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SOLUTION AND SOLID-STATE STUDIES OF ALKALI

METAL AGGREGATE ASSEMBLIES

Abstract
by

John Jacob Morris

The work presented in this dissertation investigates the use of various alkali metal
aggregates as secondary building units, SBUs, for the formation of extended framework
materials. Three main avenues of research have been studied, which each consider
different approaches to better understand this class of materials.

The first topic is concerned with the manipulation of extended supramolecular
structure of lithium aryloxide complexes using either self-assembled mixed-anion species
or solvent additives (Chapters 2 and 3). Our group has previously shown that molecular
cage aggregates of s-block metal complexes can successfully be utilized as SBUs to
direct network assembly. For example, tetrameric cubanes of specific lithium aryloxides
may be designed such that each metal center has a single open site for coordination to a
Lewis base. In turn, employment of a ditopic linker results in these aggregates acting as
tetrahedral nodes to form 3D diamondoid, and related lower dimensionality polymers.
Another level of sophistication to these systems is presented here through the control of

the number of metal atoms within each aggregate that may act as points of network
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extension. A set of zero-, one-, two-, and three-dimensional materials have been
synthesized by systematically varying the stoichiometry of the two components, 2,4,6-
Mes-CgH,OLi (ArOLi) and Me,N(CH,),OLi (ROLi), within single aggregates while
using 1,4-dioxane (diox) as a ditopic linker. The homoleptic complex
[{(ArOLi)4-(diox),}23(diox)].. forms a 3D diamondoid extended structure, where LisO4
cubanes act as tetrahedral nodes. Attempts to rationally alter the dimensionality of the
network through the sequential replacement of ArOLi vertices by potentially chelating
ROLi units have succeeded. The mixed-anion complexes
[{(ROLi)(ArOLi)3-(diox); s }D1/2(C¢Hi4)]. and  [(ROLi)4(ArOLi),-(diox)]., adopt 2D
hexagonal net and 1D chain structures, respectively. Furthermore, the two complexes
[{(ROLi)3(ArOLi)3-(diox)ps}(CsHia)l.e and [(ROLi)s(ArOLi)-(diox)ps]. both form
unusual 0D molecular dumbbell structures in the solid state. Incorporation of multiple
ROLi units in the mixed-anion complexes not only results in reducing the number of
possible sites for polymer extension through chelation, but also changes the aggregation
state of the building block from tetrametallic LisO4 units to hexametallic Li¢Og units.

The second area of investigation explores the molecular aggregation and extended
network chemistry of substituted aryloxide ligands in combination with the heavier alkali
metals Na, K, Rb, and Cs (Chapters 4-6). In particular, we reasoned that aggregates
containing the larger alkali metals were appealing candidates as SBUs for high-
connectivity systems since they should allow multiple sites for network extension
(increased metal solvation), leading to interesting or novel network topologies. Ring and
cage aggregates containing the large alkali metals potassium or rubidium have proven to

be excellent building blocks for the creation of high-connectivity nets, as demonstrated
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by their use as septahedral and nonahedral nodes. Highlights from this work include the
characterization of  [(4-Cl-2,6-Me,-C¢H,0K),-(dioxane); 5] and  [(2,4,6-Mes-
Ce¢H,0OK)s-(dioxane)s]., which form two new types of 7-connected nets, and [2—iPr—
Ce¢H4ORDb)g-(dioxane)s 5], which is the first ever example of a 9-connected net.

An expected finding during the study of the potassium 2-fert-butylphenoxide
system was the encapsulation of molecular water inside a K¢Og hexameric drum, forming
[{(2-1Bu-CsH40OK)sD(H,0)}-(dioxane)s4].. Encapsulation of neutral molecules within
alkali metal aggregates is rare. The scope and cause of this unusual behavior was studied
in detail (Chapter 5).

The final part of the dissertation explores the synthesis of organometallic
polymers assembled from cation-7 interactions (Chapter 7). The objective was to utilize
ferrocene, the prototypical metallocene, as a neutral, linear, ditopic 7t-linker to bridge
between preformed alkali metal aggregates The combination of M(HMDS), where M =
Na, K, Rb, Cs, with ferrocene gives rise to one-dimensional polymeric chains of dimeric
ring amides bridged through ferrocene. In addition, the rubidium and cesium analogues
have close intermolecular agostic interactions with neighboring chains, such that the
supramolecular structures may be considered as two-dimensional 4% nets. These studies
demonstrate that cation-T interactions can be used to rationally build extended networks

using appropriate conditions.
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ABBREVIATIONS

1D — One dimensional

2D - Two dimensional

3D — Three dimensional

Bipy - 4, 4’-Bipyridine

BCU - Body-Centered Cubic

BDC - Benzenedicarboxylate

BPE - Trans-bis(4-pyridyl)ethylene
BTB - 1,3,5-benzenetribenzoate
BTC -1,3,5-benzenetricarboxylate
BuLi — Butyllithium

CSD - Cambridge Structural Database
Cp — Cyclopentadienyl

DEM - diethoxymethane

Dia — Diamondoid

Diox — 1,4-Dioxane

DMF - Dimethylformamide

DME - Dimethoxyethane

DMF - Dimethylformamide

DMSO - Dimethylsulfoxide
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DFT - Density Functional Theory
DZ - Double-(

EQ - Equation

FAU - Faujasite

Fc — Ferrocene

FCU - Face-Centered Cubic

FMA - fumarate

HMDS — Hexamethyldisilazide
HMPA - Hexamethylphosphoramide
IP - Isophthalate

IR - Infrared

L-lac — Lactate

LiOAr - Lithium aryloxide

MeLi — Methyllithium

MOF - Metal Organic Framework
MS — Mass Spectrometry

NaOAr — Sodium aryloxide

NMR - Nuclear Magnetic Resonance
PCU - Primitive Cubic

PMD - Pyrimidine

PMDTA - N, N, N’, N, N"-Pentamethyldiethylene triamine
Pyr — Pyridine

Pz — Pyrazolyl
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RCSR - Reticular Chemistry Structure Resource
SBU - Secondary Building Unit

SCO - Spin crossover

THF - Tetrahydrofuran

Tol — Toluene

TMEDA — N,N,N’,N'-Tetramethylethylenediamine
TPM - Tetra-(4-pyridyl)methane

TPT - 2,4,6-tris(4-pyridyl)triazine

XRD - X-ray diffraction
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NUMBERED COMPOUNDS

2.1 [{(2,4,6-Me;3-CcHyOL1)4-(diox)2 } D3(di0X)]

2.2 [{(MeoNC,H4OLi)(2,4,6-Mes-C¢HoOLi)3:(diox) 5} 21/2(CsHi4)]eo
2.3 [{(MeoNC,H4OLi1)3(2,4,6-Mes-CsH,OLi)3-(di0x)o.5 } (CeH14) ]

2.4 [(Me,NC,H4OL1)4(2,4,6-Mes-CcHoOLi),+(diox) e

2.5 [(Me,NC,H4OL1)5(2,4,6-Mes-CcHoOL1)-(d10X)0 5]

2.6 [(2,4,6-Me;s-CsH,OLi)-(MeaNC,H4OH):(diox)o 5]

3.1 [(4-Cl1-2,6-Me,-CcH,OLi),-(dioxane); ]

3.2 [(4-Cl-2,6-Me,-C¢H,0Li),-(dioxane), 5]

3.3 [(4-Cl1-2,6-Me,-CcHyOLi1)4-(dmf)4]

3.4 [(4-C1-2,6-Me,-CcH,OLi)4-(dioxane)-(dmf), .

3.5 [(4-Cl1-2,6-Me,-CcH,OLi)4-(dioxane); ]

3.6 [(4-Cl-2,6-Me,-CcH,OLi),-(dioxolane); .

3.7 [{(4-Br-2,6-Me-C¢H,OLi),-(dioxane), } { (4-Br-2,6-Me-C¢H,OLi),-(dioxane), 5} |«
3.8 [(4-Br-2,6-Me,-CcH,OLi)4-(dioxane);-(dmf);]..

3.9 [(4-Br-2,6-Me,-CsH,OL1)4-(dmf)4]

3.10 [(4-Br-2,6-Me,-CcH,OLi),-(dioxolane); ]

4.1 [(4-Cl-2,6-Me,-CcH,0ONa),-(dioxane)s].

4.2 [(4-Br-2,6-Me,-C¢H,ONa),-(dioxane)s] .
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4.3 [(4-Cl-2,6-Me,-C¢H,0K),-(dioxane); 5]
4.4 [(4-Br-2,6-Me,-CsH,0OK),:(dioxane)s 5]
4.5 [(4-Cl-2,6-Me,-CsH,ORDb),-(dioxane); 5]
4.6 [(4-Br-2,6-Me,-CcH,ORD);-(dioxane)s s].
4.7 [(4-Cl-2,6-Me,-C¢H,0Cs)7-(dioxane); |
4.8 [(2,4,6-Me;-CcH,0K)s-(dioxane)s ..

4.9 [(2,4,6-Mes-C¢H,ORb)s-(dioxane)s]..

4.10 [(2,4,6-Me;-CcHyOK)4-(thf) 4]

5.1 [{(2-tBu-CcH4,OK)s2(H,0) }-(dioxane), ]
5.1, [{(2-1Bu-C¢H4OK)s2(H,0) } - (dioxane) 4]«
5.2 [{(2-Bu-CsH4OK)s(H,0) }-(THF)s]

5.3 [{{(2-1Bu-CcH4ORb)¢>(H;0) }-(dioxane), }-(dioxane)]..
5.4 [{(2-tBu-CcH4,ONa)s>(H,0) }-(dioxane)s].
5.5 [{{(2-iPr-CcH4OK)s2(H20) }-(dioxane)s } -(dioxane)] .
5.6 [(2-iPr-CsH4OK)s:(dioxane)s]..

5.7 [{(2-'Pr-C¢H40K)-(H,0), } -(dioxane)s s]..
5.8 [2-"Pr-C¢H,ORb)e-(dioxane)s 51

5.10 [(2-Me-CgH4OK)4-(dioxane)].

6.1 [(4-F-C¢H4OK)4-(dioxane)s].

6.2 [(4-I-CsH4OK)s-(dioxane)s ]

6.3 [(4-I-CsH4ORD)4-(dioxane)e] o

6.4 [(4-CI-CcH4OK);-(dioxane)]..

6.5 [(4-Br-CsH4OK),-(dioxane) 5]
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6.6 [(4-Br-C4H,ORb)s-(dioxane)s]..

6.7 [(4-"Pr-C¢H,OK),-(dioxane)o 5]

7.1 [{(Me;3Si),NNa},-(Cp,Fe)]..

7.2 [{(Me3Si),NK },-(CpsFe)l..

7.3 [{(Me3Si),NRb },-(Cp,Fe)l..

7.4 [{(Me3Si);NCs},-(Cp,Fe)]..

7.5 [{(Me3Si),NRb },-(Cp2Fe)o.6-(C7Hs)o 8]
7.6 [{(Me3Si),NCs },-(CpaFe)o 5-(C7Hg)]..
7.7 [(Me3Si),NK-(Tol)],

7.8 [{(Me3Si),NCs},-(Tol)]..

7.9 [K-(Cp,Fe),-(Tol), [Mg(HMDS)s]
7.10 [{Na(Fcpz)}-{Na(DME);}1..

7.11 [Ky(Fcpz)-(DME);).,

7.12 [Rby(Fcpz)-(DME);]..

7.13 [Csy(Fepz)-(DME);]..

7.14 [{Me3Si),NK}- (‘Bu-CgHs) ],

7.15 [{Me3Si),NK }- (Mes-CeH3)],

7.16 [{K-((CsHe),Cr), }* {Mg(HMDS)3} ]..

7.17 [{K-((C6He)2Cr)1 5-(Mes) } ' {Mg(HMDS)5 } ].-
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