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1 Supplementary information for: The many-
body expansion combined with neural networks

1.1 Radius cutoff of two-body energy and three-body en-
ergy

In order to choose to reasonable radius cutoff, the convergence of two-body and
three-body energies with respect to the radius cutoff is studied. Figure [I]shows
the two-body and three-body energies with respect to the cutoff of a cluster of
108 methanol molecules which is randomly sampled from an MD trajectory at
330 K. As it is shown in the Figure [1| the convergence of the two-body energy
is not achieved until the cutoff reaches 8 A. The three-body energy requires a
larger cutoff to converge than the two-body energy and a cutoff of at least 10
A is required.
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Figure 1: Change in energy per molecule of the two-body (left panel) and three-
body (right panel) contributions to the total energy as the cutoff distance is
increased in a random cluster of 108 methanol molecules.

1.2 Learning permutation invariance

The permutation invariance is learned by augmenting all the possible permuta-
tions for the samples into the training data set. For one-body cases, there are
six possible permutations since the three hydrogen atoms on a methyl group are
equivalent. The methanol dimer has two methyl groups and two interchange-
able molecules, therefore it has 72 possible permutations. For the same reason,
the methanol trimer has 1296 possible permutations, and it is difficult to in-
clude all of them. Therefore, we combine the chemically inert hydrogen atoms
on a methyl group into one imaginary atom by taking the average of the co-
ordination of the three hydrogen atoms, which eliminates the permutations of
hydrogen atoms on a methyl group and left 6 possible permutations caused by
the interchange of methanol molecules in a methanol trimer.
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Figure 2: Histogram of the two-body energy error of the neural network trained
with data augmentation (blue) and the neural network trained without data
augmentation (orange). The errors of the neural network trained without aug-
mentation is much more spread over the axis, while the one trained with data
augmentation has a much smaller spread of errors.

The histogram of the two-body energy error of the the neural network that
is trained with augmentation and without augmentation is shown in Figure
The test data set includes all the 72 possible permutations of the coulomb ma-
trix of the original test data set. Error of the two-body energy is examined
here since it has the most possible permutations of all of the many-body en-
ergy terms. One can see that the error of the neural network trained without
augmentations is spread over the axis, while the error of the neural network
trained with augmentation mostly populates in the region between —107° a.u.
and 107° a.u.. The change of the total two-body energy, predicted by the neural
network when one methanol is pulled away from the other two in a methanol
trimer is shown in the left and center panels of Figure [3] Each line in the two
panels shows the two-body energy that is predicted by neural network based on
one possible permutation of the Coulomb matrix. The right panel of Figure
shows the standard deviation of the energies predicted by the neural network
based on all the 72 possible coulomb matrix. One can see that, compared with
the model trained without data augmentation, the neural network trained with
data augmentation predicts a much more consistent energy for the 72 differ-
ent permuted Coulomb matrices, which shows the neural network learns the
permutation invariance from the augmented training data.
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Figure 3: Left and middle panels: Change of the total two-body energy as one
methanol is pulled away from the other two in a methanol trimer, calculated
by the neural network trained with data augmentation (left) and without data
augmentation (middle). Each of the possible 72 permutations is plotted on
both panels. Right panel: Standard deviation of the 72 energies predicted by the
neural network. One can see the neural network trained with data augmentation
predicts a much more consistent energy for the different permuted Coulomb
matrices.

1.3 Molecular dynamic trajectory

Figure 4| shows the potential energy calculated by MP2-MBE and the NN-
MBE. One can see that the curves overlap with each other well with only small
discrepancies at any point. The energy difference between MP2-MBE and NN-
MBE is smaller than 102 a.u. throughout the trajectory.
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Figure 4: PES calculated by MP2-MBE (blue) and NN-MBE (red) of 4 methanol
molecules along 100 steps of a molecular dynamic trajectory at 330 K. The NN-
MBE predicts energies consistent with the MP2-MBE and the energy difference
between MP2-MBE and NN-MBE is samller than 1072 a.u..
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Figure 5: Total wall time for the NN-MBE (red curve, left orange y-axis), MP2-
MBE (red, curve, right blue y-axis) AMOEBAQ9 (purple curve, left orange
y-axis) to calculate the energies of methanol clusters of different size. One can
see that NN-MBE has a more than two million times speed up over MP2-MBE.
The NN-MBE calculations were done using one Tesla K80 GPU, MP2-MBE
calculations were done with one 24-core CPU and AMOEBAOQ9 calculation was
performed on one CPU using TINKER package.

1.4 Timing

Figure [5| shows the total wall time comparison of MP2-MBE, the NN-MBE,
and AMOEBAO09. A cutoff of 10 A is used for MP2-MBE and NN-MBE, so
both methods will be near linear scaling for large clusters. The NN-MBE has a
speed up of more six orders of magnitude relative to MP2-MBE, which enables
us to use the NN-MBE to calculate the energy of large clusters of thousands of
molecules in seconds with ab inito accuracy, which would take months for an
MP2-MBE calculation. The AMOEBAO9 calculation is done with the TINKER
package. The total wall time of the NN-MBE is similar to AMOEBAO09.

1.5 Comparison with AMOEBAO09

Figure [6] compares the potential energy for a methanol trimer binding curve
calculated with MP2, the NN-MBE, and AMOEBA09. Both the NN-MBE
and AMOEBAO9 get the shape of the binding energy curve and the minimum
energy distance correct, but NN-MBE is shown to be more accurate compared
to AMOEBAO9.
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Figure 6: Change of the total energy when one methanol is pulled away from the
other two in a methanol trimer, calculated by NN-MBE, MP2 and AMOEBAQ9.
One can see that NN-MBE has better agreement with MP2 than AMOEBAOQ9.

1.6 Code

Code to reproduce the NN-MBE code is available in TensorMol at https:
//github.com/jparkhill/TensorMol MBE.gitl The code to produce a depth

map from given a set of coordinates and atomic numbers is given below.
Depth map code:

double abin = 0.143;
double reabin = 1/abin;
int xa, ya, za;

double x, y, z, dist;
double testpos [3];

double vdWC = 1.85/3;
double vdWH = 1.2/3,;
double vdWO = 1.40/3,;

int posmax = (vdWCsxreabin);

for (int m=0; m<18;m++) {
xa = xyz-[m*3]sreabin;
ya = xyz_[m#341]*reabin;
za = Xyz_[m#*342]*reabin;


https://github.com/jparkhill/TensorMol_MBE.git
https://github.com/jparkhill/TensorMol_MBE.git

for (int j=—(posmax+4);j<(posmax+5);j+-+)
for (int k=—(posmax+4);k<(posmax+5);k++)
for (int 1=—(posmax+4);l<(posmax+5);14++) {

testpos [0] = (xa+j)=*abin;
testpos [1] = (ya+k)=abin;
testpos [2] = (za+1)xabin;

X = testpos[0]—xaxabin;
y = testpos[l]—yasabin;
z = testpos[2]—zaxabin;

dist = (x*xx)+(y*y)+(z+2);
dist = sqrt(dist);
if (deppl_[(xa+j)*width+(ya+k)] == 0) {
if (idxlist- [m] == 1) {
if (dist <= vdWCQC) {
deppl_[(xa+j)*width+(ya+k)] =

(za+1)*abin;
break;
}
}
if (idxlist_ [m] == 2) {

if (dist <= vdWO) {
deppl_[(xa+j)*width+(ya+k)] =
(za+1)*abin;
break;

}

if (idxlist- [m] == 0) {
if (dist <= vdWH) {
deppl_[(xa+j)*width+(ya+k)] =
(za+1)*abin;
break;

}
if (deppl_[(xa+])*width+(ya+k)] != 0) {

if (idxlist- [m] == 1) {
it (dist <= vdWC) {
if ((za+l)*abin <
deppl_[(xa+j)*width+(ya+k)]) {
deppl_[(xa+j)*width+(ya+k)] =
(za+1)*abin;



break;

}
}

if (idxlist- [m] == 2) {
if (dist <= vdWO) {
if ((za+1)*abin <
deppl_[(xa+j)*width+(ya+k)]) {
deppl_[(xa+j)*width+(ya+k)] =
(za+1)*abin;
break;
}
}

if (idxlist_ [m] == 0) {
if (dist <= vdWH) {
if ((za+1)*abin <
deppl_[(xa+j)*width+(ya+k)]) {
deppl_[(xa+j)*width+(ya+k)] =
(za+1)=*abin;
break;




2 Supplementary information for: Metadynam-
ics for generating off-equilibrium geometries

2.1 Neural Network MAE and RMSE

The calculated MAE and RMSE for each of the total 18 networks trained are
presented in Tables Each table compares models trained with the same
amount of training data. MAE and RMSE values are reported for each model
across the independent test sets from each sampling method.

Table 1: Energy errors (kcal/mol) for networks trained on 2000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.301 0.424 67.008 69.668 48.881 66.141
MetaMD 2.935 3.641 2.525 3.434 7.290 9.974
Vibration 15.739 18.029 10.185 13.080  2.847 3.916

Table 2: Energy errors (kcal/mol) for networks trained on 4000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.136 0.186  79.116 82.070 58.898 79.077
MetaMD 4.091 4.693 1.236 1.747 7.584 9.053
Vibration 23.098 24.386 14.202 17.241  3.966 4.720
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Table 3: Energy errors (kcal/mol) for networks trained on 8000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.052  0.068 82.547 85.633 63.166 84.819
MetaMD 5.329  5.899 0.471 0.635 7.361 8.520
Vibration 9.063 10.143 9.117 11.300 1.306 1.940

Table 4: Energy errors (kcal/mol) for networks trained on 16000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.032 0.051 87.578 90.682 62.904 84.041
MetaMD 6.563  7.048 0.310 0.393 8.490 9.655
Vibration 7.160 8.485 7973 10.184  1.090 1.559

Table 5: Energy errors (kcal/mol) for networks trained on 32000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.018 0.024 90.387 93.469 65.654 87.704
MetaMD 6.833  7.399 0.180 0.226 9.474  10.595
Vibration 7.161  8.485 6.439 8.336 0.995 1.392
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Table 6: Energy errors (kcal/mol) for networks trained on 40000 geometries
cross-evaluated on all data generation methods.

Evaluation Data

Training

AIMD MetaMD Vibration
Data

MAE RMSE MAE RMSE MAE RMSE

AIMD 0.015 0.019 90.705 93.778 64.762 86.284
MetaMD 7.267  7.865 0.175 0.220 9.950 11.103
Vibration 9.235 10.589  6.733 8.894 1.040 1.317
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3 Supplementary information for: TensorMol model
with long-range physics

3.1 Hyperparameter search

A hyperparameter search was conducted to determine suitable parameters of
TensorMol. Hyperparameters searched over include activation function, number
of hidden layers, and the number of neurons per hidden layer. Results are
presented in Table

Table 7: Test RMSE of each learning target for water networks trained with
different hyperparameters. The unit of energy, gradient, and dipole RMSEs is
kcal/mol/atom, kcal/mol/ A per atom and Debye per atom, respectively.

Hidden Neurons Activation Energy Gradient Dipole
layers  per layer function
3 500 Softplus (o = 100 0.054 0.49 0.0082

)
3 100 Softplus (o« = 100) | 0.058 0.56 0.0090
3 200 Softplus (o = 100) 0.059 0.52 0.0086
3 1000 Softplus (o = 100) 0.066 0.48 0.0082
1 500 Softplus (o = 100) | 0.065 0.69 0.0086
2 500 Softplus (o = 100) | 0.093 0.54 0.0085
4 500 Softplus (o = 100) | 0.054 0.50 0.0083
3 500 Softplus (o = 10) 0.089 0.80 0.0090
3 500 Softplus (a = 1) 0.61 3.4 0.011
3 500 Tanh 0.24 1.1 0.010
3 500 Sigmoid 0.38 2.6 0.011
3 500 Guassian 0.075 0.66 0.0098

3.2 IR spectra from MMFF94 compared to DFT

IR spectra were also calculated for morphine, aspirin, tyrosine, caffeine, and
cholesterol using MMFF94.[1] IR spectra for the five molecules are shown in
Figures[7] and [§l Calculated spectra from DFT are shown for comparison. The
spectra calculated with MMFF94 are significantly less accurate than TensorMol
as compared to DFT.

13



350  eeeees DFT
300
250
200
150
100

50;

Intensity

1000 2000 3000 4000
Wavelength (cm™)

Figure 7: Harmonic IR spectrum of morphine simulated by wB97X-D/6-
311G**(dashed orange line) and MMFF94 functions (solid green line).
MMFF94 frequencies is calculated using RDKit. DFT frequencies are scaled
by a factor of 0.957 . The MAE of MMFF94 frequencies is 28.4 cm™!.
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Figure 8: Harmonic IR spectrum of four different molecules simulated by
wB97X-D/6-311G**(dashed orange line) and MMFF94 (solid green line).
MMFF94 frequencies is calculated using RDKit . DFT frequencies are scaled
by a factor of 0.957 .

3.3 IR spectra from experimental results

For comparison, the experimentally observed IR spectra is given for morphine
from the NIST Chemistry WebBook. The calculated frequencies and intensi-
ties from DFT and TensorMol appear to match the experimental result well.
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Figure 9: Experimental IR spectrum for morphine, given in absorbance. Data
taken from NIST.|3]

3.4 Relative energies of six conformers of the water hex-
amer

Water hexamers exhibit six conformers which are close in energy.[4] The energy
of each conformer is calculated with ©wB97X-D/6-311G** and TensorMol and
results are shown in Figure The relative ordering of the lowest energy
conformers are correctly predicted by TensorMol.
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Figure 10: Relative energies of different conformers of water hexamer cluster|4].
TensorMol predicts the same order of energies as the target method, wB97X-
D/6-311G** and the MAE of the relative energies predicted by TensorMol is
0.44 kcal/mol.
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3.5 Comparison of TensorMol with and without long-range
physics included

The inclusion of Coulomb and dispersion energies are necessary to achieve the
correct long-range behavior. A second version of TensorMol was trained without
including Coulomb or dispersion interactions directly. Each version was used to
optimize a system of a hydronium, water, and hydroxyl aligned vertically, shown
in Figure Optimizing with the full version exhibits the correct behavior by
transferring the proton from the hydronium to the water, and then another
proton transfer from water to hydroxyl. The version without long-range physics
included does not reproduce this behavior.

“* P

o° F’ With electrostatic No electrostatic
P energy energy
‘% Optimization Optimization

S é

Figure 11: Geometry optimization of a water trimer that contains OH~ and
Hs307. The neural network that includes electrostatic interaction successfully
bring the cluster to the correct global minimal while the one that does not
consider electrostatic interaction is stuck at local minimal because of the lack
of long range interaction.

3.6 Timing

A comparison of the wall time required to calculate energy, forces, and dipole
moments with TensorMol and with Q-Chem using ©B97X-D/6-311G** for in-
creasing sizes of water clusters is shown in Figure TensorMol is about five
orders of magnitude faster than Q-Chem.
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Figure 12: Timing of TensorMol force field and Qchem for different size of water
clusters. The GPU timing is measured on single Nvidia K40 CPU and CPU
timing is measure on two 16 thread Intel Xeon CPU E5-2667 v4.

TensorMol can be run on GPU or CPU depending on hardware available.
Wall times to calculate energies, forces, and dipoles for TensorMol with CPU
and GPU are shown in Figure The advantages of running TensorMol on
GPU becomes greater for larger systems. The neighborlist implemented in Ten-
sorMol is only implemented on CPU, so both timings include CPU time for the
neighborlist build.
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Figure 13: Aperiodic timings of an energy, charge, force call for cubic water
clusters at a density of 1 gm/cm without considering neighbor list building
which is not implemented in GPU yet. The GPU timing is measured on single
Nvidia K40 CPU and CPU timing is measure on a 8 thread Intel Xeon CPU
E5-1620 v2. The GPU is 3 times to 4 times faster than CPU per call.

3.7 Data

Both the water and Chemspider datasets are available at https://drive.goog
le.com/drive/folders/1IfWPs7i5kfmErIRyuhGv95dSVtNFoOe 7usp=shari
ng. Datasets are in a format which can be loaded in the TensorMol package.
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3.8

Procedures for using TensorMol 0.1
Install Tensorflow, Python.

Download TensorMol from https://github.com/jparkhill/TensorM
ol. Checkout master branch. Download the trained water network and
chemspider network from https://drive.google.com/drive/folde
rs/1I1fWPs7i5kfmErIRyuhGv95dSVtNFoOe_?usp=sharing. Copy the
trained networks (network.tar.bz2) into TensorMol folder. Unzip trained
networks.

Copy the test script test_tensormol01.py|in folder ”./samples” to into the
Tensormol folder. Run the script test the geometry optimization, molec-
ular dynamic, harmonic IR spectrum and realtime IR spectrum.

Demo of training a neural network force field using TensorMol: Copy
the training script [training_sample.pyinto the tensormol folder. Run the
script. This will train a network force field for water.

18
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4 Supplementary information for: Fully trans-
ferable high-dimensional neural network po-
tentials

4.1 Code

Three separate repositories contain the code essential to reproducing this work.
The autoencoder is available at https://github.com/jeherr/element-enco
der. The model used to train on the elpasolite formation energies is available at
https://github.com/jeherr/Elpasolite-Formation-Energy-Predictor,
The new TensorMol model is available in the most recent updates of TensorMol
available at https://github.com/jeherr/tensormol. A standalone version of
the model code is also available at https://github.com/jeherr/emode-hdnnp.

4.2 Physical data used to train the autoencoder

Physical property data used to train the autoencoder is reported in Table
Values are normalized across a column before being fed into the autoencoder
for training to help the autoencoder to train easier.
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Table 8: Physical property data used to train the autoencoder

network.
Symbol Atomic Standard atomic #s #p #d  Electro- Radius Tonization Electron Polarizability
number mass (amu) elec. elec. elec. negativity (pm) energy (kJ/mol) affinity (kJ/mol) (a.u.)
H 1.0 1.0079 1.0 0.0 0.0 2.3 53.0 1312.0 0.754195 4.4923
He 2.0 4.0026 2.0 0.0 0.0 4.16 31.0 2372.3 -0.52 1.3831
Li 3.0 6.941 1.0 0.0 0.0 0.912 167.0 520.2 0.618049 164.0
Be 4.0 9.0121 2.0 0.0 0.0 1.576 112.0 899.5 -0.52 37.71
B 5.0 10.811 20 1.0 0.0 2.051 87.0 800.6 0.279723 20.53
C 6.0 12.0107 2.0 2.0 0.0 2.544 67.0 1086.5 1.2621226 11.26
N 7.0 14.0067 2.0 3.0 0.0 3.066 56.0 1402.3 -0.000725 7.26
(0] 8.0 15.9994 2.0 4.0 0.0 3.61 48.0 1313.9 1.4611136 5.24
F 9.0 18.9984 20 50 0.0 4.193 42.0 1681.0 3.4011898 3.7
Ne 10.0 20.1797 20 6.0 0.0 4.787 38.0 2080.7 -1.2 2.67
Na 11.0 22.9897 1.0 0.0 0.0 0.869 190.0 495.8 0.547926 162.7
Mg 12.0 24.305 2.0 0.0 0.0 1.293 145.0 737.7 -0.415 70.89
Al 13.0 26.9815 2.0 1.0 0.0 1.613 118.0 577.5 0.43283 55.4
Si 14.0 28.0855 2.0 2.0 0.0 1.916 111.0 786.5 1.3895212 37.31
P 15.0 30.9737 20 30 00 2.253 98.0 1011.8 0.746607 24.93
S 16.0 32.065 20 40 0.0 2.589 88.0 999.6 2.0771042 19.37
Cl 17.0 35.453 2.0 5.0 0.0 2.869 79.0 1251.2 3.612724 14.57
Ar 18.0 39.948 2.0 6.0 0.0 3.242 71.0 1520.6 -1.0 11.07
K 19.0 39.0983 1.0 0.0 0.0 0.734 243.0 418.8 0.501459 290.6
Ca 20.0 40.078 20 0.0 0.0 1.034 194.0 589.8 0.02455 155.9
Sc 21.0 44.9559 2.0 0.0 1.0 1.19 184.0 633.1 0.188 142.28
Ti 22.0 47.867 2.0 0.0 2.0 1.38 176.0 658.8 0.084 114.34
\% 23.0 50.9415 2.0 0.0 3.0 1.53 171.0 650.9 0.52766 97.34
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Table 8: Continued

Symbol Atomic Standard atomic #s #p #d  Electroo Radius Tonization Electron Polarizability
number mass (amu) elec. elec. elec. negativity (pm) energy (kJ/mol) affinity (kJ/mol) (a.u.)
Cr 24.0 51.9961 1.0 0.0 5.0 1.65 166.0 652.9 0.67584 78.4
Mn 25.0 54.9380 20 0.0 5.0 1.75 161.0 717.3 -0.52 66.8
Fe 26.0 55.845 2.0 0.0 6.0 1.8 156.0 762.5 0.153236 62.65
Co 27.0 58.9331 2.0 0.0 7.0 1.84 152.0 760.4 0.66226 57.71
Ni 28.0 58.6934 2.0 0.0 8.0 1.88 149.0 737.1 1.15716 51.1
Cu 29.0 63.546 1.0 0.0 10.0 1.85 145.0 745.5 1.23578 40.7
Zn 30.0 65.38 20 0.0 10.0 1.59 142.0 906.4 -0.62 38.8
Ga 31.0 69.723 2.0 1.0 10.0 1.756 136.0 578.8 0.43 51.4
Ge 32.0 72.64 2.0 2.0 10.0 1.994 125.0 762.0 1.2326764 39.43
As 33.0 74.9216 2.0 3.0 10.0 2.211 114.0 947.0 0.8048 29.8
Se 34.0 78.96 2.0 4.0 10.0 2.424 103.0 941.0 2.0206047 26.24
Br 35.0 79.904 20 50 10.0 2.685 94.0 1139.9 3.363588 21.03
Kr 36.0 83.798 20 6.0 10.0 2.966 88.0 1350.8 -0.62 17.075
Rb 37.0 85.4678 1.0 0.0 0.0 0.706 265.0 403.0 0.485916 318.8
Sr 38.0 87.62 2.0 0.0 0.0 0.963 219.0 549.5 0.05206 186.0
Y 39.0 88.9058 20 00 1.0 1.12 212.0 600.0 0.307 153.0
Zr 40.0 91.224 2.0 0.0 2.0 1.32 206.0 640.1 0.4333 121.0
Nb 41.0 92.9063 1.0 0.0 4.0 1.41 198.0 652.1 0.91740 106.0
Mo 42.0 95.96 1.0 0.0 5.0 1.47 190.0 684.3 0.7473 72.5
Tc 43.0 98.0 2.0 0.0 5.0 1.51 183.0 702.0 0.55 80.4
Ru 44.0 101.07 1.0 00 7.0 1.54 178.0 710.2 1.04638 65.0
Rh 45.0 102.9055 1.0 0.0 8.0 1.56 173.0 719.7 1.14289 58.0
Pd 46.0 106.42 0.0 0.0 10.0 1.58 169.0 804.4 0.56214 32.0
Ag 47.0 107.8682 1.0 0.0 10.0 1.87 165.0 731.0 1.30447 52.5
Cd 48.0 112,411 2.0 0.0 10.0 1.52 161.0 867.8 -0.725 46.9
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Table 8: Continued

Symbol Atomic Standard atomic #s #p #d  Electroo Radius Tonization Electron Polarizability
number mass (amu) elec. elec. elec. negativity (pm) energy (kJ/mol) affinity (kJ/mol) (a.u.)
In 49.0 114.818 20 1.0 10.0 1.656 156.0 558.3 0.3 68.7
Sn 50.0 118.71 2.0 2.0 10.0 1.824 145.0 708.6 1.112070 42.4
Sb 51.0 121.76 2.0 3.0 10.0 1.984 133.0 834.0 1.047401 42.55
Te 52.0 127.6 2.0 4.0 10.0 2.158 123.0 869.3 1.970875 37.0
I 53.0 126.9044 20 50 10.0 2.359 115.0 1008.4 3.0590465 34.6
Xe 54.0 131.293 2.0 6.0 10.0 2.582 108.0 1170.4 -0.83 27.815
Cs 55.0 132.9054 1.0 0.0 0.0 0.659 298.0 375.7 0.471630 401.0
Ba 56.0 137.327 2.0 0.0 0.0 0.881 253.0 502.9 0.14462 268.0
Lu 71.0 174.9668 2.0 0.0 1.0 1.09 217.0 523.5 0.346 148.0
Hf 72.0 178.49 2.0 0.0 2.0 1.16 208.0 658.5 0.017 109.0
Ta 73.0 180.9478 20 0.0 3.0 1.34 200.0 761.0 0.323 88.0
W 74.0 183.84 20 00 4.0 1.47 193.0 770.0 0.81626 75.0
Re 75.0 186.207 20 0.0 5.0 1.60 188.0 760.0 0.060396 65.0
Os 76.0 190.23 2.0 0.0 6.0 1.65 185.0 840.0 1.1 57.0
Ir 77.0 192.217 2.0 0.0 7.0 1.68 180.0 880.0 1.56436 51.0
Pt 78.0 195.084 1.0 0.0 9.0 1.72 177.0 870.0 2.12510 44.0
Au 79.0 196.9665 1.0 0.0 10.0 1.92 174.0 890.1 2.308610 36.1
Hg 80.0 200.592 2.0 0.0 10.0 1.76 171.0 1007.1 -0.52 34.15
Tl 81.0 204.382 2.0 1.0 10.0 1.789 156.0 589.4 0.377 52.3
Pb 82.0 207.2 2.0 2.0 10.0 1.854 154.0 715.6 0.356743 46.96
Bi 83.0 208.9804 20 3.0 10.0 2.01 143.0 703.0 0.942362 50.0




5 Supplementary information for: Stokes shifts
in lead halide perovskites

5.1 Projected density of states

Projected density of states (PDOS) were calculated to confirm the contributions
to molecular orbitals matched that reported in the literature. @ Figure
shows an example from a nanocrystal model with an edge length of [ = 2.64
nm. The top of the valence band stems from the antibonding interaction of the
Pb(6s)-Br(4p) orbitals while the bottom of the conduction band corresponds to
the Pb(6p)-Br(4p) antibonding interaction.

eBrp
ePbp
ePbs

e Br s/d
ePbd

e Cs s/p/d

Density of States

-1 0 1 2 3
Energy (ev)

Figure 14: Projected density of states for a [ = 2.64-nm model. The Fermi
energy is shifted to 0 eV. The VB edge is dominated by Br p-orbital and Pb
s-orbital antibonding character. The CB edge results mainly from coupling of
Pb p-orbitals.

5.2 Spin-Orbit Coupling

The spin-orbit interaction between CHS—CBES spin states: singlet spin my=0
(|Sm.=0)), triplet ms=0 (|T1n.=0)), and triplets ms==1 (|Tp,,=+1)) was com-
puted by employing the Breit-Pauli Hamiltonian within a small matrix ap-
proximation calculate the spin-orbit (SO) coupling between relevant spin states:

~ a2 ZA

Hgso = —70 —— (A X Pi)-5i (1)
4 iA
i,A
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where i denotes electrons, A denotes nuclei, oy = 137.037~! is the fine structure
constant. Z4 is the bare positive charge on nucleus A. s; represents the spin
of electron i. The term r;4 X p; denotes the angular momentum operator
of electron i calculated with respect to nucleus A at the position R4, with
r; 4 being the distance between them. A basis of spin-adapted many electron
states was built from excitations between the CHS and CBES, and the matrix
elements of the Breit-Pauli Hamiltonian between these spin-adapted states were
calculated by numerical quadrature and the usual Slater-Condon rules. The
resulting Hamiltonian was diagonalized to obtain SO coupled fine structure
states. The wavefunctions themselves are dominated by low-angular momentum
waves, leading to very small fine-structure splitting and coupled states which
are close to spin-eigenfunctions.

5.3 Exciton Binding Energies

The Coulombic binding energy between a hole in the CHS and an electron
in the lowest CB state ranges from 148 meV in the [ = 2.64 nm model to
30 meV in the [ = 3.82 nm model. This compares favorably with a 40 meV
exciton binding energy determined using an effective mass approximation.[10]
Such small binding energies validate our assumption that the effect of polaronic
lattice relaxation on the Stokes shift is small compared to the electronic degrees
of freedom.
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