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Abstract

Standard interior point methods in semidefinite programming can be viewed as tracking a solution path
for a homotopy defined by a system of bilinear equations. By considering this in the context of numerical
algebraic geometry, we employ numerical algebraic geometric techniques such as adaptive precision path
tracking, endgames, and projective space to accurately solve semidefinite programs. We develop feasibility
tests for both primal and dual problems which can distinguish between the four feasibility types of
semidefinite programs. Finally, we couple our feasibility tests with facial reduction to develop a solving
approach that can handle every scenario arising in semidefinite programming, including problems with
nonzero duality gap. Various examples are used to demonstrate the new methods with comparisons to
commonly used semidefinite programming software.

1 Introduction

Semidefinite programs are nonlinear convex optimization problems arising in many applications in engineer-
ing, control, and combinatorial optimization, e.g., see [1, 9, 13, 15, 45, 48, 50] and the references contained
therein. The primal form of a semidefinite program is

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(SDP-P)

where b = (b1, . . . , bm) ∈ Rm and A1, . . . , Am, C,X ∈ Rn×n are all symmetric matrices with

〈R,S〉 = trace (RTS) = trace (RS).

The inequality X � 0 means that X is a symmetric semidefinite matrix, i.e., every eigenvalue of X is
nonnegative. Since the set of symmetric semidefinite matrices is a convex set, (SDP-P) is a convex program
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that minimizes a linear function over a spectahedron [9] which is a linear slice of the cone of symmetric
semidefinite matrices. The corresponding dual form of (SDP-P) is

maximize
S,y

bT y

subject to C −
m∑
i=1

yiAi = S,

S � 0.

(SDP-D)

A standard approach in optimization is to consider the first-order Karush-Kuhn-Tucker (KKT) optimality
conditions. If both (SDP-P) and (SDP-D) have feasibility sets with a nonempty interior, i.e., strictly feasible,
then the KKT conditions are both necessary and sufficient for solving (SDP-P) and (SDP-D), namely:

〈Ai, X〉 = bi, i = 1, , . . . ,m,

C −
m∑
i=1

yiAi = S,

SX = 0,

X, S � 0.

(KKT)

Interior point methods, e.g., see [1, 2, 23, 34, 35, 36, 52] and the references contained therein, based on
the KKT conditions using the barrier function µ log detX yield the system

〈Ai, X〉 = bi, i = 1, . . . ,m,

C −
m∑
i=1

yiAi = S,

SX = µI,

X, S � 0

(1)

where I is the n×n identity matrix. When µ > 0, the matrices X and S arising in the unique solution of (1)
are required to be positive definite, i.e., every eigenvalue is positive, denoted X,S � 0. Hence, upon removing
the positive definite condition from (1), the remaining system of equations is simply a bilinear homotopy
parameterized by µ which defines the central path. This observation permits the use of techniques from
numerical algebraic geometry, e.g., see [6, 43], to be employed to solve semidefinite optimization problems.

When both (SDP-P) and (SDP-D) are strictly feasible, the central path converges to optimizers of
both (SDP-P) and (SDP-D), say X∗ and (S∗, y∗), respectively. That is, the optimal values are achieved
with 〈C,X∗〉 = bT y∗, i.e., a zero duality gap. However, when both (SDP-P) and (SDP-D) are not strictly
feasible, the optimal values need not be achieved and the duality gap may be nonzero. The papers [26, 37]
demonstrate the difficulty of current semidefinite programming software to identify cases such as nonzero
duality gaps and so-called weakly infeasible programs. By utilizing techniques from numerical algebraic
geometry, we develop a solving approach which handles every possible scenario in semidefinite programming.

The rest of the paper is organized as follows. Section 2 summarizes the three key aspects from numerical
algebraic geometry which will be utilized in homotopy-based approach for solving (SDP-P) and (SDP-D):
adaptive precision path tracking, endgames, and projective space. Section 3 applies this methodology to
create feasibility tests for (SDP-P) and (SDP-D). In particular, we show that our approach can distinguish
between the four feasibility types of semidefinite programs: strictly feasible, feasible but not strictly feasible,
weakly infeasible, and strongly infeasible. Section 4 provides a complete solving approach that can handle
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every scenario arising in semidefinite programs. In addition to illustrative examples throughout, Section 5
includes various examples to demonstrate our numerical algebraic geometric approach with comparisons to
other commonly used software for solving semidefinite programs. A short conclusion is provided in Section 6.

2 Primal-dual solvers and numerical algebraic geometry

As mentioned in the Introduction, we can view interior point methods as path tracking for a bilinear homo-
topy. In this section, we will consider homotopies for solving (SDP-P) and (SDP-D) and three computational
techniques from numerical algebraic geometry, namely adaptive precision path tracking, endgames, and pro-
jective spaces. For more details on numerical algebraic geometry, see the books [6, 43]. We note that some
of these ideas have already been utilized in optimization, e.g., [16, 17, 18, 32, 33, 38, 51].

2.1 Interior point homotopy

When both (SDP-P) and (SDP-D) are strictly feasible, that is, their feasibility sets have a nonempty interior,
a standard solving approach is to utilize an interior point method. That is, one first computes an interior
point that (approximately) lies on the central path for some µ > 0 defined by the interior point homotopy

H(X,S, y;µ) =


〈Ai, X〉 − bi i = 1, . . . ,m

C −
m∑
i=1

yiAi − S

SX − µI

 = 0. (H)

This is typically called the Phase I stage. The Phase II stage is to track along the central path as µ → 0+

which limits to a primal-dual solution. Since only the constant terms are changing, (H) is a so-called Newton
homotopy, e.g., see [20].

We can simplify (H) to a well-constrained homotopy, i.e., one which has the same number of variables and
equations, as follows. The total number of variables is n2+n+m since S and X are symmetric n×n matrices
and y is a vector of length m. In terms of equations, the first collection in (H) consists of m linear equations.
The next equation is a linear matrix equation of symmetric matrices so this yields (n2+n)/2 linear equations.
Thus, to have a well-constrained system, we need the final matrix equation, arising from the complimentary
slackness condition, to also yield (n2 +n)/2 equations. There are three common approaches for this: use the
upper triangular part of this matrix equation, take the upper triangular part of the symmetrized version of
this matrix equation [2], namely

1

2
(SX +XS) = µI,

or apply techniques from [21] to adaptively select (n2 +n)/2 linear combinations of the n2 bilinear equations
based on local conditioning.

Remark 1 Since S = C −
∑m
i=1 yiAi, one can trivially eliminate S to reduce from a well-constrained

homotopy involving n2 + n + m equations and variables as written in (H) to one involving (n2 + n)/2 + m
equations and variables. Similar reductions are possible for all of the homotopies presented below.

With interior point methods and homotopy continuation, there is a start point, say z∗ := (X∗, S∗, y∗)
corresponding with µ∗ > 0, i.e., H(X∗, S∗, y∗;µ∗) = 0. Hence, by taking µ = t · µ∗, z = (X,S, y), and
N = n2 + n+m, we can view (H) as a well-constrained homotopy H(z; t) : RN × [0, 1]→ RN and we wish
to track the solution path, i.e., the central path, z(t) : (0, 1] → RN defined by z(1) = z∗ and H(z(t); t) ≡ 0
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to compute z(0). Even though z(t) is a smooth path on (0, 1] for cases of interest, ill-conditioning along the
path and particularly near t = 0 can cause numerical challenges, which is addressed in Section 2.2 using
adaptive precision path tracking and endgames. To ameliorate scaling issues, we consider compactifying
using projective space in Section 2.3 which will be essential in subsequent sections. These methods are
implemented in the software package Bertini [5].

2.2 Adaptive precision path tracking and endgames

A solution path z(t) for a homotopy H(z; t) satisfies H(z(t); t) ≡ 0. Thus, by differentiating with respect
to t, one sees that the path z(t) satisfies the Davidenko differential equation

ż(t) = −JzH(z; t)−1 · JtH(z; t) (2)

where JzH(z; t) and JtH(z; t) are the Jacobian matrix and vector, respectively, with respect to z and t.
Hence, one can track along z(t) with the aim of computing z(0) using a predictor-corrector strategy with
adaptive stepsize and adaptive precision [4, 7, 8]. The predictor, e.g., Euler or Runge-Kutta predictor, is
based on solving (2). The corrector, e.g., Newton’s method, is based on solving H = 0. The stepsize and
precision used in the computations are based on local conditioning along the path as well as the history
of success or failure of previous steps as described in [4, 7, 8]. In fact, even though the path is smooth
on (0, 1], it may become ill-conditioned, e.g., near t = 0 as one approaches an optimizer for a problem which
has infinitely many optimizers. The advantage of using such adaptive approaches is to avoid unnecessary
computational costs resulting from employing too high precision or too small steps when it is not needed.

Since the goal is to numerically approximate z(0) and ill-conditioning can naturally arise near t = 0, one
switches from path tracking to using endgames to compute accurate approximations of z(0) using points
along the path z(t) for selected values of t near 0. See, e.g., [6, Chap. 3] for more details. The essential
aspect of endgames in the context of interior point methods is that z(t) can be written as a Puiseux series
in a neighborhood of t = 0, called the endgame operating zone. That is, there exists c ∈ N, called the cycle
number of the path, and coefficients ai ∈ RN such that

z(t) =

∞∑
i=0

ai · ti/c

for all t in a neighborhood of 0. Since the goal is to approximate z(0) = a0, the power series endgame [30]
uses values along the path z(t) near t = 0 to first determine the cycle number c and then uses interpolation to
approximate the coefficients up to a given order based on the number of sample points selected. The Cauchy
endgame [29] first determines c as the minimum number of loops encircling t = 0 over C needed to return to
the starting value, i.e., the cycle number c is the winding number. Since s 7→ z(sc) is analytic in a neighbor-
hood of s = 0, the Cauchy integral theorem yields z(0) by integrating along the loops encircling 0. Numerical
integration using the trapezoid rule is exponentially convergent due to periodicity, e.g., see [47]. Moreover,
the endpoint can be computed to arbitrary accuracy by rerunning the endgame, e.g., see [6, § 7.2.2], and
using deflation techniques to restore local quadratic convergence of Newton’s method [22, 25].

Example 2 To illustrate, consider solving the semidefinite program

minimize 2x11 − 1

subject to

 x11 0 −x22/2
0 x22 0

−x22/2 0 x11 − 1

 � 0
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which corresponds with (SDP-P) where n = 3, m = 4, b = (0, 0, 0, 1),

C =

 1 1 1
1 1 1
1 1 1

 , A1 =

 0 1 0
1 0 0
0 0 0

 , A2 =

 0 0 1
0 1 0
1 0 0

 , A3 =

 0 0 0
0 0 1
0 1 0

 , A4 =

 1 0 0
0 0 0
0 0 −1

 .
For µ(t) = t and α(t) = (−3t+

√
9t2 + 4)/2, the corresponding solution path of (H) is defined by

X(t) =

[
(3t + α(t) + 1)/2 0 −

√
tα(t) + 3t2/2

0

√
tα(t) + 3t2 0

−
√
tα(t) + 3t2/2 0 (3t + α(t) − 1)/2

]
, S(t) =

[
1 − α(t) 0

√
tα(t)

0
√
tα(t) 0√

tα(t) 0 1 + α(t)

]
, y(t) =

[
1

1 −
√
tα(t)

1
α(t)

]
which is illustrated in Figure 1(a).

Ill-conditioning for this path near t = 0 arises from two places. First, the cycle number is c = 2 so that
the solution path has an infinite derivative at t = 0. Second, the endpoint

X(0) =

 1 0 0
0 0 0
0 0 0

 , S(0) =

 0 0 0
0 0 0
0 0 2

 , y(0) =


1
1
1
1


is actually an embedded point on the following linear solution component of (H) parameterized by y3:

X =

 1 0 0
0 0 0
0 0 0

 , S =

 0 0 0
0 0 1− y3
0 1− y3 2

 , y =


1
1
y3
1

 .
Figure 1(b) plots the condition number of the Jacobian matrix of (H) with respect to the variables along the
path. By reparameterizing with t = s2, the solution path is analytic on s ∈ [0, 1], i.e., the cycle number with
respect to s is 1. Figure 1(c) plots the original path parameterized by t, which is not analytic at t = 0 since
it has a vertical tangent at t = 0, and its reparameterization by s with t = s2, which is analytic at s = 0.

(a) (b) (c)

Figure 1: Plot of (a) two coordinates of the path, (b) condition number, and (c) comparison of s22(t) (red)
which is not analytic at t = 0 due to a vertical tangent and s22(s2) (blue) which is analytic at s = 0.
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Remark 3 When the cycle number is not known a priori but is expected to be larger than 1, i.e., the path is
not analytic at t = 0, reparameterizing by t = sr by some integer r > 1 can help to improve the performance
of the endgame for accurately approximating the endpoint. For example, if δ ∈ (0, 1) such that {|t| < δ} is
contained in the endgame operating zone with respect to t, then {|s| < r

√
δ} is contained in the endgame

operating zone with respect to s where t = sr. Increasing the endgame operating zone is counterbalanced
by a potential increase in ill-conditioning requiring higher precision computations. Thus, when the cycle
number is not known a priori, reasonable choices are r = 2, 3, or 4.

2.3 Projective space

Since (H) is bilinear, i.e., linear in X and linear in {S, y}, it is natural to view the variables as lying in the

product space R(n2+n)/2 × R(n2+n)/2+m corresponding to the primal and dual variables, respectively. To
ameliorate scaling issues and to ensure that every solution path has finite length, we compactify this product
space using projective space. We provide a brief summary with more details in, e.g., [43, Chap. 3].

Projective space Pa, by definition, is the space of all lines in Ca+1 passing through the origin. The unique
line passing through a nonzero point (x0, . . . , xa) ∈ Ca+1 and the origin is denoted [x0, . . . , xa] ∈ Pa. Since,
for every λ 6= 0, (x0, . . . , xa) and (λx0, . . . , λxa) lie on the same line passing through the origin,

[x0, . . . , xa] = [λx0, . . . , λxa].

There is a natural embedding of Ca into Pa via (x1, . . . , xa) 7→ [1, x1, . . . , xa]. With this embedding, the
hyperplane at infinity is H = {[0, x1, . . . , xa] ∈ Pa}. In particular, Pa \ H ∼= Ca with

[x0, x1, . . . , xa] ∈ Pa \ H 7→ (x1/x0, . . . , xa/x0) ∈ Ca.

For a polynomial f defined on Ca of degree d, the homogenization of f is the homogeneous polynomial

fh(x0, . . . , xa) = xd0 · f(x1/x0, . . . , xa/x0).

Hence, {f = 0} ∼= {fh = 0} \ H where {fh = 0} ⊂ Pa is compact.

Example 4 The two circles defined by f1(x1, x2) = x21 + x22− 1 = 0 and f2(x1, x2) = (x1− 1)2 + x22− 1 = 0
intersect in two points in R2, namely (1/2,±

√
3/2) and two points at infinity. To see this, we have

fh1 (y0, y1, y2) = y21 + y22 − y20 and fh2 (y0, y1, y2) = (y1 − y0)2 + y22 − y20 = y21 + y22 − 2y0y1.

Hence, {fh1 = fh2 = 0} = {[2, 1,±
√

3], [0, 1,±
√
−1]} with the first two being finite and the last two are

contained in the hyperplane at infinity.

For the homotopy (H), the embedding R(n2+n)/2 × R(n2+n)/2+m ↪→ P(n2+n)/2 × P(n2+n)/2+m yields

Hh([x0, X], [s0, S, y];µ) =


〈Ai, X〉 − bix0 i = 1, . . . ,m

s0C −
m∑
i=1

yiAi − S

SX − µx0s0I

 = 0. (3)

Hence, this permits the independent rescaling of the homogenization of the primal and dual variables.
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2.4 Primal-dual homotopy

The interior point homotopy (H) requires one to start with an interior point on the central path. One can
modify the homotopy to create another solution path that still ends at a primal-dual solution when both
(SDP-P) and (SDP-D) are strictly feasible. For this approach to work, the following assumption is needed:

(A1) The matrices A1, . . . , Am are linearly independent.

By using (numerical) linear algebra computations, we can always replace (SDP-P) with a problem where
Assumption (A1) is satisfied and update (SDP-D) accordingly.

This modified approach builds the start point and homotopy simultaneously. To that end, arbitrary
select ŷ ∈ Rm and then compute σ ∈ R such that

Ŝ := C −
m∑
i=1

ŷiAi − σI � 0. (4)

For example, after selecting ŷ, the choice of σ can be done either by directly computing the eigenvalues of
the constant matrix C −

∑m
i=1 ŷiAi or by bounding them, e.g., using Gershgorin’s theorem.

Since Ŝ � 0, we next compute its inverse X̂ := Ŝ−1 � 0 and evaluate the linear functions b̂i := 〈Ai, X̂〉
for i = 1, . . . ,m. Let b̂ = (̂b1, . . . , b̂m), and define Cµ := C − µσI and bµ := (1 − µ)b + µb̂. Hence, it is

straightforward to check that X̂ is strictly feasible for the following perturbation of (SDP-P) when µ = 1:

minimize
X

〈Cµ, X〉

subject to 〈Ai, X〉 = bµi i = 1, . . . ,m

X � 0.

(SDP-Pµ)

Similarly, (Ŝ, ŷ) is strictly feasible for the following perturbation of (SDP-D) when µ = 1:

maximize
S,y

bTµy

subject to Cµ −
m∑
i=1

yiAi = S

S � 0.

(SDP-Dµ)

Note that (SDP-P) and (SDP-D) correspond to (SDP-Pµ) and (SDP-Dµ), respectively, when µ = 0. This
yields the following system which corresponds with (KKT) when µ = 0:

〈Ai, X〉 = bµi, i = 1, . . . ,m,

Cµ −
m∑
i=1

yiAi = S,

SX = µI,

X, S � 0,

(5)

and homotopy

H(X,S, y;µ) =


〈Ai, X〉 − bµi i = 1, . . . ,m

Cµ −
m∑
i=1

yiAi − S

SX − µI

 = 0. (Hµ)

The following shows that we can use (Hµ) to solve (SDP-P) and (SDP-D) when both are strictly feasible.
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Theorem 5 With the setup described above, if (SDP-P) and (SDP-D) are both strictly feasible and As-

sumption (A1) holds, then the solution path of (Hµ) starting at (X̂, Ŝ, ŷ) with µ = 1 is smooth for µ ∈ (0, 1]
and ends at µ = 0 at a solution of (SDP-P) and (SDP-D).

Proof. Select X0 and (S0, y0) which are strictly feasible for (SDP-P) and (SDP-D), respectively. Define

Xµ := (1− µ)X0 + µX̂, Sµ := (1− µ)S0 + µŜ, and yµ := (1− µ)y0 + µŷ. Hence,

Cµ −
m∑
i=1

yµiAi = Sµ and 〈Ai, Xµ〉 = bµi for i = 1, . . . ,m.

Moreover, since X0, X̂, S0, Ŝ � 0, convexity yields Xµ, Sµ � 0 for µ ∈ [0, 1]. Thus, we have shown (SDP-Pµ)
and (SDP-Dµ) are strictly feasible for µ ∈ [0, 1] so that standard theory [19, 23, 35] shows that (5) has
a unique solution for µ ∈ (0, 1] producing a smooth path for µ ∈ (0, 1]. Since (KKT), which are both
necessary and sufficient conditions in this case, corresponds with (5) when µ = 0, the endpoint solves

(SDP-P) and (SDP-D). The same result holds for the solution path defined by (Hµ) starting at (X̂, Ŝ, ŷ)
since the inequality conditions of (5) are trivially satisfied along the path for µ ∈ (0, 1]. 2

Example 6 We illustrate on a simple example in order to plot the corresponding path and feasible sets for
the original problem and perturbed problem. To that end, consider solving

minimize 2x11 + 2x12

subject to

[
x11 x12
x12 (1− 2x11)/3

]
� 0

which corresponds with (SDP-P) with n = 2, m = 1, b1 = 1,

C =

[
2 1
1 0

]
and A1 =

[
2 0
0 3

]
.

It is easy to verify that both (SDP-P) and (SDP-D) are strictly feasible where the constraints in (SDP-P)
are satisfied if and only if, for r = 1,

(4x11 − r)2 + 24x212 ≤ r2. (6)

We now employ the homotopy approach described above by arbitrarily selecting ŷ = 0.1 and taking σ = −1.7.
Rounding to 4 decimal places for presentation, this yields

Ŝ =

[
3.5000 1.0000
1.0000 1.4000

]
, X̂ = Ŝ−1 =

[
0.3590 −0.2564
−0.2564 0.8974

]
, and b̂1 = 〈A1, X̂〉 = 3.4103.

The corresponding feasible set for (SDP-Dµ) is the ellipse defined by (6) with r = bµ = (1 − µ)b1 + µb̂1.

Tracking the solution path defined by (Hµ) starting at µ = 1 with (X̂, Ŝ, ŷ) yields

X =

[
0.0564 −0.1291
−0.1291 0.2958

]
, S =

[
2.2910 1.0000
1.0000 0.4365

]
, and y = −0.1455,

rounded to 4 decimal places. Figure 2 plots the path along with the feasiblity sets for the original problem
(smaller ellipse) and the perturbed problem (larger ellipse) in the (x11, x12)-plane.

By utilizing projective space, one can extend Theorem 5 to be used for solving (SDP-P) and (SDP-D)
when both are feasible and the so-called duality gap is zero, i.e., the optimal values of (SDP-P) and (SDP-D)
are both finite and equal, but may not be attained. For example, if both (SDP-P) and (SDP-D) are feasible
and one of the problems is strictly feasible, then the duality gap is zero but the optimal value for the problem
which is strictly feasible may not be attained as shown in the following.

8



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2: Homotopy path with start point (◦), endpoint (•), and feasible sets.

Example 7 Consider the following problems:

minimize x11 maximize y1

subject to

[
x11 1
1 x22

]
� 0 subject to

[
1 −y1/2

−y1/2 0

]
� 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 2, m = 1, b1 = 1,

C =

[
1 0
0 0

]
, and A1 =

[
0 1/2

1/2 0

]
.

It is easy to see that the primal problem is strictly feasible while the only feasible value for the dual problem
is y1 = 0. Moreover, the optimal value for both is 0 which is a maximum for the dual problem but an
infimum that is not achieved for the primal problem. Due to this, SDPT3 [46] truncates with x11 ≈ 10−5 and
x22 ≈ 104 while MOSEK [3] truncates with x11 ≈ 10−7 and x22 ≈ 106. We return to this problem in Ex. 10.

The following family results from a pathological example (cf. [9, 40]).

Example 8 For α ≥ 0, consider the following problems:

minimize x11 maximize αy2

subject to

 x11 x12 x13
x12 0 (α− x11)/2
x13 (α− x11)/2 x33

 � 0 subject to

 1− y2 0 0
0 −y1 −y2
0 −y2 0

 � 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 3, m = 2, b1 = 0, b2 = α,

C =

 1 0 0
0 0 0
0 0 0

 , A1 =

 0 0 0
0 1 0
0 0 0

 , and A2 =

 1 0 0
0 0 1
0 1 0

 .
9



A direct calculation shows that both the primal and dual problems are feasible but not strictly feasible. In
particular, x11 = α and y2 = 0 at every feasible point for the primal and dual problems, respectively. Hence,
the duality gap is α. We return to this problem in Ex. 11.

By simply tracking the solution path of (Hµ) on the product of projective spaces corresponding to the
primal and dual variables as described in Section 2.3, one has the following result.

Theorem 9 With the setup described above, if (SDP-P) and (SDP-D) are both feasible with duality gap zero

and Assumption (A1) holds, then the solution path of (Hµ) starting at (X̂, Ŝ, ŷ) with µ = 1 is smooth for

µ ∈ (0, 1] and converges in P(n2+n)/2 × P(n2+n)/2+m corresponding to a solution of (SDP-P) and (SDP-D).

Proof. Similar to the proof of Theorem 5, let X0 and (S0, y0) both be feasible for (SDP-P) and (SDP-D).

As above, Xµ := (1 − µ)X0 + µX̂, Sµ := (1 − µ)S0 + µŜ, and yµ := (1 − µ)y0 + µŷ yield feasible points

for (SDP-Pµ) and (SDP-Dµ) for µ ∈ [0, 1]. Moreover, since X̂, Ŝ � 0, convexity yields that Xµ, Sµ � 0
for µ ∈ (0, 1] which shows that (SDP-Pµ) and (SDP-Dµ) are strictly feasible for µ ∈ (0, 1]. Standard
theory [19, 23, 35] again yields that (5) has a unique solution for µ ∈ (0, 1] producing a smooth path

µ ∈ (0, 1] yielding the corresponding solution path defined by (Hµ) starting at (X̂, Ŝ, ŷ). By compactifying

R(n2+n)/2 × R(n2+n)/2+m ↪→ P(n2+n)/2 × P(n2+n)/2+m,

this solution path must converge in P(n2+n)/2 × P(n2+n)/2+m. Since the corresponding optimal values are
finite (both feasible) and equal (duality gap is zero), and the limit of (5) is (KKT) as µ converges to 0 via a
parameter homotopy [28], the limit corresponds with a solution of (SDP-P) and (SDP-D). 2

We demonstrate this method on the examples from above.

Example 10 For the primal and dual problems from Ex. 7, we setup our homotopy method using the
arbitrary choice of ŷ = 0.1 and taking σ = −0.5. Rounding to 4 decimal places for presentation, this yields

Ŝ =

[
1.5000 −0.0500
−0.0500 0.5000

]
, X̂ = Ŝ−1 =

[
0.6689 0.0669
0.0669 2.0067

]
, and b̂1 = 〈A1, X̂〉 = 0.0669.

Figure 3 plots the affine coordinates of x11, y1, and x22 as well as the projection of this path onto the
(x11, y1)-plane showing that x11 and y1 converge to 0 while x22 diverges. In fact, tracking on P3 × P4 yields

[x0, x11, x12, x22] = [0, 0, 0, 1] and [s0, s11, s12, s22, y1] = [1, 1, 0, 0, 0] (7)

which shows that the solution to the primal problem is “at infinity” since x0 = 0. We can confirm that, in
affine space, the coordinate x22 diverges since, for the projective endpoint, x22 6= 0. The solution to the dual
problem is finite since s0 6= 0 which confirms that the minimum for the dual problem, which is the affine
value of y1 at the endpoint, is attained at 0.

Example 11 For the primal and dual problems from Ex. 8, we compare our homotopy method when α = 0
and α = 1. Since the duality gap is α, Theorem 9 guarantees that our method will solve the problem
when α = 0. In either case, we can use the same start point by using the arbitrary choice of ŷ = (0.3, 0.7)
and taking σ = −1. Rounding to 4 decimal places for presentation, we have

Ŝ =

[
1.3000 0 0

0 0.7000 −0.7000
0 −0.7000 1.0000

]
, X̂ = Ŝ−1 =

[
0.7692 0 0

0 4.7619 3.3333
0 3.3333 3.3333

]
,

b̂1 = 〈A1, X̂〉 = 4.7619,

b̂2 = 〈A2, X̂〉 = 7.4359.
(8)

10



Figure 3: Solution path in x11, y1, and x22 affine coordinates with its projection onto the (x11, y1)-plane.

When α = 0, the path converges in R6 × R8 with endpoint

(x11, x12, x13, x22, x23, x33) = (0, 0, 0, 0, 0, 1),
(s11, s12, s13, s22, s23, s33, y1, y2) = (1, 0, 0, 0.21, 0, 0,−0.21, 0),

showing that the minimum for both primal and dual problems is indeed 0.
When α = 1, the duality gap is 1 > 0 so that the only information that we can gather from the proof

of Theorem 9 is that the path will converge in P6 × P8, but it need not correspond with a solution. In this
case, the endpoint in P6 × P8 is

[x0, x11, x12, x13, x22, x23, x33] = [0, 0, 0, 0, 0, 0, 1],
[s0, s11, s12, s13, s22, s23, s33, y1, y2] = [0, 0, 0, 0, 1, 0, 0,−1, 0],

showing that both are “at infinity” since x0 = s0 = 0. The limit of x11 and y2 in affine coordinates
is 0 and 0.105, respectively, which suggests that the duality gap is nonzero and further computations are
needed. We consider the feasibility of the primal and dual problems in Examples 16 and 21, respectively,
and solve the primal and dual problems independently using facial reduction in Section 4.6.

We conclude this section with an infeasible example.

Example 12 Consider the following problems:

minimize − 1 maximize − y1
subject to − 1 ≥ 0 subject to 1− y1 ≥ 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 1, m = 1, b1 = −1, and C = A1 = [1].
The primal problem is clearly infeasible while the dual problem is unbounded, i.e., maximum is ∞. We
demonstrate that a solution path to our homotopy method need not exist in this case by arbitrarily selecting
ŷ = 5 and taking σ = −6. Hence, Ŝ = [2], X̂ = Ŝ−1 = [1/2], and b̂1 = 〈A1, X̂〉 = 1/2. This yields

H(x11, s11, y11;µ) =

 x11 + (1− µ)− µ/2
1 + 6µ− y1 − s11

s11x11 − µ

 = 0.

In particular, for the path starting at (1/2, 2, 5) at µ = 1, one can compute the solution path is

(x11(µ), s11(µ), y1(µ)) =

(
3µ− 2

2
,

2µ

3µ− 2
,

18µ2 − 11µ− 2

3µ− 2

)

11



which is not defined at µ = 2/3 and hence not smooth for µ ∈ (0, 1].

In the next section, we extend our homotopy method to decide the feasiblity of a given problem.

3 Testing for feasibility

The homotopy techniques described in Section 2 can also be applied to test the feasibility of (SDP-P)
and (SDP-D). This is motivated by providing an alternative approach to the certificates of infeasibility
developed by [26]. For simplicity, in addition to Assumption (A1), we assume that the linear equations are
consistent for symmetric matrices which can be easily tested using (numerical) linear algebra computations:

(A2) There exists a symmetric matrix X such that 〈Ai, X〉 = bi for i = 1, . . . ,m.

Clearly, if Assumption (A2) does not hold, then (SDP-P) is trivially infeasible. When Assumption (A2)
holds, we aim to classify (SDP-P) and (SDP-D) as belonging to one of the four “feasibility” types [50]:
strictly feasible, feasible but not strictly feasible, weakly infeasible, and strongly infeasible. The partitioning
of the infeasible problems into two types (strongly infeasible and weakly infeasible) was shown in [27].

We recall definitions for completeness starting with the primal problem (SDP-P) with feasibility set

FP = {X � 0 | 〈Ai, X〉 = bi, i = 1, . . . ,m} :

� strictly feasible if there exists X ∈ FP with X � 0;

� feasible but not strictly feasible if FP 6= ∅ and detX = 0 for every X ∈ FP (i.e., X 6� 0);

� weakly infeasible if FP = ∅ and, for every ε > 0, there exists an X � 0 such that

|〈Ai, X〉 − bi| ≤ ε for i = 1, . . . ,m;

� strongly infeasible if FP = ∅ and there is an improving ray y ∈ Rm with

−
m∑
i=1

yiAi � 0 and bT y > 0.

A similar classification exists for the dual problem (SDP-D) with feasibility set

FD =

{
(S, y)

∣∣∣∣∣ C −
m∑
i=1

yiAi = S, S � 0

}
:

� strictly feasible if there exists (S, y) ∈ FD with S � 0;

� feasible but not strictly feasible if FD 6= ∅ and detS = 0 for every (S, y) ∈ FD (i.e., S 6� 0);

� weakly infeasible if FD = ∅ and, for every ε > 0, there exists an (S, y) with S � 0 such that∥∥∥∥∥C −
m∑
i=1

yiAi − S

∥∥∥∥∥ ≤ ε;
� strongly infeasible if FD = ∅ and there is an improving ray X � 0 such that

〈Ai, X〉 = 0 for i = 1, . . . ,m and 〈C,X〉 < 0.

12



3.1 Primal feasibility

In order to test the feasibility of (SDP-P), we consider the following convex optimization problem:

minimize
X,λ

λ

subject to 〈Ai, X〉 = bi i = 1, . . . , m

X + λI � 0

λ+M ≥ 0,

(9)

where M > 0 is a given constant.

Remark 13 One may replace λI in (9) by λD for any D � 0. We utilize I to simplify the presentation.

The Lagrange dual of (9) is
maximize

S,y,γ
bT y − γM

subject to

m∑
i=1

yiAi + S = 0

trace(S) + γ − 1 = 0

S � 0, γ ≥ 0,

(10)

and the corresponding KKT conditions are

〈Ai, X〉 = bi i = 1, . . . , m

−
m∑
i=1

yiAi − S = 0

trace(S) + γ − 1 = 0

S(X + λI) = 0

γ(λ+M) = 0

X + λI � 0, S � 0, λ+M ≥ 0, γ ≥ 0.

(11)

Let p and d denote the optimal value for (9) and (10), respectively.

Theorem 14 Under Assumptions (A1) and (A2), for any M > 0, p = d is a finite value where (10) always
attains the optimal value such that:

1. p < 0 if and only if (SDP-P) is strictly feasible;

2. p = 0 and the minimum is attained in (9) if and only if (SDP-P) is feasible but not strictly feasible;

3. p = 0 but the minimum is not attained in (9) if and only if (SDP-P) is weakly infeasible;

4. p > 0 if and only if (SDP-P) is strongly infeasible.

Proof. Clearly, Assumption (A2) implies that (9) is feasible so that p < ∞. The constraint λ + M ≥ 0
provides a lower bound on p, i.e., p ≥ −M > −∞, so that p is a finite value. Since the feasible set for (9)
clearly has a nonempty interior, p = d and the optimal value for (10) is always attained.
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If p < 0, then there exists (X,λ) with p ≤ λ < 0 which is feasible for (9). Hence, X is strictly feasible
for (SDP-P). Conversely, if X is strictly feasible for (SDP-P), then (X,λ) is feasible for (9) where

λ = −min{M,λmin(X)} < 0

such that λmin(X) is the minimum eigenvalue of X. Hence, p < 0.
If p = 0 and the minimum is attained, then select (X, 0) which is feasible for (9). Hence, X � 0 is feasible

for (SDP-P). Moreover, if (SDP-P) was strictly feasible, then p < 0 so that (SDP-P) is feasible but not
strictly feasible. Conversely, if (SDP-P) is feasible but not strictly feasible, then, for every X that is feasible
for (SDP-P), (X, 0) is feasible for (9) showing that p ≤ 0. Since (SDP-P) is not strictly feasible, p ≥ 0
showing that p = 0 for which the minimum is attained.

If p > 0, then there exists (S, y, γ) which is feasible for (10) with bT y − γM = d = p > 0. Since γM ≥ 0,
this shows that (SDP-P) is strongly infeasible due to the improving ray y since S = −

∑m
i=1 yiAi � 0

and bT y = d + γM > 0. Conversely, if (SDP-P) is strongly infeasible with improving ray y, then take
S = −

∑m
i=1 yiAi � 0 with bT y > 0 implying y 6= 0. Since S � 0, trace(S) = 0 if and only if S = 0. By

Assumption (A1), y 6= 0 implies S 6= 0 so that trace(S) > 0. Hence, we can find δ > 0 such that trace(δS) = 1.
Thus, since (δS, δy, 0) is easily observed to be feasible for (10), we know that p = d ≥ δ · (bT y) > 0.

If p = 0 and the minimum is not attained, then (SDP-P) is clearly infeasible and not strongly infeasible.
Hence, (SDP-P) must be weakly infeasible. Conversely, if (SDP-P) is weakly infeasible, we know that p ≤ 0
since it is not strongly infeasible. Since it is not strictly feasible, p ≥ 0 showing that p = 0. Since attaining
the minimum of 0 yields a feasible point for (SDP-P), the minimum of 0 is not attained. 2

Given M > 0, we construct our homotopy approach as follows. As before, we arbitrarily select ŷ ∈ Rm,
take λ̂ = 0 and γ̂ = M−1, and compute σ ∈ R such that

Ŝ := −
m∑
i=1

ŷiAi − σI � 0.

Let X̂ := Ŝ−1 � 0 and b̂i := 〈Ai, X̂〉 for i = 1, . . . ,m with b̂ = (̂b1, . . . , b̂m). For bµ := (1 − µ)b + µb̂,

Cµ := −µσI, and tµ := µ(trace(Ŝ) + γ̂ − 1), we consider the homotopy

H(X,λ, S, y, γ;µ) =



〈Ai, X〉 − bµi i = 1, . . . ,m

Cµ −
m∑
i=1

yiAi − S

trace(S) + γ − 1− tµ
S(X + λI)− µI
γ(λ+M)− µ


= 0 (HP

µ )

with start point (X̂, λ̂, Ŝ, ŷ, γ̂) at µ = 1 with X̂ + λ̂I � 0, Ŝ � 0, λ̂+M > 0, and γ̂ > 0.

Theorem 15 With the setup described above, if Assumptions (A1) and (A2) hold, the solution path of (HP
µ )

starting at (X̂, λ̂, Ŝ, ŷ, γ̂) with µ = 1 is smooth for µ ∈ (0, 1] and converges in P(n2+n)/2+1 × R(n2+n)/2+m+1

corresponding to a solution of (9) and (10).

Proof. The result follows using a similar proof to that of Theorem 9 since both (9) and (10) are feasible,
the former strictly feasible, the optimal for the latter is attained, the duality gap is zero, and the inequalities
are strictly satisfied at the start point. 2
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Example 16 For α = 1, consider the primal problem in Ex. 8 which is feasible but not strictly feasible. To
test our feasibility homotopy approach, we take M = 1 and select ŷ = (0.3, 0.7) and σ = −1 as in Ex. 11

which yields the same Ŝ, X̂, and b̂ in (8) with λ̂ = 0 and γ̂ = 1. The path defined by (HP
µ ) converges in

R7 × R9 with the following endpoint:

(x11, x12, x13, x22, x23, x33, λ) = (1, 0, 0, 0, 0, 1, 0),
(s11, s12, s13, s22, s23, s33, y1, y2, γ) = (0, 0, 0, 1, 0, 0,−1, 0, 0).

Hence, p = d = 0 are both attained with Theorem 14 confirming the primal problem in Ex. 8 is feasible but
not strictly feasible.

Example 17 A classic primal problem that is weakly infeasible is

minimize x11

subject to

[
x11 1
1 0

]
� 0

(12)

which corresponds to (SDP-P) with n = 2, m = 2, b1 = 1, b2 = 0,

C =

[
1 0
0 0

]
, A1 =

[
0 1/2

1/2 0

]
, and A2 =

[
0 0
0 1

]
.

Selecting M = 1 and using the arbitrary choice of ŷ = (−0.4, 0.7), we take σ = −1 with λ̂ = 0, γ̂ = 1,

Ŝ =

[
1.0000 0.2000
0.2000 0.3000

]
, X̂ = Ŝ−1 =

[
1.1538 −0.7692
−0.7692 3.8462

]
,

b̂1 = 〈A1, X̂〉 = −0.7692,

b̂2 = 〈A2, X̂〉 = 3.8462,

rounded to four digits for presentation. The endpoint of the corresponding path defined by (HP
µ ) in P4×R6 is

[x0, x11, x12, x22, λ] = [0, 1, 0, 0, 0], (s11, s12, s22, y1, y2, γ) = (0, 0, 1, 0,−1, 0).

By Theorem 14, p = d = b1y1 + b2y2 = 0 which is not attained confirming that (12) is weakly infeasible.

3.2 Dual feasibility

Similar to Section 3.1, we test the feasibility of (SDP-D) using the following convex optimization problem:

maximize
S,y,λ

λ

subject to

m∑
i=1

yiAi + λI + S = C

S � 0

M − λ ≥ 0,

(13)

where M > 0 is a constant.

Remark 18 Similar to Remark 13, one may replace λI in (13) by λD for any D � 0.
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The Lagrange dual of (13) is

minimize
X,β

〈C,X〉+ βM

subject to 〈Ai, X〉 = 0 i = 1, . . . , m

trace(X) + β − 1 = 0

X � 0, β ≥ 0,

(14)

and the corresponding KKT conditions are

〈Ai, X〉 = 0 i = 1, . . . , m

trace(X) + β − 1 = 0

C −
m∑
i=1

yiAi − λI − S = 0

SX = 0

β(M − λ) = 0

X � 0, S � 0, M − λ ≥ 0, β ≥ 0.

(15)

Let d and p denote the optimal value for (13) and (14), respectively.

Theorem 19 Under Assumption (A1), for any M > 0, p = d is a finite value where (14) always attains
the optimal value such that:

1. d > 0 if and only if (SDP-D) is strictly feasible;

2. d = 0 and the maximum is attained in (13) if and only if (SDP-D) is feasible but not strictly feasible;

3. d = 0 but the maximum is not attained in (13) if and only if (SDP-D) is weakly infeasible;

4. d < 0 if and only if (SDP-D) is strongly infeasible.

Proof. Clearly, (13) is always feasible so that d > −∞. The constraint M−λ ≥ 0 provides an upper bound
on d, i.e., d ≤ M < ∞, so that d is a finite value. Since the feasible set for (13) clearly has a nonempty
interior, p = d and the optimal value for (14) is always attained.

If d > 0, then there exists (S, y, λ) with d ≥ λ > 0 which is feasible for (13). Hence, (S, y) is strictly feasible
for (SDP-D). Conversely, if (S, y) is strictly feasible for (SDP-D), then (S, y, λ) is feasible for (13) where

λ = min{M,λmin(S)} > 0

such that λmin(S) is the minimum eigenvalue of S. Hence, d > 0.
If d = 0 and the minimum is attained, then select (S, y, 0) which is feasible for (13). Hence, (S, y) is

feasible for (SDP-D). Moreover, if (SDP-D) was strictly feasible, then d > 0 so that (SDP-D) is feasible
but not strictly feasible. Conversely, if (SDP-D) is feasible but not strictly feasible, then, for every (S, y)
that is feasible for (SDP-D), (S, y, 0) is feasible for (13) showing that d ≥ 0. Since (SDP-D) is not strictly
feasible, d ≤ 0 showing that d = 0 for which the minimum is attained.

If d < 0, then there exists (X,β) which is feasible for (14) with 〈C,X〉 + βM = p = d < 0. Since
βM ≥ 0, this shows that (SDP-D) is strongly infeasible due to the improving ray X � 0 since 〈Ai, X〉 = 0
and 〈C,X〉 = p − βM < 0. Conversely, if (SDP-D) is strongly infeasible with improving ray X � 0, then
〈C,X〉 < 0 implies X 6= 0. Hence, trace(X) > 0 so that we can find δ > 0 such that trace(δX) = 1. Since
(δX, 0) is easily observed to be feasible for (14), we know that d = p ≤ δ · 〈C,X〉 < 0.
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If d = 0 and the minimum is not attained, then (SDP-D) is clearly infeasible and not strongly infeasible.
Hence, (SDP-D) must be weakly infeasible. Conversely, if (SDP-D) is weakly infeasible, we know that d ≥ 0
since it is not strongly infeasible. Since it is not strictly feasible, d ≤ 0 showing that d = 0. Since attaining
the minimum of 0 yields a feasible point for (SDP-D), the minimum of 0 is not attained. 2

Given M > 0, we construct our homotopy approach as follows. As before, we arbitrarily select ŷ ∈ Rm,
take λ̂ = 0 and β̂ = M−1, and compute σ ∈ R such that

Ŝ := C −
m∑
i=1

ŷiAi − λ̂I − σI � 0.

Let X̂ := Ŝ−1 � 0 and b̂i := 〈Ai, X̂〉 for i = 1, . . . ,m with b̂ = (̂b1, . . . , b̂m). For bµ := µb̂, Cµ := C − µσI,

and tµ := µ(trace(X̂) + β̂ − 1), we consider the homotopy

H(X,β, S, y, λ;µ) =



〈Ai, X〉 − bµi i = 1, . . . ,m

trace(X) + β − 1− tµ

Cµ −
m∑
i=1

yiAi − λI − S

SX − µI
β(M − λ)− µ


= 0 (HD

µ )

with start point (X̂, β̂, Ŝ, ŷ, λ̂) at µ = 1 with X̂ � 0, Ŝ � 0, M − λ̂ > 0, and β̂ > 0.

Theorem 20 With the setup described above, if Assumption (A1) holds, then the solution path of (HD
µ )

starting at (X̂, β̂, Ŝ, ŷ, λ̂) with µ = 1 is smooth for µ ∈ (0, 1] and converges in R(n2+n)/2+1 × P(n2+n)/2+m+1

corresponding to a solution of (14) and (13).

Proof. The result follows using a similar proof to that of Theorem 9 since both (14) and (13) are feasible,
the latter strictly feasible, the optimal for the former is attained, the duality gap is zero, and the inequalities
are strictly satisfied at the start point. 2

Example 21 For α = 1, consider the dual problem in Ex. 8 which is feasible but not strictly feasible. To
test our feasibility homotopy approach, we take M = 1 yielding λ̂ = 0 and β̂ = 1. We select ŷ = (0.3, 0.7)

and σ = −1 as in Ex. 11 which yields the same Ŝ, X̂, and b̂ in (8). The path defined by (HD
µ ) converges in

R7 × R9 with the following endpoint:

(x11, x12, x13, x22, x23, x33, β) = (0, 0, 0, 0, 0, 1, 0),
(s11, s12, s13, s22, s23, s33, y1, y2, λ) = (1, 0, 0, 0.21, 0, 0,−0.21, 0, 0).

Hence, p = d = 0 are both attained with Theorem 19 confirming the dual problem in Ex. 8 is feasible but
not strictly feasible.

Example 22 A classic dual problem that is weakly infeasible is

maximize y1

subject to

[
−y1 1

1 0

]
� 0

(16)
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which corresponds to (SDP-D) with n = 2, m = 1, b1 = 1,

C =

[
0 1
1 0

]
, and A1 =

[
1 0
0 0

]
.

Selecting M = 1 and using the arbitrary choice of ŷ = 0.8, we take σ = −2 with λ̂ = 0, β̂ = 1,

Ŝ =

[
1.2000 1.0000
1.0000 2.0000

]
, X̂ = Ŝ−1 =

[
1.4286 −0.7143
−0.7143 0.8571

]
, b̂1 = 〈A1, X̂〉 = 1.4286,

rounded to four digits for presentation. The endpoint of the corresponding path defined by (HP
µ ) in R4×P5 is

(x11, x12, x22, β) = (0, 0, 1, 0), [s0, s11, s12, s22, y1, λ] = [0, 1, 0, 0, 1, 0].

By Theorem 19, d = p = 〈C,X〉+ βM = 0 which is not attained confirming that (16) is weakly infeasible.

4 Solving all semidefinite programs

Motivated by [37] showing that commonly used semidefinite program software packages have difficulty solving
problems when the duality gap is nonzero, the following describes a three-step process (feasibility testing,
facial reduction, and primal-dual solving) for solving all semidefinite programs. The outcome of the feasibility
tests (Section 3.1 for (SDP-P) and Section 3.2 for (SDP-D)) dictate how one proceeds in the subsequent
steps with Table 1 providing a pictorial summary of how this section proceeds.

Dual
SF F IF

P
ri

m
al SF §4.1 §4.1 §4.2

F §4.1 §4.5 §4.3
IF §4.2 §4.4 §4.2

Table 1: Summary of solving based on the feasibility testing (SF: strictly feasible, F: feasible but not
strictly feasible, IF: infeasible): §4.1: apply primal-dual solver; §4.2: no additional computations needed;
§4.3–4.5: apply facial reduction and solve individually as needed.

In the following, p and d are the optimal value of (SDP-P) and (SDP-D), respectively. After describing
how to proceed in each of the cases, we conclude with some examples in Section 4.6

4.1 Both feasible and at least one strictly feasible

When both (SDP-P) and (SDP-D) are feasible and at least one is strictly feasible, p = d and this value can
be computed using a primal-dual solver, e.g., via Theorem 9.

4.2 At most one strictly feasible and otherwise infeasible

If (SDP-P) is infeasible and (SDP-D) is strictly feasible, p = d = ∞. If (SDP-P) is strictly feasible
and (SDP-D) is infeasible, p = d = −∞. If both (SDP-P) and (SDP-D) are infeasible, p =∞ and d = −∞.
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4.3 Primal feasible and dual infeasible

When (SDP-P) is feasible but not strictly feasible and (SDP-D) is infeasible, then d = −∞ and one can use
facial reduction, e.g., see [11, 12, 39, 41, 42, 49, 53], to reduce to an equivalent problem which has a zero
duality gap to compute p. Since the outcome of the feasibility test for (SDP-P) in Theorem 15 is a relative
interior point X∗, the feasibility set for (SDP-P) is simply

{X � 0 | null X∗ ⊂ null X, 〈Ai, X〉 = bi, i = 1, . . . ,m}. (17)

Hence, one simply uses (numerical) linear algebra to replace the linear constraints in (17) with a linearly
independent set of linear equations 〈A′i, X〉 = b′i for i = 1, . . . ,m′. Updating (SDP-P) with these new linear
constraints yields a problem with zero duality gap which can be solved via the aforementioned cases.

4.4 Dual feasible and primal infeasible

When (SDP-D) is feasible but not strictly feasible and (SDP-P) is infeasible, then p = ∞ and one can use
facial reduction to compute d. As in Section 4.3, since the outcome of the feasibility test for (SDP-D) in
Theorem 20 is a relative interior point (S∗, y∗), the feasibility set for (SDP-D) is simply{

(S, y)

∣∣∣∣∣ null S∗ ⊂ null S, S = C −
m∑
i=1

yiAi, S � 0

}
. (18)

Let N∗ be a basis for null S∗ and W ∗ be a basis for the linear space{
y ∈ Rm

∣∣∣∣∣
m∑
i=1

yiAiN
∗ = 0

}
.

Then, if W ∗ has m′ columns, (18) is equal to{
(S, y)

∣∣∣∣∣ y = W ∗y′ + y∗, S = C −
m∑
i=1

yiAi, S � 0, y′ ∈ Rm
′

}
.

Next, simple linear algebra computations yield matrices C ′ and A′1, . . . , A
′
m′ such that (18) is equal to(S, y)

∣∣∣∣∣∣ y = W ∗y′ + y∗, S = C ′ −
m′∑
i=1

y′iA
′
i, S � 0, y′ ∈ Rm

′

 .

Therefore, d = bT y∗ + d′ where d′ is the optimal value of

maximize
S,y′

b′T y′

subject to C ′ −
m′∑
i=1

y′iA
′
i = S,

S � 0

in which b′ = (W ∗)T b. This problem has a zero duality gap and can be solved via the aforementioned cases.
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4.5 Both feasible but not strictly feasible

When both (SDP-P) and (SDP-D) are feasible but not strictly feasible, ∞ > p ≥ d > −∞. Using facial
reduction on (SDP-P) as in Section 4.3 yields a relative strictly feasible problem in which the corresponding
dual problem is feasible. Applying a primal-dual solver, e.g., via Theorem 9, yields p. Similarly, apply-
ing facial reduction on (SDP-D) as in Section 4.4 yields a relative strictly feasible problem in which the
corresponding primal problem is feasible. Applying a primal-dual solver, e.g., via Theorem 9, yields d.

4.6 Illustrative example

To demonstrate, we consider Example 8 with α = 1. It was shown in Examples 16 and 21 that the primal
and dual problems are feasible but not strictly feasible, respectively. Thus, as described in Section 4.5, we
separately apply facial reduction to the primal and dual problems, and then solve each independently to
obtain p and d, respectively.

For the primal, Example 16 yields

X∗ =

 1 0 0
0 0 0
0 0 1

 .
Since null X∗ is spanned by [0, 1, 0]T , just considering the condition null X∗ ⊂ null X yields three linear
constraints, namely 〈Ai, X〉 = 0 for i = 3, 4, 5 where

A3 =

 0 1/2 0
1/2 0 0
0 0 0

 , A4 =

 0 0 0
0 1 0
0 0 0

 , and A5 =

 0 0 0
0 0 1/2
0 1/2 0

 .
Since A1, . . . , A5 are not linearly independent, a linear independent collection of m′ = 4 constraints is
〈A′i, X〉 = b′i for i = 1, . . . ,m′ where

A′1 =

 1 0 0
0 0 0
0 0 0

 , A′2 =

 0 1 0
1 0 0
0 0 0

 , A′3 =

 0 0 0
0 1 0
0 0 0

 , and A′4 =

 0 0 0
0 0 1
0 1 0

 ,
with b′1 = 1 and b′2 = b′3 = b′4 = 0. Thus, the feasibility set of this updated problem is

X =

 1 0 x13
0 0 0
x13 0 x33

 � 0

which clearly yields an optimal value of p = 1.
For the dual, Example 21 yields

S∗ =

 1 0 0
0 0.21 0
0 0 0

 and y∗ =

[
−0.21

0

]
.

Following the notation of Section 4.4, N∗ = [0, 0, 1]T is a basis for null S∗ and W ∗ = [1, 0]T is a basis for

{y ∈ R2 | y1A1N
∗ + y2A2N

∗ = 0}.
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Therefore, we have m′ = 1 with

C ′ =

 1 0 0
0 0.21 0
0 0 0

 , A′1 =

 0 0 0
0 1 0
0 0 0

 , and b′ = [0]

where d = 0 + d′. Since d′ is clearly equal to 0, d = 0.
Therefore, this procedure correctly identifies that there is a nonzero duality gap with p = 1 > 0 = d.

5 Examples

The following examples utilized Bertini [5] to perform the path tracking. Files associated with these
examples are located in a repository at http://dx.doi.org/10.7274/R0D798G4. All timings reported are
based on using a single core of a 2.4 GHz AMD Opteron Processor 6378 with 128 GB RAM.

5.1 Sums of squares

An application of semidefinite programming is to decide if a given polynomial is a sum of squares and
thus providing a certificate of nonnegativity, e.g., see [9, Chaps. 3-4] and [24]. In particular, a polynomial
p(x) = p(x1, . . . , xn) with real coefficients of degree 2d is a sum of squares if there exists polynomials
p1(x), . . . , pk(x) with real coefficients of degree d such that p(x) = p1(x)2 + · · ·+ pk(x)2. Letting v(x) be the
vector of length N =

(
n+d
d

)
consisting of all monomials in x of degree at most d, it is easy to verify that p(x)

is a sum of squares if and only there exists an N ×N matrix Q � 0 with

p(x) = v(x)T ·Q · v(x).

We consider applying our homotopy approach to several applications involving sums of squares.

5.1.1 Verifying real solution set

The polynomial f(x) = x3 − 2 has a unique real root, namely α = 3
√

2. One way to verify this is through
the real Nullstellensatz (see, e.g., [10, Chap. 4]) together with sums of squares decomposition as described
in [14]. In particular, if there exists c ∈ R2 such that

g(x; c) := −(x− α)4 + (c1x+ c2)(x3 − 2) is a sum of squares,

then, due to the nonnegativity of sums of squares, it is clear that x is a real root of f if and only if x = α.
Since g has degree 4 in x, g is a sum of squares if and only if there exists a 3× 3 matrix Q � 0 such that

g(x; c) = v(x)T ·Q · v(x) where v(x) =
[

1 x x2
]T
.

Since x2 = x · x, g(x; c) is a sum of squares if and only if there exists c3 ∈ R such that

Q = C − c1A1 − c2A2 − c3A3 � 0 (19)

where

C =

 −2α 4 0
4 −6α2 2α
0 2α −1

 , A1 =

 0 1 0
1 0 0
0 0 −1

 , A2 =

 2 0 0
0 0 −1/2
0 −1/2 0

 , A3 =

 0 0 −1
0 2 0
−1 0 0

 .
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Hence, we aim to decide the feasiblity of

maximize 0

subject to Q = C − c1A1 − c2A2 − c3A3 � 0.
(20)

To accomplish this, we consider the following strictly feasible problem:

maximize λ

subject to C − c1A1 − c2A2 − c3A3 − λI � 0.
(21)

For b = (0, 0, 0, 1), y = (c1, c2, c3, λ), and A4 = I, we utilized our homotopy approach upon selecting
ŷ = (0, 0, 0,−12) and σ = 0 yielding the solution (rounded to 4 decimal places):

c1 = 4.0681, c2 = −5.1255, c3 = −4.8163, λ = 0. (22)

Tracking this homotopy path in all 16 variables using Bertini took 13 steps in 0.030 seconds while the
homotopy path in 10 variables using the trivial reduction described in Remark 1 took 9 steps in 0.027
seconds. Since the optimal λ = 0 is attained, (20) is feasible but not strictly feasible. Nonetheless, this is
enough to show that x = α is the unique real root of f by writing g(x; c) as a sum of two squares. Moreover,
using [22] starting with (22), this point is a smooth point on the following line parameterized by c1

(c1, c2, c3) = (c1,−α · c1,−α2 · (c1/2 + 1)) (23)

allowing one to easily perform additional computations on this line. For example, on this line, one needs
c1 ≥ 4 to satisfy (19). In particular, we can write g(x; c) using one square when c1 = 4 so that c2 = −4α
yielding the following decomposition:

−(x− α)4 + 4(x− α)(x3 − 2) = 3(x2 − α2)2.

For comparison, we also solved (21) using MOSEK [3] which took 0.02 seconds in 8 iterations to compute

c1 = 4.4785, c2 = −5.6426, c3 = −5.1421, λ = 0

lying on the line in (23). The software SDPT3 [46] also took 8 iterations in 0.33 seconds to compute

c1 = 8.1075, c2 = −10.2149, c3 = −8.0244, λ = 0

which also lies on the line in (23).

5.1.2 Motzkin polynomial

The Motzkin polynomial p(x, y) = x4y2 + x2y4 − 3x2y2 + 1 is a nonnegative polynomial that is not a sum
of squares. If it was a sum of squares, then there exists a 10× 10 matrix Q � 0 with

p(x, y) = v(x, y)T ·Q · v(x, y) where v(x, y) =
[

1 x y x2 xy y2 x3 x2y xy2 y3
]T

which describes a m = 27 dimensional linear space on the 55 variables in Q. Applying our homotopy-based
dual feasibility test from Section 3.2, e.g., with M = 1, to

maximize 0

subject to Q � 0 such that p(x, y) = v(x, y)T ·Q · v(x, y)
(24)
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yields that the optimal value of the problem corresponding to (13) is d ≈ −0.006989 < 0. Tracking in
Bertini with a total of 139 variables took 18 steps in approximately 1.05 seconds while the homotopy
path in 84 variables using the trivial reduction described in Remark 1 took 14 steps in 0.27 seconds. By
Theorem 19, this shows that (24) is strongly infeasible confirming that p(x, y) is not a sum of squares.

Both MOSEK [3] and SDPT3 [46] confirm the infeasibility of (24). After 0.35 seconds with 12 iterations,
SDPT3 stops with the message “suspected of being infeasible” while MOSEK detects the infeasibility certificate
in 0.03 seconds using 4 iterations.

We also solved the following using MOSEK and SDPT3:

maximize λ

subject to Q− λI � 0 such that p(x, y) = v(x, y)T ·Q · v(x, y).
(25)

Both MOSEK and SDPT3 compute the optimal value is approximately −0.006989 < 0 confirming strong infea-
sibility. The software SDPT3 used 10 iterations in 0.34 seconds while MOSEK used 9 iterations in 0.03 seconds.
However, the output Q− λI matrix from MOSEK was not positive semidefinite.

5.2 Identify weakly and strongly infeasible

A test suite of infeasible dual problems was created in [26] which have integer entries and thus can be verified
as infeasible using exact arithmetic. Since the structure for why these are infeasible can be easily observed,
they call these instances clean. To hide this structure, they perform a “messing operation” on each clean
instance via row operations and a rotation yielding messy instances. In total, this test suite consists of 800
instances with n = 10: 400 instances have m = 20 linear constraints and the other 400 instances have m = 10
linear constraints. The results from [26, Tables 1 & 2] are presented in Tables 2 and 3 for the four options
they tested, namely MOSEK [3], SDPT3 [46], SeDuMi [44], and SeDuMi with preprocessing algorithm of [39].

We employed our homotopy-based dual feasibility test described in Section 3.2 to these 800 instances using
Bertini [5]. To improve the performance of the endgame without a priori knowledge of the cycle number
as described in Remark 3, we tracked each homotopy with respect to s where µ = s4. As summarized in
Tables 2 and 3, Theorem 19 successfully permitted the distinction between strongly infeasible and weakly
feasible by accurately computing the endpoint in projective space as described in Theorem 20.

5.3 Nonzero duality gaps

Similar to Section 5.2, a test suite of problems with nonzero duality gaps was created in [37] which have
integer entries with clean and messy instances. In half of these problems, both the primal and dual are
feasible but not strictly feasible with p = 10 > 0 = d, i.e., a finite duality gap. In the other half, the primal
is infeasible and the dual is feasible but not strictly feasible with p =∞ > 0 = d, i.e., an infinite duality gap.

We employed our three-step process described in Section 4 to 20 instances, 4 each in Rn×n for n = 3, . . . , 7,
using Bertini [5]. The results are presented in Table 4, together with the four options that are tested in [37],
namely MOSEK [3], SDPA-GMP [31], MOSEK with preprocessing algorithm of [39], and MOSEK with preprocessing
algorithm of [53]. As summarized in Table 4, the solving approach described in Section 4 successfully used
the output of the feasibility tests to employ the proper facial reduction needed to create and solve related
problems with zero duality gap.

The challenge with this test suite is the feasibility testing for the primal problems in Rn×n. For the
problems tested, the cycle number in primal feasibility testing was 2n−3 for both the instances with finite
duality gap and 2n−2 for both the instances with infinite duality gap. Thus, the exponential increase in
the cycle number caused extreme ill-conditioning near t = 0 forcing Bertini to utilize increasingly higher
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Strongly Infeasible Weakly Infeasible
Clean Messy Clean Messy

SeDuMi [44] 100 100 1 0
SDPT3 [46] 100 96 0 0
MOSEK [3] 100 100 11 0

Preprocess [39] + SeDuMi [44] 100 100 100 0
Bertini [5] 100 100 100 100

Table 2: Results for 400 instances from [26] with m = 20 linear constraints

Strongly Infeasible Weakly Infeasible
Clean Messy Clean Messy

SeDuMi [44] 87 27 0 0
SDPT3 [46] 10 5 0 0
MOSEK [3] 63 17 0 0

Preprocess [39] + SeDuMi [44] 100 27 100 0
Bertini [5] 100 100 100 100

Table 3: Results for 400 instances from [26] with m = 10 linear constraints

Finite Duality Gap Infinite Duality Gap
Clean Messy Clean Messy

MOSEK [3] 1 1 0 0
SDPA-GMP [31] 1 1 0 0

Preprocess [39] + MOSEK [3] 5 1 5 0
Preprocess [53] + MOSEK [3] 5 1 5 0

Bertini [5] 5 5 5 5

Table 4: Results for 20 instances from [37] with nonzero duality gap

precision computations as the size of the problem increased even after utilizing the analytic reparameteriza-
tion discussed in Section 2.2. The cycle number in the feasibility testing of the dual problems as well as the
primal-dual solver after facial reduction was 1 resulting in easy-to-track paths.

6 Conclusion

By viewing interior point methods as a homotopy defined by a system of bilinear equations, techniques from
numerical algebraic geometry can be used to handle various cases that arise, such as adaptive precision path
tracking to handle ill-conditioned areas, endgames to accurately approximate an optimizer, and projective
space when the optimal value is not achieved. We applied our homotopy-based approach to develop a
feasibility test for both primal and dual problems. In particular, Theorems 14 and 19 show that the four
feasibility types of semidefinite programs can be distinguished with our homotopy approach. Section 5.2
demonstrates the success of our approach on the 800 instances of the test suite of [26]. Finally, to solve any
semidefinite program, we developed a three-step approach consisting of feasibility testing, facial reduction,
and primal-dual solving with Section 5.3 demonstrating the success of our approach on 20 instances from
the test suite of [37].
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