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The work presented in this dissertation investigates the use of various alkali metal 

aggregates as secondary building units, SBUs, for the formation of extended framework 

materials. Three main avenues of research have been studied, which each consider 

different approaches to better understand this class of materials. 

The first topic is concerned with the manipulation of extended supramolecular 

structure of lithium aryloxide complexes using either self-assembled mixed-anion species 

or solvent additives (Chapters 2 and 3). Our group has previously shown that molecular 

cage aggregates of s-block metal complexes can successfully be utilized as SBUs to 

direct network assembly. For example, tetrameric cubanes of specific lithium aryloxides 

may be designed such that each metal center has a single open site for coordination to a 

Lewis base. In turn, employment of a ditopic linker results in these aggregates acting as 

tetrahedral nodes to form 3D diamondoid, and related lower dimensionality polymers. 

Another level of sophistication to these systems is presented here through the control of 

the number of metal atoms within each aggregate that may act as points of network 



extension. A set of zero-, one-, two-, and three-dimensional materials have been 

synthesized by systematically varying the stoichiometry of the two components, 2,4,6-

Me3-C6H2OLi (ArOLi) and Me2N(CH2)2OLi (ROLi), within single aggregates while 

using 1,4-dioxane (diox) as a ditopic linker. The homoleptic complex 

[{(ArOLi)4·(diox)2}⊃3(diox)]∞  forms a 3D diamondoid extended structure, where Li4O4 

cubanes act as tetrahedral nodes. Attempts to rationally alter the dimensionality of the 

network through the sequential replacement of ArOLi vertices by potentially chelating 

ROLi units have succeeded. The mixed-anion complexes 

[{(ROLi)(ArOLi)3·(diox)1.5}⊃1/2(C6H14)]∞ and  [(ROLi)4(ArOLi)2·(diox)]∞, adopt 2D 

hexagonal net and 1D chain structures, respectively. Furthermore, the two complexes 

[{(ROLi)3(ArOLi)3·(diox)0.5}(C6H14)]∞ and [(ROLi)5(ArOLi)·(diox)0.5]∞ both form 

unusual 0D molecular dumbbell structures in the solid state. Incorporation of multiple 

ROLi units in the mixed-anion complexes not only results in reducing the number of 

possible sites for polymer extension through chelation, but also changes the aggregation 

state of the building block from tetrametallic Li4O4 units to hexametallic Li6O6 units. 

The second area of investigation explores the molecular aggregation and extended 

network chemistry of substituted aryloxide ligands in combination with the heavier alkali 

metals Na, K, Rb, and Cs (Chapters 4-6). In particular, we reasoned that aggregates 

containing the larger alkali metals were appealing candidates as SBUs for high-

connectivity systems since they should allow multiple sites for network extension 

(increased metal solvation), leading to interesting or novel network topologies. Ring and 

cage aggregates containing the large alkali metals potassium or rubidium have proven to 

be excellent building blocks for the creation of high-connectivity nets, as demonstrated 
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by their use as septahedral and nonahedral nodes. Highlights from this work include the 

characterization of [(4-Cl-2,6-Me2-C6H2OK)2·(dioxane)3.5]∞ and [(2,4,6-Me3-

C6H2OK)5·(dioxane)5]∞, which form two new types of 7-connected nets, and  [2-iPr-

C6H4ORb)6·(dioxane)4.5]∞, which is the first ever example of a 9-connected net.  

An expected finding during the study of the potassium 2-tert-butylphenoxide 

system was the encapsulation of molecular water inside a K6O6 hexameric drum, forming 

[{(2-tBu-C6H4OK)6⊃(H2O)}·(dioxane)4]∞. Encapsulation of neutral molecules within 

alkali metal aggregates is rare. The scope and cause of this unusual behavior was studied 

in detail (Chapter 5). 

The final part of the dissertation explores the synthesis of organometallic 

polymers assembled from cation-π interactions (Chapter 7). The objective was to utilize 

ferrocene, the prototypical metallocene, as a neutral, linear, ditopic π-linker to bridge 

between preformed alkali metal aggregates The combination of M(HMDS), where M = 

Na, K, Rb, Cs, with ferrocene gives rise to one-dimensional polymeric chains of dimeric 

ring amides bridged through ferrocene. In addition, the rubidium and cesium analogues 

have close intermolecular agostic interactions with neighboring chains, such that the 

supramolecular structures may be considered as two-dimensional 44-nets. These studies 

demonstrate that cation-π interactions can be used to rationally build extended networks 

using appropriate conditions. 
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2.1 [{(2,4,6-Me3-C6H2OLi)4·(diox)2}⊃3(diox)]∞ 
 

2.2 [{(Me2NC2H4OLi)(2,4,6-Me3-C6H2OLi)3·(diox)1.5}⊃1/2(C6H14)]∞ 
 

2.3 [{(Me2NC2H4OLi)3(2,4,6-Me3-C6H2OLi)3·(diox)0.5}(C6H14)]∞ 
 

2.4 [(Me2NC2H4OLi)4(2,4,6-Me3-C6H2OLi)2·(diox)]∞ 
 

2.5 [(Me2NC2H4OLi)5(2,4,6-Me3-C6H2OLi)·(diox)0.5]∞ 
 

2.6 [(2,4,6-Me3-C6H2OLi)·(Me2NC2H4OH)·(diox)0.5]∞ 
 

3.1 [(4-Cl-2,6-Me2-C6H2OLi)2·(dioxane)2]∞ 
 

3.2 [(4-Cl-2,6-Me2-C6H2OLi)2·(dioxane)2.5]∞ 

 

3.3 [(4-Cl-2,6-Me2-C6H2OLi)4·(dmf)4] 
 

3.4 [(4-Cl-2,6-Me2-C6H2OLi)4·(dioxane)·(dmf)2]∞ 

 

3.5 [(4-Cl-2,6-Me2-C6H2OLi)4·(dioxane)2]∞ 

 

3.6 [(4-Cl-2,6-Me2-C6H2OLi)2·(dioxolane)2]∞ 

 

3.7 [{(4-Br-2,6-Me-C6H2OLi)2·(dioxane)2}{(4-Br-2,6-Me-C6H2OLi)2·(dioxane)2.5}]∞ 
 

3.8 [(4-Br-2,6-Me2-C6H2OLi)4·(dioxane)1·(dmf)2]∞ 
 

3.9 [(4-Br-2,6-Me2-C6H2OLi)4·(dmf)4] 
 

3.10 [(4-Br-2,6-Me2-C6H2OLi)2·(dioxolane)2]∞ 

 

4.1 [(4-Cl-2,6-Me2-C6H2ONa)2·(dioxane)3]∞ 

 

4.2 [(4-Br-2,6-Me2-C6H2ONa)2·(dioxane)3]∞ 
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4.3 [(4-Cl-2,6-Me2-C6H2OK)2·(dioxane)3.5]∞ 

 

4.4 [(4-Br-2,6-Me2-C6H2OK)2·(dioxane)3.5]∞ 

 

4.5 [(4-Cl-2,6-Me2-C6H2ORb)2·(dioxane)3.5]∞ 

 

4.6 [(4-Br-2,6-Me2-C6H2ORb)2·(dioxane)3.5]∞ 

 

4.7 [(4-Cl-2,6-Me2-C6H2OCs)7·(dioxane)1]∞ 

 

4.8 [(2,4,6-Me3-C6H2OK)5·(dioxane)5]∞ 

 

4.9 [(2,4,6-Me3-C6H2ORb)5·(dioxane)5]∞ 

 

4.10 [(2,4,6-Me3-C6H2OK)4·(thf)4]∞ 

 

5.1 [{(2-tBu-C6H4OK)6⊃(H2O)}·(dioxane)4]∞ 
 

5.1n [{(2-tBu-C6H4OK)6⊃(H2O)}·(dioxane)4]∞ 
 

5.2 [{(2-tBu-C6H4OK)6⊃(H20)}·(THF)6] 
 

5.3 [{{(2-tBu-C6H4ORb)6⊃(H20)}·(dioxane)4}·(dioxane)]∞ 

 

5.4 [{(2-tBu-C6H4ONa)6⊃(H20)}·(dioxane)3]∞ 

 

5.5 [{{(2-iPr-C6H4OK)6⊃(H2O)}·(dioxane)5}·(dioxane)]∞ 

 

5.6 [(2-iPr-C6H4OK)6·(dioxane)5]∞ 
 

5.7 [{(2-iPr-C6H4OK)6·(H2O)2}·(dioxane)5.5]∞ 
 

5.8 [2-iPr-C6H4ORb)6·(dioxane)4.5]∞ 
 

5.10 [(2-Me-C6H4OK)4·(dioxane)4]∞ 
 

6.1 [(4-F-C6H4OK)6·(dioxane)4]∞ 
 

6.2 [(4-I-C6H4OK)6·(dioxane)6]∞ 

 

6.3 [(4-I-C6H4ORb)6·(dioxane)6]∞ 

 

6.4 [(4-Cl-C6H4OK)3·(dioxane)]∞ 

 

6.5 [(4-Br-C6H4OK)2·(dioxane)0.5]∞  
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6.6 [(4-Br-C6H4ORb)5·(dioxane)5]∞  
 

6.7 [(4-iPr-C6H4OK)2·(dioxane)0.5]∞  
 

7.1 [{(Me3Si)2NNa}2·(Cp2Fe)]∞ 
 

7.2 [{(Me3Si)2NK}2·(Cp2Fe)]∞ 

 

7.3 [{(Me3Si)2NRb}2·(Cp2Fe)]∞ 
 

7.4 [{(Me3Si)2NCs}2·(Cp2Fe)]∞ 
 

7.5 [{(Me3Si)2NRb}2·(Cp2Fe)0.6·(C7H8)0.8]∞ 
 

7.6 [{(Me3Si)2NCs}2·(Cp2Fe)0.5·(C7H8)]∞ 
 

7.7 [(Me3Si)2NK·(Tol)]2  
 

7.8 [{(Me3Si)2NCs}2·(Tol)]∞  
 

7.9 [K·(Cp2Fe)2·(Tol)2]
+[Mg(HMDS)3]

- 

 

7.10 [{Na(Fcpz)}·{Na(DME)3}]∞ 
 

7.11 [K2(Fcpz)·(DME)3]∞ 
 

7.12 [Rb2(Fcpz)·(DME)3]∞ 
 

7.13 [Cs2(Fcpz)·(DME)3]∞ 
 

7.14 [{Me3Si)2NK}· (tBu-C6H5)]2 

 

7.15 [{Me3Si)2NK}· (Me3-C6H3)]2 

 

7.16 [{K·((C6H6)2Cr)2}
+{Mg(HMDS)3}

-]∞ 

 

7.17 [{K·((C6H6)2Cr)1.5·(Mes)}+{Mg(HMDS)3}
-]∞ 

 
 


