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SIMULATION STUDY OF CO.-REACTIVE APROTIC HETEROCYCLIC
ANION IONIC LIQUIDS: WATER INTERACTIONS, LIQUID STRUCTURE,
AND CO, SOLUBILITY

Abstract
by

Quintin Ross Sheridan

Aprotic heterocyclic anion (AHA) ionic liquids (ILs) that are capable of chemically
binding CO5 have gained increased interest from the scientific community in recent
years as solvents that might be able to outperform current amine technologies in
CO, separations. These ILs are of particular research interest due to the fact that
the physical and chemical properties of the ILs can be tuned through proper pairing
of cations and anions. This ability to tune the physical and chemical properties of
the ILs simultaneously through functionalization of the ions presents both a great
opportunity and a difficult challenge to design optimal ILs for CO, separations. ILs
have a very large design space, and as such, it is extremely difficult to predict how
changes in ionic structure will affect the liquid properties. Furthermore it is a difficult
and time consuming process to synthesize a newly proposed IL.

Molecular simulations provide a convenient platform whereby IL properties can
be investigated and understood in terms of molecular interactions. Classical molec-
ular dynamics (CMD) are aptly suited to study liquid structure and to relate it to
calculated bulk transport properties. This analysis lends itself to experimental design
by providing an understanding of the origins of liquid properties. Likewise, quantum

chemical calculations provide an efficient means to assess chemical reactivity.
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The focus of this dissertation is to explore how CMD simulations and ab initio
calculations can be used to further the current understanding of AHA IL systems.
The dissertation starts with a review of the development of CO,-reactive ILs and the
role that simulations played in advancing their design. CMD simulations are used to
examine the liquid structure and dynamics of both pure ILs and IL-water mixtures.
The water solubility and the observed changes in dynamics from the addition of water
are explained through structural analysis of hydrogen bonds formed between water
and the anions. The liquid structure is examined through comparison of measured
and computed structure functions for a series of ILs with different combinations
of cations and anions. The fact that the liquid structure functions do not change
appreciably upon reaction with CO, is used to explain why viscosities of AHA ILs do
not change much upon reaction with CO,. A method is presented for calculating COq
solubilities in AHA ILs using the Gibbs free energy of reaction. The method is able
to predict isotherms with the characteristic shapes of experimental isotherms, but
the predicted isotherms are highly sensitive to the calculated model parameters. The
methods used in this dissertation provide a means to compare different ILs within

the same family, and to select ILs with promising properties prior to synthesis.
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CHAPTER 1

INTRODUCTION

In recent decades, the scientific community has identified CO, emissions as a
significant contribution to anthropogenic global warming. If CO4 emissions continue
uncurbed at current rates, it could have adverse effects on global climate. Climate
change has several negative externalities including negative economic effects, health
effects, and the displacement of millions of people from coastal cities. It is therefore
necessary to implement new technologies to mitigate CO, emissions.

One promising option to reduce COy emissions is to perform post combustion
CO4 capture at point source emitters such as coal fired power plants. However,
the current amine technology that can be implemented in industrial scale stripper
absorber columns is too energy intensive for economical COy capture. Amine CO,
separations are not only energy intensive, but the amine solutions are also corrosive
and volatile. It is therefore necessary to design new and improved processes for COq
capture in order to reduce the economic burden.

Tonic liquids (ILs) have been identified as solvents that may be able to outperform
current amine technologies in COs capture. They have several unique properties
such as low volatility, high thermostability, and chemical tunability that may enable
them to outperform amines. Recently, a class of aprotic heterocyclic anion (AHA)
ILs was designed to absorb CO, through chemical bonding with the anions, thereby
significantly increasing the CO, solubility. These ILs are of particular interest because
both the physical and chemical properties of AHA ILs can be tuned by modifying the

ion functional groups. The ability to tune the properties presents both an opportunity



and a challenge in designing ILs. The large design space of pairing different ions makes
it difficult to identify optimal ILs for a given process. Computer simulations provide
a convenient platform to assess IL properties and to provide an understanding of
the molecular origin of observed properties. The goal of this dissertation is to use
computational chemistry to improve the current understanding of AHA ILs.

In the second chapter of this thesis, a review is presented discussing the historical
development of COs-reactive ILs. This chapter highlights the role that molecular
simulations played in advancing the development of COs-reactive ILs. Different sim-
ulation methodologies are discussed and analyzed in terms of the insights they can
provide. Finally this chapter provides a discussion of future opportunities where sim-
ulations might aid in IL design. In the third chapter of this thesis the methods used
to develop molecular models for AHA ILs are discussed.

In the fourth chapter of this thesis, the interactions between water and various
AHA ILs are investigated using classical molecular dynamics CMD simulations. Wa-
ter will be present in flue gas streams where ILs could be used to perform COq
separations. Understanding the interactions between water and AHA ILs is crucial
because water could significantly alter the IL performance. Therefore, we investi-
gate how water affects both the IL structure and dynamics to draw conclusions on
the dominant interactions between these species. Additionally, water solubility is
investigated for ILs with the same cation and different anions.

In the fifth chapter of this dissertation, IL structure is investigated using a com-
bination of x-ray scattering experiments and CMD simulations. This study helps
further the current understanding of microheterogeneities within ILs. The simula-
tions are useful because they allow further information to be extracted from liquid
structure functions that could otherwise remain hidden to experimentalists. This
work tests how both ion substitution and CO, reaction cause changes in the liquid

structure.



In the sixth chapter of this dissertation a method is presented to predict how much
CO4 will absorb into an AHA IL at a given temperature and COs pressure. Being
able to predict CO, absorption capacities is useful as it allows researchers to assess IL
reactivity prior to synthesis in order to select optimal candidates while saving time
and money. Due to the large IL design space, it is necessary to focus experimental
synthesis efforts on only the most promising candidate ILs. The different interactions
that give rise to the CO4 absorption capacities are assessed in a quantitative manner.
This assessment helps identify which assumptions can be used to evaluate reactivity
and compare different ILs. The methods used in this work can also help in the
development of future models that seek to assess the reaction of gaseous species in
reactive liquid solvents. Finally, this dissertation concludes with a summary of the
the results found and a reflection on how these works have advanced our current

understanding of AHA ILs.



CHAPTER 2

ROLE OF SIMULATIONS IN THE DEVELOPMENT OF CO,-REACTIVE ILS

2.1 Introduction

In recent decades a tremendous research effort has aimed to improve current COq
separation technologies. To this end, several researchers have examined diverse tech-
nologies including metal organic frameworks, membranes, electrochemical catalytic
reduction, solid sorbents, and reactive liquid solvents [I7H25]. Part of this effort
is motivated by the fact that CO, separations are commonplace in oil and natural
gas processing, and therefore, improving the separation will have a significant eco-
nomic benefits to minimize utilities costs within the energy industry. Additionally,
the advancement of CO, separations is of fundamental importance to mitigating COq
emissions, which are widely regarded to be the primary cause of anthropogenic global
warming [17, 26H28]. The continuation of current emission rates may have adverse
effects on global climate, leading to serious social and economic consequences [29] [30],
and therefore, efforts must be taken to curb the emission rates. In the short term,
a promising way to reduce COy emissions is to perform carbon capture at point
source emitters such as coal fired power plants, which are estimated to contribute
approximately 30% of total COs emissions in the US [31] [32].

Absorber /stripper units are the most developed technology that could be im-
plemented for industrial scale COs separations. Amine absorption towers, which
have been applied in natural gas processing to remove CO5 and HyS sour gases, are

the best currently available technology for performing post combustion CO, capture



from coal fired power plants [32]. Large scale CO, capture using amines hasn’t been
widely applied at coal fire power plants, however, due to the high energy cost of the
separation. It is estimated that industrial CO, capture using amines would require
approximately 30% of the energy produced by coal fired power plants, which is far
above the theoretical minimum of 10% [33], [34]. Therefore, amine technologies do not
adequately meet criteria set forth by the Department of Energy to capture 90% of
the emitted CO5 with the increased cost of electricity below 35% [35]. There are two
main reasons why amine units are energy intensive: 1) reaction of CO, with amines
occurs according to a 1:2 COq/amine reaction stoichiometry [36-38], 2) amines are
mixed with 70 wt % water causing a significant parasitic energy loss in the regenerator
[39-41]. Besides the high energy requirements, amines have several other problems
that add to the cost of the separation. Amines can undergo thermal degradation and
oxidation reactions [42H45] and they are volatile, which increases operating costs from
necessary solvent replacement or recovery processes and results in harmful chemical
emissions [46H49]. Additionally, amines react to form corrosive bicarbonate species,
which adds significant capital costs from the need to use corrosion resistant materials
in absorber /stripper units that may eventually require replacement due to corrosion
damage [50H52].

Over the last few decades, ionic liquids (ILs) have gained considerable attention
as designer solvents capable of outperforming current amine technologies in conven-
tional absorber /stripper separation units. Research into CO4 capture ILs was sparked
by the fact that ILs tend to selectively absorb COs in the presence of other flue gas
species [53H58]. In addition to their naturally high CO, affinities, ILs have several
unique properties that provide practical advantage over amines. They have negligible
vapor pressures, which reduce harmful atmospheric emissions and costs from solvent
replacement or recovery processes [59]. ILs typically have high thermal stabilities,

which improves their solvent lifetime and allows for a large temperature range of



operation [60]. Although certain ILs are corrosive towards some metals at high tem-
perature [61) 62] or in the presence of water [63], many are noncorrosive [61], [64].
The most attractive feature of ILs is the ability to tune their physical and chemical
properties through proper pairing of anions and cations [65H73]. Furthermore, the
fact that many ILs do not need to be mixed with water to absorb COs reduces para-
sitic energy loss during regeneration [34]. All of these properties make ILs promising
solvents for CO, separations.

In the present chapter, a review of the advancement of ILs which chemically bind
CO,, is presented while emphasizing the role of computer simulations in understand-
ing experimental results and extending experimental discoveries. The remainder of
the chapter is organized as follows: Section 2 discusses the historical developments
made on reactive ILs highlighting the interplay between simulation and experiment
with respect to CO, absorption, Section 3 discusses advantages simulations offer re-
garding other design criteria, Section 4 provides a perspective on outstanding issues
where simulations might aid in understanding IL behavior, Section 5 concludes with
an outlook of the role of simulations in advancing COs-reactive ILs, and Section 6
lists the abbreviations used for the different ions discussed in this chapter. This
chapter focuses on the computational work done on COs-reactive ILs which react
with CO up to a 1:1 COs/IL reaction stoichiometry. A complete review of CO,
capture using ILs is beyond the scope of the present work. For further reading on
ILs developed to cooperatively bind COq beyond a 1:1 CO4/IL reaction stoichiome-
try through multiple-site cooperation, interested readers may want to read a recent
review by Cui et al. [74]. For additional information on the development of ILs for
COg capture, the reader maybe be interested in several additional review papers on

the topic [53, 65, 66, 68170, 72, [73)].



2.2 Historical Development of CO,-Reactive 1Ls

2.2.1 Amine Functionalized Cation ILs

Early research on applying ILs to CO4 capture focused on physisorption systems
where CO, will interact strongly with the cations and anions, but it will not react
to form chemical bonds [54, 57, [75] [76]. While these systems were able to selectively
absorb CO, in the presence of other species, the low absorption capacities of these
ILs makes it infeasible to use them in post combustion CO, capture due to the low
partial pressure of COy. Owing to this limitation, improving the COy absorption
capacities of ILs became one of the main focuses of researchers in the IL community.

In 2002, Bates et al. [77] introduced the concept of the task specific IL (TSIL) by
introducing amine functionality to the imidizolium cation, which allowed it to react
with COy in a 1:2 COy/IL stoichiometric ratio according to the reaction scheme

shown in Figure [2.1}

*vWNH, + COp of/——= *""W"NHCO,H (1)
*“WWNHCOLH + *vWNH, of——= *vW"NHCO, + "W NHj3* (2)

Figure 2.1. Amine 1:2 reaction mechanism.

The ability to form reversible chemical bonds vastly improved IL CO, absorption ca-
pacities making them comparable to conventional amines. This first generation CO»-
reactive IL suffered from a dramatic increase in viscosity upon reaction with COs,

however, that prevented it from being used in a conventional amine stripper/absorber



unit.

In one of the first simulation works on COs-reactive ILs, Yu et al. [78] used a com-
bination of classical molecular dynamics (CMD) simulations and ab initio calculations
to investigate the molecular origin of the high viscosities of unreacted amine func-
tionalized imidizolium ILs introduced by Bates [77]. The CMD simulations showed
that the amine functionalized ILs have stronger cation-anion interactions than the
corresponding IL without amine functionality. The added NHy group is a strong
interaction site between cations and anions and most of the anions will participate
in ion-type hydrogen bonding interactions with this moiety. Ab initio calculations of
cation-anion interaction energies supported the CMD simulation results and demon-
strated the high stability of the hydrogen bonding configurations. Calculated ro-
tational energy profiles for the imidizolium side chains showed that the hydrogen
bonding interactions reduced the mobility of the imidizolium side chains. This work
concluded that the formation of hydrogen bonding networks within the IL is the
primary reason for the high viscosity of the functionalized IL.

Following the work of Yu et al. [78], Gutowski et al. [79] used CMD simulations
to identify the molecular mechanism behind the viscosity increase of amine function-
alized imidizolium ILs upon reaction with CO,. Gutowski found that part of the
reason that the unreacted systems have such high viscosities is that replacement of
a CHy group by an NHy functional group causes the density of the IL to increase
by 10%. When 10% of the IL was reacted with CO,, the apparent self-diffusivities
of the ions decreased by an order of magnitude, which reflected the experimentally
observed viscosity increase. When 20% of the IL was reacted with COg, the dynam-
ics decreased further and the mean squared displacements (MSDs) for the product
zwitterion and the dication were nearly identical, which indicated that interaction
between these species might cause the observed decrease in dynamics. Similarly, the

rotational dynamics decreased with increasing extent of reaction, and at the maxi-



mum extent of reaction, virtually no rotational motion occurred. Hydrogen bonding
analysis and calculated radial distribution functions (RDFs) demonstrated that the
observed changes in system dynamics upon reaction with CO, were primarily due to
the formation of pervasive hydrogen bonding networks between the zwitterion and
the dication. The ability of CMD to investigate the interplay between structural
interactions and system dynamics proved to be extremely useful in understanding
the first COq-reactive IL and opened the door to subsequent computational studies

of these systems.

2.2.2 IL/Amine Mixtures

Due to the high viscosity of the first generation TSILs, researchers sought al-
ternative reactive systems with lower viscosities. One obvious choice was to take
advantage of the known amine chemistry and IL tunability by dissolving amines in
ILs. In 2008, Camper et al. [80] demonstrated that monoethanolamine (MEA) and
diethanolamine (DEA) can be dissolved in ILs with the [Tf,N]~ anion. The amines
in these mixtures still react with CO5 in a 1:2 CO5/amine mechanism to form a car-
bamate complex [81]. However, the resulting carbamate complex is insoluble in the
mixture and instead forms a precipitate that helps to drive the reaction forward and
improves the reaction kinetics. These mixtures provide several benefits compared
to previous TSILs, because they are cheaper to make and the lower viscosity allows
them to be implemented in existing amine scrubbing towers. However, researchers
still sought to develop solvents with greater absorption capacities in order to improve

the efficiency of the absorption process.

2.2.3 Amine Tethered Anion ILs

After discovering that amine tethered cations can chemically absorb COs, some

researchers reasoned that anions could also be tuned to bind CO4 [11 2, 82]. Mindrup



et al. [I, 82] performed quantum chemical calculations which indicated that when
the amine is tethered to the anions instead of the cations, the reaction in Figure
favors step 1 instead of step 2, which allows a 1:1 CO,/IL reaction stoichiometry to be
achieved [I] instead of the 1:2 CO,/IL stoichiometry demonstrated by previous amine
functionalized imidizolium ILs. Therefore, there is an additional degree of freedom
when designing TSILs to functionalize either the cation or the anion. Furthermore,
enthalpies of reaction calculated at the 6-3114++G(d,p) level of theory gave -71 and
-55 kJ mol~! for prolinate and methioninate complexes shown in Figure [2.2] which
were in reasonable agreement with the experimental calorimetry values of -80 and
-64 kJ mol™! [I] . Ab initio calculations on single ion gas phase reactions were able
to correctly predict both the reaction mechanism and reaction thermodynamics in

good agreement with observed experimental results.
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Figure 2.2. Reaction Schematics of COy with [Pgge14][Met] (top) and
[Pess14][Pro] (bottom). Figure reproduced with permission from ref [J.
Copyright 2010 American Chemical Society.

Following this work, Goodrich et al. [2] synthesized six amine functionalized
anion-tethered ionic liquids, which are shown in Figure [2.3] All of these ILs absorbed

more than 0.5 mole COy/IL at a pressure of 1 bar. Th