation results for studying the

tissue growth, the polygon class distribution approaches steady state after 35 hours

(Fig. 4.6c). This distribution matches with the ones reported experimentally for

the wing disc and other epithelial systems (Fig. 4.6d) as well as obtained using other

computational models for simulating growing tissues such as vertex based model [40].

4.3.2 Impacts of adhesion, stiffness, and cytoplasmic pressure on MR

The model is suitable for generating and testing hypotheses regarding mechanical

mechanisms of mitotic because it is capable of representing non-polygonal shapes of

cells, while other models such as vertex based model impose a polygonal shape to the

cells. Moreover, the parameters representing mechanical cell properties in our model

can be directly related to the properties of cells measured in experiments. Experi-

ments have shown that cell-cell adhesion, cortical stiffness, and internal pressure are

all involved in determining the shape of a mitotic cell, but quantitative contributions

of cell mechanical property changes in individual cells within tissues are not currently

possible. Simulations were conducted to predict the relative contributions of differ-

ent cell properties to the relative area ratio (Amit/Aint) and normalized roundness
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Figure 4.6: Emergence of tissue-level statics from model simulations. (a) Sample
simulation output showing cells with different numbers of neighbors as different colors
(corresponding to legend in b). (b) Average relative area (A/Ā) and average polygon
class of neighbors for cells of different polygon classes verifying that simulation results
follow Lewis law and Aboav-Weaire law. A is apical area of cell and Ā is the average
apical area of the population of cells. (c) Simulations initiated from seven cells reaches
steady-state polygon-class distribution after approximately 35 h of simulated time.
(d) Comparison of polygon class distributions obtained by our model (Epi-Scale) with
various biological systems (data extracted from [49]) and a vertex based model by
Farhadifar et al. [40].
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Figure 4.7: Contour plots for FFD experiment where (a) shows the area ratio (Aratio
=Amit/Ainter) and (b) shows the normalized roundness (Rnorm).

(Rnorm) of mitotic cells. The details of these calculations are provided in section B.1.

To understand the relationships between the mitotic parameters of the model (kAdhmit ,

kStiffmit , ∆P ) and mitotic rounding (Aratio and Rnorm), parameter values were selected

in a three-level full factorial design (FFD) (Fig. B.2a, and section B.2.1). A region

of parameter space was selected where the error in mitotic rounding measurements

(Aratio and Rnorm) was minimized as shown in the Pareto front (Fig. B.2b). A regres-

sion model was fit to the results of the FFD, and showed that for large changes, ∆P

was the primary regulator of Aratio, but kAdhmit and kStiffmit were the primary regulators

of Rnorm (Fig. 4.7a-b).

The region of parameter space closest to experimental values of cell area and

roundness was explored [98] with a central composite design (CCD) as a second

iteration to more precisely determine the relative contribution of each physical pa-

rameter on MR within experimentally observed ranges (Fig B.2a, and section B.2.3).

This result quantitatively defines the predicted variation in mitotic cell-cell adhesion,
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Figure 4.8: Contour plots for CCD experiment where (a) shows the area ratio (Aratio
=Amit/Ainter) and (b) shows the normalized roundness (Rnorm).

stiffness and pressure that explains the variation in mitotic area ratio and rounding

observed in mitotic epithelial cells. To keep mitotic rounding within the range of vari-

ation observed, ∆P must be tightly regulated (2D units of range are 19-23 nN/µm,

∼17% variation in range about the calibrated point), whereas the requirements for

kAdhmit and kStiffmit are less stringent ∼100% and ∼67% respectively.

Our results revealed that the regulation of mitotic rounding is approximated well

by linear regression models (Fig. 4.8a-b) for parameters that lead to physiological

values of Aratio and Rnorm for Drosophila wing disc cells (Fig. 4.5). This means that

regulation is in the linear regime, which is good attribute for a tightly regulated,

engineered process. Since interaction terms are not significant, this means that each

cell mechanical property is effectively independently regulated.

Mitotic pressure was found to be the primary regulator of mitotic cell area, while

both cell-cell adhesion and cortical stiffness reduce area expansion slightly (Fig 4.8a).

An increase in cell-cell adhesion opposes roundness whereas increased cortical stiffness
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Figure 4.9: Quantification of relative sensitivity of adhesion, stiffness and pressure
sensitivities to mitotic area expansion and roundness within experimental ranges.
Sensitivity estimation of Aratio (a) and Rnorm (b) to 1% variation in the three mitotic
parameter set points kStiffmit , kAdhmit , and ∆P . Sensitivity was estimated from the re-
duced RSM model described in Fig. 4.7a-b after stepwise model regression (p-value
cutoff of 0.01). (c) Proposed mechanical regulatory network defined for physiological
ranges within the parameter ranges defined by the CCD (Run 2, Fig. B.2a) that is
based on the local sensitivity analysis. Cell adhesivity, an increase in kAdhmit , slightly
inhibits area expansion and strongly inhibits roundness. Membrane stiffness, kStiffmit ,
inhibits area expansion and promotes roundness. Mitotic area expansion is most sen-
sitive to variation in the mitotic pressure change (∆P ), but pressure has little effect
on roundness over the calibrated physiological ranges.

promotes roundness for small perturbations (Fig 4.8b).

To define the relative contributions of mechanical properties on Aratio and Rnorm

under physiological or wild-type conditions, local sensitivity analysis (Fig. 4.9a-b, and

section B.3) was performed. Within the physiologically relevant parameter space,

pressure plays an important role in regulating cell size (Fig. 4.9a) but it does not

play a strong role on roundness (Fig. 4.9b). Stiffness and Adhesion are important in

tuning the degree of mitotic roundness (Figs. 4.8b, and 4.9b).

These results are summarized in the form of mechanical sensitivity model (Fig. 4.9c)

analogous to protein interaction networks. The mechanical regulatory network sum-

marizes how small variations in each mechanical property of cells changes the relative

mitotic area expansion and roundness within experimentally observed ranges of mi-

totic rounding. Thus, this model is able to assign to each mechanical property a
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unique and separable contribution to overall shape changes that occur during MR

under physiological conditions in epithelia.

4.4 Discussion

The roles of pressure, stiffness and adhesion even in mitotic cells in single cell

culture in suspension or attached to substrates, are still not resolved in the literature

and largely unexplored in the tissue context [124, 143]. Previous conclusions are

derived from very strong experimental perturbations such as complete inhibition of

actin polymerization that break the system. For example, Stewart et al. indicate

that both pressure and the actin-myosin cortex are important for mitotic swelling

[124] while Zlotek-Zlotkiewics et al., observed that the actin-myosin cortex is not

involved in mitotic swelling [143]. Both studies also are focused on cultured cells and,

therefore, the impact of mechanical properties of mitotic cells on mitotic rounding in

dense epithelial tissues is even less clear.

General models for investigating epithelial mechanics, including mitotic rounding

as a proof of principle, require coupling of biologically calibrated mechanical com-

ponents capable of representing non-polygonal cell shapes, and simulating the mem-

branes as well as cytoplasm of individual cells as separate entities. To accomplish

this, a novel multi-scale sub-cellular model was developed in this work for simulating

mechanical and adhesive properties of cells in the developing columnar epithelium

of the wing disc which consists of a single layer of cells. The model approximates

the tissue as a 2D surface since the majority of the contractile and adhesive forces

are localized at the apical surface of the epithelium (Fig. 4.1b). Parameters for the

computational model were obtained by calibrating the model using single cell stretch-

ing experiments, double cell stretching experiments, area and roundness of mitotic

cells, and tissue growth rate of the Drosophila wing disc. Cell-cell adhesion and

cell elasticity were calibrated using experimental data on single cells. The calibrated
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model was tested by successfully reproducing emergent properties of developing tissue

such as the polygon class distributions for both interphase and mitotic cells without

additional calibration or parameter tuning.

Our computational environment enables systematic testing of new hypotheses

about the underlying biophysical mechanisms governing mitotic rounding of epithe-

lial cells within the developing tissue micro-environment. The model predicts the

quantitative impact of each mechanical property change on mitotic cell expansion

and rounding (Figs. 4.7, 4.8, and 4.9), enabling a predictive model mapping how

mitotic mechanical properties specify mitotic rounding. Additionally, our prelimi-

nary results show that mitotic rounding under super-physiological pressure increases

(greater than calibrated values) can result in cell-cell rearrangements (T1 transitions)

of the neighboring cells, due to rapid increase of the apical surface of the mitotic cell.

It will be exciting to explore the mechanical impacts of mitotic rounding on epithe-

lial morphogenesis in future studies as well as to expand the model to include a

description of the kinetics of cytokinesis.

It is currently challenging to target only dividing cells in a tissue. Cell-cell ad-

hesion is dictated by the adhesive interactions of adherent junctions, which can be

modulated through genetic modification of E-cadherin molecules to alter their bind-

ing affinities. Cell stiffness can be adjusted by reducing the contractility of the

cortex through pharmacological perturbations. Internal pressure of cells is primarily

dictated by osmotic channels regulating the flow of water and ions through the cell

membrane, and can be adjusted by modulating those channels, or by changing the

osmolarity of the media. One experimental approach that might in future be used

for testing the model predictions would be to regulate the expression of E-Cadherin,

Myosin-II, and osmotic channel antagonists under a Cyclin B promotor, active during

mitosis, resulting in modulation only in dividing cells [24, 46]. Alternatively, opto-

genetic methods could be employed to selectively regulate individual cell properties
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[53].

Simulations provide insight into the individual contributions of cell properties to

MR and can predict the consequences of dysregulation of mitotic cell rounding on

the development and homeostasis of epithelial tissues. Determining which aspects

of mitotic rounding are most sensitive to perturbed cell properties in dense tissues,

including solid tumors, can help direct efforts to identify cellular processes that specif-

ically block mitosis in highly proliferative tumors, but that are not damaging to non

proliferative cells [143].
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APPENDIX A

PSEUDOMONAS AERUGINOSA MOTILITY SOURCE CODE

The simulation code is consisted of several files. In “Main.cpp” I am including the

main operations for solving equations of motion of bacteria. The initial distribution

and orientation of bacteria is initialized in “Initializer.cpp”. The header “BufferFn.h”

is written to implement the periodic boundary condition in the simulations. The

header file “CellDistance.h” searches for the bacteria that are within the interaction

distance, to include different cell-cell interactions in the model. The rest of this

appendix contains the content of the above mentioned files.

A.1 Main.cpp

#include <iostream>

#include <fstream>

#include ” s t d i o . h”

#include ” n r u t i l . c”

#include ” i n i t i a l i z e r . h”

#include ” BufferFn . h”

#include ” BuffCounter . h”

#include ” Ce l lD i s tance . h”

#include <time . h>

#define Num Of Cells 648

#define Lx 36

#define Ly 36

#define Cel l Length 2 .0

#define Cell Width 0 .5

#define Pi l i L eng th 0 .5

#define Ce l l Ve l 3 . 0

#define PI 3.14159
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using namespace std ;

int main ( )

{

double Buffer Width = 2.0∗ Cel l Length ;

double I n t d i s t a n c e ;

int n , i , j , cc =0, s tep =0;

double t , dt = 0 .0001 , SimTime = 2000 .0 , r and no i s e ; // time : sec

int NumSteps = SimTime/dt ;

double rm , ru = 20.0∗ dt , Eps i lon = 90.0∗SQR( dt ) , m=1.0e−5, I n e r t i a ;

double FMr = 1 .0 e−1;//F = 10.0 e−13N and m = 1.0 e−5 Kg F/m∗1e6 − uni t

double KMr = 1.0 e5 ; //k=1.0e−6 N/m, m=1.0e−5kg . x1 .0 e6 conver t un i t

double xProj , yProj , eps =1.0e−10;

char f i l ename [ 5 0 ] ;

I n e r t i a = (1 . 0/12 )∗m∗SQR( Cel l Length ) ;

I n t d i s t a n c e = 2.0∗ Pi l i L eng th+Cell Width ;

rm = I n t d i s t a n c e ;

int e s t imat i on = 24∗Num Of Cells /Lx ;

double ALPHA, ROTdir , rVel , rALPHA, MVdirX , MVdirY ;

double d x , d y , d rx , d ry , d wx , d wy , d tta , disCMS ;

double ∗NoiseTheta , ∗DeltaTheta , ∗xPosChange , ∗yPosChange , ;

double ∗∗NewCellDis , ∗∗OldCellDis , ∗∗PosChange , k sp r i ng =1.0e−6;

double ∗Real centerXpos , ∗Real centerYpos , ∗Rea l the ta ;

double ∗∗ rx , ∗∗ ry , ∗∗wx , ∗∗wy ;

double ∗All centerXpos , ∗All centerYpos ,∗ A l l t h e t a ;

double ∗∗ x h i t , ∗∗ y h i t , ∗∗ d i s B c e l l s ;

// Memory a l l o c a t i o n fo r the de f ined v a r i a b l e s

DeltaTheta = dvector (1 , Num Of Cells+es t imat ion ) ;

NoiseTheta = dvector (1 , Num Of Cells+es t imat ion ) ;

NewCellDis = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

OldCel lDis = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

PosChange = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

xPosChange = dvector (1 , Num Of Cells+es t imat ion ) ;

yPosChange = dvector (1 , Num Of Cells+es t imat ion ) ;

Real centerXpos = dvector (1 , Num Of Cells ) ;

Real centerYpos = dvector (1 , Num Of Cells ) ;
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Rea l the ta = dvector (1 , Num Of Cells ) ;

rx = dmatrix (1 , Num Of Cells+est imat ion , 1 , Num Of Cells+es t imat ion ) ;

ry = dmatrix (1 , Num Of Cells+est imat ion , 1 , Num Of Cells+es t imat ion ) ;

wx = dmatrix (1 , Num Of Cells+est imat ion , 1 , Num Of Cells+es t imat ion ) ;

wy = dmatrix (1 , Num Of Cells+est imat ion , 1 , Num Of Cells+es t imat ion ) ;

Al l centerXpos = dvector (1 , Num Of Cells+es t imat ion ) ;

Al l centerYpos = dvector (1 , Num Of Cells+es t imat ion ) ;

A l l t h e t a = dvector (1 , Num Of Cells+es t imat ion ) ;

// i n t i a l i z i n g the s imu la t ion

i n i t i a l i z e r ( Real centerXpos , Real centerYpos , Rea l the ta ) ;

// count ing the ghos t c e l l s f o r p e r i od i c boundary cond i t i on

BuffCounter ( Real centerXpos , Real centerYpos , Rea l theta , cc ) ;

// p l a c ing ghos t c e l l s around the boundaries

BufferFn ( Al l centerXpos , Real centerXpos , Al l centerYpos ,

Real centerYpos , A l l the ta , Rea l the ta ) ;

// Here I ’m wr i t i n g the i n i t cond i t i on to Ce l l In fo000000 . t x t

FILE ∗ f i d ;

f i d = fopen ( ” wild−type / Ce l l In fo000000 . txt ” , ”w” ) ;

for ( i =1; i<=Num Of Cells ; i ++){

Real centerXpos [ i ] = Al l centerXpos [ i ] ;

Real centerYpos [ i ] = Al l centerYpos [ i ] ;

Rea l the ta [ i ] = A l l t h e t a [ i ] ;

f p r i n t f ( f i d , ”\%d \%f \%f \%f \n” , i , A l l centerXpos [ i ] ,

A l l centerYpos [ i ] , A l l t h e t a [ i ] ) ; }

f c l o s e ( f i d ) ;

//∗∗∗∗∗ Now I f ind the d i s t ance between c e l l s ∗∗∗∗∗∗∗

x h i t = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

y h i t = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

d i s B c e l l s = dmatrix (1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

Ce l lD i s tance ( Al l centerXpos , Al l centerYpos , A l l the ta ,
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cc , x h i t , y h i t , d i s B c e l l s ) ;

// time s t ep s o f s imu la t i ons performed as f o l l ow s :

for ( t = dt ; t<=SimTime+dt ; t+=dt )

{

for ( i = 1 ; i< Num Of Cells+cc ; i++)

{

r and no i s e = no i s eS t r ength ∗

( 2 . 0 ∗ ( (double ) rand ( ) / (RAND MAX))−1) ;

NoiseTheta [ i ] = rand no i s e ;

}

s tep = step +1;

// c o l l i s i o n func t i on i s copied in here :

//=====I n i t i a l Condit ions on rx , ry , wx and wy ===

for ( i = 1 ; i<=Num Of Cells+cc ; i++)

for ( j = 1 ; j<= Num Of Cells+cc ; j++)

{ i f ( i != j && d i s B c e l l s [ i ] [ j ] > eps )

{xProj = ( x h i t [ i ] [ j ] − x h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

yProj = ( y h i t [ i ] [ j ] − y h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ; }

i f ( i != j && d i s B c e l l s [ i ] [ j ] < eps )

{xProj = s i n ( A l l t h e t a [ j ] ) ;

yProj = cos ( A l l t h e t a [ j ] ) ; }

i f ( i==j )

{xProj =0.0 ;

yProj = 0 . 0 ; }

rx [ i ] [ j ] = xProj ∗ d i s B c e l l s [ i ] [ j ] ;

wx [ i ] [ j ] = 0 . 0 ; // Ce l l Ve l ∗ xProj ;

ry [ i ] [ j ] = d i s B c e l l s [ i ] [ j ]∗ yProj ;

wy [ i ] [ j ] = 0 . 0 ; // Ce l l Ve l ∗yProj ;

}

/∗ ========================================================

each r ea l s imu la t ion time s t ep i s d i v i d ed to ”NumSteps” time

s t ep s and the equa t ions are so l v ed us ing the Euler scheme

============================================================ ∗/

for ( i =1; i<=Num Of Cells+cc ; i++)

DeltaTheta [ i ] = 0 . 0 ;

for ( i =1; i<=Num Of Cells+cc ; i++)

for ( j =1; j<=Num Of Cells+cc ; j++)
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OldCel lDis [ i ] [ j ]= d i s B c e l l s [ i ] [ j ] ;

{

for ( i =1; i<=Num Of Cells+cc ; i++)

for ( j =1; j<=Num Of Cells+cc ; j++)

{

i f ( i != j && d i s B c e l l s [ i ] [ j ]<=( I n t d i s t a n c e )

&& d i s B c e l l s [ i ] [ j ]>Cell Width+ru ){

xProj = ( x h i t [ i ] [ j ] − x h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

yProj = ( y h i t [ i ] [ j ] − y h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

d wx = dt∗(−KMr∗( d i s B c e l l s [ i ] [ j ]−rm)∗ xProj ) ;

wx [ i ] [ j ] = wx [ i ] [ j ] + d wx ;

d rx = dt ∗ wx [ i ] [ j ] ;

rx [ i ] [ j ] = rx [ i ] [ j ] + d rx ;

d wy = dt ∗ (−KMr∗( d i s B c e l l s [ i ] [ j ]−rm) ∗ yProj ) ;

wy [ i ] [ j ] = wy [ i ] [ j ] + d wy ;

d ry = dt ∗ wy [ i ] [ j ] ;

ry [ i ] [ j ] = ry [ i ] [ j ] + d ry ;

// ∗∗FINDING TORQUE & ANGULAR VELOCITY ∗∗

X hitFROMcenter = x h i t [ i ] [ j ] − Al l centerXpos [ i ] ;

Y hitFROMcenter = y h i t [ i ] [ j ] − Al l centerYpos [ i ] ;

ALPHA = 0.5 ∗ KMr ∗ ( d i s B c e l l s [ i ] [ j ]−rm)∗

( Y hitFROMcenter∗ xProj−X hitFROMcenter∗yProj ) ;

DeltaTheta [ i ] = DeltaTheta [ i ] + 0 .5 ∗ ALPHA ∗ SQR( dt ) ;

// ∗∗∗∗∗∗Now Delta Theta i s c a l c u l a t e d f ro each c e l l

NewCellDis [ i ] [ j ] = s q r t (SQR( rx [ i ] [ j ] ) + SQR( ry [ i ] [ j ] ) ) ;

d i s B c e l l s [ i ] [ j ] = NewCellDis [ i ] [ j ] ;

d i s B c e l l s [ j ] [ i ] = d i s B c e l l s [ i ] [ j ] ;

}

i f ( i != j && d i s B c e l l s [ i ] [ j ] <= Cell Width &&

d i s B c e l l s [ i ] [ j ]>=Cell Width−ru )

{xProj = ( x h i t [ i ] [ j ] − x h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

yProj = ( y h i t [ i ] [ j ] − y h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

d wx = dt ∗ FMr ∗( d i s B c e l l s [ i ] [ j ]−Cell Width−ru )∗

( d i s B c e l l s [ i ] [ j ]−Cell Width−ru )/ ( Eps i lon ∗ ru∗ ru )∗ xProj ;

wx [ i ] [ j ] = wx [ i ] [ j ] + d wx ;

d rx = dt ∗ wx [ i ] [ j ] ;
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rx [ i ] [ j ] = rx [ i ] [ j ] + d rx ;

d wy = dt ∗ FMr ∗( d i s B c e l l s [ i ] [ j ]−Cell Width−ru )∗

( d i s B c e l l s [ i ] [ j ]−Cell Width−ru )/ ( Eps i lon ∗ ru∗ ru )∗ yProj ;

wy [ i ] [ j ] = wy [ i ] [ j ] + d wy ;

d ry = dt ∗ wy [ i ] [ j ] ;

ry [ i ] [ j ] = ry [ i ] [ j ] + d ry ;

// ∗∗FINDING TORQUE AND ANGULAR VELOCITY OF EACH POINT∗∗

X hitFROMcenter = x h i t [ i ] [ j ] − Al l centerXpos [ i ] ;

Y hitFROMcenter = y h i t [ i ] [ j ] − Al l centerYpos [ i ] ;

ALPHA = Cel l Length ∗ ( X hitFROMcenter∗

yProj−Y hitFROMcenter∗xProj ) ;

DeltaTheta [ i ] = DeltaTheta [ i ] + 0 .5 ∗ ALPHA ∗ SQR( dt ) ;

NewCellDis [ i ] [ j ] = s q r t (SQR( rx [ i ] [ j ] ) + SQR( ry [ i ] [ j ] ) ) ;

d i s B c e l l s [ i ] [ j ] = NewCellDis [ i ] [ j ] ;

d i s B c e l l s [ j ] [ i ] = d i s B c e l l s [ i ] [ j ] ; }

}

}//end o f i loop

for ( i =1; i<=Num Of Cells+cc ; i++)

for ( j =1; j<=Num Of Cells+cc ; j++)

PosChange [ i ] [ j ] = 1 .0∗

( d i s B c e l l s [ i ] [ j ] − OldCel lDis [ i ] [ j ] ) ;

for ( i =1; i<=Num Of Cells+cc ; i++)

{ for ( j =1; j<=Num Of Cells+cc ; j++)

{ i f ( i != j && d i s B c e l l s [ i ] [ j ]> eps ) // check : zero d i sB c e l l s

{xProj = ( x h i t [ i ] [ j ] − x h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

yProj = ( y h i t [ i ] [ j ] − y h i t [ j ] [ i ] ) / d i s B c e l l s [ i ] [ j ] ;

xPosChange [ i ] = xPosChange [ i ] + xProj∗PosChange [ i ] [ j ] ;

yPosChange [ i ] = yPosChange [ i ] + yProj∗PosChange [ i ] [ j ] ; }

i f ( i != j && d i s B c e l l s [ i ] [ j ]< eps )

{xProj = 0 . 0 ;

yProj = 0 . 0 ;

xPosChange [ i ] = xPosChange [ i ] + xProj∗PosChange [ i ] [ j ] ;

yPosChange [ i ] = yPosChange [ i ] + yProj∗PosChange [ i ] [ j ] ; }

}

Al l centerXpos [ i ] = Al l centerXpos [ i ] + xPosChange [ i ] +

dt∗ Ce l l Ve l ∗ cos ( A l l t h e t a [ i ] ) ;
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xPosChange [ i ] = 0 . 0 ;

Al l centerYpos [ i ] = Al l centerYpos [ i ] + yPosChange [ i ] +

dt∗ Ce l l Ve l ∗ s i n ( A l l t h e t a [ i ] ) ;

A l l t h e t a [ i ] = A l l t h e t a [ i ] + DeltaTheta [ i ] + NoiseTheta [ i ] ;

i f ( A l l t h e t a [ i ] > 2 .0∗ PI )

A l l t h e t a [ i ] = A l l t h e t a [ i ] − 2 .0∗PI ;

else i f ( A l l t h e t a [ i ] < 0)

A l l t h e t a [ i ] = A l l t h e t a [ i ] + 2 .0∗PI ;

}

for ( i =1; i<=Num Of Cells ; i ++){

Real centerXpos [ i ] = Al l centerXpos [ i ] ;

Real centerYpos [ i ] = Al l centerYpos [ i ] ;

Rea l the ta [ i ] = A l l t h e t a [ i ] ;

}

BuffCounter ( Real centerXpos , Real centerYpos , Rea l theta , cc ) ;

BufferFn ( Al l centerXpos , Real centerXpos ,

Al l centerYpos , Real centerYpos , A l l the ta , Rea l the ta ) ;

Ce l lD i s tance ( Al l centerXpos , Al l centerYpos ,

A l l the ta , cc , x h i t , y h i t , d i s B c e l l s ) ;

i f ( s tep\%50 == 0)

{FILE ∗ f i d ;

s p r i n t f ( f i l ename , ” wild−type / C e l l I n f o \%06d . txt ” , s tep ) ;

f i d = fopen ( f i l ename , ”w” ) ;

for ( i =1; i<=Num Of Cells+cc ; i++)

f p r i n t f ( f i d , ”\%d \%f \%f \%f \n” , i , A l l centerXpos [ i ] ,

A l l centerYpos [ i ] , A l l t h e t a [ i ] ) ;

f c l o s e ( f i d ) ;

}

}

//Here I wr i t e s imu la t ion in f o

FILE ∗w r i t e r ;

w r i t e r = fopen ( ” wild−type / SimInfo . txt ” , ”w” ) ;
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f p r i n t f ( wr i te r , ” Number Of Cells = \%d\n” ” Simulat ion domain =

\%d by \%d\n” ” Simulat ion time = \%f \n” ” Spring constant =

\%f \n” ” time s t ep s = \%f \n” ” Cel l Length = \%f \n” ” Ce l l Ve l =

\%f \n” ” Ce l l w idth = \%f \n” ” P i l i l e n g t h = \%f \n” , Num Of Cells ,

Lx , Ly , SimTime , k spr ing , dt , Cel l Length ,

Ce l l Ve l , Cell Width , P i l i L eng th ) ;

f c l o s e ( w r i t e r ) ;

f r e e dmat r i x ( x h i t , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( y h i t , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( d i s B c e l l s , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( Al l centerXpos , 1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( Al l centerYpos , 1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( A l l the ta , 1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( NoiseTheta , 1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( rx , 1 , Num Of Cells+est imat ion , 1 , Num Of Cell+es t imat ion ) ;

f r e e dmat r i x ( NewCellDis , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( OldCel lDis , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( PosChange , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( xPosChange , 1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( yPosChange , 1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x ( ry , 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x (wx, 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e dmat r i x (wy, 1 , Num Of Cells+est imat ion ,

1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( DeltaTheta , 1 , Num Of Cells+es t imat ion ) ;

f r e e d v e c t o r ( Real centerXpos , 1 , Num Of Cells ) ;

f r e e d v e c t o r ( Real centerYpos , 1 , Num Of Cells ) ;

f r e e d v e c t o r ( Real theta , 1 , Num Of Cells ) ;

return ( 0 ) ;
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}

A.2 Initializer.cpp

void i n i t i a l i z e r

(double Real Xpos [ ] , double Real Ypos [ ] , double Rea l the ta [ ] )

{

double X, Y, tta , delta Dx , delta Dy , r a n d t i l t ,

double choose d i r , x change =0.0 , y change =0.0 ;

int counter =0, i , j , k , l ;

srand ( (unsigned ) time (NULL) ) ;

for ( i = 1 ; i<= 6 ; i++)

for ( j =1; j<=6; j++)

{X = Cel l Length + ( i −0.5) ∗ 6 . 0 ;

Y = Cel l Length + ( j −0.5) ∗ 6 . 0 ;

i f ( ( i+j )\%2 == 0)

{ for ( k=−1; k<=1; k+=2)

for ( l =−4; l<=4; l++)

{ counter = counter +1;

r a n d t i l t = 0 .1 ∗

( 2 . 0 ∗ (double ) rand ( ) / (RAND MAX) − 1 . 0 ) ;

Real Xpos [ counter ] = X + k∗( P i l i L eng th +

0.5∗ Cel l Length+Cell Width)+ r a n d t i l t ;

Real Ypos [ counter ] = Y + l ∗

(2 ∗ Pi l i L eng th + 1.25 ∗ Cell Width ) + r a n d t i l t ;

c h o o s e d i r = (double ) rand ( ) / (RAND MAX) ;

i f ( c h o o s e d i r < 0 . 5 )

c o e f = −1.0;

else

c o e f = 0 . 0 ;

Rea l the ta [ counter ] = c o e f ∗ PI + PI/2 ∗ r a n d t i l t ;

}

}

else

{ for ( l =−1; l<=1; l +=2)

for ( k=−4; k<=4; k++)

{ counter = counter +1;

r a n d t i l t = 0 .1 ∗
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( 2 . 0 ∗ (double ) rand ( ) / (RAND MAX) − 1 . 0 ) ;

Real Xpos [ counter ] = X + k ∗

(2 ∗ Pi l i L eng th + 1.25 ∗Cell Width ) + r a n d t i l t ;

Real Ypos [ counter ] = Y + l ∗

( P i l i L eng th +0.5∗Cel l Length+Cell Width)+ r a n d t i l t ;

c h o o s e d i r = (double ) rand ( ) / (RAND MAX) ;

i f ( c h o o s e d i r < 0 . 5 )

c o e f = 1 . 0 ;

else

c o e f = 3 . 0 ;

Rea l the ta [ counter ] = c o e f ∗PI/2+PI/2∗ r a n d t i l t ;}

}

}

}

A.3 BufferFn.h

void i n i t i a l i z e r (double Real Xpos [ ] , double Real Ypos [ ] ,

double Rea l the ta [ ] ) {

double X, Y, tta , delta Dx , delta Dy , r a n d t i l t , c o e f =1.0 ;

double choose d i r , x change =0.0 , y change =0.0 ;

int counter =0, i , j , k , l ;

const double PI = 3.141592653589793 ;

srand ( (unsigned ) time (NULL) ) ;

for ( i = 1 ; i<= 6 ; i++)

for ( j =1; j<=6; j++)

{X = Cel l Length + ( i −0.5) ∗ 6 . 0 ;

Y = Cel l Length + ( j −0.5) ∗ 6 . 0 ;

i f ( ( i+j )\%2 == 0)

{ for ( k=−1; k<=1; k+=2)

for ( l =−4; l<=4; l++)

{ counter = counter +1;

r a n d t i l t = 0 .1 ∗ ( 2 . 0∗ (double ) rand ( ) / (RAND MAX) −1 .0) ;

Real Xpos [ counter ] = X + k ∗

( P i l i L eng th + 0.5∗ Cel l Length+Cell Width)+ r a n d t i l t ;

Real Ypos [ counter ] = Y + l ∗

(2 ∗ Pi l i L eng th + 1.25 ∗ Cell Width ) + r a n d t i l t ;
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c h o o s e d i r = (double ) rand ( ) / (RAND MAX) ;

i f ( c h o o s e d i r < 0 . 5 )

c o e f = −1.0;

else

c o e f = 0 . 0 ;

Rea l the ta [ counter ] = c o e f ∗ PI + PI/2 ∗ r a n d t i l t ;

}

}

else

{ for ( l =−1; l<=1; l +=2)

for ( k=−4; k<=4; k++)

{ counter = counter +1;

r a n d t i l t =0 .1∗ (2 .0∗ (double ) rand ( ) / (RAND MAX) −1 .0) ;

Real Xpos [ counter ] = X + k ∗

(2 ∗ Pi l i L eng th + 1.25 ∗Cell Width ) + r a n d t i l t ;

Real Ypos [ counter ] = Y + l ∗

( P i l i L eng th +0.5∗Cel l Length+Cell Width)+ r a n d t i l t ;

c h o o s e d i r = (double ) rand ( ) / (RAND MAX) ;

i f ( c h o o s e d i r < 0 . 5 )

c o e f = 1 . 0 ;

else

c o e f = 3 . 0 ;

Rea l the ta [ counter ] = c o e f ∗PI/2 + PI/2∗ r a n d t i l t ;}

}

}

}

A.4 BufferCounter.h

void BuffCounter (double Real Xpos [ ] , double Real Ypos [ ] ,

double Rea l the ta [ ] , int &cc ){

double Buffer Width = 2 .0 ∗ Cel l Length ;

int counterBuf f =0;

for ( int i =1; i<=Num Of Cells ; i++)

{

i f ( Real Xpos [ i ] < Buffer Width )

counterBuf f = counterBuf f +1;

i f ( Real Xpos [ i ] < Buffer Width && Real Ypos [ i ] > Ly )
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counterBuf f = counterBuf f +1;

i f ( Real Xpos [ i ] < Buffer Width && Real Ypos [ i ]<Buffer Width )

counterBuf f = counterBuf f +1;

i f ( Real Xpos [ i ] > Lx)

counterBuf f = counterBuf f +1;

i f ( Real Xpos [ i ] > Lx && Real Ypos [ i ] > Ly)

counterBuf f = counterBuf f +1;

i f ( Real Xpos [ i ] > Lx && Real Ypos [ i ]<Buffer Width )

counterBuf f = counterBuf f +1;

i f ( Real Ypos [ i ] < Buffer Width )

counterBuf f = counterBuf f +1;

i f ( Real Ypos [ i ] > Ly)

counterBuf f = counterBuf f +1;

}

cc = counterBuf f ;

}

A.5 CellDistance.h

void Ce l lD i s tance (double All Xpos [ ] , double All Ypos [ ] ,

double A l l t h e t a [ ] , int &Buf fS ize , double ∗∗ x h i t ,

double ∗∗ y h i t , double ∗∗ d i s B c e l l s ){

int i , j , p1 , p2 , pmid , N = 10 ; //number o f segments on each c e l l

double d e l t a = Cel l Length /N; // s i z e o f each segment

double ∗TAILxPOS, ∗TAILyPOS, ∗SLOPE, ∗∗X, ∗∗Y;

double dmin , dx1 , dx2 , dx3 , dy1 , dy2 , dy3 , dr1 , dr2 , dr3 ;

TAILxPOS = dvector (1 , Num Of Cells + Buf fS i z e ) ;

TAILyPOS = dvector (1 , Num Of Cells + Buf fS i z e ) ;

SLOPE = dvector (1 , Num Of Cells + Buf fS i z e ) ;

X = dmatrix (1 , Num Of Cells + Buf fS ize , 1 , N) ;

Y = dmatrix (1 , Num Of Cells + Buf fS ize , 1 , N) ;

for ( i =1; i<=Num Of Cells+Buf fS i z e ; i ++){

TAILxPOS [ i ] =All Xpos [ i ] − 0 . 5∗ ( Ce l l Length )∗ cos ( A l l t h e t a [ i ] ) ;

X[ i ] [ 1 ] = TAILxPOS [ i ] ;

TAILyPOS [ i ] =All Ypos [ i ] − 0 . 5∗ ( Ce l l Length )∗ s i n ( A l l t h e t a [ i ] ) ;

Y[ i ] [ 1 ] = TAILyPOS [ i ] ;

SLOPE[ i ] = tan ( A l l t h e t a [ i ] ) ;

}
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for ( i =1; i<=Num Of Cells+Buf fS i z e ; i++)

for ( j =2; j<=N; j++)

{

X[ i ] [ j ] = X[ i ] [ j −1] + de l t a ∗ cos ( A l l t h e t a [ i ] ) ;

Y[ i ] [ j ] = TAILyPOS [ i ] + SLOPE[ i ] ∗ (X[ i ] [ j ]−TAILxPOS [ i ] ) ;

}

int GoodI = 1 , GoodJ = 1 ;

double disCM ;

for ( int m = 1 ; m<=Num Of Cells+Buf fS i z e ; m++)

for ( int n=1;n<= m−1;n++)

{disCM=s q r t (SQR( All Xpos [m]−All Xpos [ n])+

SQR( All Ypos [m]−All Ypos [ n ] ) ) ;

i f ( abs ( abs ( cos ( A l l t h e t a [m]))− abs ( cos ( A l l t h e t a [ n ] ) ) )

<0.01 | | disCM>Cel l Length+2∗Pi l i L eng th ){

d i s B c e l l s [m] [ n ] = disCM ;

d i s B c e l l s [ n ] [m] = disCM ;

x h i t [m] [ n ] = All Xpos [m] ;

y h i t [m] [ n ] = All Ypos [m] ;

x h i t [ n ] [m] = All Xpos [ n ] ;

y h i t [ n ] [m] = All Ypos [ n ] ;

}

else

{

dmin = 1 0 0 0 . 0 ;

for ( i = 1 ; i<=N; i++)

{p1 = 1 ; p2=N;

while ( abs ( p2−p1 ) != 1 )

{

pmid = f l o o r ( 0 . 5∗ ( p2+p1 ) ) ;

dx1 = X[m] [ i ]−X[ n ] [ p1 ] ;

dy1 = Y[m] [ i ]−Y[ n ] [ p1 ] ;

dr1 = SQR( dx1 ) + SQR( dy1 ) ;

dx2 = X[m] [ i ]−X[ n ] [ p2 ] ;

dy2 = Y[m] [ i ]−Y[ n ] [ p2 ] ;

dr2 = SQR( dx2 ) + SQR( dy2 ) ;

dx3 = X[m] [ i ]−X[ n ] [ pmid ] ;

dy3 = Y[m] [ i ]−Y[ n ] [ pmid ] ;

dr3 = SQR( dx3 ) + SQR( dy3 ) ;

i f ( dr1<dr2 )

{dr2 = dr3 ;
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p2 = pmid ;}

else

{dr1 = dr3 ;

p1 = pmid ;

}

}

i f ( ( dr1<dr2 ) && ( dr1<dmin ) )

{dmin = dr1 ;

GoodJ = p1 ;

GoodI =i ;}

else i f ( dr2<dmin )

{dmin = dr2 ;

GoodJ=p2 ;

GoodI=i ;

}

}

d i s B c e l l s [ n ] [m] = s q r t ( dmin ) ; // d i s t ance bw c e l l n and m

d i s B c e l l s [m] [ n ] = s q r t ( dmin ) ;

x h i t [m] [ n ] = X[m] [ GoodI ] ; //where c e l l n i s h i t by c e l l m

y h i t [m] [ n ] = Y[m] [ GoodI ] ;

x h i t [ n ] [m] = X[ n ] [ GoodJ ] ; //where c e l l m i s h i t by c e l l n

y h i t [ n ] [m] = Y[ n ] [ GoodJ ] ;

}

}

// zero−ing the v a r i a b l e s

for ( i =1; i<=Num Of Cells+Buf fS i z e ; i++)

for ( j =1; j<=N; j++)

{X[ i ] [ j ] = 0 . 0 ;

Y[ i ] [ j ] = 0 . 0 ; }

//∗∗ f r e e the a l l o c a t e d memories t ha t I don ’ t need anymore∗∗∗

f r e e d v e c t o r (TAILxPOS, 1 , Num Of Cells+Buf fS i z e ) ;

f r e e d v e c t o r (TAILyPOS, 1 , Num Of Cells+Buf fS i z e ) ;

f r e e d v e c t o r (SLOPE, 1 , Num Of Cells+Buf fS i z e ) ;

f r e e dmat r i x (X, 1 , Num Of Cells + Buf fS ize , 1 , N) ;

f r e e dmat r i x (Y, 1 , Num Of Cells + Buf fS ize , 1 , N) ;

}
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APPENDIX B

SENSITIVITY ANALYSIS OF CELL SHAPE AND SIZE

B.1 Calculation of area and roundness

Cell area is calculated by summing the triangles that two neighboring membrane

nodes and the cell center create, as is shown in Fig. B.1.

Cell roundness R is quantified by using the isoperimetric quotient, which is defined

as follows:

R = 4πA/p2, (B.1)

where A is the cell area and p is the cell perimeter. Interphase cells have polygonal

shape, but their roundness increases as they enter the mitotic phase. The roundness

is normalized such that a normalized roundness Rnorm of 0 is assigned to a perfect

Figure B.1. Calculation of area and perimeter.
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hexagon and it becomes 1 for the case of a perfect circle. Rnorm is given by:

Rnorm = (R−R6)/(1−R6), (B.2)

where R6 is the isoperimetric quotient of a hexagon and can be calculated from the

following general equation for polygons with n sides.

Rn =
π

n tan(π/n)
. (B.3)

B.2 Response surface method

B.2.1 Exploring the impact of physical properties on MR

Response surface method (RSM) enables one with an efficient way of exploring

the parameter space when dealing with computationally expensive models [33, 137].

We developed the RSM of area ratio (Aratio) and normalized roundness Rnorm as a

function of mitotic parameters representing the cortical stiffness, cell adhesion and

change of cytoplasmic pressure in mitosis (kStiffmit , kAdhmit and ∆P ). The parameters were

first varied in a 3-level full factorial design (33 FFD) of experiment. In a 33 FFD,

the three parameters are set to different values in a wide range, and all the possible

combinations are tested (Fig. B.2a). The range of variation for each parameter is

chosen by including the two extreme values for which cell still behaves biologically

and another point set that at the calibration value. A quadratic regression model

was fit for each of the two outputs (Aratio and Rnorm).

B.2.2 Calibration of mitotic physical parameters

The values of Rnorm and Aratio were measure from timelapse confocal movies of

wing disc of Drosophila fruit fly. The relative error between the experimental and
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computational values of Rnorm and Aratio, is given by:

Rerror =
|Rexp −Rsim|

Rexp

. (B.4)

We report the calibrated values as ones that minimized the error defined above.

B.2.3 Improving the resolution of investigating the impact of physical properties on

MR

We used a central composite design (CCD) to generate a high-resolution RSM of

the impact of mitotic parameters (kStiffmit , kAdhmit and ∆P ) on mitotic rounding (Fig.

B.2a). CCD was performed over the region where the quadratic model predicted

the lowest error in both Aratio and Rnorm. This experiment yielded error values lower

than the ones from FFD, and resulted in the biologically calibrated parameter values.

B.3 Sensitivity analysis

A sensitivity analysis test was performed around the calibrated values at the

center of CCD, to predict the relative contributions of increased cortical stiffness

(change in kStiffmit ), increased cytoplasmic pressure (change in ∆P ) and reduction of

cell-cell adhesion (change in kAdhmit ) during mitotic rounding.

Sensitivity of the response variable y to change in parameter xi is given by the

following equation [33]:

S
y(x)
i =

∂y(x)

∂xi

xi
y(x)

(B.5)
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Figure B.2: Response surface method analysis of mechanical properties on regulating
mitotic expansion and mitotic rounding. (a) Schematic of initial full factorial de-
sign (FFD) for exploring parameter space, and subsequent central composite design
(CCD) for developing the response surface models shown in Fig. 4.7. (b) Pareto
front indicating computational model parameter values with lowest difference with
experimental data for area ratio and normalized roundness. The parameter range
defined by the CCD (Run 2) spans parameter variation where the error between ex-
periments and simulations is within the propagated uncertainty of measurements and
simulations. Error bars are the standard error of means of the normalized deviation
between experiments and simulations.
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TABLE B.1: 

VALUES OF THE MODEL PARAMETERS USED TO SIMULATE 

DEVELOPMENT OF EPITHELIAL TISSUE

Interphase parameter Mitotic parameter Source or calibration section

U II
inter=0.49nN.µm U II

mit=21.75nN.µm Fig. 4.5
W II
inter=0.15nN.µm W II

mit=6.71nN.µm Fig. 4.5
ξIIinter=0.31µm ξIImit=0.58µm Fig. 4.5
γIIinter=1.25µm γIImit=1.34µm Fig. 4.5
LIIinter=1.56µm LIImit=3.12µm Fig. 4.5

UMI
inter=0.78nN.µm UMI

mit=4.36nN.µm Fig. 4.5
ξMI
inter=0.13µm ξMI

mit=0.27µm Fig. 4.5
LMI
inter=1.56µm LMI

mit=3.12µm Fig. 4.5
UMMD
inter =3.9nN.µm UMMD

mit =3.9nN.µm Volume exclusion & Fig. 4.2
WMMD
inter =3.9nN.µm WMMD

mit =3.9nN.µm Volume exclusion & Fig. 4.2
ξMMD
inter =0.13µm ξMMD

mit =0.13µm Volume exclusion & Fig. 4.2
γMMD
inter =1.6µm γMMD

mit =1.6µm Volume exclusion & Fig. 4.2
LMMD
inter =0.78µm LMMD

mit =0.78µm Volume exclusion & Fig. 4.2
kAdhinter=20nN/µm kAdhmit =12nN/µm [50,59,60] & Fig. 4.5
LAdhmax=0.4µm LAdhmax=0.4µm [50,59,60] & Fig. 4.5
LAdhmin=0.062µm LAdhmin=0.062µm [50,59,60] & Fig. 4.5

kStiffinter =200nN/µm kStiffmit =450nN/µm [57,58] & Fig. 4.5

LStiffinter =0.06µm LStiffmit =0.13µm [57,58] & Fig. 4.5
kTorinter=6.0nN.µm kTormit=7.0nN.µm [57,58] & Fig. 4.5
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