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DEVELOPMENT OF NEURAL NETWORK MODELS FOR PREDICTION OF
MOLECULAR PROPERTIES

Abstract
by
John E. Herr

Machine learning (ML) has seen renewed interest with the advent of modern com-
putational accelerators such as GPUs and the availability of larger scale datasets. ML
potential energy models are promising the accuracy of quantum methods at signif-
icantly reduced cost. High accuracy potential methods which scale well for long
simulations are desirable for many research areas. This dissertation describes meth-
ods for collecting datasets of nonequilibrium geometries for training ML potential
energy models and shows that enhanced sampling methods or methods which do not
follow Boltzmann statistics are necessary for diversely sampling geometries. Several
potential models are described. The first is a combination of an ML model with
the many-body expansion for condensed phase systems. The result is a highly ef-
ficient and accurate method for running large simulations of liquid phase systems.
The method is implemented for methanol, but extension to other systems or mixed
non-covalent fragments is trivial. The next two chapters describe the development of
TensorMol, and improvements made to the model to accommodate more elements.
TensorMol is a general NN potential for small organic molecules which includes ex-
plicit long-range interactions. The Coulomb and van der Waals energies included
with TensorMol are crucial for running accurate simulations with correct long-range

behavior. The follow-up work improves upon TensorMol by reframing the parame-
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terization such that it is constant with the number of unique elements in the training
data. The result is a model which is able to treat a vast expansion of organic molecules
by including eleven unique elements in the training data. This dissertation also covers
the early stages and future directions of a project using graph neural network models
to predict reactions products, yields, and stereoselectivities. Finally, a collaborative
project to model the Stokes shift observed in photoluminescence experiments of lead-
halide perovskites describes the electronic structure of these materials to elucidate
the cause of the Stokes shift. A low-lying gap state is observed which follows the
trends of size-dependence in experimental results. Electronic structure calculations

verify this low-gap state is responsible for the size-dependence of the Stokes shift.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Machine learning (ML) has experienced a recent renaissance because neural net-
works (NNs) have been shown to make significant improvements over previous state-
of-the-art models. One of the earliest examples that garnered significant attention
was the convolutional neural network (CNN) model trained on the Imagenet dataset
by Krizhevsky and coworkers,[1] which achieved error rates 10-15% lower than all
other entries on two tasks in the Large Scale Visual Recognition Challenge 2012
(ILSVRC2012).]2] Accordingly, NNs have received much attention within the ML
community and in a number of other fields, including the physical sciences. NNs are
said to be "universal approximators,” but it should be noted that the algorithmic
learnability of the parameters is not guaranteed.[3] The flexibility afforded by NNs
has been shown to make them a powerful way to establish models for a wide variety
of tasks, including classification and regression, as well as generative modeling. |1} |4}
]

The chemical sciences are no exception. There have been many recent examples
of ML methods being used to predict molecular[6-11] or materials properties, [12-18§]
to accelerate quantum methods, [19-24] and to generate force field parameters.|25] [26]
Graph networks and sequence transformer models have been used to predict reac-
tion products or to perform retrosynthetic analysis.[27-36] Others have used machine
learning together with automated organic reaction robots to search for new reactiv-

ity.[37] There is much interest from the pharmaceutical and chemical industries to
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explore ML methods for better virtual screening of drug candidates from libraries, or
to generate new drug candidates never before synthesized.[38-41] There is also much
interest in accelerating sampling methods.[42, |43] Protein folding has also seen some

interesting approaches using NN methods. |44} |45]

1.2 Neural network potential models

There has been wide interest in developing potential models using ML methods
to fit to quantum data.[5, 46-63] This interest is due to the ability to train models
that achieve near quantum accuracy with orders of magnitude less computational
effort.[19, 48, |57-59] The implications of having a potential energy model with ab
initio accuracy that is competitive in computational cost with classical force fields
are far-reaching.[46, 57, 64-68] Furthermore, these models employ an ansatz which
parameterizes the total energy of a system as a sum of contributions from each
individual atom based on a feature vector which represents the local environment
of the atom.[47, 69] This makes handling changes in bonding easier, unlike classical
force fields where changing any bonds causes issues with conservation of energy.

Because these models are purely data-driven, it is necessary to spend significant
efforts toward designing a training and testing dataset. There is much research dedi-
cated to designing and collecting datasets for training. |10} |58} 60, 61, [70-72] Sampling
the entire potential energy surface of a molecule is intractable, so often practitioners
borrow from sampling methods used for fitting classical force fields,|[10, [58, |71] or
from enhanced sampling techniques.[70] Other approaches build an initial dataset
by using reasonable assumptions of diversity and then employ active learning meth-
ods to improve their models by finding samples where the error is anticipated to be
large. |60, 73]

While these models have shown great promise to transform many aspects of re-

search, there still remain many issues yet to be solved. Many such works are only



able to treat a few elements at a time due to the scaling of parameters with respect
to unique elements.[57, |58, 69, (74}, [75] Other issues can arise from the completeness
of the feature vector representation.[76] Other works have been able to incorporate
known invariances through domain knowledge, but at a cost of increased computa-

tional effort.[77, 78]

1.3 Conclusions

NN potential models will be an essential tool for more accurate simulations of
moderate and large systems. This dissertation covers four projects aimed at develop-
ing potential models with NNs. The first uses a many-body expansion in combination
with NNs to develop a potential model for condensed phase systems.[79] The next
chapter covers a project which addresses issues with common methods for collect-
ing training data, and introduces an improved method for collecting more diverse
datasets.[70] The following two chapters introduce TensorMol, a NN potential model
which includes explicit long-range physics, and an improved version of TensorMol
which is able to treat eleven unique elements. |57, [59]

Following this, the final two chapters divert from potential models with NNs.
The first outlines the early progress of a project implementing graph NNs to predict
reaction products and yields. Finally, I present a collaborative project with an exper-
imental group where we investigated the electronic structure of lead-halide perovskite
materials to determine the cause of an apparent size-dependent Stokes shift observed

during photoluminescence experiments.[80]



CHAPTER 2

THE MANY-BODY EXPANSION COMBINED WITH NEURAL NETWORKS

2.1 Introduction

2.1.1 Coulomb matrix representation

The input features for an ML model must encode the relevant information needed
to evaluate the function we wish to approximate using the model. In the case of
predicting potential energies of molecules, the model is attempting to approximate
solutions to Schrodinger’s equation. As such, it is natural to use features which enter
into the electronic Hamiltonian, i.e. nuclear charges and atomic positions.

One way to encode this information is through the Coulomb matrix,[81] which is
defined as,

0.5224 i=j
Mi; = , (2.1)

where ¢ and j correspond to indices of atoms in the molecule, and Z; and R; are
the nuclear charge and coordinates of atom ¢, respectively. The diagonal elements of
the Coulomb matrix encode the stoichiometry of the molecule, while the off-diagonal
elements correspond to the Coulomb repulsion between atoms in the molecule.

The definition of the Coulomb matrix affords translational and rotational in-
variance, which is crucial to developing ML models which respect conservation of
energy[47]. Since there is no well defined ordering of the atom indices, however, the

Coulomb matrix is not permutation invariant; that is, permuting the indices of any



two atoms in the molecule leads to two distinct but valid Coulomb matrix repre-
sentations. Unlike translational and rotational transformations, of which there are
infinitely many ways to transform the molecule while remaining invariant with re-
spect to the energy, permutations are defined by the number of atoms in the molecule.
Given a molecule with n atoms, then there will be n! unique Coulomb matrix rep-
resentations of that molecule. One method to treat these permutations is to train
the model with all possible permutations of the Coulomb matrix for a molecule if the
molecule is small enough for this to be tractable.[§]

One additional problem that must be considered is the dimensionality of the fea-
tures. The size of the Coulomb matrix depends on the number of atoms in the
molecule. In a NN model, information is passed from layer to layer by applying a
linear transformation, which is posed as matrix multiplication, followed by applying
an element-wise non-linear function. This precludes the possibility of having a dif-
ferent number of features per sample, so the Coulomb matrix must be defined to be
constant size. One possibility is to pad the Coulomb matrix with zeros up to the
largest molecule in the dataset such that all samples will have the same size represen-
tation.|9] In practice this works for molecules with a limited number of atoms, but
quickly becomes impractical as the largest molecule in the dataset grows, since the
number of Coulomb matrix elements scales quadratically with the number of atoms.

The Coulomb matrix is not limited to small molecules, however. Often times
molecular simulations involve, for example, solvent molecules which are trivially di-
vided into discrete subunits of the entire system. When performing ab initio calcu-
lations for such an application, due to the cubically scaling cost with respect to the
number of basis functions, it can be advantageous to use a many-body expansion.[82]
In this work we show that combining such fragment based methods with a NN model
provides a way of ensuring the input to the model is constant in size without the

need for padding the Coulomb matrix.



2.1.2  Depth map representation

Chemists measure or calculate properties of molecules with the aim of discovering
a new molecule that has some set of desired properties, such as a novel drug-candidate
with high binding affinities/selectivities for a protein target. Unfortunately, thus far
there is no way to perform the inverse of this search, whereby a chemist would define
some set of criteria to calculate molecules which fit those criteria. This is referred to
as inverse molecular design. While MLL models may be a promising way to achieve
this goal, one of the basic requirements would be to develop a representation which
is directly invertible with the geometry. In this work, I also introduced a novel
representation which is referred to as the depth map. The depth map is a depth of
field image of a ball-and-stick structure. Depth of field images are commonly used
as feature representations for ML models in the computer vision field.[83] 84] Atom
sizes are given according to their van der Waals radii, and pixel intensity corresponds
to the depth from the plane of the depth map.

Because a molecule can be viewed from any orientation, then the depth map is not
a unique representation. When dealing with a constant system, like a single molecule,
using a canonicalized orientation can alleviate all or most of this by eliminating
degrees of freedom corresponding to translation or rigid rotation. This must be
decided on a case-by-case basis, but in general setting an origin and defining a plane
parallel to the field of the depth map based on the position of one or several atoms.

The resolution of the depth map can be defined by simply increasing the size of
the image and scaling the length per voxel appropriately. Higher resolution affords
less noisy inputs to the network, but lower resolutions provide a more compact rep-
resentation, which keeps computational cost down. Choosing a resolution is a matter
of trade-off between these two aspects.

Recently, generative adversarial networks (GANs) were proposed, which are a

type of NN that learn to generate realistic samples which fall within a true dataset



distribution.[4] GANs consist of two NNs; a generator and a discriminator. The
generator learns to generate realistic samples in the distribution of the real data, and
the discriminator learns to predict whether an image comes from the real data or
from the generator network. The approach works by first collecting random vectors,
z, from a probability distribution p(z). Then a generator network, G, is defined that
maps z to the space of the real data by G(z). Also, a discriminator network, D), is
defined which maps the data space to a scalar value. The scalar is interpreted as
the probability that an image comes from the real data. The discriminator is trained
to maximize the probability of assigning the correct label to the real and generated
samples, while the generator simultaneously trains to minimize log(1 — D(G(2))).
The effect is that the generator learns to map the probability distribution, p(z), to
the distribution of real data. We can then explore the distribution of the real data

by exploring the probability distribution p(z).

2.1.3 The many-body expansion

The many-body expansion is an approximation where the total energy of a system

is expanded as a sum of terms by

N; Nij Nijk
Bt = Y Ei+ Y AE;+ > AEj+ .., (2.2)
i i<j i<j<k

where Fj; is the monomer energy of fragment ¢ in the system, AF;; is the two-body
interaction energy between monomers ¢ and j, and AE;j;, is the three-body interaction
energy between monomers ¢, j, and k. The n-body interaction energies are given by
taking the total energy of the n-body system and subtracting the lower-order many-

body terms. Explicitly, the two-body interaction energies are given by

AE’Z']‘ = Ez — EZ — Ej, (23)



and the three-body interaction energies are given by,

AEz‘jk = Eiji — AEz‘j — AE;, — AEjk; — L — E; — E, (2.4)

where E;; is the energy of the dimer of fragments 7 and j, and FEjj;, is the energy of
the trimer of fragments 7, j, and k.

Continuing the expansion of this sum up to the total number of fragments defined
in the system leads to an exact calculation of the full system. In practice, Equation
may be truncated with fewer n-body terms included without significant loss in
accuracy, depending on the system at hand. For systems where fragments are defined
such that no covalent bonds will be cleaved, it is often enough to include up to three-
body terms in Equation [2.2}[35]

When calculating the n-body terms in the many-body expansion, it is important
to correct for basis set superposition effects (BSSE).[86] For example, in Equation
2.3 E;; is calculated with the full basis set of both monomers. If the monomers are in
close enough proximity, then calculating the dimer energy allows for each monomer to
be further stabilized by borrowing the basis functions from the other monomer. This
leads to an inconsistency in the treatment of the monomers in isolation as compared
to in the dimer system. In practice, the magnitude of this effect depends on the size of
the basis set employed. Larger basis sets are more complete, and therefore additional
basis functions will result in less stabilization of the monomers in the dimer.

Aside from using a larger basis set, one method for approximating BSSE is to use
the counterpoise correction of Boys and Bernardi.[87] The counterpoise correction
method approximates the BSSE by calculating lower order many-body terms with
the full basis set of the n-body order term being calculated. For example, the BSSE

of monomer ¢ in the dimer of monomers ¢ and j is given by

EPSSE = E? — E!. (2.5)
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On the right hand side of Equation [2.5] subscripts denote the system being considered
and superscripts denote the basis set being used. Because a monomer is able to access
the rest of the basis functions in the dimer, then E must necessarily be lower than
E!. This result is subtracted from Equation for both monomers, which after
cancellation results in,

Applying the same method to correct the three-body interaction energies results in,

AE; = E;fji’,j - AE;;I’“ — AEJF AE;g'f — E7* — E;jk — EJ, (2.7)

2.2  Methods

In this project, I chose methanol as the system to showcase the NN model. Pre-
vious works have shown that the many-body expansion converges rapidly for water
clusters and other molecular clusters with strong van der Waals interactions. [88-90]
I fragment the system into individual methanol molecules, and include up to three-
body terms in the many-body expansion.

To generate a data set, I first simulated a cluster of 108 methanol molecules at
330 K using the general Amber force field.[91, 92] T also ran an ab initio simulation of
three methanol molecules at 500 K. The simulations provide 844,800 samples of single
methanol molecules. Previous works of similar systems have suggested using a cutoff
distance to limit the number of dimers and trimers required to be included, since the
combinatorial nature of including these is the largest computational cost for such a
system. I found that a cutoff of 10 A was sufficient to converge the total energy for
a cluster of 108 methanol molecules, so I used this limit for collecting eligible dimers
and trimers. This provided 74,240 samples of methanol dimers, and 36,864 samples

of methanol trimers. More details for determining an appropriate cutoff distance are



provided in the Supplementary Information.

After collecting the sample geometries, I ran RI-MP2 calculations using the cc-
pVTZ basis set for each sample. BSSE was corrected using the k-mer centered basis
set approach.[90] All calculations were run using the Q-Chem package.|93] One-body
energies, two-body, and three-body interaction energies were calculated according to
the scheme presented in Section [2.1.3] These energies, along with the corresponding
monomers, dimers, or trimers constitute the training data for the model. Calculating
total energies of a system of methanol then follows the typical many-body expansion
scheme by adding up the contributions from each n-body system. I note that over
the course of the simulations, no bonds were broken or formed, and as such the model
trained herein is limited to non-reactive samples. The data set was then randomly
split into ratios of 80:20 for training and testing data, respectively.

The model uses a separate fully-connected feed-forward NN for each n-body or-
der of the many-body expansion; one-body, two-body, and three-body energies are
predicted by separately parameterized NNs. By summing all the respective n-body
interactions in the system, the model should predict the total energy of the system
by approximating a many-body expansion on the system. This allows for us to easily
provide constant size features to the NNs because each network will only be shown
a constant number of atoms, while being able to make predictions for systems of
methanol clusters of arbitrary size. This model is trivially extensible to similar sys-
tems of clusters of molecules where a many-body expansion can be favorable over a
full treatment of the electronic structure. The number of parameters for each NN are
different based on the many-body order the NN is being trained on. The one-body
NN has one hidden layer with 50,000 hidden neurons in that layer. The two-body
NN has two hidden layers with 10,000 and 5,000 hidden neurons respectively, and the
three-body NN has three hidden layers with 1,000 hidden neurons in the first layer

and 2,000 neurons in the second and third layers. The ReLLU activation function was
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applied to introduce non-linearities into the model.

Choosing a set of features plays a significant role in the accuracy of the model.
Above, 1 introduced two features I will use in this work. In Section 2.3.1] T first
develop the model with the Coulomb matrix. Because the samples will always be
stoichiometric, I do not include the diagonal elements of the Coulomb matrix as shown
in Equation [2.1) as they will be constant across each sample. Since the Coulomb
matrix is also symmetric, then I only include the elements in either the upper or
lower triangle of the matrix to avoid unnecessary duplication of the input features.
For dimers and trimers, the Coulomb matrix is simply expanded to include the whole
dimer or trimer as the input features for their respective NNs.

To account for permutation invariance, I augment the training data by adding all
permutations of hydrogen atoms connected to carbon for the monomers, which leaves
six possible permutations. For dimers, permutations of the hydrogen on both methyl
groups must be included, as well as permuting the methanol molecules themselves,
which leads to 72 possible permutations. I include all 72 permutations in the dataset
to train for this. Similarly, for trimers it can be shown that there are 1296 possible
permutations. It is difficult to include such a large number of permutations in the
training data. Instead, I model the three hydrogen atoms on each methyl group as
one composite "imaginary” atom attached to carbon as a superposition of the three
hydrogen. The model effectively learns the mean interaction of the three constituent
hydrogens. This simplifies the number of permutations for trimers, since now only
permutation of whole molecules needs to be included, of which there are six possible
permutations.

I finish Section by developing the model with the depth map features, but
only did so for the three-body interactions. the reasons for using the depth map were
not to compete with the Coulomb matrix in terms of accuracy, but rather to provide

an alternative descriptor which is invertible with the geometry. I only set out to show
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Figure 2.1. Top: The interaction energy of each n-body fragment is
predicted by embedding the geometry of the n-body system into the
Coulomb matrix or depth map, which is then fed as input to a NN.
Bottom: Generative network which takes a vector, z, and outputs depth
maps of methanol trimers.

that the depth map can provide suitable accuracy for property prediction, and this
is why I elected not to pursue the full MBE-NN model with the depth map. The
three-body depth map NN has five convolution layers with 64, 128, 256, 256, and
128 filters in the five layers, and filter sizes of 5 x 5 for the first layer, 4 x 4 for the
second layer, and 3 x 3 for the last three layers. Following the convolutional layers
there are three feed-forward fully-connected layers each with 1024 hidden neurons.
The ReLU activation was used to introduce non-linearities to the model.

To construct a depth map for a sample methanol trimer, first I define the center of
the depth map image to be the Cartesian center of all atoms in the trimer, and I rotate
the system such that all oxygen atoms are in the plane of the depth map. This removes

translational invariance, and limits rotational invariance to one dimension; rotation
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about the axis normal to the plane of the depth map. Similarly to permutation
invariance, I train the model such that it will learn rotational invariance by training
with random rotations about this axis of each sample. The appropriate number of
random rotations to add depends on the convergence of the network. In this work, I
found that adding 20 rotations of each sample resulted in well-converged energies.
The scheme for the three-body network is shown in the top panel of Figure 2.1 A
methanol trimer is first transformed to either a Coulomb matrix or depth map repre-
sentation. Those features are then fed into the three-body network, which outputs the
prediction for the three-body interaction energy of the methanol trimer. Similarly,
one-body and two-body networks are set up for the Coulomb matrix representation.
Finally, in Section I trained a GAN to generate depth maps of methanol
trimers. The discriminator was fed images from the generator network and from the
set of depth maps of methanol trimers used to train the MBE-NN to discern between
images which are real, and those which are generated. The generator network learned
to generate depth maps of methanol trimers which it had never seen before. The
scheme of the GAN is shown in the bottom panel of Figure 2.1 with examples of

depth maps from the generator network shows on the left.

2.3 Results

2.3.1 MBE-NN accuracy

I begin by assessing the errors of the interaction energy predictions. First, I discuss
the results for NNs trained using the Coulomb matrix and will return to a comparison
with the depth map after. Figure [2.2|shows plots of the interaction energies predicted
by the NNs as compared to the energies calculated with MP2 within the many-body
expansion (MP2-MBE) for the reserved test data, as well as the distribution of errors

for each n-body interaction order. The NN predictions agree well with the calculated
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Figure 2.2. The top left, top right, and bottom left panels plot the
calculated MP2 energies versus the energy predicted by the networks for
the one-body, two-body, and three-body energies from the independent test
set. The bottom right panel shows the distribution of errors for each
n-body order from the test set.

MP2 energies. Mean absolute errors (MAE) and mean signed errors (MSE) for each
network are given in Table[2.3.1] It can be seen that the energy errors are significantly
smaller than the expected error of the model chemistry, thus the accuracy is limited
by the quality of the underlying calculations used to generate the training data.

It should be noted that the MAE for the two-body and three-body networks is
somewhat larger than the one-body network. This is due to these interactions being
more complex, and thus harder to model, as well as a smaller amount of training data
for these n-body orders. More data could likely improve the errors associated with
the two-body and three-body networks, however, generating data for higher order
terms is more computationally expensive, and higher order terms in the many-body
expansions generally contribute orders of magnitude less energy to the total energy

of the system, so the errors associated with their prediction are smaller as well. This
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TABLE 2.1

MEAN ABSOLUTE ERROR (MAE) AND MEAN SIGNED ERROR
(MSE) GIVEN IN KCAL/MOL OF ONE-BODY, TWO-BODY, AND
THREE-BODY ENERGIES.

Error 1-body 2-body 3-body (CM) 3-body depth map

MSE 15x107% 56x10"* —73x10* —25x1073
MAE 38 x 107 98 x 1073 0.013 0.024

one-body and two-body errors are from the Coulomb matrix model. Three-
body errors are given for both the Coulomb matrix (CM) and depth map.

can be seen by considering that the MSEs associated with the one-body, two-body,
and three-body terms in Table [2.3.1] are relatively balanced; that is, in each case the
associated errors are on the same order of magnitude, despite having a factor of ten
more training data for one-body energies than two-body interaction energies, and a
factor of two more training data for two-body as compared to three-body interaction
energies.

The distribution of energy errors shown in the bottom right panel of Figure
are uncorrelated. This implies that, as system size is increased, and thus the number
of one-body, two-body, and three-body terms contributing to the total energy in-
creases, the average error per contribution will tend towards zero. Thus, when larger
and larger system sizes are treated with the model, the error-per-methanol should
decrease. To demonstrate this notion, I plot the energy error of the NN model relative
to the MP2-MBE treatment for increasing sizes of methanol clusters. I show the error
associated with the whole cluster, as well as the error-per-methanol in the system. It

can be seen that the error-per-methanol tends towards zero for larger systems, while
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Figure 2.3. Error-per-methanol and total error of the energy for increasing
system sizes of methanol clusters. The error is calculated as the difference
in energy between the predictions from the NN-MBE and MP2-MBE.

the error of the overall cluster scales independent of system size. Thus, the model
will improve in accuracy-per-molecule for larger systems.

The methanol trimer is known to have three minimal energy geometries, referred
to as chair, bowl, and chain configurations.[94] In Table I show the energies calcu-
lated by the model, and with MP2, Hartree-Fock, and B3LYP, for each configuration.
Energies are given relative to the chair configuration, which is the lowest energy ge-
ometry of the three. the NN-MBE model predicts energy differences between each
configuration within 10% of those from MP2. The energy difference errors of Hartree-
Fock and B3LYP relative to MP2 are both larger than the model, while each method
is significantly more costly to perform these calculations as well.

While the model has been shown to give accuracy close to the underlying ab
initio data used to train the parameters while providing orders of magnitude faster
results, classical force fields remain more computationally efficient and often give suf-
ficient accuracy for many applications. I show that the model, which approaches the

computational cost of a classical force field, retains higher accuracy and is therefore
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Figure 2.4. Bottom: Relative energies for five clusters of twenty methanol
calculated with RIMP2 (blue), MP2-MBE (green), NN-MBE (orange), and
AMOEBAQ9 (red). Top: Error of the energies relative to RIMP2. Shown
are the errors for MP2-MBE (green), NN-MBE (orange), and AMOEBA09
(red).
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TABLE 2.2

RELATIVE ENERGIES (ME),) OF THREE MOST STABLE
GEOMETRIES OF METHANOL TRIMERS.

Geometry RIMP2 MBE-NN HF B3LYP

chair 0 0 0 0
bowl 1.50 1.40 1.75 2.02
chain 4.54 4.10 2.56 5.29

MP2, HF and B3LYP energies are extrapolated to a
complete basis. The NN-MBE model shows smaller errors
relative to MP2 compared to Hartree-Fock and B3LYP. The
NN-MBE model shows smaller errors relative to MP2 com-
pared to Hartree-Fock and B3LYP.

useful when the accuracy required to model some chemical phenomena of interest
exceeds what force fields are capable of. In Figure [2.4] T have plotted the energies
of five random clusters of 20 methanol molecules. I calculated the total energy of
each cluster with RIMP2, MP2-MBE, the NN-MBE model, and AMOEBAO9. In the
bottom panel, energies are given relative to the average of all five clusters. The errors
associated with the MP2-MBE results relative to RIMP2 can be considered the error
associated with the MBE treatment, and the errors associated with the NN-MBE
model compared to MP2-MBE can be considered as the error of the NN. The NN-
MBE model matches most closely with MP2-MBE calculations, which is expected
because this model chemistry was used to train the NNs. The energies from the NN-
MBE model and MP2-MBE deviate slightly compared to a full RIMP2 calculation
of the system, while energies from AMOEBAQ9 deviate even further from RIMP2
results. The top panel shows the energy difference of each cluster for MP2-MBE;,
the NN-MBE model, and AMOEBAQ9 relative to the RIMP2 energy of the same
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cluster. The energy differences between the model and MP2-MBE overlap such that
it is hard to distinguish the green markers for MP2-MBE, while AMOEBAO09 shows
larger differences. The MAEs of the five clusters for MP2-MBE and the NN-MBE
relative to RIMP2 are 0.063 and 0.069 kcal /mol respectively, while AMOEBAQ9 has
a MAE of 0.28 kcal/mol. Thus, the model can provide an alternative which is nearly
as efficient as a classical force field and nearly as accurate as ab initio methods.

Treatment of solvent effects is an important part of modeling most chemical
processes. [ calculated the energy change of breaking a hydrogen bond between
a methanol dimer with and without the presence of a solvation shell with MP2-MBE
and with the NN-MBE model to see if the NN-MBE model is able to accurately
model how a solvation affects such processes. The system is shown in Figure the
top shows the methanol dimer in a vacuum while the bottom shows the same dimer
in the presence of a 10 A solvation shell. The energy of breaking the hydrogen-bond
is calculated by the difference in energy of the system when there is a hydrogen bond
between the methanol dimer, and when one methanol is rotated by 180 °to break the
hydrogen bond. I note that MP2-MBE shows an energy difference of 7.7 kcal/mol
between the system in vacuum and in a solvation shell, while the difference for the
NN-MBE is 8.8 kcal/mol, which is 1.1 kcal/mol larger. This suggests that the model
shows strong potential to be used to simulate condensed phase phenomena efficiently
and accurately.

It is important that the predicted potential energy surface of a system is smooth,
if such a model is to be used for simulations. I used the model to calculate energies
of a methanol trimer as one methanol gradually moves away from the other two. In
Figure 2.6] I plot the total energy, two-body, and three-body interaction energies of
the trimer using out model as well as MP2-MBE calculations. The model is shown
to exhibit a smooth potential energy surface for the system in good agreement MP2-

MBE. The energies show the poorest agreement at the energy minimum (around 2.6

19



‘\%"\\ A Evp2-vse = 5.6
7 Y A Ennovse= 5.8
JW
~ )
+ < &
L \’%\(V‘ . ‘(r /Q;( .
<~ A, Y
‘ YA
ﬂ‘)’\,, }%%Q r - A Evpo-vse = 13.3
4V 3% ] t ~ A Ennv-vse = 14.6

<

Figure 2.5. Total energy(solid), two-body (dashed), and three-body
(dotted) interaction energies of a methanol trimer as one methanol
gradually moves away from the other two. Energies are shown for the
model (orange) and from MP2-MBE calculations (blue). The model is
shown to be smooth and matches well with an MP2-MBE treatment.

A) and at longer distances (greater than about 4.5 A), likely due to sampling of
the training data with molecular dynamics, which will provide most samples near
energetic minima, an issue discussed further in Chapter

Turning our attention to the three-body network trained using the depth map
as input, it can be seen that the MSE and MAE are about a factor of four and
two, respectively, higher than for the Coulomb matrix in Table It was not
my intention to provide an alternative representation which would be competitive in
terms of accuracy with the Coulomb matrix, but instead that it would provide suitable
accuracy such that its direct invertibility with the geometry can be leveraged. In this
regard, the depth map is successful in that important information about the geometry
of the system can be captured in a representation which is invertible.

Analysis of the errors for the depth map and Coulomb matrix in the bottom left
panel of Figure it can be noted that generally, the depth map performs nearly

as well as the Coulomb matrix, but in several cases the energy predicted by the
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Figure 2.6. Total energy(solid), two-body (dashed), and three-body
(dotted) interaction energies of a methanol trimer as one methanol
gradually moves away from the other two. Energies are shown for the
model (orange) and from MP2-MBE calculations (blue). The model is
shown to be smooth and matches well with an MP2-MBE treatment.

depth map network deviates significantly more than the Coulomb matrix relative to
the underlying MP2 energies. By examining the input in these cases, it is observed
that often these larger errors are associated with a methyl group which eclipses the
hydroxyl group from the plane of view based on the canonical orientation described
above. This is an obvious pitfall of using such a representation, and in the future
this issue would need to be addressed for more complex systems. In the short term,
a solution for this specific case could be to provide a second depth map as input from
the perspective opposite the first. This would be a trade-off between accuracy and
computational cost.

Furthermore, a deviation in the energies predicted by the depth map model occurs
near zero where the model tends to predict interaction energies which have a smaller
magnitude (i.e. are closer to zero) than the true MP2 energy. This is likely caused by

a combination of machine precision and the resolution of the information the network
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is able to extract from the depth map. Because the depth map is a voxelized image,
the precision with which the distance of two atoms can be determined depends on the
resolution of the depth map. When the energies predicted fall within a certain range
of zero, the NN is making predictions for which the resolution of the depth map
is not sufficient to determine these small differences in energy. The NN is unable
to distinguish between these cases near zero energy, and cases where the energy is
significantly closer to zero, so it has learned to average the predictions in this region.
The resolution of the depth map can be increased to improve this, but this is again

a trade-off between accuracy and computational efficiency.

2.3.2 Inverse design of depth map

Next, I discuss the GAN trained using the depth map representation. As I dis-
cussed before, the generator network learns to map a vector z drawn from a prob-
ability distribution to the space of the training data by attempting to fool an ever-
improving discriminator network. After a training period, the competing networks
have converged. I can then explore what the generator has learned by initializing
vectors from the probability distribution and examining how the generated depth
maps change as one component of the vector is continuously changed.

As an example of this, Figure [2.1] provides two example outputs from the gener-
ator. The outputs were made by taking one randomly initialized vector and varying
one component, z;, of that vector over the range of the distribution. The two samples
are the cases at the extremes, when z; equals one or negative one. The change of the
depth map over this range shows an apparent methanol flip end-over-end relative to
it’s positioning with respect to the other two methanol. This shows that it is possible
to model continuous changes to a system as continuous changes to a vector. If the
mapping of the properties of the system with the dimensions of the vector used the

generate the depth maps can be influenced, then it would be possible to develop a
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model where the vector components correspond to desired properties of a system,
and a search over the space of the vector could reveal systems with a desired set of
properties. Examples of using GANs in this way for image generation include aging

of faces in photos,[95] and adding of other features, such as sunglasses.[96]

2.4  Conclusions

Machine learning is gaining traction as a new tool for developing models of poten-
tial energy surfaces. Fundamentally, there is a requirement of a constant size input
or feature set for many of these machine learning algorithms that must be dealt with
for cases of molecules, materials, and systems which come in innumerable shapes and
sizes. For systems which can readily be broken down into common fragments, tak-
ing advantage of this partitioning of the system lends itself well to machine learning
potential energy methods since networks can be defined for each type of fragment,
or collection of fragments, to predict additive energies which total the energy of the
whole system. Fragmentation methods are well studied, and can be extended to in-
clude fragmentation schemes which cleave covalent bonds, but typically require higher
order n-body contributions to converge the total energy in such cases. The extension
of this model to other systems is trivial in that the NN model is only a replacement
for ab initio calculations within a fragmentation method. Thus a NN-MBE model can
be developed in any case where a traditional MBE fragmentation method is known
to work as well.

The NN-MBE model has been shown to accurately reproduce the potential energy
surface of methanol clusters. The error associated with the NN is smaller than the
error associated with a MBE method, and thus the model is limited in accuracy by
the underlying training data and not the design of the model itself. The potential
energy surface for the model is smooth and accurately reproduces the energetic dif-

ferences between known local minima of methanol trimers. The energies predicted
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by the model are shown to be more accurate than classical force fields while orders
of magnitude faster than ab initio calculations. The effect of solvation on chemical
processes is shown to be reproduced faithfully for condensed phase phenomena. Fur-
thermore, I show that the model becomes more accurate for increasing system sizes.
In the future, this model would need to be extended to fragmentation methods of
covalent systems and higher order many-body expansion orders. Some of this work
may be trivial, but there are likely to be unexpected issues which arise that may
require reassessing the input features, or the design of the NN models.

Machine learning has recently seen rejuvenated interest since deep learning has
invigorated the field. There is hope that machine learning methods may enable
the development of models for inverse design. Early attempts will require system
representations which are invertible with the geometry of the system, but suitable
for property prediction. Iintroduced the depth map, which is a field of vision image of
molecules. The depth map was shown to provide suitable accuracy for the prediction
of methanol trimer interaction energies, such that the possibility was explored of using
this representation for inverse design models. I trained a recently introduced GAN
model to learn a mapping for a probability distribution to the space of the methanol
trimer depth maps. The generator was able to create realistic depth maps which
could be continuously controlled by continuously varying the vector determining the
output of the generator. GANs are in the early days of development themselves, and
future improvements of these models, along with improvements to representation
and learning algorithms will all lead to many new questions to explore for molecular

inverse design.
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CHAPTER 3

METADYNAMICS FOR GENERATING OFF-EQUILIBRIUM GEOMETRIES

3.1 Introduction

Data-driven methods for developing potential energy surface models rely heav-
ily on representative sampling of a reference potential energy surface. Well sampled
regions of the potential energy surface will be reproduced accurately by the model,
while regions which are sampled more sparsely suffer larger inaccuracies in the final
model. Typically, the highest accuracy is desired for low-energy regions of the po-
tential energy surface, but higher-energy regions should be adequately sampled such
that simulations faithfully reproduce the desired statistics of the system. A balance
must be struck such that data is sampled in relevant regions of the potential energy
surface and is distributed relatively evenly throughout the sampled regions, while
avoiding unnecessary extremes of the potential energy surface with exceedingly small
probabilities of being visited during simulations.

Researchers typically rely on well known sampling methods from statistical me-
chanics (e.g. NVT molecular dynamics) or other methods, such as normal mode
sampling (NMS).[10, 49, 71] There is as of yet little research into the problem of
how to best design datasets for these applications. In this work, I compare different
methods used by practitioners of molecular simulation for developing such datasets.
I also suggest metadynamics[97] as a way to overcome some of the issues with com-
monly used methods. Enhanced sampling is an active field of research.[98}|99] Indeed,
many current state-of-the-art enhanced sampling techniques could be used to con-

struct datasets for ML models, but in this work I focus on comparing metadynamics
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to methods which have been commonly used by practitioners developing ML poten-
tial models in recent literature.[10, 49-51, [71] T also note a common pitfall that is
easy to overlook when making comparisons of the accuracy of models trained on such

datasets.

3.2 Sampling schemes

3.2.1 Molecular dynamics and metadynamics

One of the most common methods for sampling geometry configurations of a
molecule is standard molecular dynamics (MD).[50 [68, (100, 101] While this method
is implemented in nearly every computational chemistry software package, the major
problem is that the frequency of sampling high-energy vs. low-energy regions of
the potential energy surface is based on the Boltzmann statistics of the system.
Low-energy configurations will have exponentially more samples than high-energy
configurations. It is possible to increase the temperature of the simulation to more
efficiently explore higher-energy conformations, but many organic molecules break
apart at relatively modest temperatures, while extreme temperatures are needed to
achieve reasonable sampling efficiency.

I propose to use metadynamics[97] as an alternative method for generating sample
geometries, because of its simplicity as an extension to MD, and the ability to reweight
the distribution of sampling systems in high and low energy regions of the potential
surface. Metadynamics was designed to efficiently explore energy surfaces by adding
a bias potential based on the previous configurations of the system. Biasing against
previous configurations increases sampling of rare events in the dynamics such as
traversing a transition state between local minima. If the simulation continues, the
potential well around a new local minima can be explored by the simulation. This

is not possible with NMS, which is designed to sample the region of the potential
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energy surface around the current local minimum of the potential surface. I discuss
in Section that performing NMS on many different molecules likely accounts for
this problem when training a NN model on this data, but using metadynamics, it is
more certain that multiple local minima of a molecule will be sampled. Furthermore,
to develop a model for a system with relatively few unique molecules, multiple local
minima must be sampled explicitly for each molecule. Metadynamics is therefore
likely a better choice for this purpose.

Metadynamics adds a bias potential based on a collective variable of the system.
Typically, this collective variable is hand-chosen, because metadynamics is often used
for large systems to encourage the sampling of rare events for these computationally
expensive molecules. Designing a collective variable to bias against directly affects
how many iterations of the simulation will be needed to sample the events, so in these
cases it is imperative to carefully consider the collective variable used. In choosing a
collective variable for metadynamics, one must consider that the collective variable
distinguishes between the reactant and product state of the system, that the collective
variable contains the modes which are too slow for the timescale of the simulation,
and that there be relatively few collective variables in all. In this work, I am trying to
efficiently sample many regions of the potential energy surface without oversampling
those regions. A collective variable which is valid for any system is more appropriate
for this purpose because I consider all relatively low energy regions of the potential
surface which are feasibly accessible during long simulation times to be of roughly
equal importance for sampling.

I propose a collective variable which is based on the components of the distance
matrix because it is translation invariant for the system and is well defined for all
systems. The distance matrix is defined for all systems in all configurations. It is an

internal coordinate representation, which means biasing against the components is
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translationally and rotationally invariant. The bias potential is given by
Vbias(ﬁ) = Z Ne— 2 (D (R)=Dg)?)/(20%) (3.1)
«

where D;; is the distance between the ith and jth atoms, R is the configuration
of the system at the current time step of the simulation, and « references previous
configurations the potential is biasing against. A and o are parameters of the bias
Gaussian potential, with units of energy and distance respectively. Larger values for A
increase the energy of the bias potential and how strongly the bias force will push the
system away from previous configurations. ¢ controls the width of the bias potential,
and larger values mean the system will be subject to the bias for configurations with
slightly larger deviations in the distance matrix than the previous configuration.

The distance matrix scales quadratically with system size, but for small organic
molecules with a few hundred atoms or less this is a reasonable cost for modern
computational hardware and software. There is evidence to suggest that these NN
potential models may not display significant increases in error for systems which are
larger than the data they were trained on.[58, 102] For larger systems, it would be
trivial to use sparse components of the distance matrix, such as only components
which begin below some cutoff distance.

One issue with the distance matrix collective variable which is more difficult to
overcome is avoiding problems resulting from symmetries in the system. Liquid and
gas phase systems may exhibit symmetries by permutation of identical molecules
which would not be recognized by the bias potential unless this permutation is ex-
plicitly accounted for. This could be dealt with by applying all bias potentials across
all identical fragments of a system, but the present work is limited to the case of
small organic molecules.

Typically it is preferred to use a high quality DFT functional/ab initio method
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and basis set for the training data. Simulating the dynamics of a system with a
computationally expensive reference method is slow because the Schrodinger equation
must be solved at each time step. To calculate the reference data more efficiently
when using MD or metadynamics for sampling, one may use an inexpensive method,
such as a classical force field, to run the simulation and then reevaluate each sample
with the high-quality reference method. Doing so makes it possible to leverage the

hardware of modern computational systems more efficiently for these calculations.

3.2.2 Normal mode sampling

Others have relied on NMS for designing datasets.|10} 58, 71] The process of NMS
begins with a molecule at a minimum energy geometry. First, the set of normal modes
for the molecule are calculated at some desired level of theory (ab initio, DFT). The
corresponding normal mode coordinates are collected into a set @ = {q1, ¢2, 43, ---, qn }
along with the corresponding force constants, K = {ky, ks, k3, ..., kx }, where N is the
number of degrees of freedom for the system. Then a displacement for each normal
mode is calculated by,

3¢;Nyky T

R, =+ — (3.2)

where k;, is Boltzmann’s constant, /N, is the number of atoms in the molecule, T is
temperature, and ¢; is from a set of N uniformly distributed pseudo-random numbers
such that ZZN ¢; is in the range [0,1]. Here, a harmonic potential has been set
to the ¢; scaled average energy of the system at temperature T. The sign of R; is
randomly determined with equal probability of being positive or negative to ensure
that both sides of the harmonic potential are sampled evenly. Then the displacements

calculated are used to scale each normal mode coordinate by,

QiR = Rq; (3~3)
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then the minimum geometry of the molecule is displaced by Q%, which is the super-
position of all ¢*. This new geometry is then added to the collection of samples to be
used in the dataset. The process can be repeated until the desired number of points
for the molecule have been sampled.

The advantage of NMS is that samples are generated in a window of the potential
energy surface around the minimum geometry and one can be reasonably sure that
interactions up to some desired temperature are well captured by those samples. It
is easy to balance the number of high-energy and low-energy conformations sampled
in this way as well, since samples are not correlated through simulation time. Addi-
tionally, after computing the normal modes for the system, collecting geometries is
fast and single-point calculations can be run concurrently for each geometry.

Normal mode sampling is not without its own issues, though. First, NMS requires
a costly calculation of the full Hessian matrix to determine the normal modes. For
small molecules this is not a major concern, but the Hessian matrix scales quadrati-
cally with the number of atoms, so this prefactor quickly becomes a significant part
of the computational cost for larger molecules. Furthermore, NMS only explores the
potential energy surface in a window around the local minima at which the normal
modes were calculated. Depending on what is desired of the potential to be created
from the data, this may be insufficient when other minima are to be explored if NMS
has not been performed from these minima as well.

The authors of the ANI-1 model used NMS for their data generation, [58] and they
do make note that this is the case, but they suggest that while some interactions may
be under-sampled or missed entirely, that NMS is best used when many different
molecules will be included in the training set such that these other interactions will
be well represented by samples from other molecules. Their assertion is likely correct,
and there is good evidence for this when these models perform well on molecules not

included in their training data. In this work, however, I limit the scope to sampling
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geometries for a single molecule. It is not uncommon to build models with specific
systems in mind, and thus an analysis of how best to collect samples in these cases
is desirable. Furthermore, it is difficult to perform a quantitative analysis of the
amount to which a molecule benefits from interactions learned by the model from
other molecules. A good starting point for such an analysis would be to begin from

the case of sampling geometries for single molecules.

3.3  Methods

3.3.1 Data collection

I ran simulations of small systems with different values of A and ¢ in Equation
to determine acceptable values for each parameter. The bias potential should be
strong enough to be able to push the configuration of the system out of a potential
well without applying forces strong enough to break bonds in the molecule. The
width of the bias potential must also be large enough to bias against configurations
which are similar without punishing configurations which are significantly different.
I ran simulations to observe how different values of A and ¢ change measures of the
diversity of configurations over simulation time, and made comparisons with standard
MD as well.

First, I ran several simulations of a water cluster and observed the principal
components of the distance matrix over the course of a short simulation. One MD
simulation and two metadynamics simulations were run for 4 ps. Observing the
principal components over the simulations compares the diversity explored by the
simulations and puts the most diverse axis into the first principal components. Simu-
lations which explore more diverse configurations will exhibit a larger variance in the
values of their principal components. Next, I ran four simulations of nicotine with

metadynamics and one with MD for 10 ps to observe the variance of the distance

31



matrix components. Judging how these two properties compare will guide how I use
the parameters for sampling configurations in further analysis.

To compare the sampling methods outlined in Sections|3.2.1}and [3.2.2 I sampled

50,000 geometries with each method for a nicotine molecule in vacuum. For MD and
metadynamics, I ran simulations of nicotine at a temperature of 600 K. This choice
in temperature is commonly used by practitioners generating datasets for building
ML models of potential surfaces.[50, 68, 100, [103] The autoignition temperature of
organic molecules is typically around 500-600 K. Above the autoignition temperature
for a molecule it can spontaneously combust in atmosphere. This makes sampling at
temperatures in the range of 500-600 K a reasonable upper-limit temperature when
sampling data of small organic molecules.[104] The Andersen thermostat was used
because it stochastically rescales atomic velocities to thermostat the system.[105] MD
was run using the ab initio MD implementation in Q-Chem[93] while metadynamics
simulations were run using my own implementation in the TensorMol package.[106]
The total simulation time was 25 ps and the equations of motion were integrated
every 0.5 fs. Reference configurations were collected every 10 fs of simulation time
to store for biasing against future configurations. The geometry at each step was
collected for the training data, which gives a total of 50,000 geometries from the
simulations. The values for A and ¢ chosen in this simulation were 1.0 hartree and
2.0 A. The reasons for this choice are discussed in Section [3.4.1

For NMS, I follow the procedure outlined in Section [3.2.2] The value of k,T" in
Equation [3.2| was chosen to be 2 mHa, which equates to a temperature of about 630
K. This choice gives some reasonable certainty that the samples from each method are
able to access roughly the same regions of the potential surface, but the distribution
of those samples within that region of the potential surface will be different based
on the sampling method. I performed NMS on the nicotine molecule until 50,000

geometries were collected to match those from MD and metadynamics.
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All calculations were performed at the ©B97X-D/6-311G** level of theory with
Q-Chem 4.[93, [107] In Section [3.2.1] I mentioned that it is possible to use a com-
putationally less demanding method to run the MD and metadynamics simulations.
Because this work was limited to a single molecule, I chose to run the simulations
at the level of theory at which the training data is to be calculated. To generate
a dataset of many different molecules, the increased computational efficiency would
be much more significant. MD simulations were run with the ab initio molecular
dynamics (AIMD) implementation in Q-Chem 4. For metadynamics simulations, I
used a dynamics implementations within our TensorMol software package with an

interface to Q-Chem for energies and forces.[57]

3.3.2 Model training

The goal of this work is to determine the relative merits and pitfalls of different
methods for generating samples of a molecule to be used in training ML potential
models. One of the easiest ways to do so is to train a model using data from each
method, and to compare the accuracy of these models. For this I chose the high-
dimensional NN potential model of Behler and Parinello. [5] I use the ANI-1 variant of
the atom-centered symmetry functions for our feature representation.|47, |58 Though
I are making a direct comparison of identical models trained with different datasets,
I expect that the results should be applicable to many types of potential models
which are fit using strictly data-driven methods because these models are prone to
overfitting.

The networks are trained identically with the exception of the training data used.
Only total molecular energies are included in the loss function during training. In-
cluding atomic forces in the loss function can improve the accuracy of the model,
particularly when training data may be sampled sparsely in the configuration space

of a molecule. In this work, the generated data should sample the potential surface
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densely enough that including atomic forces in the loss function is unlikely to make
a significant difference.

For each sampling method I trained multiple models including progressive amounts
of training data. Observing the differences in convergence of the model accuracy on
an independent test set with respect to the amount of training data should elucidate
the amount of oversampling from each method. Each model has three hidden layers
with 500 neurons per layer. The activation function chosen was the exponential linear
unit (ELU). The data were split by to an 80:20 ratio for training and testing data
respectively. Each model was trained for 2000 epochs in total. For each sampling
method, I trained models six models. First, samples from the training data were col-
lected into sets of 2000, 4000, 8000, 16,000 and 32,000 samples which are randomly
selected from the full training set. I trained models with each of these subsets, as well
as the full training set of 40,000 geometries. Doing this for each sampling method

means that in all 18 different models were trained.

3.4 Results

3.4.1 Determining bias potential parameters

First, it is important to determine appropriate values for A and o from Equation
B.1] Another factor to consider is how frequently snapshots of the distance matrix
should accumulate for reference configurations to bias against. If reference configu-
rations accumulate frequently, the Gaussian bias can be relatively weaker and more
narrow because the bias force will accumulate from each reference configuration. This
allows for a well distributed sampling of the potential surface, because the simulation
will always bias against a recent configuration which is correlated in time. On the
other hand, storing many reference configurations will increase memory requirements.

If reference configurations accumulate slowly, then memory usage for the simu-
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lation can be kept at a minimum. The caveat is that because fewer configurations
will be biased against, then the strength and width of the Gaussian potential must
be large enough to push the simulation away from larger regions of the potential
surface. This can lead to samples which form more localized clusters throughout the
potential surface. In my experience a 10 fs interval for accumulating reference bias
configurations with a 0.5 fs time step gives a good compromise between clustering of
samples and the memory constraints of modern GPUs. Evaluating the bias potentials
on CPUs would allow one to access larger amounts of system RAM at the cost of the
computational acceleration GPUs can provide.

First I simulated a cluster of ten water molecules for 4 ps with 0.5 fs time steps. 1
ran three such simulations, one following AIMD, and two with metadynamics using
values for A and ¢ of 0.4 hartree and 0.8 A, respectively in one simulation and
1.0 hartree and 2.0 A in the other. For each step of the simulation, I performed a
principal component analysis on the distance matrix at that step in the simulation. If
a simulation explores many diverse configurations, the principal components would be
expected to vary greatly over the entire simulation. On the other hand, a simulation
that over-samples the same configurations would exhibit much less variance in the
principal components. Figure [3.1| shows the first and second principal components
over the course of the whole simulation. It is apparent that the AIMD simulation
drastically over-samples the same region, while the metadynamics simulations both
exhibit more configurational diversity.

Next, I ran five simulations of nicotine in vacuum. The root mean square variance
of the distance matrix components up to the current step in the simulation is plotted
in Figure Again, these simulations were run for 10 ps with a 0.5 fs time step. One
simulation was run with AIMD), and the other four each were run with metadynamics.
The values for A and o in each simulation are given in the legend of Figure [3.2] The

variance for the AIMD simulation stays mostly flat over the course of simulation
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Figure 3.1. Principal component analysis (PCA) of the distance matrix
along a 4 ps trajectory with MD (blue) and MetaMD with bump height
(width) parameters of 0.4 hartree (0.8 A) (orange)and 1.0 hartree (2.0 A)
(red) at a temperature of 300 K. All simulations startwith a cage-like
minimal energy geometry. The color of each line fades asthe trajectory time
increases. Inserted figures are the final geometries after thed ps simulation.
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Figure 3.2. Running expectation of the distance matrix variance with
ordinary Andersen dynamics and MetaMD (|(dD;;)?|)(¢). Larger A and o
values provide more bias against previous snapshots of the distance matrix.

time. Similarly, a very weak bias potential (A and o values of 0.5 hartree and 0.5 A)
does not significantly increase the variance either. Larger values for A and ¢ show
a greater increase in the variance of the distance matrix, with the greatest variance
occurring when A and o are set to 1.0 hartree and 2.0 A, respectively. Larger values
cause covalent bonds to be broken during the 10 ps simulation. Considering the
results of these simulations, along with the water cluster simulations discussed in the

previous paragraph, I used 1.0 hartree and 2.0 A for the remainder of this work.

3.4.2  Accuracy of models trained across different sampling schemes

In Section I described 18 models that were trained; six models trained with
increasing amounts of data for each sampling method. For each sampling method
there is also a reserve of 10,000 samples which are used as test data. Figure[3.3|shows

the mean absolute error (MAE) of each network on test data from the same sampling
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Figure 3.3. MAE of the energy prediction evaluated on the same dataset as
the number of training samples increases. AIMD converges with relatively
fewer training samples, while MetaMD and NMS both require more
samples before converging.

method the network was trained with. With as few as 2000 samples for training data,
the accuracy of the MD network is already well under 1 kcal/mol on a test set of
10,000 samples. This means as few as 2000 samples is already enough to cover the
span of the entire MD sampling data which aligns with the results in Figures and
3.2l For metadynamics and NMS it takes significantly more training data before the
model accuracies converge.

To further elucidate this point, I have calculated MAEs for each network on test
data from other sampling methods. These results are shown in Figure[3.4] It becomes
more apparent now that the MD networks have high accuracy on data from the same
sampling method, but the errors are considerably higher on data from methods which
explore more diverse configurations. Metadynamics and NMS both have significantly
lower errors on data from the other sampling methods.

Finally, I calculated the potential of nicotine with the C-C bond stretch which
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Figure 3.4. Mean absolute errors in the energy prediction cross evaluated
on other dataset generation methods as the number of training samples
increases. Labels are listed as training data-evaluation data. AIMD
networks rarely see samples similar to geometries from MetaMD or NMS,
while MetaMD and NMS networks both train on a larger variance of
geometry samples, thus generalizing better across other data generation
methods.
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Figure 3.5. Potential energy curve for stretching and shrinking of the C-C
bond connecting the rings of nicotine. Potential energies calculated from
Q-Chem provided as a reference. The potential from a MetaMD network
shows the desired sharp increase of the potential energy as the carbons
become increasingly closer. The potential from a AIMD networks shows an
increase in the potential energy, but does not rise as sharply as Q-Chem or
the MetaMD network.

connects the 1-methylpyrrolidine and pyridine rings from the minimal energy geom-
etry. These energies were calculated using Q-Chem with the ©B97X-D/6-311G**
model chemistry, and with the MD and metadynamics networks which were trained
on the complete set of 40,000 samples. The data are plotted in Figure [3.5] It is ap-
parent that the MD network is unable to accurately predict the total energy beyond
a small well near the local minimum. The network trained with metadynamics data
has significantly better accuracy at regions much further from the local minimum.
A key result of this paper is that practitioners looking to develop ML potential
models should use caution when collecting sample data. MD is insufficient, even
at high temperatures. To overcome the unfavorable probabilities of sampling high

energy configurations, more advanced sampling methods must be used. Using a test
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dataset that is collected in the same way as the training data can make models appear
more accurate than they might be. If the model is to be used for simulations, then it
must be stable over high energy regions of the potential surface, as well as multiple
local minima.

The best way to collect training data likely comes from a combination of methods.
NMS gives a reasonable assurance of evenly sampling the potential window around
the local minima, but suffers from the inability to sample different conformers. NMS
also tends to exhibit some configurations which are highly unstable and do not pro-
vide much useful information to the model. Some examples of this can be seen in
the Supplementary Information. Metadynamics is able to traverse transition states
and provides significantly improved sampling over MD, but does not give the same
distribution of sampling around local minima.

Ideally, it is desirable to sample the potential windows around the local minima of
all conformers of the molecule, and the relevant transition states between them. Of
course, there exist many symmetries of the high-dimensional potential surface which
means that many regions of the potential surface may be well inferred from other
regions. Thus it may be enough to sample several local minima and the transition
states between them.

Metadynamics is capable of sampling many diverse configurations quickly, and is
designed to traverse transition states to sample multiple conformers of a molecule.
The water hexamer exhibits several low-energy conformers of interest. I started
from the "bag” conformer, and ran a metadynamics simulation using a water ML
potential model which I trained in a previous work.[57] Every 100th time step, I took
the current configuration and performed a geometry optimization. Within the first
5 ps of the simulation, the resulting minimized geometries had resulted in four other
well known low-energy conformers of the water hexamer; the prism, ring, boat, and

cage. At around 16 ps of simulation time the book conformer was also found by
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Figure 3.6. MetaMD trajectory starting from the bag geometry of a water
hexamer with geometry optimization every 100th time step. MetaMD
parameters were 1.0 hartrees and 2.0 A for the bump height and width
respectively, with a time step of 0.5 fs and bumps added every 5.0 fs.

Trajectory time was 20 ps. The blue curve follows the energy of the
MetaMD trajectory, orange curves follow the energy of a geometry
optimization starting from the respective time step of the MetaMD
trajectory. Geometry optimizations are only shown when for the first
appearances of other low-energy water hexamer geometries. Inserted figures
are the results from the converged geometry optimizations.

another geometry optimization. The potential over the simulation, along with the
point at which each conformer was first found from the geometry optimization is
shown in Figure [3.6|

It is simple to collect the normal modes for each conformer to perform NMS and
sample the potential well around these minima. This would assure the potential well
around each conformer is well sampled, as well as transitions states between them.
The data from both methods can be combined into a single training set for a potential
model. Ultimately a practitioner can be reasonably certain that they have sampled

sufficiently diverse data to learn the breadth of the surface which could be visited
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during long simulation times. This is an extremely important consideration for ML
potential models. Their place in the hierarchy of potential energy methods relies on
their accuracy exceeding what classical force fields can achieve, their computational
cost scaling better than ab initio and DF'T methods, and their ansatz which is based
on local atomic environments instead of explicit bonding parameters. To develop a
successful model, it is imperative to ensure that the accuracy remains high over the

relevant parts of the potential surface.

3.5 Conclusions

With a wider adoption of ML potential models, it is good to take caution with
these highly data-driven methods. The practice of developing a dataset is not as
simple as collecting enough geometries to achieve a large amount of training data.
A smaller diverse sampling of the potential energy surface is superior to massive
amounts of samples. The data from straight-forward MD sampling is lacking in
diversity, even at relatively high temperatures for the molecule.

The biases of the potential surface are not favorable for sampling a training set.
While the highest accuracy is typically desired in the most over-sampled regions of
the potential surface, there must be some balancing to the sampling of configurations
which have exponentially less probability of appearing, but still need to be inferred
accurately by the ML potential model. The methods presented here can be com-
bined with active learning techniques, where a practitioner would develop multiple
models trained on overlapping subsets of the full training data, and then would run
a simulation of the system for which it was developed.[60] If the agreement between
the set of models goes beyond a threshold, then the assumption is that the region of
the potential surface is under-sampled so the configuration is added to the training
data and each model is retrained. To avoid frequently retraining each model during

this active learning phase, it is desirable to begin with a dataset which already covers
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most of the potential surface.

The lack of interpretability of many data-driven models should be a caution to
rigorously testing and developing these models. Aside from the ability to encode
patterns into the structure of the model, then the accuracy relies on the underlying
training data. The sampling and curation of the dataset should of considerable

importance to the entire process.
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CHAPTER 4

TENSORMOL MODEL WITH LONG-RANGE PHYSICS

4.1 Introduction

Data-driven models of potential energy surfaces have received a growing interest
in chemical and material sciences recently. In particular, for organic molecules the
high-dimensional neural network potential (HDNNP) model of Behler and Parrinello
has achieved considerable success and is the standard for NN potential models. [5|
46, 47] The robust ANI-1 models are based on the same extensive scheme but use a
modified version of the atom centered symmetry functions (ACSFs) to incorporate an
encoding of the atomic number of atoms in the local environment of one another.[58,
60, 61]

These models have been successful because of the approximation of the total
energy as a summation of contributions from each atom in the system based on a
description of the local environment of the atom. An extensive scheme is necessary
to accommodate arbitrary sizes of molecules by the model, and limiting the sensory
range of the feature representation keeps the computational cost competitive with
classical force fields. The assumption that total energies are only based on local
atomic environments, however, means that the model is unable to learn well known
long-range physical interactions commonly employed in molecular mechanics and
density functional theory (DFT).

Electrostatic interactions are some of the longest-range interactions that must

be considered in molecular simulation. They fall off as 1/r where r is the distance
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separating two charged particles. Practitioners of classical force field simulations
employ either fixed charge schemes or depend on more costly approaches to explicitly
include polarizability.|108] Because of the slow decay of Coulombic interactions, then
typical feature representations do not contain the sensory range to incorporate them
into their prediction of atomic energies. This is a failure of these models to faithfully
reproduce the potential surface.

Incorporating known physical interactions constrains the learning problem in
training an ML potential model. The training procedure attempts to learn patterns
which correspond with changes in the energy of a system. By incorporating known
physical interactions with a small computational cost, the model is able to ignore
signals which inform these physical interactions to focus on learning the interactions
which are more expensive to calculate.

In this work, TensorMol is introduced, a NN potential model which is aug-
mented with long-range physics. TensorMol features a linear-scaling inductive dy-
namic charge model and van der Waals interactions along with an HDNNP model.
The charge model is used to incorporate long-range Coulomb interactions and enables
the calculation of infrared (IR) spectra with TensorMol. The added physical interac-
tions provide necessary long-range interactions for running accurate simulations and

keep the computational cost of the model reasonable.

4.2 Methods

4.2.1 HDNNP model

The model is represented in Figure [4.1] The atoms in a molecule are projected
onto the ACSF basis to describe their local environment. The ACSFs only encode
geometric information, so the features are split into channels based on the atomic

number of the atom in the local environment. First there is a charge network which
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predicts the partial charge for each atom in the molecule. The partial charges of all
atoms are summed to calculate the total charge and the error in total charge of the
molecule is subtracted evenly from all atoms to neutralize the charge. The molecular
dipole is also calculated by assuming point charges at each atomic coordinate. The
partial charges are also used to calculate a Coulomb energy for each atom in the
molecule. The energy network predicts an embedded atomic energy for each atom
in the molecule. In previous works these embedded atomic energies were summed to
give the total energy of the molecule. In this work the Coulomb energy is also added
to these predictions.

Each atom in a molecule or system encodes its local environment through the
ACSFs, which are a basis of two-body and three-body correlation functions.|47] The
developers of the ANI-1 model used a slightly modified version which was used in

this work.[71] The ACSFs contain two components; a radial component given by,

GTR;L = Zewp [_H(RU - Rs)2:| fc(Rij): (41)
J#i

and an angular component given by,

G =2 " (1+ cos(bijp — 05))°
g, k#i

2
X exp | —n (M - Rs) Je(Rij) fe(Rar), (4.2)

2

where 4, j, and k are indices over atoms in the system, I?;; is the distance between
atoms 7 and j, and 0, is the angle between R_;j and Rjy,. Summing over j in Equation

and over pairs of j and k£ in Equation [4.2| ensures that the ACSFs are invariant
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to permutation of atom indexing. The distance cutoff function, f.(R;;) is given by,

0.5 X cos (%) +05 R <R,

fc(Rij) = ) (43)
0 Ri; > R.

where R, is the cutoff distance. This function scales from one at R;; = 0 to zero
at R;; = R.. Scaling the ACSF's this way gives higher value to signals from atoms
which are closer in the local environment and which should have a greater effect on
the predictions by the NN. Furthermore, it smoothly scales signals to zero at the
limit of the sensory range which prevents an abrupt change in the environment so
that predictions by the NN will vary smoothly as one atom moves beyond the sensory
range. A similar cutoff is used in the Tersoff potential.[109]

In Equation .1, m indexes over a set of n and Ry parameters. Ry shifts the center
of the Gaussian peak and 7 controls the width. In the original work from Behler and
Parrinello multiple  were used with a few R, to include multiple scales of probing
the radial environment from each Gaussian center. In the ANI-1 model and in this
work, one value for 7 is used but more values for R,. This makes each radial function
probe narrow regions of the radial environment. I used 4.0 for  and a total of 32 R,
evenly spaced to a distance of 4.45 A for each Gaussian center and a cutoff distance
of 4.6 A.

In Equation .2 m instead indexes over a set of four parameters: 7, ¢, R,
and 0. Here n and Rs work similarly to Equation but they probe the average
distance of a pair of atoms in the local environment. I use the same value for n but
only use 8 R, spaced evenly to 2.7 A with a cutoff distance of 3.1 A. 6, probes the
angular environment analogously to the way R, probes the radial environment, with
¢ controlling the width of peaks in the angular environment. I used 8.0 for ( and 8

0, evenly spaced over 2r radians.
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Figure 4.1. a) Atoms a color-coded by element which determines which
networks they use and which channel their features go in. b) The
symmetry functions are a set of two-body and three-body correlation
functions which describe the local environment of an atom. ¢) The
symmetry functions are split into channels to encode the atomic number of
the atoms in the local environment. d) The charge network is trained first.
Each atom is assigned a partial charge based on it’s feature vector. The
charges are neutralized for charge equality, and the molecular dipole is
calculated by assuming point charges on each atom. The loss function is
the mean square error of the molecular dipole. When charge training has
converged, the charges are used with a Coulomb kernel to calculate a
Coulomb energy as part of the process of training the energy network. e)
The energy network works the same as the original model by adding atomic
contributions to the total energy. This energy, Eny, only accounts for
short range interactions. F¢ and the van der Waals energy are added to
Enn to calculate the total energy.
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The ACSF's do not encode the atomic number of atoms in the local environment.
To remedy this, the ACSF's are split into channels similar to red-green-blue channels
in a color image. The radial functions are split into N channels where N is the
number of unique elements in the training data. The angular functions must encode
the identity of both atoms being probed in the local environment. Furthermore,
the way the pair of atomic numbers is encoded must be invariant to permutation
of the two neighbor atoms. The angular functions are thus split into channels for
each unique unordered set of atomic number pairs. The number of channels for this
encoding will be N(N + 1)/2. The ACSFs are split into these channels based on
atomic number before summing over j in Equation [£.1] and over j and k in Equation
4.2l The radial and angular features are then concatenated into one vector to make
the feature vector for an atoms local environment.

The model in this work consists of two sub-networks; a charge network and energy
network. Analogously to previous work each sub-network contains a NN for each
unique element in the training data. The feature vectors are fed as input to the
network corresponding to the atomic number of the atom they are encoding the local
environment of. This gives the model the ability to parameterize its predictions
separately for each element.

The charge network uses the feature vector of an atom to predict the partial
charge based on its local environment. The learning target for the charge network is
the molecular dipole. By assuming point charges at each atomic positions, the dipole

is calculated by,

N = ai (4.4)

where ¢; is the partial charge predicted for atom ¢ and 77; is the vector to the position
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of atom 7. The loss function for the charge network is given by,

SDFT _ ~NN\ 2
) (4.5)

Laipote = Y (%
A atom

where iP¥T is the molecular dipole calculated at a reference model chemistry for the
training data, and A indexes over a mini-batch of training data during the training
procedure. The molecular dipole is used as the learning target because it is a quantum
mechanical observable. Because the charge network is trained with a loss function
on the dipole vector, then it works similarly to the original model in that the direct
output of each network is only constrained such that the eventual learning target
should be correct. Given highly correlated configurations, however, the model will
learn that smooth changes in the geometry will lead to smooth changes in the charges.

The partial charge predictions are then constrained such that they should re-
produce the molecular dipole. There is no specific constraint on the total molecular
charge of the molecule, however, in practice the errors on the total charge are typically
small. T believe this is due to a combination of the loss function on the molecular
dipole and that every sample in our training data is a charge neutral system. To
ensure charge neutrality, the error in the total charge is subtracted evenly from the
atoms in the system. Observations reveal that this has a negligible affect on the
predicted charges. It is also possible to add a loss function on the total charge of the
molecule to ensure that the error is small.[68]

The partial charges are also used to calculate a Coulomb energy for the system.
Because the Coulomb energy decays as r~!, then the interactions decay very slowly
with distance. It is possible to include all long-range interactions for a system through
Ewald-type electrostatics when using periodic boundary conditions.|110; (111] While
these methods introduce fewer artifacts in the simulation than electrostatic cutoff

schemes, their computational cost can be high.
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I summation methods which offer

There is still work into designing pairwise 7~
greater stability over longer simulation times. These cutoff schemes are more com-
putationally efficient than lattice summation electrostatics and scale linearly, but the
cutoff neglects some long-range interactions from the system. These small errors ac-
cumulate over the course of the simulation to give larger artifacts in the simulation.
Fennel and Gezelter introduced the damped-shifted force (DSF) method which gives

results that compare well to interactions calculated from the smooth particle-mesh

Ewald method.[112] The DSF potential is given by,

erfec(ar) erfc(aR.)

VDSF(T’) — Qin |:

R,
erfc(aR.)  2a exp(—a*R?)
(PR ) e o] o< a6)

where R, is the cutoff distance beyond which no electrostatic interactions are in-
cluded, and a is a parameter which controls the damping of the Coulomb pair poten-
tial in Equation [1.6, Damping is used to improve the convergence of the Madelung
energy calculated with the Coulomb pair potential.[113]

At distances approaching zero the DSF exhibits a singularity which causes insta-
bility when evaluating the gradients of the NNs for training. For this reason, the DSF
kernel used in this work is modified by the ELU function such that the Coulomb po-
tential converges to a constant and the Coulomb forces are zero at short-range. The

Coulomb energy in our model is calculated using a modified DSF kernel given by,

¢:iq;j (o X expr — Rsr| + 8) r < Rgsr
VCOUZ'(T, ¢, qj) = ! , (4.7)

VDSF(% di, Qj) r > Rgr

where Rgp is a distance at which the DSF kernel switches from the the ELU function

to the original DSF at long-range. In this region the energy network is able to learn
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the rest of the contribution to the energy which will be shown in Section
The energy network predicts an embedded atomic energy for each atom in the

system, €;. The energies are summed to give,

VAN =3 ", (4.8)

VNN

Typically, would be taken as the total energy of the system. In our model the

total potential energy is instead given by,

Vtotal(R') — VNN(E) + Z ‘/'C’oul.(rij7 ¢, QJ) + Z VvdW(TZ‘j) (49)
i#]j i#j
where Vo and VNN are given by Equations 4.7 and |4.§| respectively, and VW is
given by
vdW Cé]
Vv (’rij> = _SGFfdamp(r> (410)
which is the van der Waals energy following Grimme’s C6 scheme.[114] This is a

dispersion correction scheme where sg is a global scaling factor. Cg’ is the dispersion

coefficient for the atom pair 7 and j which is calculated by

CY =/Cicl (4.11)

where C% and C} semiempirical parameters determined for the scheme. fqmp(r) is a

damping function used to avoid singularities which is given by

1

fdamp(r) = 1 + e—d(T/RT‘_l)

(4.12)

where R, is the sum of the van der Waals radii of the atoms, and d is a parameter
set to 20.

The atomic forces can be obtained by differentiating backwards through the
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NNs. TensorMol is implemented in TensorFlow,|115] including the calculation of
the ACSF's. Because TensorFlow is a python package which includes reverse accumu-
lation automatic differentiation, calculating the atomic forces is implemented with a
single line of code. The gradient can be propagated back to the input coordinates
without the need to implement any of these gradients by hand.

The loss function for the energy network is given by

VDFT _ y/total 2 FDFT _ NN 2
Lenoray = A "A A "A 4.13
& XA: ( Natom > + /y XA: < Natom ’ ( )

where VPFT and FPFT are calculated at a reference model chemistry for the training
data, and A again indexes over a mini-batch of training data during the training

FNN are the forces obtained by differentiating the total energy of the

procedure.
network with respect to the atomic coordinates. Including the forces in the loss
functions trains the model to learn the correct shape of the potential surface. Energies
provide information about the potential at a certain point, but the gradients contain
information about the local shape of the potential. « is a scalar to control the weight
of the loss on the atomic forces compared to the total energy. Each sample provides
3N forces but only one total energy for an N atom system. Setting v to a value
between zero and one allows us to weight the loss of the total energy higher to
counteract the large amount of force loss components.

In training the TensorMol model, the charge network is trained first while the
energy network weights are frozen. After the charge network has converged, the
energy network is trained while the charge network weights are frozen. The reason
for this is because initially the predicted charges are very poor until some training
of the weight parameters has been performed. This causes the Coulomb energy to

be unstable during these early iterations. The energy network tries to learn a short-

range component of the total energy, but uses a loss function which includes the total
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energy. Because of this the training process is more difficult if the Coulomb energy is
changing from iteration to iteration as the energy network will be trying to optimize
predictions to a moving target. Training the charge network first makes training the

energy network easier.

4.2.2 Trained models

Two versions of the TensorMol model were trained. The first version is trained
on clusters of water molecules. Each sample contains between one to 21 waters. The
second network is trained on a set of 15,000 unique organic molecules containing
only C, N, O, and H atoms with the largest molecule containing 35 atoms. These
organic molecules were sampled randomly from the Chemspider database.[116] These
are referred to as the water model and Chemspider model respectively.

Samples for each network were collected following a metadynamics procedure as
outlined in Chapter [3|and in a previous publication.[70] For the water model, 370,000
geometries were collected in all. For the Chemspider model, 3,000,000 geometries
were collected from the 15,000 molecules. Energies, atomic forces, and molecular
dipoles were collected from calculations with an ©wB97X-D/6-311G** model chemistry
using the Q-Chem software package.[93, [107] The data were split 80:20 for a training
and testing set in both models. Because this is the model chemistry used to calculate
our training data, comparisons in Section [4.3] will be made relative to the same model
chemistry. For brevity, I will refer to this model chemistry as DFT in the rest of the
analysis for this work.

Each model contains three hidden layers for each element in both the charge
and energy networks. The water model has 500 neurons per hidden layer and the
Chemspider model has 2000 neurons per hidden layer. The softplus activation was

used at each hidden layer in the form In (1.0 + exp{|az]|})/a with « set to 100.
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4.3 Results

4.3.1 Water model

After training the water model, the root mean square error (RMSE) over the test
set was 0.054 keal mol™ atom~! and 0.49 keal mol™ A~ for the energies and forces
respectively. The top left panel of Figure |4.2| shows a binding energy curve for a
water molecule trimer as one water is moved away from the other two. The network
reproduces the binding energy curve accurately and changes smoothly throughout
the stretch.

The bottom panel of Figure shows the same binding energy curve, but with
the contributions from the energy network, the calculated Coulomb energy, and the
van der Waals energy in Equation broken down as a percentage of the binding
energy. At a short range the total energy is dominated by EVY. The van der Waals
contribution drops off quickly, and the energy network gradually decreases before
dropping off smoothly as the Coulomb energy begins to dominate at long-range.
Once all atoms in the translating water have moved beyond a certain point, they
have moved past the sensory range of the ACSFs and so the contribution from ENVV
drops to zero.

The charge network learns high quality charges able to accurately reproduce the
dipole moment. A water dimer system with a hydrogen bond between the two water
molecules is used to display this by rotating the proton-donating water about the axis
between the oxygen and the hydrogen opposite the one donated to the hydrogen bond.
The energy is shown throughout this rotation as well as the three components of the
dipole vector from TensorMol and as calculated the by the same model chemistry used
for the training data in Figure [4.3, The dipole components and energy all match the
DFT results well and the dipole vector changes smoothly.

Given the higher dimension of the Hessian matrix, its accurate reproduction is
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Figure 4.2. Top panel: PES of water trimer when one water is pulled away
from the other two. Bottom panel: Percent contribution of binding energy
between the water that is pulled away and the other two water molecules
from the Behler-Parrinello atom-wise energy, electrostatic energy and van
der Waals energy. Behler-Parrinello atom-wise energy contributes most of
the binding energy at the short range, and electrostatic energy is the
dominant contribution at long range.
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Figure 4.3. Top left panel: PES of breaking a hydrogen bond between two
water molecules by rotating one water around the O-H bond. Top right,
bottom left and bottom right panels: change of x, y, z, dipole component

during the rotation, respectively
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Figure 4.4. Simulated harmonic IR spectrum of 10 water cluster (top
panel) and 20 water cluster (bottom panel) generated by
wB97X-D/6-311G**(dashed orange line) and TensorMol force field (solid
blue line).
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a more stringent test than energies. I used a harmonic approximation to calculate
the frequencies and intensities of an IR spectrum for a 10 and 20 water cluster. The
result is shown in Figure [4.4] along with the spectra calculated with DFT. The fre-
quency and intensity calculations are performed at their respective minimum energy
geometry from the TensorMol model and DFT, so the IR spectra further evidences
the ability of TensorMol to be able to accurately produce the correct geometry for

non-covalent systems.

4.3.2 Chemspider model

Next I will discuss the Chemspider model. The diversity of molecules to which
the Chemspider model is fit compared to the water model greatly increases the com-
plexity of the model. The RMSE of the energy and forces for the testing data were
0.24 kecal mol™! atom™! and 2.4 kcal mol™! Afl, respectively. More importantly, the
network reproduces properties of molecules not included in the training or testing set
with accuracy.

We calculated the IR spectra for morphine, which is a molecule not included in
our training or testing data. The results are shown in Figure 4.5 In the top right the
3D geometric minimum structure of morphine as optimized by the Chemspider model
is given. RMSE of bond-lengths and angles for the minimum geometry is 0.0067 A
and 1.04° respectively relative to DFT.

In the top left panel of Figure the harmonic IR spectrum calculated is shown
compared to the same calculation for DF'T. The spectra are in good agreement. The
MAE of frequencies calculated with the Chemspider model and DFT is 13.7 cm™*.
Figure[4.6]shows calculated harmonic IR spectra for four other molecules not included
in our training or testing data. Results again compare favorably with DFT for each
molecule. The MAE of calculated frequencies relative to DFT is less than 20 cm™!

for all four of these molecules.
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Figure 4.5. Morphine geometry optimized by TensorMol-0.1 (upper right
panel) and its harmonic IR spectrum simulated by
wB97X-D/6-311G**(dashed orange line) and TensorMol force field (solid
blue line) (upper left panel). Lower panels show TensorMol’s real-time IR
spectrum vs. DFT (left) and the conservation of energy maintained by the
smoothness of the energy (right).
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Figure 4.6. Harmonic IR spectrum of four different molecules simulated by
wB97X-D/6-311G**(dashed orange line) and TensorMol-0.1. All the
molecules are not included in the training set.

Calculating harmonic IR spectra requires quadratically scaling effort. For large
molecules it becomes more computationally favorable to simulate the dynamics of the
molecule and Fourier transform the dipole-dipole correlation function. I performed
this simulation to calculate a real-time IR spectra for morphine which is shown in the
bottom left of Figure [£.5] T also show the contribution from the potential and kinetic
energy along with the total energy throughout the morphine simulation in the bottom
right panel to demonstrate that TensorMol exhibits conservation of energy as well.
A sample experimental IR spectrum for morphine is provided in the Supplementary
Information for comparison.

TensorMol also exhibits good reproduction of non-covalent interactions. The
Chemspider model was used to calculate binding energies for two sets of DNA base

pairs: thymine-adenine and guanine-cytosine. Geometries and binding energies from
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Figure 4.7. Binding energy between the DNA base pairs vs. wB97x-D with
methods at their optimized geometries. The difference between DFT and
TensorMol binding energy is j 2 kcal /mol.

TensorMol and from DFT are shown in Figure [4.7] The binding energy errors by the
Chemspider model are 1.2 kcal mol™" for thymine-adenine and -2.0 kcal mol™" for

guanine-cytosine.

4.4 Conclusions

I have presented the TensorMol model, a transferable neural network model chem-
istry. TensorMol is functionally similar to previous highly transferable neural network
potentials such as ANI-1 , but includes long-range physical interactions to augment
the exclusively short-range nature of the models based on their feature representa-
tions. Incorporating these physical interactions explicitly improves the accuracy and
interpretability of TensorMol relative to previous works. I have described two mod-
els; one trained exclusively on clusters of water molecules, and one trained with a
diverse set of random small organic molecules limited to C, N, O, and H atoms. The
accuracy and transferability of these models is shown such that further developments

should be pursued to bring the advantages of these models into practice.
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One of the major advantages of TensorMol is that the charges are inductive but
do not require solving a costly self-consistent polarization equation. Furthermore,
the feature representations are implemented with a neighbor list to keep the cost
scaling near-linear with system size. This makes TensorMol competitive in terms of
computational cost with classical polarizable force fields.

There will be several improvements for TensorMol in future versions. First, split-
ting the ACSFs into channels for each unique element, or element pair, quickly be-
comes costly if more than a few elements are considered. The Chemspider model uses
ten channels for the angular symmetry function component to encode the atomic num-
bers of its neighbor pairs when just four elements are included. A better method of
encoding atomic numbers which does not grow the size of the feature representation
would be a preferable alternative to keep the computational efficiency high. Im-
provements to the long-range physical interactions, such as a many-body dispersion

scheme, would also improve TensorMol further.
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CHAPTER 5

FULLY TRANSFERABLE HIGH-DIMENSIONAL NEURAL NETWORK
POTENTIALS

5.1 Introduction

In Chapter , I presented TensorMol,[57] a neural network model of the potential
energy surface that is augmented with long-range physics. TensorMol, along with
other similar robust models[58, [117], offers near ab initio accuracy at computational
costs competitive with classical force fields on a wide range of systems, nevertheless
there are still limitations of these models which must be overcome to achieve wide-
spread adoption by practitioners.

TensorMol, along with other robust NN models based on the HDNNP scheme of
Behler and Parrinello[5] rely on splitting the geometric features of the ACSFs into
channels to encode the atomic identity.[57, 58] The earliest attempts towards this
goal used one-hot encodings of atomic number to split features into channels. An
analogy may be drawn to digital representations of color images, where red, green,
and blue colors are split into channels which collectively make up the image. In this
analogy elements correspond to a discrete color channel (i.e. red, green, or blue).

Another limitation of models based off of HDNNPs is that they are parameter-
ized differently for each element; that is, another NN is added to the model for each
unique element in the training data. While this allows flexibility in the model such
that it can parameterize predictions for each element, it also prohibits the model

from sharing learned patterns in data between elements. If each element’s NN shared

65



parameters, then the model would be able to use transfer learning to improve predic-
tions. Furthermore, the balance of elements in small organic molecules heavily favors
C and H and to lesser extents N and O. Incorporating new elements into the training
data means that there will be severe imbalances in the number of samples containing
less common elements. Using a single NN for each element will help to compensate
for this imbalance because the model can use patterns learned about other elements
to improve its predictions.

Early models such as TensorMol and ANI-1 have been limited to relatively few
unique elements for these reasons. Adding new elements to the training data means
the number of channels in the feature representation will grow, and thus the en-
tire model must be retrained from scratch. In Section B.2.1] T mentioned that the
number of channels in the angular symmetry functions from Equation grows as
N(N + 1)/2. Using the same set of ACSF parameters as TensorMol, for just four
unique elements (C, N, O, and H), this means there are ten channels with 64 angular
functions per channel for every atom in the system. Adding just two more unique
elements already doubles the number of channels for the angular functions. Given
the RAM constraints of modern GPUs, the scaling of channels in the ACSFs must
be addressed.

Furthermore, if the model can be defined to be of constant size with respect to
unique elements, then the need to retrain these models from scratch is eliminated.
Indeed, the field of natural language processing has recently seen renewed interest
after robust models such as BERT[118] and GPT-2[119] which are pretrained on
massive datasets before fine-tuning to downstream learning tasks. Similarly, models
such as TensorMol could be robustly trained on large datasets and then used to fine-
tune a model to a particular system. This would allow practitioners to be able to
rapidly develop bespoke potential models with near ab initio accuracy.

In this work, I continue the development of TensorMol by presenting a new ver-
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sion which overcomes these issues. The new version of TensorMol is trained over a
dataset containing a total of eleven unique elements (C, N, O, H, F, P, S, Cl, Se,
Br, and I). The modifications made to TensorMol ensure that the feature represen-
tation is a constant size regardless of the number of unique elements in the training
data. Furthermore, TensorMol now uses a single NN for each element in both the
charge and energy networks. Regardless of the atomic number of an atom, its feature

representation is fed through the same network.

5.2 Methods

5.2.1 Deriving the elemental modes

Designing an atomic identity fingerprint requires that each fingerprint be unique
for each element. Beyond that, the fingerprint is free to be designed in whatever
manner best suites the given model, dataset, and learning target. The most straight-
forward approach is to use the atomic number as a weighting factor.[120] A similar
approach uses the group and period number instead, which parameterizes the model
in a way that maps similar elements nearby in the space of the atomic identity
fingerprint.[121} [122] De, Bartdk, and coworkers used one or two physical properties
(e.g. electronegativity) as an encoding which is more physically meaningful.[123]
124] Recently, Zhou et al. published results where they used a large dataset of
chemical environments in materials to learn an encoded representation based on that
dataset.|125] Finally, several other groups use random initialization and learn an
encoding for each element as part of the training process. |56, 117}, [126]

I wanted to incorporate the advantages of many of these approaches. Using the
period and group number of an element encodes the atomic identity into dimen-
sions which make intuitive sense to chemists. Furthermore, many chemists remember

learning about periodic trends of ionization energies or electronegativities as an un-
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dergraduate to reason about how different elements might interact. One might reason
that a chemist learns an atomic identity fingerprint in their mind which guides their
own intuition.

Modeling this concept of a chemists intuition, I collected a set of ten properties
for each element which chemists use to reason about what distinguishes one element
from another. These properties were used as the input for an autoencoder NN to
learn a compressed representation. This compressed representation is referred to as
the elemental modes. I take the elemental modes as an atomic identity fingerprint to
be used in downstream learning tasks.

An autoencoder is a type of NN which uses the input to the network as the
learning target as well. Autoencoder models consist of two NNs; an encoder which
transforms the input into a latent representation, and a decoder which decodes that
representation back to the same target inputs. By creating an information bottleneck
at the latent space, the model is forced to learn a compressed representation of
the inputs. Using an autoencoder NN has the benefit of a non-linear compression
compared to methods like principal component analysis (PCA).

The ten properties of each element were atomic number, atomic mass, electron
occupancy of the valence s-, p-, and d-orbitals, electronegativity, atomic radius, ion-
ization energy, electron affinity, and atomic polarizability. The properties are col-
lected for each element up to Bi. Using these properties, I trained an autoencoder
with a reconstruction loss on the properties for each element. A diagram of the input
properties and the learned latent space is shown in Figure [5.1

The expectation is that the elemental modes will contain information regarding
how similar two elements might be. For visualization purposes I have performed
PCA on the elemental modes and plotted the first and second principal components
in Figure p.2l There is a clear trend which resembles the periodic table with some

clustering of different groups of elements despite the fact that period and group
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Figure 5.1. Heat maps of ten physical properties used as the feature vectors

for each atomic species’ input to an auto-encoder neural network shown at

the top. The heat map of the latent space output from the encoder shown
on the bottom are taken as the elemental modes, a compression of the
physical properties used as a representation of atomic species for further
machine learning tasks. The decoder network reconstructs the physical

properties from the latent space, ensuring as much information is retained

in the compression as possible.

were not among the properties used to train the NN. This provides some qualitative
evidence that the autoencoder has indeed encoded relevant physical phenomena which

is know intuitively correlates with the similarity of the elements.

5.2.2 Learning formation energies of elpasolites

The elemental modes derived in Section|5.2.1|are not exclusively useful for HDNNP
models. In general, an atomic identity fingerprint is useful for many ML models of
chemical systems. Recently, Faber et al. presented a kernel ridge regression
(KRR) model which they trained to predict formation energies of elpasolite crys-
tals by calculating the formation energy with different main group elements at each
crystal lattice position. Elpasolite is one of the most abundant crystal prototypes
in the Inorganic Crystal Structure Database.[128] The crystal formula for elpasolites
is ABCyDg. There are ~2 x 10° possible elpasolites considering each combination of

main group elements up to Bi, many more than can be screened using ab initio cal-
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Figure 5.2. The first (PC1) and second (PC2) principal components of the
elemental modes color coded by grouping into alkali metals (red), alkaline
earth metals (orange), transition metals (yellow), post-transition metals
(green), metalloids (teal), nonmetals (blue), halogens (pink), and noble

gases (purple).
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culations. Faber et al. calculated the formation energy of ~10,000 elpasolites chosen
randomly from the set of ~2x 10° possible compositions using the PBE functional[129]
within the Vienna ab initio simulations package (VASP).

Their feature representation was the group and period number of the atomic
species at each lattice position ordered by the lattice position the species occupies.
Because each sample has the same crystal structure, the geometry of each sample
is constant up to the crystal lattice dimensions. Training a model on a common
crystalline geometry allows one to ignore features representing the geometry as an
input to the network. The network will learn to bias its predictions to this crystal
geometry since it will see no other samples. Because of this, I propose that this
learning task makes a good test case for the elemental modes. Using the elemental
modes in this learning task allows us to examine how well these features may perform
independently of being combined with geometric features.

I trained a NN model to predict the formation energies of elpasolites using the
elemental modes as the feature representations. The feature vector for each sample
elpasolite is the ordered set of elemental modes for each atom at the crystal lattice
sites, analogously to the work of Faber et al. The NN model consisted of two hidden
layers with 128 neurons in each hidden layer. The softplus activation function was

used to introduce non-linearities.

5.2.3 Changes to HDNNP model

Previous works using HDNNP models have relied on separately parameterized
NNs for each element. The advantage of this approach is that the model is given
greater flexibility in making predictions which can lead to more accurate predictions.
On the other hand this scheme prevents sharing of information between the NNs,
which may improve the convergence or accuracy of the overall model as well.

Furthermore, previous works have typically been limited to a few unique elements.

71



Robust models such as ANI-1[58] and the previous TensorMol work[57] used training
sets of small organic molecules limited to C, N, O, and H atoms. Including samples
with more unique elements can lead to drastic imbalances in the dataset. The di-
versity of small organic molecules is such that there will be many samples with the
aforementioned elements and relatively fewer samples containing other elements. Be-
cause training NNs requires stochastic optimization methods, a mini-batch of random
samples from the training data has a high probability of containing few or no samples
with certain elements if the imbalance is significant enough. Stochastic optimization
is meant to approximate the gradients of the parameters of the full training set by
using the gradients from random mini-batches of the training data. Mini-batches
with too few samples containing certain elements then will have no gradient to these
parameters or will have a poor approximate gradient. For this reason, it becomes
impractical to train a HDNNP model if any elements are sparse in the training data
because the updates to its parameters will be poor.

To remedy these issues I propose to use a single NN for every element. This can
rectify issues with data imbalances since the elements will share all parameters. In
a model where each element has a separately parameterized NN, it is reasonable to
assume that each NN will learn many of the same trends for different elements. I
suggest that using a single NN for all elements may even improve the training of
the model to be more accurate and more robust. The network can learn to make
reasonable predictions for elements which there is little training data by what it
learns for elements with significantly more data.

One issue that arises with using a single NN for each element is that there is no
way for the model to infer the identity of the central atom. The model should be
able to share information between the weights for each element, but the predictions
for one element in an identical local environment compared to another should differ

to a degree. Previously, this was incorporated by a distinctly parameterized NN
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for each element. In this work, I will incorporate this information into the feature
vector to overcome this issue. Alternative methods could be explored, such as sharing
the earliest layers of parameters for each element but parameterizing the last layers

separately.

5.2.4 Adjustments to ACSFs

I begin with the formalism of the ACSFs given by Gastegger et al.[120]. The

radial functions are given by

= 9(Z;)exp [-n(Ri; — R.)*] f(Ri;) (5.1)

JFi

and the angular functions are given by

— 91=<¢ Z h(Z )1+ cos (01 — 98))<
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R + R ’
0 (% _ Rs)

where these equations are identical to equations [4.1] and [£.2] in Section [£.2.1] but

X exp

the functions g(Z;) and h(Z;, Z),) are included in Equations 5.1 and [5.2}, respectively.
Note that Gastegger and coworkers use the form of the ACSF's as originally described
by Behler and Parinello,[47] where as I have retained the ANI-1 variant of the ACSF's
as was done in the original TensorMol work.|57] The functions ¢(Z;) and h(Z;, Zj)
are weighting functions which modify the contribution of each symmetry function
based on the atomic identity of the neighboring atoms.

In the original TensorMol and ANI-1 models, ¢(Z;) and h(Z;, Z;,) are functions
which calculate the outer product of the geometric features vector with a one-hot
encoding vector. Gastegger et el. suggested functions as simple as weighting each

feature by the atomic number may be satisfactory, though the scope of their work
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was limited to equilibrium structures from the QM9 dataset.[72] Indeed, the authors
point out that g(Z;) and h(Z;, Z);) may take many forms.

Here I implemented ¢(Z;) and h(Z;, Zx) by using the elemental mode vectors
derived above. g(Z;) takes the outer product of the elemental modes vector for atom
j in the local environment. The elemental modes vectors will scale the Gaussian
peaks in each channel by a constant factor. The network can then infer the identity
of atom j by how identical radial features scale across the channels of the network.

Channeling features for the angular functions is more difficult because of the three-
body nature of the functions. The features must remain invariant to the ordering
of neighbor atoms in the local environment. Therefore h(Z;, Z),) must result in the
same set of features as h(Z, Z;). One of the most straightforward ways to achieve
this is to first take the element-wise product of the two elemental modes vectors.
The resulting vector is then used similarly to ¢g(Z;) to take an outer product with
the angular features.

In Section [5.2.3] I discussed incorporating the identity of the central atom into the
feature representation. One could imagine a tensor of feature vectors of dimension
Ng X Nacsrs X Nenannels Wwhere Ng is the number of unique elements, N cgrs is the
number of ACSFs, and N yanners is the number of channels created by the elemental
mode vectors. The submatrices along the first dimension of this tensor correspond
to the feature vector of different elements in an identical local environment.

Calculating and storing a tensor of this size for each atom in a mini-batch is
impractical for the memory constraints of current GPU architectures. The same re-
lationship can be learned as a tensor decomposition. Indeed, there is previous work
in the field of natural language processing where a tensor decomposition is used in a
character-level recurrent NN (RNN).[130] Their work imagines characters as embed-
ded in words. A letter has some meaning on its own, but also has a meaning which

depends on the context of the surrounding letters. They use a tensor decomposition
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to learn a transformation from the current context vector into features that represents
the next letter in the word within that context.

Similarly we can think of learning a transformation from the context of the local
environment to a feature representation which composes the local environment with
the identity of the central atom. To achieve this, I introduce two learnable matrices
P and ). These matrices will be initialized randomly and trained with the rest of

the parameters in the model. The tensor decomposition is incorporated as

Gi = P[G; (8,Q)] (5.3)

where [3; and G; are the elemental mode vector and feature vector for atom 7. First,
I calculate the vector which results from the product of ; and ). This is a linear
transformation which maps the elemental mode vectors into a new vector of the same
dimension to represent the identity of the central atom. The new vector then scales
each channel in the original feature vector GG;. Finally, another linear transformation
is applied by P to encode this identity into the feature vector. CNL becomes the new
feature vector for atom ¢ which now incorporates the local environment of the atom
with its own identity vector. This should allow the model to learn patterns in how
the feature vector changes based on the identity of the central atom, and to adjust

its predictions accordingly.

5.2.5 Data generation

As mentioned in Section [5.2.3] the imbalances present in the elements occurring
in small organic molecules can be an issue. Changes to the TensorMol model are
intended to alleviate this concern, but it is still desirable to incorporate as much
diversity in the dataset as possible. The updates of the parameters in the model

during training are derived from the average gradients of the error in the predictions
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for each sample. This averaged gradient can be thought of as an equally weighted
contribution from each atom in all samples in the mini-batch. If a mini-batch contains
few or no samples with certain elements, the gradients from those elements will be
drowned out by elements of which there are many samples. Therefore, it is important
to be cautious about drastic imbalances in the training data.

Similarly to the previous TensorMol implementation,[57] our data is generated
by first collecting a set of unique molecules from Chemspider.[116] I set several con-
straints on which molecules are allowed in the dataset. First, each molecule must
contain only C, N, O, F, P, S, Cl, Se, Br, I, or H. This significantly expands the
allowed set of molecules beyond previous works to many new elements. Even now
most other models have been limited to at most eight unique elements.[131} [132]

Sampling small organic molecules results in drastically more samples with C, N,
O, and H atoms than other elements. For this reason, I wanted to ensure the data
was not severely imbalanced towards these four elements by adding a constraint on
the dataset requiring that each molecule must contain at least one atom of F, P, S,
Cl, Se, Br, or I. This ensures that each mini-batch will contain a greater diversity of
elements in each sample and provides better gradients with stronger signals from the
less frequent elements to update the parameters of the model.

Finally, the size of the molecules must not exceed 40 atoms in total, including
hydrogen. This constraint is simply to keep the cost of generating reference data to
train the model to a minimum. Previous works have shown that similar models are
able to generalize predictions for larger molecules based on training on datasets of
small molecules.[58, |102] T have increased the maximum number of atoms per sample
as compared to previous datasets for similar tasks|[71] because there are many fewer
known organic molecules with the necessary diversity of elements for building this
dataset. Increasing the maximum number of atoms allows us to collect more diverse

molecules for our dataset to avoid drastic data imbalances. The largest molecules
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in our dataset contain up to 40 heavy atoms, where a heavy atom is anything other
than hydrogen.

Given these constraints, I collected a set of ~45,000 unique molecules from the
Chemspider database. Each molecule was first geometry optimized with Q-Chem and
»wB97X-D/6-311G**. Next, the minimized geometries were used as initial geometries
for a metadynamics simulation to collect sample geometries for each molecule follow-
ing our previously outlined procedure.|70] In all, the final dataset contained ~1.35
million geometries from these molecules. A breakdown of the composition of the
atoms and molecules in the dataset is given in Table [5.1}

This dataset is split into an 80:20 ratio for training and testing data used for
developing the HDNNP model described in Section [5.2.3] The model consists of two
NNs; a charge network and an energy network. Each network contains three hidden
layers with 512 neurons per layer. I again used the softplus activation. The choice
of activation function is particularly important for training models from which it is
desired to produce smooth atomic force gradients. The forces predicted by the model
are calculated by differentiating the predicted energy back through the parameters of
the model. To ensure smooth predictions of forces, the activation function must have
a continuous first-order derivative. In Chapter [ I discussed adding atomic force
gradients into the loss function of the network. Training the model by including
forces requires the calculation of second-order derivatives of the model parameters.
The softplus activation function is continuously differentiable up to arbitrary order,
so it makes a suitable activation function for these types of NN potential models.

In Chapter 4| the TensorMol model was parameterized to fit atomic charges based
on the molecular dipole[57] because it is a true quantum mechanical observable and
changes in the dipole are smooth with respect to the geometry of the system. This
ensures that charges predicted by the model are similarly smooth. On the other hand,

partial charges from a charge partitioning scheme represent a much larger wealth of
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TABLE 5.1

INFORMATION ABOUT THE ABUNDANCE OF EACH ATOMIC
SPECIES IN THE TRAINING DATA SET FOR THE HD-NNP.

Element Atom count Molecule count

H 1.79 x 107 1.35 x 10°
C 1.57 x 107 1.35 x 106
N 3.15 x 10° 1.15 x 106
0 2.47 x 10° 9.61 x 10°
F 1.27 x 109 4.78 x 10°
P 7.60 x 10* 5.32 x 10*
S 1.11 x 106 6.01 x 10°
Cl 5.81 x 10° 2.96 x 10°
Se 1.55 x 10* 1.44 x 10*
Br 3.10 x 10* 2.88 x 10*
I 2.97 x 10* 2.60 x 10*

Atom counts enumerates the number of atoms
of each type in the whole data set. Molecule counts
enumerate how many unique geometries contain
each atomic species.
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data than molecular dipoles, since each atom in the molecule will have an assigned
partial charge. This can be beneficial when the size of the dataset is small and to
help with generalization of the model to new data. In this work the charge network

is trained using Mulliken charges as a learning target for each atom.[133]

5.2.6 Simulating alchemical intermediates

Free energy perturbation methods are a valuable tool in the drug discovery com-
munity.[134-138] Alchemical perturbations (i.e. alchemically changing one atom into
a different element) can be used to calculate differences in, for example, binding free
energies of different molecules in a protein binding pocket. These binding energies
often may differ by less than a kcal mol *.[139] The accuracy of classical force fields
may not be sufficient to measure these differences. NN potential models offer accuracy
comparable to their ab initio training data with significantly reduced computational
effort. Developing a model able to perform alchemical perturbations may offer a way
to calculate these small differences in free energies more accurately.

Classical force fields are parameterized based on bonding, which makes it dif-
ficult to run simulations with reactive chemical processes. ReaxFF offers reactive
simulations with a classical force field,[140] however, using ReaxFF is often limited
due to poor energy conservation.[141] NN potentials typically use an ansatz based
on local atomic environments, which makes simulating bond changes easier. Using a
NN potential model then may enable researchers to perform alchemical perturbation
simulations where bonding changes may be important as well.

I propose that a simple way to perform an alchemical perturbation is to perform a
linear interpolation of the feature vectors for the atoms in the system. The initial state
and final state of the system share coordinates but have different atomic numbers

which correspond to the same coordinates. I calculate the feature vectors for each
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atom in both systems and interpolate the corresponding feature vectors by
G2 = (1 - NG} +\G? (5.4)

where ézl and éf are the feature vectors for atom ¢ in the first and second states. A
is a switching parameter used to interpolate between the two states. éflc is used as

the input to the model for the alchemically intermediate state.

5.3 Results

5.3.1 Elpasolite model

The model trained to predict formation energies of elpasolites showed an MAE of
67 meV /atom on the independent test set. Faber et al. achieved an accuracy of about
100 meV /atom on the same dataset.[127] Zhou et al. also used their learned atomic
identity fingerprint on this task with a NN and achieved an accuracy of about 150
meV /atom.[125] Our atomic identity fingerprint has shown an improved performance
over previous works of the same dataset. The distribution of errors is shown in Figure
(.3l The errors approximately follow a normal distribution.

While the model in the work has shown improvements over previous works, the
main results is that the elemental modes are shown to be an effective feature rep-
resentation for atomic identities. These types of features are commonly needed in

many ML models for chemical applications. |30, |[142]

5.3.2 HDNNP model

I trained the HDNNP model on the dataset as described in Sections [5.2.3]- [5.2.5
The root mean square error (RMSE) on the independent test set for the energy
and atomic forces is 0.0976 kcal/mol per atom and 3.71 kcal/mol/A respectively.

The accuracy is similar to previous works trained on datasets with many fewer el-
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Figure 5.3. Formation energy error prediction for the independent test set
of elpasolite crystals with chemical formula ABCyDg. Inset in the top left is
the crystal structure for the prototypical elpasolite (AINaKyFg) with atom
labels shown in the bottom left. Inset in the top right is a matrix plot of
the elemental modes vectors for AINaKyFg, which is flattened to a 1D
vector before input to the model.
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ements.[57, 58, |117] Incorporating active learning methods and a larger dataset are
likely to further improve the model accuracy. Recent works have begun to explore
the feature representations used for HDNNP models and other similar data-driven
potential models to discover where issues may arise with the geometric features.[76]
Improvements in this regard are likely to similarly improve the accuracy.

Aside from higher accuracy based on metrics of the model errors, the model
presented here has several qualitative differences from previous works which should
be examined for their effectiveness. One of the major changes was to use a single
NN for each element in the training data. In Section [5.2.3] I suggested that using
a single NN for each element would likely lead to improvements of the model based
on information sharing and dataset imbalances. To examine to what degree this
may occur, I trained another identical model on the same dataset but removed any
molecules containing Cl atoms. I took the subset of molecules with Cl atoms from the
independent test set used for the model trained on the full dataset as a new test set
to compare between the networks trained with and without Cl atoms. The average
number of Cl atoms per molecule in this test set is 1.96.

The embedded atomic energies are the predictions which come directly from the
energy network. They are not a learning target, and the model may make slightly dif-
ferent predictions depending on random weight initialization, ordering of the training
data during the model fitting, or other causes of non-determinism in the final param-
eterized model. Nonetheless, for two models trained identically these differences in
predictions should be minimal, especially when the amount of training data is large
(i.e. the model is less likely to overfit). Thus a qualitative comparison can be made
of the embedded atomic energies predicted by each model.

In Figure [5.4] T have shown the distributions of embedded atomic energies pre-
dicted for the N and Cl atoms from the test set with both models. The top panel

shows the distributions of atomic energies predicted by both networks for N. The
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Figure 5.4. Distribution of embedded atomic energies predicted by two
neural networks trained with (blue) and without (green) Cl-containing
molecules. Top and bottom panels are for nitrogen and chlorine embedded
atomic energy predictions respectively.

83



distributions are very similar, showing that the models indeed may differ slightly but
their predictions will not differ significantly. This test set contains only molecules
with at least one Cl atom, thus some of the predictions for N are based on local
environments which have a Cl atom within the cutoff distance of the ACSFs. The
network trained without Cl has also not seen any samples containing Cl within the
local environment of a N atom. Thus some differences should also be attributed to
this.

Comparing both models’ predictions for Cl atoms again shows a strikingly similar
distribution of embedded atomic energies, however, the distributions have a shifted
mean relative to each other. Both models exhibit distributions which show a similar
separation of two approximately normal distributions. From this, it can be ascer-
tained that the model has indeed learned to make reasonable predictions for Cl atoms
without any training data containing CI.

Comparing the errors for total molecular energy of each model allows us to quan-
titatively analyze the differences between each model. In the CI test set the MAE and
RMSE were 1.31 kcal/mol and 1.63 kcal/mol, respectively, for the network trained
with the full data set and 9.20 kcal/mol and 12.74 kcal/mol, respectively, for the
model trained without Cl data. While the errors are only about an order of mag-
nitude larger when trained without Cl, this is evidence that the model successfully
transfers knowledge learned about different elements to improve its predictions. In-
deed it can be beneficial to use a single NN in the model.

A further analysis should compare the model presented with one trained in the
earlier style with individually parameterized NNs for each element. I discussed one
issue that might cause difficulty when training a model like this with a dataset of small
molecules and a very diverse set of elements in Section [5.2.3l Due to the stochastic
nature of the training process, severe imbalances in the number of samples with

less common elements could result in issues with the gradients used to update the
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parameters of the NNs. There are techniques used to overcome these issues, but in the
case of training an HDNNP model, it may not be straightforward because the issue
arises due to parameters not being shared by elements but the loss function depending
on the output for multiple elements. The parameters of the model must be trained
in unison so it becomes more difficult to separate the training of the subnetworks to

accommodate an algorithm which might improve the data imbalance.

5.3.3 Alchemical intermediate simulation

To examine if using the model described in this Chapter to simulate alchemical
intermediates has the potential for further development, I ran free energy simulations
where I made a gradual alchemical transition over the course of 3 ps of simulation
time. The purpose is to examine how smoothly the potential changes with respect to
the linear interpolation of the feature vectors. Because free energy is a state function,
the accuracy of the alchemical intermediate states is irrelevant so long as the potential
energy surface changes smoothly between the two states of the system.

For a test case, I chose to examine an alchemical transition between an ethanol
dimer and a water hexamer. This makes for a good first test because the carbon
atoms can be interpolated into oxygen atoms without the need to destroy or create
any atoms. This makes the simulation easier to set up because destroying or creating
atoms requires more care to ensure that the alchemical intermediate potential surfaces
do not exhibit any regions where the gradients become unstable. For example, with
a classical force field it is typically recommended to smoothly turn off electrostatic
interactions first to prevent attractive forces from causing atoms to collide before
smoothly decaying other interactions in the force field.

The potential energy during a 10 ps simulation is shown in Figure 5.5, The initial
geometry is an ethanol dimer for which I propagate dynamics with using the HDNNP
model discussed in Section for energies and forces and a 0.5 fs time step. After
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Figure 5.5. Atomization energy during an MD trajectory with an
alchemical transformation of an ethanol dimer into a water hexamer over a
10 ps simulation time. Insets: a) Initial ethanol dimer geometry. b)
Ethanol dimer geometry after 2 ps of simulation time. ¢) Water hexamer
after the alchemical transformation completes at 5 ps. d) The first and e)
second proton transfers at about 6 and 6.5 ps. Proton transfer is denoted
with a dashed line.
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two ps the alchemical transition is initiated by slowly incrementing A from Equation
to interpolate the feature vectors of the dimer and water systems. Over the course
of three ps (6,000 time steps), A is incremented at each step to interpolate between
the two systems. Observing this region of the potential surface in Figure 5.5} it is
seen that the potential changes smoothly during the transition. After the transition
finishes the water hexamer reequilibrates itself through two proton transfers occurring
around 6-7 ps of simulation time. Direct observation of the simulation shows no
obvious signs of pathological behaviour which would be problematic for free energy

perturbations.

5.4 Conclusions

I presented an improved TensorMol model which is able to calculate energies and
forces for up to 11 elements. The major modifications made to TensorMol include
incorporating the elemental modes into the ACSFs to make the dimension of the NN
constant with the number of elements in the training data and using a single NN for
each element in the charge and energy networks. The accuracy of the new version
of TensorMol is similar to that of earlier models, but it is able to calculate energies,
forces, and partial charges for more elements, enabling the ability to simulate many
more systems.

These changes may be necessary to develop models able to treat many different
elements. I have discussed the challenges resulting from imbalances in datasets of
small organic molecules which would likely lead to issues with the gradients of the
parameters of the model if the elements continued to be parameterized separately.
This issue should be studied further to determine how severe this problem is, and
if it can be overcome by using an algorithm for filling mini-batches of data strategi-
cally. Training a model of the former type with as many elements would require a

significantly larger training set than this work.
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I have shown that these modifications may indeed even make the model more
robust. By sharing parameters, the network is effectively trained on a much larger
dataset. Distinctly parameterizing NNs for each element means each subnetwork
will be trained on all atoms of the corresponding element. The modified TensorMol
uses a single NN which is thus trained on every atom regardless of atomic number.
These improvements were shown to make TensorMol able to extrapolate a reasonable
prediction to a new element with which it had never been trained. This demonstrates
that sharing parameters indeed encourages improvements in training of the model,
in particular if some elements may be sparse in the training data.

I have also shown that TensorMol may be a suitable model for the calculation
of alchemical free energy perturbations. This is due to the incorporation of the
atomic identity fingerprint developed in Section|5.2.1] The elemental modes, as I have
referred to them, are a compression of physical measurements and calculations that
chemist intuitively understand as describing fundamental similarities and differences
between the elements. The way in which I have incorporated them into the ACSFs
uses the elemental modes as a continuous dimensional space. This parameterization
enables the model to interpolate between elements to improve predictions and to
enable the simulation of alchemical intermediates.

The first test of the elemental modes on a dataset of formation energies for elpaso-
lites showed that the elemental modes are able to achieve good accuracy on a learning
task, which is mostly dependent on the identity of the atoms present at each crystal
lattice position. This simple example shows that the derived representation may be
suitable for many other types of chemical MLL models. The dimension of the elemen-
tal modes is small to keep models computationally efficient in this work, but if more
robust or improved fingerprints are needed by incorporating more physical properties,
or even adding another dimension to the fingerprint (e.g. fingerprints could represent

element and another characteristic, such as orbital hybridization based on the local
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geometry) the size of the fingerprint can be trivially increased to accommodate the

greater complexity.
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CHAPTER 6

GRAPH NETWORKS FOR REACTION OUTCOME PREDICTION

6.1 Introduction

Another area where ML model may have a significant impact on the field of
chemistry is the prediction of organic reaction products. Accurate methods to predict
reactions which lead to desired products would accelerate the development of many
novel compounds which may be desirable drug candidates or many other purposes.
Recently, MLL models have exhibited the potential to make significant contributions
towards improved screening methods.

This field has been active for many decades. Early models were based on expert
coded heuristics to define mechanistic reactions.[143-146] The goal of these projects
was to develop new chemistry of previously unknown reactions. Unfortunately, these
methods have not been adopted into mainstream use by chemists due to their limita-
tions. These systems were developed by hand-coded rules which required considerable
effort and the expertise of chemists. This meant that the scopes of these systems were
limited.

With the current surge of interest the ML field is experiencing, and the ever
increasing availability of large datasets, many of these problems for which it has
been historically difficult to develop algorithms for are receiving renewed interest by
researchers employing data-driven methods. Some early examples of incorporating
data-driven approaches include using ML models with traditional reaction templates

to rank the most likely template or rank predicted products from the templates.|35,
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147, 148] Reaction templates were introduced by Corey and Jorgensen along with
their synthesis planning software Logic and Heuristics Applied to Synthetic Analysis
(LHASA).[149] Ever since, reaction templates have continued to find use for chemical
synthesis planning.

Reaction templates, however, provide little flexibility and thus are not ideal for
discovering novel chemical reactions. Data-driven approaches which depart from re-
action templates show potential to provide more flexibility in their predictions. Some
works have predicted mechanistic steps with ML models,[150-{152] but these methods
require human-annotated data along with published experimental results. Another
approach models the problem as a machine translation task analogously to natural
language processing models for translations of text between foreign languages. |27, [2§]

More recently, graph convolution networks have received a lot of attention in the
molecular sciences. Traditional convolutional neural networks (CNNs) take advan-
tage of symmetries in data by convolving filters over regularly spaced data, such
as the pixels in an image. The advent of CNNs was a crucial aspect of the recent
leaps in accuracy achieved by the image recognition community since Krizhevsky
and coworkers introduced their deep CNN model trained on the Imagenet dataset.[1]
Graph convolutions are the abstraction of CNNs to graph structured data.

There is a long history of chemical graph theory.[153],|154] Representing molecules
and reactions as graphs is a natural fit. Atoms are represented as nodes which are
connected by bonds, represented as edges in the graph. Information passes through
the edges to make updates to the nodes based on their connections to other nodes.
Graph convolutional network models have been the subject of much research within
the ML community over the past several years.[155-158] Molecular graph networks
have similarly received a lot of interest.[159H161]

Organic reaction prediction has seen an influx of efforts using graph network

models.[29-31] In particular, the work by Coley et al.[30] achieved considerably higher
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accuracy on the US Patent and Trademark Office dataset than a Seq-to-Seq model
trained on the same dataset.[28,|162] The number of parameters for the graph network
of Coley et al. also has approximately an order of magnitude fewer parameters than
the Seq-to-Seq model, evidencing the advantages of using graph representations of
molecules.

The work of Coley et al.[30] and many others[27] 28, |31] has a goal of searching
for new chemistry; i.e. their work is intended to identify new reactions through data-
driven methods based on what reactions are already well known in the literature.
The application of known reactions is still somewhat of an art form for synthetic
chemists. One must not only worry about whether or not a reaction will proceed,
but also will the reaction yield be sufficient to obtain enough product or what the
side products will be. Often, each reaction will be only a single step in a chain of
multiple reactions needed to synthesize the final product. High yields of compounds
at each step are necessary to keep the overall yield reasonably high through a long
sequence.

Further complicating matters is stereochemistry. Stereoisomers have drastically
different effects in medicine, but obtaining enantioenriched products can be challeng-
ing because AAGH, the difference of the change in free-energy for the two transition
states leading to the stereoisomers of the product, is often on the order of a few
kcal mol™.[163] Predicting these subtle differences would not be captured by a model
trained on a dataset as diverse or noisy as the USPTO. Transformer models have
been show to handle stereochemical information,[164] but with graph networks most
proposed models to date do not accommodate stereochemistry.[165]

To achieve quantitative accuracy, researchers must use domain knowledge to pro-
vide the model with sufficient information to determine the patterns necessary to
predict yields and steriochemical preferences. This requires a loss of generality in

favor of models which are efficient and accurate, using information which may be
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critical for a particular subset of reactions, but not for others. For example, the
Doyle group recently published work using ML models to predict yields from de-
oxyfluorination reactions with sulfonyl fluorides.|166] Related work from the Sigman
group details regressive models of enantioselectivity by similarly instituting domain
knowledge of subsets of related reactions.

To achieve next generation ML models of reaction yield prediction and over-
the-arrow reaction optimization, one logical path is to combine the success of data-
driven graph models with the expert knowledge chemists have been able to gain
about correlations between measured or calculated properties and reaction yields
and stereoselectivities. The first step toward this goal is the prediction of reaction
yields. This work is the early stages of building a graph model based on the work
of Coley et al.[30] and incorporating select properties similar to the work from the
Doyle group|[166] to make quantitative predictions of reaction yields. Combining
expert knowledge with the power of the graph representation incorporates multiple
types of domain knowledge to improve the model predictions.

The first step in this work is to reproduce the result of Coley et al. While training
on a dataset such as the USPTO will not provide enough information for quantitative
predictions, transfer learning has shown considerable benefit in the ML community.
In particular BERT[118] and GPT-2[119] received considerable recognition for their
success using unsupervised pre-training on massive corpora of human generated text
which resulted in improved models when the parameters are fine-tuned on smaller
datasets for supervised learning tasks. Furthermore, reaction yields require high-
throughput experimentation to achieve considerable amounts of data, but the analysis
of the results can still be a limiting factor. The magnitude of datasets with reaction
yields available is considerably smaller than is typical for NN models. It may be
beneficial to pre-train a graph model on the USPTO datasets to alleviate issues with

the size of reaction yield datasets.
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6.2 Methods

6.2.1 Graph model

The first part of the model builds representations of atoms or other graph objects
by convolving filters over the neighbors of atoms, typically defined as those which are
bonded to the atom, to update its own features. The process is iterative, so at each
successive step the filters incorporate information from more distant atoms through
the updates to the features of an atom’s neighbor. Typically, three to four iterations
are included for molecular graph models.

Atoms and bonds each have a set of initial features that represent the nodes
and edges in the graph, respectively. Initial features are either encoded into one-hot
vectors (e.g. atomic number) or take binary values (e.g. atom is in a ring or not).
Atom features include atomic number, atom degree, valence, and whether the atom
is part of an aromatic system or not. Degree is defined as the number of explicit
neighbors in the graph and valence as the actual number of neighbors of the atom.
In graph models, hydrogens are often treated implicitly to reduce computational
effort. Using degree and valence as features includes information about the number
of implicit hydrogen bonded to an atom. Initial bond features include bond type,
whether the bond is conjugated, and whether the bond is in a ring. The bond type
is encoded by a one-hot vector with classes for single, double, triple, and aromatic

bonds.

Algorithm 1: graph node update procedure

for v; € G do
Get features {h,,} of neighboring nodes {v;} ;

Update node features {h,,} + f <Zj h,,J.) :

end
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For a sample reaction, the initial features for each atom and bond in all reactants
and reagents are collected using the RDKit cheminformatics package.[167] The model
from Coley et al. uses a Weisfeiler-Lehman Network for the graph updates.[168] The
Weisfeiler-Lehman algorithm follows Algorithm [1] where 1; is the node for atom 4,
hy, is the set of features for atom ¢ at the current step, G is the molecular graph
which contains the set of nodes (atoms) and edges (bonds) in the molecule. f(x)
here is an ideally injective function. The process is repeated for k steps to iteratively
update the atom node features. In a graph-convolution model, f(x) is typically a NN
to combine the neighbor features with the atoms features in an invariant way with
respect to ordering of the neighbors.

Following Coley et al., the graph model takes the initial features for the neighbor-
ing atoms and the bonds which connect them. For each neighbor, the atom and bond
features are concatenated into a single vector which is fed into a NN with a single
hidden layer. The features of this hidden layer are then summed across neighbors of
each atom to preserve invariance. Then, the sum is concatenated with the atom’s
own features from the previous iteration in the graph, or from the initial features
for the first iteration. Finally, this vector is input into another hidden layer which

produces the updated atom features. The process is repeated for two iterations.

6.2.2 Predicting bond changes as graph operations

At this point, the model derives a set of "local” features for each atom. The
features of each atom and its neighbor atoms and bonds are again collected, but
each one is fed through a separate hidden layer. The element-wise product of those
hidden features is taken for each neighbor atom and bond. Again, the neighbors are
summed to preserve invariance at this point. An atom’s own hidden features are
then multiplied element-wise with the neighbor features. This set of local features

is used to represent what the graph has collected about atoms based on their local
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environment.

After the local features have been collected, the model then uses these features to
predict the probability of two atoms to change their current (non-)bond to any other
bond order. Each reaction in the dataset contains labeled bond changes of two atoms
and their new bond order in the product. The first portion of the model uses these
labels to assign probabilities to perceived likely bond changes based on the reactants
and reagents. The most probable bond changes are then used in another model to
build candidate products which the model will rank as the most likely products.

For the model to predict whether two atoms are likely to change their bond,
purely local information from the graph model is insufficient. Reactions depend on
the reaction conditions including the solvent, catalysts, or other reagents involved in
the reaction. The graph update process only allows for information to spread through
bonded connections over a few atoms. Distant atoms or atoms in another molecule
carry important information for predicting the probability of two other atoms to form
a particular bond.

To remedy this, Coley et al. implement an attention NN to collect a set of ” global”
features for each atom. The global features are calculated by taking the local features
for one atom and summing with the local features for every other atom across all
atoms in the reactants and reagents. The pairwise sums are then fed through a single
hidden layer followed by a sigmoid layer which produces a scalar for each atom in the
system. The sigmoid layer ensures an output between zero and one. The scalar is
used to weight the pairwise sums which were fed into the first layer of the attention
NN, and then the result is summed across all atoms. This is taken as the global
features of the atom.

The intent behind the attention mechanism is to allow the model to collect another
set of features by deciding which other atoms in the reaction system it should consider

when deciding the probability of two atoms to form a particular bond order. Because
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the model is based on the net bond changes in a reaction, without the attention
mechanism there would be no way for the model to consider information from the
atoms on a catalyst in deciding which atoms are most likely to react.

Next, the local features and global features are separately summed for each pair of
atoms in the molecule to represent features that will be used to predict the probability
of that pair of atoms forming each bond order including a non-bond and aromatic
bond. Each local atom pair and global atom pair feature vector are fed into separate
single hidden layers and then summed to create a feature representation of the atom
pair which contains the local and global information about both atoms. This feature
vector is then fed through another layer which maps the features to a vector of
five scores. The five scores correspond to probabilities of the atom pair to form
a non-bond (i.e. to break an existing bond), single, double, triple, and aromatic
bond. This score is then used to rank the most likely bond changes over the reaction
system. Larger positive numbers have a high probability of forming the bond change
and lower negative numbers have a low probability.

The loss function to train the model is a cross entropy loss over a sigmoid function
for each of the five bond types. This type of loss function is used in multi-class
classification tasks with classes which are not mutually exclusive. The learning target
for each atom pair for each bond type is a binary number corresponding to whether
or not that atom pair newly forms the bond type in the products of the reaction. If
the bond exists in both the reactants and products, or the bond does not exist in
both the reactants and products, the label will be zero. If the atom pair has a change
in the bond type between them, the label will be one for the bond type the atom pair
forms in the products. For all other bond types between that atom pair the label will
be zero. The rationale is that the model should predict high probabilities for bonds

in the products that are different than in the reactants.
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6.2.3 Future implementations

The future work in this project consists of completing the graph model from Coley
et al. After the model predicts the most probable bond changes, candidate products
are formed by selecting the top k bond changes, and enumerating all possible products
using up to five bond changes for each candidate. Each candidate is screened for
invalid stoichiometry and only valid molecules are retained. A reaction representation
is calculated by finding the difference in atom features between the reactants and
product candidates using a similar graph network which are used to rank the most
likely products.

Coley et al. use a softmax cross entropy loss over the candidates to rank the most
probable candidate. This amounts to a classification task, as the few most probable
candidates are typically considered, but there is no information about the yield of
the reaction. If the model is tailored to a specific reaction and we wish to predict
yields, then often the product is known so instead this portion of the model can be
turned into a regression model of reaction yield.

Including calculated and measured properties into the model should improve per-
formance. One consideration is that if properties are required to run the model, then
they should be fast to evaluate. Otherwise, properties may be implemented by having
the model learn the properties as a pre-training method to build features, and then

fine-tuning the model for prediction of yields by incorporating those learned features.

6.3 Results

The model is trained on the same dataset used by many previous works. |27, 28,
30, [31] The work is in very early stages and as such the early focus is in replicating
the work from Coley et al.[30] The progress so far has reached a point where I have

replicated the results from the portion of the model which has been discussed here. In
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TABLE 6.1

THE ACCURACY OF THE MOST PROBABLE BOND CHANGE
PREDICTIONS FROM COLEY ET AL.[30] AND THIS WORK.

Model Top-12 [%] Top-16 [%] Top-20 [%] Top-40 [%] Top-80 [%]
Coley et al. 87.0 90.5 92.0 95.3 97.1
This work 87.0 89.5 91.0 94.8 97.0

Accuracy here is defined as all of the correct bond changes to form the products occurring
in the top n most probable bond changes predicted by the model where n is any integer. If
any of the correct bonds is missing from the set of the n most probable changes the model is
considered to be wrong for that sample.

the work from Coley et al. after their model ranks the top bond change candidates,
they form product candidates by enumerating combinations of the highest probability
bond changes and applying the changes to the reactants. Unstable structures with
violated valencies in the structure are removed from the candidates. The future work
regarding this project is to finish replicating the later portion of the model published

by Coley et al.

Because reproducing the full model from Coley et al. is incomplete, the cur-
rent progress cannot be compared to much of the analysis in their manuscript.|30]
However, a comparison of the accuracy can be made for the portion of the model
which predicts the most likely bond changes. From the graph model implementation
provided by the authors, they supply metrics for the accuracy of this portion of the
model.[169] These metrics are compared to the results obtained in this work so far in
Table [6.3] The accuracy of the models are well within the expected variance based

on the non-determinism of training NN models.
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6.4 Conclusions

In the immediate future, work on this project will consist of finishing to replicate
the model from Coley et al.[30] Their graph network model was shown to achieve
superior accuracy over other state-of-the-art models with an order of magnitude fewer
parameters. The strength of graph representation is clear from this result. With the
goal to make a regressive model of reaction yields, changes will need to be made
to accommodate the incorporation of properties which experts have found correlate
with reaction yields in other models. A model which combines the power of these
two types of domain knowledge may be a powerful method for predicting reaction
yields.

Since predicting yield is a regressive task instead of classification, the model needs
to be more sensitive to the reaction conditions. This may require innovative ways
of including more granular details about the reaction conditions. For example the
temperature of the reaction can affect yield, but it is not clear how this information
would be included in graph models. Similarly for including measured or calculated
properties of the reactions, the way this is incorporated into the model will require
some experimenting with the model parameters. Furthermore, significant efforts are
required to generate a dataset with yields. High-throughput experimentation enables
the generation of modest datasets, but analysis is still a rate-limiting step in the
pipeline.

One of the biggest challenges likely to be faced during this work is a lack of
significant amounts of data needed for NN models. The small size of datasets with
reaction yield data will require including pre-training methods to encourage the model
to learn what it can from datasets for related tasks. Aside from pre-training with the
USPTO data, it may be possible to include pre-training from other standard datasets

with calculated properties that may correlate with reaction yields.
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CHAPTER 7

STOKES SHIFTS IN LEAD HALIDE PEROVSKITES

7.1 Introduction

Brennan and coworkers published a manuscript detailing an apparent Stokes shift
in CsPbBr3 perovskite nanocrystals.[170] These perovskite nanomaterials are promis-
ing candidates for next-generation photovoltaic and light-emitting applications due
to their high photoluminescence yields, narrow emission line widths, and their size-
dependent band gaps which are tunable over the visible range of the electromagnetic
spectrum. Understanding the underlying electronic structure and dynamics is neces-
sary for their implementation into modern devices.

The work by Bennnan et al. showed a nanocrystal size-dependence of the Stokes
shift exhibited by these materials. The ensembles of nanocrystals studied ranged in
size from [ ~ 4 nm to 12 nm. Photoluminescence experiments showed a red-shift
in the emission relative to the absorption band edge. The Stokes shifts measured
ranged from ~30 meV for nanocrystals with [ =~ 12 nm to ~100 meV for | ~ 4 nm.
These results are shown in Figure [7.1}

To understand the origin of the Stokes shift, I collaborated with Brennan and
coworkers to develop a theoretical model to rationalize their experimental findings.
Historically, CdSe quantum dots were shown to exhibit a similar size-dependent
Stokes shift, which was shown to originate from band edge excitonic fine struc-
ture.[172, [173] These works increased the understanding of the CdSe model system.
Similar efforts to understand the Stokes shifts in CsPbBr3 nanocrystals should pro-

vide insight into the design for modern devices.
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Figure 7.1. (a) Ensemble absorption (solid blue lines) and emission (dashed
red lines) spectra from a small size series of CsPbBrg NCs dispersed in
toluene. Above gap excitation (Fe.. = 3.543 eV, A¢pe = 350 nm) used to

acquire PL spectra. All absorption/emission spectral pairs offset for clarity.
(b) Corresponding size-dependent Stokes shifts and those extracted from

existing literature.[171]
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To establish that the Stokes shift is intrinsic to the perovskite nanocrystal, Bren-
nan et al. ran experiments to rule out extrinsic causes. Time-correlated single pho-
ton counting time-resolved emission spectroscopy (TCSPC-TRES) ruled out solva-
tochromism and other effects with slow degrees of freedom. Absorption and emission
spectra were recorded in chloroform, hexane, and toluene which showed that Stokes
shifts deviate by no more than 10 meV based on the solvent which means the effect
is not due to the dielectric medium. Contributions from the residual size distribution
of the nanocrystal ensembles was accounted for by measuring absorption/emission
spectra when the nanocrystal ensembles were excited at their respective band edge
and comparing to those obtained when exciting further to the blue in the spectrum.
Residual size distribution was shown to contribute to the Stokes shift, though the
effect only accounted for a small portion of the exhibited Stokes shift. Corrections
brought the range of apparent intrinsic Stokes shifts from an upper-limit of ~100
meV to ~80 meV.

In this work, I collaborated with an experimental group to develop the theoretical
model of the Stokes shifts for these perovskite nanomaterials. First-principles calcu-
lations were run for model systems to elucidate the electronic structure and determine
if we could develop an understanding of the Stokes shifts based on the experimental
results in combination with my theoretical calculations. The model developed in this
work matches observed trends in the experimental data. Our model is based on first-
principles calculations of multiple size supercell models of the perovskite. I show that

the electronic structure is consistent across many different surface defect models.
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7.2 Methods

7.2.1 Bulk material characterization

To determine if our model chemistry is appropriate for the material being stud-
ied, it is necessary to first ensure that the bulk system is treated well within our
approximations. Simulating bulk materials requires the inclusion of k-space vectors
sufficient for covering the first Brillouin zone up to the symmetries of the material.
Our calculations for the nanocrystal model systems uses CP2K due to it’s efficiency.
However, sampling k-space vectors was not implemented in CP2K as of the time
this research was done. For the bulk materials, we used the plane-wave DFT code
PWSCF implemented in the Quantum Espresso software suite.[174] Scalar relativis-
tic and spin-orbit coupling interactions are included with a plane-wave cutoff of 500
eV. A 6 x 6 x 6 Monkhorst-Pack grid was used for sampling the Brillouin zone.

The calculated optimized lattice parameters and band gaps for the three crystal
morphologies of this material are reported in Table along with experimental val-
ues from the literature. Calculated lattice parameters and band gaps agree well with
experimental values. The band structure is plotted in Figure (a) for the cubic crys-
tal morphology. The calculated band gap occurs at the R point [k = (1/2,1/2,1/2)]
and has an estimated gap of 2.16 eV, which agrees well with experimental values.[177,

178

7.2.2 Generation of defect models

Experimentally observed nanocrystals of CsPbBr3 exhibit a cuboidal shape as
shown by TEM results from my experimental collaborators in Figure [7.2] so we lim-
ited the models to this morphology. CsPbBrs has been shown to exists in three
main crystalline lattice systems; an orthorhombic, cubic, and tetragonal structure.

Experiments to describe the crystal lattice present in the nanocrystals of this ma-
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TABLE 7.1

CALCULATED CRYSTALLOGRAPHIC PARAMETERS FOR BULK

CSPBBRs.

Space group Lattice parameters Band gap (eV)
Cubic a=b=c=587[584] (A)  2.16 [2.39]
Pm-3m a=L0=~v=90°

Pseudocubic a=0b=c=585(A) 2.39
P4mm a=p0=~v=90°

Orthorhombic a = 8.24 [8.26] (A)
Pnma b=11.74 [11.78] (A) 2.41 [2.25]

c = 8.20 [8.25] (A)
a=p=7=90°

Experimental values are reported in square brackets.[175H179)

Figure 7.2. Representative low- [(a) [ = 12.8 nm, (b) [ = 8.5 nm, (¢) [ = 6.8
nm, (d) { = 4.2 nm| and high- [(e) | =12.8 nm, (f) [ =8.5 nm, (g) [ =6.8
nm, (h) [ = 4.1 nm] magnification TEM images of CsPbBr3 NCs. Scale
bars on low- and high-magnification images are 20 and 5 nm, respectively.
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terial suggest that the apparent lattice reflects the orthorhombic or cubic structure
more.[80} [180] We developed models of each crystal lattice type that show no apparent
differences in the resulting electronic structure of the optimized structures.

Starting from the cubic (Pm-3m) lattice, the [100], [010], and [001] directions of
the lattice are identical. Along any of the directions, the lattice exhibits two unique
alternating layers; a first layer containing only Pb and Br atoms and a second layer
containing Cs and Br atoms. These shall be referred to as Pb-Br and Cs-Br layers in
this thesis. To build a model nanocrystal, we begin by building an n X n x n supercell
for 3 < n < 7 by building a supercell one size larger than n, then cleaving one layer
from either the three faces which terminate with a Pb-Br layer or those with a Cs-Br
layer termination. This leaves a symmetric crystal structure but the overall charge
of the model is still non-neutral.

Orthorhombic supercells are cut to identical stoichiometry and shape such that
the only difference in the supercell model systems is the tilting of the octahedral
geometry surrounding Pb in the crystal structure. By making models of both crystal
morphologies, I show that the model systems exhibit a structure which becomes hard
to distinguish between cubic or orthorhombic, but that the electronic structure is
qualitatively similar for models derived from the cubic or orthorhombic morphologies.

Important properties of these materials include a negligible dipole moment and
an overall neutral charge nanocrystal. One method to achieve this is to passivate
the surface with a model ligands similar to those observed experimentally. However,
CsPbBrjs possesses a defect-tolerant electronic structure similar to other lead-based
semiconductors.[181-183] The top of the valence band arises from the antibonding
interaction of the Pb(6s)-Br(4p) orbitals while the bottom of the conduction band
corresponds to the Pb(6p)-Br(4p) antibonding interaction. Thus cation vacancies
(Cs or Pb) would cause valence-band states, but anion vacancies (Br) would only

appear as resonances inside the conduction band if the conduction band minimum
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falls well below the energy of the Pb(6p) orbitals. For Pb, as opposed to Ge and Sn
materials, there is an increased spin-orbit interaction that increases the width of the
Pb(6p) conduction band.[183] This analysis is supported by the high photolumines-
cence quantum yields observed in these materials, which indicates a trap-free band
gap. As such, the models are based on surface defects to remedy the non-neutral
charge.

To keep a negligible dipole moment, defects must be made to lattice positions sym-
metrically to retain the inversion center about the Cartesian center of the nanocrystal.
Due to this restriction, and the stoichiometry of the perovskite, it is only possible to
terminate supercells with even n unit cells with Pb-Br layers and odd n with Cs-Br
layers. The models developed in this work all follow this restriction.

Additional vacancies beyond what is necessary to neutralize the charge of the
model system are possible. A thorough study of the free energy differences of surface
defects is needed to fully determine the composition of the surfaces, but in this work I
rely on properties which are robust with respect to the number of positions of surface
defects. If the model systems exhibit certain features common to their electronic
structure regardless of the surface defects, then it is likely that those features are
independent of surface defects. With this in mind, I studied multiple models of each

size by varying the number and position of surface defects.

7.2.3 Determination of electronic structure

All calculations of nanocrystal model systems performed in this work were done
with CP2K 4.1[184-192] using a Gaussian and Augmented Plane Wave method
(GAPW). Each model system is given 15 A of vacuum surrounding to prevent ef-
fects from periodic images of the system. The density functionals used include PBE
and HSE06.[129, |193] PBE is used for an initial geometry optimization of the model

systems to reduce the computational effort needed with a hybrid functional such
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as HSE06. The hybrid functional, however, is crucial to obtaining an accurate de-
scription of the electronic structure of these materials. After initial model systems
have been relaxed by PBE, the geometry is reoptimized with HSE06. Calculations
employed a double-C quality basis and pseudopotentials including scalar relativistic
effects.[194-197]

Once model system geometries have reached convergence, a density of states
(DOS) and partial density of states (PDOS) analysis is performed to determine the
composition of the molecular orbitals formed in the model and the density of elec-
tronic states at and near the band edges. I analyzed the PDOS for expected character
of atomic orbitals contributing to each molecular orbital and comparing with previous
studies. Furthermore, each model should exhibit a band gap which roughly matches
what is expected based on experimentally measured trends.

Finally, I observed the calculated molecular orbitals from the electronic structure
to determine what characteristics of the orbitals could guide our intuition to explain
the cause of a size-dependent Stokes shift. The bulk material exhibits a Stokes shift
of ~20 meV, which is attributed to lattice-induced carrier stabilization and remains
distinct from the size-dependent shifts observed in nanocrystals of this material. I
also invoke an adiabatic assumption that electron-hole polaronic lattice relaxation is
size-independent. [198, [199]

To observe trends in the electronic structure of these materials with respect to
nanocrystal size, I constructed models with edge lengths of | = 2.05, 2.64, 3.23, 3.82,
and 4.40 nm. Smaller models begin to exhibit less crystalline character as the lattice
positions deviate more drastically in smaller models. Larger models quickly become
computationally intractable. I was only able to complete a single model system
with an edge length of 4.40 nm due to the amount of computational effort needed.
Larger model systems would be desirable so that we can match the size distributions

experimentalists are able to synthesize, however, our largest model is approaching
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Figure 7.3. (a) Electronic band structure of bulk, cubic CsPbBrj calculated
with the spin-orbit coupling interaction. (b) DOS for two NC sizes and the
bulk material. The CHS shifts towards the VB edge as the NC size
increases, eventually becoming indistinguishable from the bulk VB edge.
(¢) Model Jablonski diagrams show the fine structure resulting from SOC.

the smallest size distributions made by Brennan et al..

7.3 Results

The DOS for two sizes of the nanocrystal models are plotted in Figure (b)
narrowed in on the band gap region, along with the DOS for the bulk material. The
trend observed shows a single electronic state which becomes separated from the
valence band edge (VBE) in the nanocrystal materials. Smaller nanocrystal model
systems typically exhibit larger separation of this state from the VBE. Figure [7.4
shows the molecular orbitals from the optimized structures for four model system
sizes. The two orbitals shown for each size are the two highest occupied valence
states, the valence band edge state (VBES) along with the low-lying gap state. The
gap state is a nodeless, cuboidal shaped orbital which delocalizes over the entire
particle. This state, referred to as the confined hole state (CHS), exists in both cubic

and orthorhombic models.
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[=3.23 nm

Figure 7.4. Molecular orbitals for models with [ = 2.64, 3.23, 3.82, and 4.40
nm. The VBES always shows a nodal plane cutting through the NC and
remains near the surface. The CHS is always highly delocalized across the
NC core and gradually becomes more diffuse as [ increases.
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In our computed model systems, the gap between the CHS and the VBES is on
the order of tens to hundreds of meV. Because of the apparent size trend of the energy
difference between the CHS and VBES, and because the order of magnitude of this
difference is the same as the experimentally observed Stokes shifts, we hypothesized
that this electronic state could account for the Stokes shifts. This would indicate
that the absorbing and emitting states are distinct from one another. Furthermore,
this state does not exist in the bulk material. Our results also show that the observed
state is robust with respect to size and surface defects of the nanocrystals.

Figure [7.5(a) shows the energy differences between the CHS, VBES, and the
conduction band edge state (CBES) for the five sizes of model systems. Energies have
been shifted so that the CHS is always at zero. The energy difference between CHS
and VBES decreases rapidly with larger size models, but shows an apparent sloping
off of the rate at which this gap closes (i.e. the second order derivative of the energy
gap between CHS and VBES with respect to model size is negative). Qualitatively,
this tracks with what might be expected if this state indeed is responsible for the
Stokes shift. Experimentally measured Stokes shifts in Figure show a similar
behavior, where the rate at which the Stokes shift decreases with size of the ensemble
distributions decays for larger samples.

These model systems are smaller than our experimental collaborators are able to
synthesize. The largest model system I made has an edge length of 4.40 nm. The
smallest average edge length from my experimental collaborators ensembles was [
= 3.0 nm, with most ensembles in the range of 3.8 nm or larger. Nonetheless, my
experimental collaborators and myself feel there is enough overlap between the exper-
imental ensembles and theoretical model systems to provide insights into the cause
of the Stokes shift. Experimental values for the ensembles are reported in Table [7.2]
Theoretical values for the model systems are provided in Table[7.3] The Stokes shift

values from both experimental and theoretical work are plotted in Figure (b) along
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Figure 7.5. (a) Size-dependent NC CBES and VBES energies plotted
relative to CHS energies, which are set to zero. State energies calculated at
the I-point. Dashed lines are corresponding interpolation fits. (b)
Experimental band edge excitation-derived AFE values (closed blue circles)
plotted against theoretical Stokes shifts (open red triangles).

with a line of best fit to the combined sets. The values from the theoretical models
appear to exhibit a reasonable trend with size for Stokes shifts to experimentally
observed values.

The size of our theoretical models makes including spin-orbit coupling interactions
computationally too expensive. Spin-orbit interactions can contribute to exciton fine-
structure, which can cause a Stokes shift in emission. To account for this, I modeled
the spin-orbit interaction between CHS—CBES spin states; the singlet spin m =0
(|Sm.=0)), triplet ms=0 (|T},.—0)), and triplets ms==+1 (|T},,=+1)) were calculated
using a Breit-Pauli Hamiltonian|200-202] to approximate the spin-orbit coupling be-

tween relevant spin states. The form of the Hamiltonian is

~ Oé2 ZA
HSO = —?0 T(riA X pz)sz (71)
i, A TiA
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TABLE 7.2

ABSORPTION, EMISSION, AND STOKES SHIFT DATA FOR
CSPBBR3; NANOCRYSTAL ENSEMBLES.

Edge Length Stokes Shift Band Edge Absorption Emission Max

(nm) (meV) (eV) (eV)
3.0 114 2.853 2.739
3.8 95 (82) 2.753 2.658
4.1 93 (76) 2.711 2.618
4.2 85 2.703 2.618
45 83 (66) 2.670 2.587
5.3 84 2.610 2.526
5.9 74 (59) 2.599 2.525
5.8 66 (62) 2.586 2.520
6.2 58 (45) 2.554 2.496
6.6 54 2.507 2.453
6.7 52 2.501 2.449
6.8 50 2.530 2.480
7.9 49 (46) 2.476 2.427
7.9 41 2.481 2.440
8.5 35 2.471 2.436
9.2 10 (38) 2.462 2,422
11.7 35 (37) 2.455 2.420
12.8 17 (20) 2.415 2.398

Stokes shifts in parentheses are taken from emission spectra with band edge
E..c. All other data are for emission spectra with F.,. = 3.543 eV.

113



STOKES SHIFT AND BAND GAP DATA FOR THEORETICAL

TABLE 7.3

MODEL SYSTEMS.

Label Edge Length Stokes Shift Band Gap Surface Defect
(nm) (meV) (eV) (%)
NC-3-1 2.05 261 2.665 7.8
NC-4-1 2.64 176 2.517 58.6
NC-4-2 2.64 150 2.371 7.6
NC-4-3 2.64 193 2.503 5.5
NC-4-4 2.64 176 2.213 58.6
NC-5-1 3.23 123 2.044 37.1
NC-5-2 3.23 181 2.237 5.3
NC-5-3 3.23 75 1.914 31.8
NC-6-1 3.82 137 2.382 55.7
NC-7-1 4.40 119 2.070 3.7

Naming convention follows NC-n-m where n correspond to the number of
unit cells used to construct the supercell model as discussed in Section and
m distinguishes models of the same size. Surface defect refers to the percentage

of atom vacancies relative to a supercell model with no surface vacancies.
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where i indexes over electrons, A indexes over nuclei, ay = 137.0377! is the fine
structure constant. Z, is the bare positive charge on nucleus A. s; represents the
spin of electron 7. The term r;4 X p; is the angular momentum operator of electron
i calculated with respect to nucleus A at position R4, with r;4 being the distance
between them. The resulting Hamiltonian is diagonalized to obtain spin-orbit coupled
fine structure states. The four resulting fine-structure states are separated by as much
as 10.3 meV for a model system with an edge length of 2.64 nm, and as little as 0.13
meV for and edge length of 3.82 nm, so we did not consider this interaction significant
enough to result in the size of Stokes shifts observed.

Summarizing this with the observations of the CHS thus far discussed, the model
Jablonski diagram of the spin-orbit interaction and the ordering of the fine-structure
splitting is shown in Figure [7.3(c). Furthermore, we show the model of our ratio-
nalization for the Stokes shift. Our model suggests that the CHS may be dark in
absorption relative to the states at the top of the valence band. Excitation occurs
primarily from the VBE to the conduction band edge (CBE) with a non-radiative re-
laxation of the hole from the CHS to the VBES, followed by relaxation of the electron
from CBES to CHS.

The absorption strength of the CHS—CBES transition was measured as the tran-
sition dipole moment between these two states. This is compared to the absorption
strength of the states for all transitions from VBES—CBES which fall within the
range of energies for the laser used in the photoluminescence experiments. No trend
with size is observed, but the absorption strength of the VBES—CBES ranges from
a factor of 10 to 50 higher than the strength of the CHS—CBES transition. Thus we

suggest that absorption of the CHS is relatively dark compared to the VBES.
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7.4 Conclusions

This work establishes a model for the Stokes shift observed in CsPbBrs. Exper-
imental photoluminescence spectra showed a Stokes shift for nanocrystal ensembles
which exhibited Stokes shifts in the range of 82 to 20 meV. Experimental results
eliminated the possibility of extrinsic factors causing the Stokes shift. Our theoreti-
cal model systems supported evidence of the CHS, a nodeless cuboidal electronic state
which is a low lying gap state that only exists in nanocrystals. The state is shown
to be relatively dark in absorption compared to the VBES. We further show results
which suggest that the Stokes shift cannot be explained by exciton fine-structure
splitting. Furthermore, because Cs does not significantly contribute to the electronic
states near the band gap, these results may be applicable for similar perovskites
which use alternative cations. Other halides can be substituted as well, which may

show similar electronic structure in these materials.
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APPENDIX A

TERMINOLOGY

TABLE A.1

COMMONLY USED ABBREVIATIONS

Abbreviation Definition

ML machine learning

NN neural network

HDNNP high-dimensional neural network potential
ACSF atom-centered symmetry functions

GAN generative adversarial network

RNN recurrent neural network

CNN convolutional neural network

ELU exponential linear unit (activation function)
KRR kernel ridge regression

MAE mean absolute error

MSE mean signed error

RMSE root mean square error

MBE many-body expansion

MD molecular dynamics

AIMD ab initio molecular dynamics
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TABLE A.1 (CONTINUED)

Abbreviation Definition

MetaMD metadynamics

NMS normal mode sampling

DFT density functional theory
MP2 Mgller-Plesset perturbation theory method at second order
BSSE basis set superposition error
CM Coulomb matrix

PCA principal component analysis
IR infrared

VBE valence band edge

VBES valence band edge state
CBE conduction band edge

CBES conduction band edge state
CHS confined hole state

DOS density of states

PDOS projected density of states

fs femtosecond

ps picosecond

ns nanosecond
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