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FINITE SAMPLE PERFORMANCE OF STANDARD ERROR ESTIMATORS
FOR DYNAMIC FACTOR ANALYSIS OF NON-NORMAL DATA USING THE
KALMAN FILTER ALGORITHM

Abstract
by
Zijun Ke

This master thesis is concerned with the finite sample properties of four standard
error (SE) estimators for dynamic factor analysis using the Kalman filter algorithm
with both normal and nonnormal data. The estimators considered are the observed
information based SE estimator, Harvey’s SE estimator, and the two sandwich type
SE estimators. Statistical properties of these estimators are assessed using a sim-
ulation study. Results indicate that the sandwich type SE estimator proposed by
Papanastassiou (2006) generally outperforms other SE estimators. However, the ob-
served information SE estimator is still valuable in that the advantage of the sandwich
type SE estimator proposed by Papanastassiou (2006) over the observed information

SE estimator for non-covariance component parameters is limited.
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CHAPTER 1

INTRODUCTION

1.1 Dynamic Studies in Psychology

Social and behavioral scientists are increasingly recognizing the importance of
studying change. The P-technique factor analysis proposed by Cattell, Cattell, and
Rhymer (1947) was an early attempt to study within individual variability. With
decades of development, researchers today are afforded with better statistical tech-
niques to model individual change over time and in many substantive areas in psy-
chology, process-oriented research is getting increasing attention. Studies on the
dynamics underlying mood structures in Parkinson’s disease (Chow, Nesselroade,
Shiren, & McArdle, 2004) and on the relationship between children’s perceived con-
trol and school performance in terms of intraindividual changes (Musher, Nessel-
roade, & Schmitz, 2002) are typical examples of applying dynamic models in social
and educational psychology. An illustration of applying dynamic techniques to study
interindividual differences with respect to intraindividual variation in the Five Factor
model is given by Hamaker, Dolan, and Molenaar (2005). Applications in the devel-
opmental area are discussed by Nesselroade and Paolo (2003). Dynamic models also
provide ways to analyze various bio-signals including responses in fMRI, EEG, skin
conductance, heart rate, etc., (Yang & Chow, 2010; Parkinson, Laura, & Jackson,

2010; Tarvainen, Georgiadis, Ranta-aho, & Karjalainen, 2006).



1.2 Dynamic Factor Analysis Models and Research Questions

The dynamic factor analysis (DFA) model is one promising way to study intrain-
dividual variations (Browne & Nesselroade, 2005; Browne & Zhang, 2007; Molenaar,
1985; Nesselroade, McArdle, Aggen, & Meyers, 2002). By integrating the factor
model and the dynamic model, the DFA model is able to take into account measure-
ment errors as well as to describe the underlying dynamical mechanisms. There are
two ways to fit dynamic factor models: either through the SEM approach or through
the state-space approach. Despite its long history in economics and engineering, the
state-space approach is still unknown to many social and behavioral scientists. This
thesis will focus on the state-space approach.

When data are normally distributed, the maximum likelihood (ML) estimates of
the state space model can be obtained using the Kalman filter algorithm (Harvey,
1989). Several standard error (SE) estimators for ML estimates based on the infor-
mation matrix have been proposed (Harvey, 1989, Shumway & Stoffer, 2004). Using
simulation studies, Papanastassiou (2006) showed that the average bias of the infor-
mation based SE estimators was less than 10% of the values of the true SE when data
were normally distributed.

When data are nonnormal, parameter estimates obtained by maximizing the nor-
mal likelihood function are referred to as normal theory based maximum likelihood
estimates (Harvey & Shephard, 1996)!. Three sandwich-type standard error estima-
tors of normal theory based ML estimates have been proposed for non-Gaussian data
(Papanastassiou, 2006; White, 1984). Finite sample properties of these standard er-
ror estimators are largely unknown, however. This thesis will study the performance

of standard error estimators in finite samples.

!They were called quasi-maximum likelihood estimates in Harvey and Shephard (1996) and many
other papers in economic area (e.g., Strickland, Forbes, & Martin, 2006; Bauwens & Veredas, 2004),
however. In social and behavioral sciences, these estimates are often called to normal theory based
maximum likelihood estimates (e.g., Bentler & Yuan, 1999 and Yuan & Bentler, 1998), We decide
to use the term “normal theory based maximum likelihood”.



The motivation for the current thesis resides in three aspects. First, studies on
SE estimators are important. Some statistical inferences, such as hypothesis testing
and interval estimation, involve standard error estimates. Inaccurate standard error
estimates may lead to misleading statistical conclusions. For example, a significant
autoregressive coefficient may turn out to be nonsignificant due to inaccurate standard
error estimates (see example 3 in Chow, Ho, Hamaker, & Dolan, 2010). Therefore it
is worthwhile to study the performance of standard error estimators. Second, psycho-
logical data rarely follow the Gaussian distribution (Micceri, 1989). Micceri (1989)
examined 440 large empirical data sets. They were various ability tests, aptitude
tests, personality inventories, measures of anger, anxiety, sociability and so on. The
normality assumption failed in each of them. Consequently, the Gaussian assump-
tion is often untenable in social and behavior research. Thus whether standard error
estimators are robust to violation of the normality assumption is of interest to both
methodologists and applied researchers. Third, these asymptotic standard errors are
often justified by asymptotic theory. Their finite sample properties are largely un-
known. In real data analysis, especially in psychological research, the sample size of
time series data is generally not very large. Hence it is more informative to explore

the finite sample performance of standard error estimators using simulation studies.

1.3  Goals of Current Thesis

The main purpose of the current thesis is to systematically study the finite sam-
ple performance of SE estimators using the state-space approach when fitting DFA
models to non-normal data. These SE estimators include two information based SE
estimators and two sandwich type SE estimators. Two practical questions to be an-
swered are “Is it appropriate to use these SE estimators when data are not normally
distributed” and “Which one is better”.

The thesis is arranged as follows. Chapter 2 introduces dynamic factor analy-



sis and compares different methods of fitting DFA models using the SEM approach.
Chapter 3 introduces the state-space approach and compares different methods of
fitting DFA models using the state-space approach. Chapter 4 discusses asymptotic
normality and introduces standard error estimators for the state space model. Chap-
ter 5 describes the simulation design. Chapter 6 reports simulation results and chapter

7 summarizes and discusses the findings and limitations of this thesis.



CHAPTER 2

DYNAMIC FACTOR ANALYSIS

In this chapter, dynamic factor analysis (DFA) models will be introduced. Section
2.1 gives a formal definition of the DFA model. Section 2.2 compares various methods

of fitting DFA models using the SEM approach.

2.1 Introduction to DFA Models

Dynamic factor analysis is used to study intraindividual changes. There are two
major types of DFA models: the shock factor analysis model (Browne & Nesselroade,
2005; Molenaar, 1985) and the process factor analysis (PFA) model (Browne & Nes-
selroade, 2005; Browne & Zhang, 2007). The shock factor analysis model emphasizes
the latent random shocks that drive the manifest processes. These latent shocks are
exogenous and are uncorrelated across time. In contrast, the process factor model
emphasizes latent dynamics that represent the observed psychological processes. The
latent factors in the PFA model are endogenous and they are correlated over time.
In this thesis, I focus on PFA models.

The factor analysis model for the manifest variables in a typical PFA model is

yt:Aft+ut7 tzl? 7T7 (21)

where the k x 1 vector y; is the k£ observed manifest variables at time ¢; the k x m

matrix A is the factor loading matrix; f; is the m x 1 latent factors at time ¢; the k£ x 1



white noise variables u; represent the measurement errors at time ¢. In PFA models,

the factors, f;, follow a stationary vector ARMA model, that is,

ft = Zi+ Alft,1 —+ Agft,Q + 4 Apft—p (22)

+Biz, 1 +Boz, o+ -+ Byz,

where the m x 1 random shock variables z; are the process noises at time ¢; and the
m X m matrices A, and B, are the corresponding autoregressive weights and moving
average weights. As shown in (2.2), in addition to incorporating the influences of
the ¢ preceding shock variables on current factors, the DFA models allow the current
factors, f;, to depend on the p preceding factors.

The measurement errors, u;, and the random shocks, z;, have similar mathematical

properties, namely,

&

E(w) = (z;) =0,

Cov (us,u;)) = Zand Cov(z,z,) =¥ (2.3)

for t = 1,...,7. And both of them are not correlated across time. But they have
different theoretical meanings. u, represents measurement errors that contaminate
the observations of latent factors f; while z;, are the random shock variables that
drive the latent processes. More specifically, z;, influences the current underlying
factor and subsequent factors while u; only influences the observation of the current
factor. The measurement errors are assumed to be independent of each other. Thus

= is a diagonal matrix.



2.2 Fitting DFA Models: SEM Approach

In this section, three methods of fitting DFA models using the structural equation
modeling framework are reviewed. The first two methods obtain maximum likelihood

estimates and the third method obtains ordinary least square estimates.

2.2.1 Raw Data Likelihood

When analyzing time series data, the model implied covariance matrix, 3 (f) can
be established according to the dynamic and factor structures (Du Toit & Browne,
2007). The sample covariance matrix, S, consists of sample lag covariance matrices.
The covariance matrix has a size of N x Tk where N is the number of participants;
T is the time series length and k is the number of observed variables. If there is
a sufficient number of subjects, say, more than 100 (and usually with a smaller T,
i.e., T < 10), the sample covariance matrix, S, can be computed in the independent
data fashion, that is, averaging the squared deviations from the mean across subjects.
However, if the number of subjects is not large enough, the resulting sample covariance
matrix may be singular. In this situation, the raw data log-likelihood function L is
involved to avoid using the sample covariance matrix (Hamaker, Dolan, & Molenaar,
2003). Since this procedure involves inverting a Tk x T'k matrix, it is computationally

inefficient, especially when T is large.

2.2.2  Block Toeplitz-Pseudo MLE

Another way to address this problem is to use the block Toeplitz (BT) method
(Molenaar, 1985; Nesselroade et al., 2002; Hamaker, Dolan, & Molenaar, 2002) to
reduce the dimension of the input matrix. By treating the sample lag covariance
matrix up to lag L, S (L) as the sample covariance matrix, parameter estimates can
be obtained by minimizing the likelihood function in the standard SEM framework.

At least two issues concerning this method arise. Due to the dependence in the data,



the sample lag covariance matrix, S (L), usually does not have the Wishart distribu-
tion which is, however, assumed for maximum likelihood estimation. Consequently,
this approach only produces “pseudo-maximum likelihood estimates” (Molenaar &
Nesselroade, 1998). Note that it is the case even for well behaved data, i.e., Gaussian
processes. This will pose a serious problem in that standard error estimates may be
inaccurate and further statistical inferences such as hypothesis testing and model fit
comparisons based on MLE will lose their theoretical foundation (Hamaker et al.,
2002; Chow et al., 2010;Z. Zhang, Hamaker, & Nesselroade, 2008). Using a simu-
lation study, Z. Zhang et al. (2008) showed that the BT method yielded relatively
larger total absolute errors (absolute biases) compared to other methods, e.g., the
state space approach. And Chow et al. (2010) showed in a simulation study that
statistical inferences about some parameters can be misleading because of inaccurate
SE estimates obtained from the BT method. The second issue concerning the block
Toeplitz method resides in its implementation. Since there are many redundant ele-
ments in the block Toeplitz covariance matrix, one needs to place some constraints
to exhaust false degrees of freedom when using the standard SEM software to fit the

model. Those constraints could be complex if the model is large and complicated.

2.2.3 Block Toeplitz-OLS

A third way to analyze time series data using the SEM approach is to use ordinary
least square (OLS) estimation (Browne & Zhang, 2007). In this method, the block
Toeplitz matrix is still used to reduce the dimensions of the input matrix. Instead
of minimizing the likelihood function, it minimizes the discrepancy function which
measures the squared distance between the sample lag correlation matrix and the
model implied correlation matrix. Recently, several standard error estimators for
the OLS method have been developed. The sandwich-type one is analytic (G. Zhang,

Chow, & Ong, 2011). Others are bootstrap based standard error estimators (G. Zhang



& Browne, 2010; G. Zhang & Chow, 2010). The OLS method has several advantages.
For example, since OLS only adopts the non-duplicated elements in the block Toeplitz
matrix, no complicated constraints are needed to adjust the false degree of freedom.
The implementation is more straightforward. The OLS method also provides a basis
for conducting the dynamic factor analysis in an exploratory way. In addition, since
no distributional assumption is required, OLS can be applied to data that are not
normally distributed. However, OLS is not the perfect method. Due to the use of
inconsistent estimators of the limiting covariance matrix of the sample covariance
matrix, OLS estimates are not the most efficient. By simulation studies, Z. Zhang
et al. (2008) showed that OLS provides good, but not optimal estimates, in that
it produces larger mean square standard error (standard deviation of the estimates
across replications) than other estimates, e.g., the ML estimates obtained by using
Kalman filter algorithm.

Another method for fitting dynamic factor analysis models is the state space
approach. The state space approach provides maximum likelihood estimates. It can
also provide subject specific factor scores. Methods for computing these scores within
the SEM framework are unavailable. The state space model has been adapted for
missing data problems and initial condition problems (Shumway & Stoffer, 2004;
Harvey, 1989; De Jong, 1988; Zarchan & Musoff, 2000). The state space model and

its implementation will be described in the next chapter.



CHAPTER 3

KALMAN FILTER ALGORITHM

The state-space approach is another important way of fitting DFA models (Harvey,
1989; Shumway & Stoffer, 2004). The key idea of this approach is to utilize the
Gaussian Kalman filter algorithm to obtain the maximum likelihood estimates. This
chapter focuses on the state space model and associated estimation issues. Section 3.1
introduces basic concepts of state-space modeling. Section 3.2 briefly reviews how to
obtain the MLE for state space models using the Gaussian Kalman filter algorithm.
Section 3.3 reviews different methods under the state space framework which work for
non-Gaussian processes. This section also compares these methods with the Gaussian

Kalman filter approach.

3.1 State Space Models

Among several key features of the state space models (SSM) in representing psy-
chological processes are a) the capability to incorporate a whole class of special models
of interest using a relatively simple form; and b) the feasibility of obtaining maximum
likelihood estimates for parameters of dynamic factor analysis models.

Similar to the measurement equation of DFA models, the observation equation of
SSM describes the relationship between manifest variables y; and state variables x;

and can be expressed as

Yt:AXt+Vt7 t:1727"'7T (31)
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where the ¢ x 1 vector y,; represents the ¢ manifest variables at time ¢; the time
invariant ¢ X p matrix A is the observation matrix; x; is the p x 1 state variable
at time t; the ¢ x 1 white noise variable v; represents the measurement errors with

covariance matrix
Cov (Vt, VtT> = R.
The transition equation is specified as,
Xy = ®x;_1 + Wy, (3.2)

where the p X p matrix ® is the transition matrix and the p x 1 random shock variable

w; is the process disturbance with covariance matrix
T _
Cov (wt,wt ) = Q.

The state equation determines how the current state vector x; updates from the past
state vector x;_;. Generally, the two noise variables, the measurement errors and the
process disturbance are assumed to be Gaussian white noise processes and thus carry
the neat properties of Gaussian white noise sequences.

The following examples illustrate how to rewrite different models in the form of
state space models. By carefully defining the manifest variables and state variables,

the SSM can subsume any vector ARMA model or any DFA model. For example,
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the VARMA (p, ¢) can be rewritten as

ye=|1 0
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The DFA model can be expressed using SSM in a similar way. The observation

equation of a DFA model will be

ft—p-i—l
Yo = |A 0O - 0 + uy.
Z

Zt—pt1

The state equation is same as (3.4) except that y; and €, are substituted with f; and
z; respectively.

The state space framework can incorporate not only many popular time series
models but also commonly seen longitudinal models. Take a typical linear latent
growth curve model for example. The model with N subjects, each of which is
measured T times, can be parameterized as a state space model with time series

length T" =1 and a null transition matrix, ® = 0,

Yia 1 0 Vi1
Vi 1 1 intercept; V;2
B 1 : slope; 7
Yi, T 1 T*x—-1 Vi, Tx
and
intercept; _ m, n W; intercept
slope; Us Wi, slope

Actually, when ® = 0, the state-space model is equivalent to the structural equa-
tion model. By choosing appropriate initial prior, the two approaches can yield

identical likelihoods and hence parameter estimates (Chow et al., 2010).
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Note that in multi-subject research settings, participants can follow distinct un-
derlying processes as long as the time series length is sufficiently long. This opens
up a way to study group differences in intraindividual change. For example, some
researchers believe that males and females may have different emotion regulation sys-
tems despite sharing the same measurement models. When fitting the model, one
could assign a different transition matrix, ® to males and females but hold the obser-
vation matrix, A, the same across the two groups. And with the help of appropriate
fit indexes, the model with differences across groups can be compared to the model
with the same parameters across groups. This will shed light on whether there is a
group difference in intraindividual change.

Equation (3.1) and (3.2) provide the basic form of state space models. More
general forms of state-space models includes small modifications of (3.1) and (3.2)
so that the state space framework can handle more types of research questions. For
example, by adding a subscript ¢, the state space model can be used to analyze multi-
subject data, although in real data analysis, an inspection of the homogeneity of the
underlying systems of different subjects is always needed before fitting the state space
model to multi-subject data. Another extension is that it allows parameters to be
time-variant, i.e., ® varying across different time points, becoming ®,;. This would

help researchers to model more complicated dynamical systems.

3.2 Kalman Filter Algorithm

Given the statistical merits of maximum likelihood (ML) estimation, this thesis
centers on ML estimates. There are various algorithms that have been developed
to obtain ML estimates, e.g., the Newton-Raphson algorithm. However, these algo-
rithms involve computing values of the likelihood function given some guesses of the
parameters. The value of the likelihood function for time dependent data is generally

hard to obtain. The Kalman filter algorithm, however, provides one way to obtain
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the value of the likelihood function for the state space model given current guesses of
parameter values.
The likelihood function for the state space model can be decomposed into products
of conditional density functions of data:
T
Lyt ¥n:©) = P(y1,...,yn|®) = HPe (yelYi1) (3.5)
where Y;_; denotes all preceding observations up to time t — 1. Usually, the Gaussian
assumption is adopted to achieve theoretical simplicity and tractability. With the
normal assumption, that is, assuming the two disturbance terms w; and v;, follow
independent multivariate normal distributions, the conditional density Pg (y¢|Y:-1)

is given by

1\’ _
Po (yi|Y:-1) = (ﬁ) cov (y¢|Yi-1) 1/2

xean { =3 by = Bl Yo coo (7 ¥e) ™ Iy = B (vl Yoo )]}
_ (L ‘1 e —le’ “le
~ () 1B en{ - jeizie) 36

where e, = y; — E (y:|Y:—1) and X; = cov (y¢|Yi-1) = cov (e).
The Kalman filter algorithm is introduced to compute all e; and ;. However,

note that

e = yi— E(y:|Y1)
= Yt — AE (Xt|Yt—1) —F (Vt|Yt—1) (37)

= Y- AXi_l
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and

3 = cov(yeYi)
= Acov (x4]Y;-1) A"+ cov (vi| Y1) + 2Acov (x4, vi| Y1) (3.8)

= AP/'A'+R.

where x/"' = E(x,]Y,_;) and P{™! = E{(Xt — x§_1> (Xt — Xfi_l)/ |Yt_1}. A and
R are all parameters in the state space model. Thus, the Kalman filter algorithm
actually obtains e; and ¥, by computing x/~* and Pi~!. Here x!™! is the conditional
expectation of the latent factor at time ¢, namely, x,. Generally, x/~! is treated as
an estimator or a guess of the values of the latent factor at time ¢ based on the
information containing in the observations up to time ¢t — 1. For Gaussian processes,
this estimator is the best in the sense that the error covariance of this estimator is the
smallest while for non-Gaussian processes, it is the best among all linear predictors
(Anderson & Moore, 1979). P. ! is the conditional covariance matrix associated with
the estimator, x; ' (Anderson & Moore, 1979). For Gaussian data, Pi ™! is actually
independent of Y;_; and hence P!~ is also the unconditional error covariance of the
estimator, x; ' (Anderson & Moore, 1979).

To compute x!~! and P{™!, the Kalman filter algorithm incorporates two steps:
the predicting step and the updating step. This algorithm is initialized using some
guesses of the initial conditions and runs through the two steps iteratively. In the
predicting step, with current x!~1 and P!~}, x!™! and P{~! are computed using the

following equations,

x, ' = ®x, (3.9)

Pl = P +Q,

where Xi:i =F (Xt_1|Yt_1> and Pi:% =F { (Xt—l — Xi:%) (Xt — Xi:})/ |Yt_1} . Sim-

ilar to x;~ ', x/7] is the conditional expectation of the latent factor at time ¢t — 1. The
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difference is that it also includes the information provided by observations at time
t — 1. And P! is the associated conditional error covariance of x!";.
In the updating step, the values of x!™! and P!~! computed in the predicting step

are adopted and x! and P! are computed as below,

xt = x4+ K, (yt - Axi_l) : (3.10)

P, = [I-KAJP",

where

K; =P/ TA'S !

The new estimates of x! and P! are then used in the predicting step of the next
iteration.

To sum up, the Gaussian Kalman filter starts with the guesses of x{ and PY and
assigned parameter values. By (3.9) and (3.10) the filter updates to xj and P} from
x) and P and computes the one-step ahead prediction, x and its covariance P{ as
well. The e; and 3; are then computed using the one-step ahead prediction and its
covariance. With the new estimates for the state vector and its covariance, namely,
x! and P! where t = 1,2, ..., — 1, the Gaussian Kalman filter repeats the updating
procedures as from x{ to xi till all e; and 3; at different occasions are obtained. For
details of the derivation of the algorithm, please refer to Harvey(1989, p.105-113) or
Shumway and Stoffer(2000,p.330-339).

With all e; and X; at hand, Pe (y¢|Y;-1) can be calculated using (3.6). The
likelihood function which equals the products of Pg (y¢|Y:—1) could then be obtained
simply by multiplying all Pg (y¢|Y;_1). After some simple algebra, we may write the

negative log-likelihood function in terms of e; and X,

1 & 1
—1(0) :C’+§ > log|2t|+§ d e/ e, (3.11)
t=1 t=1
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As shown above, the Gaussian Kalman filter serves like a device which yields the
value of likelihood function based on our guesses of parameters. However, our main in-
terest is to obtain parameter estimates rather than computing likelihood values given
on parameters. To fulfill this purpose, some algorithm for finding approximations to
ML estimates such as Newton-Raphson algorithm is used to update the parameter
estimates. More specifically, the estimation procedure begins with initial guesses of
the parameters. The Kalman filter then computes the likelihood value based on these
guesses. With the likelihood value, the Newton-Raphson algorithm can update the
estimates for parameters. By repeating this process, the sequence of estimates pro-
duces smaller negative log-likelihood functions of (3.11). Finally, when some criterion
is met, the final estimates provide maximum likelihood estimates.

One important decision in applying the Kalman filter algorithm is to obtain the
initial state vector and its covariance matrix. Note that the Gaussian Kalman filter
is initialized with the mean and covariance matrix of the initial state vector, xg.
For instance, consider an initial state vector which follows N (g, Pgy). In order to
get e; and ¥, a pair of values needs to be assigned to py and Py. Consequently,
with finite samples, the settings of the initial state vector may influence the likelihood
function and therefore the final estimates. Several ways of setting the initial conditions
were developed so that the dependence on the initial conditions can be reduced.
If stationarity of the state vector is assumed, the covariance matrix of the initial
state vector, expressed in terms of other parameters in the model, can be defined as

(Harvey, 1989, p121)
vec (Py) =1 — @ @ ®) " vec(Q). (3.12)

The Gaussian Kalman filter algorithm which initializes with this Py, and a mean vec-
tor of zero provides exact MLE for stationary time series data. For non-stationary

time series data, a so-called diffuse prior in which the covariance matrix Pq is defined
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as kI is suggested (Harvey, 1989,p121-122; De Jong, 1988; Zarchan & Musoff, 2000).
This is also called noninformative prior because k is usually assigned a large posi-
tive number. Other algorithms concerning non-stationary state vectors include the
method discussed by Ansley and Kohn (1985). In this thesis, only the Pq specified

in (3.12) and diffuse prior are adopted.

3.3 Methods for Non-Gaussian Data

The Gaussian Kalman filter algorithm depends on the Gaussian assumption. The
desirable properties of MLE for Gaussian processes, such as efficiency may not hold
for non-Gaussian processes. To deal with non-Gaussian processes, many methods
within the state space framework have been developed. For example, estimates can
be obtained using numerical integration (Kitagawa, 1987), Monte Carlo techniques
(Fruhwirth-Schnatter, 1994), Gaussian mixtures (Kawakatsu, 2007), particle tech-
niques (Creal, 2008), Monte Carlo maximum likelihood (MCL) methods (Durbin &
Koopman, 1997; Sandmann & Koopman, 1998), and Markov Chain Monte Carlo
(MCMC) techniques from Bayesian perspective !(Carlin, Polson, & Stoffer, 1992;
Shumway & Stoffer, 2004; Jacquier, 1994).

Another method is the normal theory based ML estimation method which esti-
mates the parameters by minimizing the Gaussian likelihood function regardless of
whether or not the data are normally distributed (Harvey & Shephard, 1996). This
method still uses the Gaussian Kalman filter algorithm. The only difference is that
data are not normally distributed. In this thesis, the term “normal theory based ML

approach” and “Gaussian Kalman filter approach” are used interchangeably. Sim-

LA review on MCMC method addressing non-normal state-space models can be found in Shumway
and Stoffer (2004). The general MCMC method assumes the densities of the two noise variables are
scale mixtures of normal distributions. This method first works on the complete data likelihood which
assumes the latent state vectors are observed and then numerically integrates out the state vectors to
obtain the marginal posterior distribution. Parameter estimates are obtained by computing certain
statistics of the marginal posterior distribution, e.g., the expectation. If the non-normality comes
from linearizing a nonlinear Gaussian model, some specific MCMC methods have been proposed
(e.g., Jacquier, 1994). These methods generally directly work on the nonlinear Gaussian model.
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ulation studies in economics showed that the performance of normal theory based
ML depended on the signal-to-noise ratio and time series length. The signal-to-noise
ratio is the ratio of the variation of state vectors to the variation of the measurement
errors. According to the simulation results, with short time series length and low
signal-to-noise ratio, the normal theory based ML estimates were less accurate and
less efficient compared to MCMC methods (Sandmann & Koopman, 1998; Strickland
et al., 2006).

However, normal theory based ML estimation is still an important and useful
alternative to other existing methods due to the following three reasons. First, normal
theory based ML yields comparable estimates when the variation in latent states
dominates the variation in measurement errors. For example, great improvements
of normal theory based ML have been observed when larger variance of the process
disturbance is observed (Sandmann & Koopman, 1998; Strickland et al., 2006). The
poor performance of normal theory based ML when variation in the state vector was
small may be at least partially due to finite sample likelihood associated problems.
As illustrated in table 2 in Sandmann and Koopman (1998), the MCL also suffered
when the signal-to-noise ratio was low. Note that MCL is claimed to maximize
the true likelihood function, which is approximated by sampling techniques. Thus
this suggests that even if the true likelihood was maximized, the resulting estimates
were not likely to perform well in the low signal-to-noise ratio situation (with a
finite sample). The results found by Z. Zhang et al. (2008) where the performance
of MLE for Gaussian process was studied paralleled the results above. And in other
conditions, the improvement of MCL over normal theory based ML was not impressive
(Sandmann & Koopman, 1998).

Second, those methods which involve numerical integration and sampling tech-
niques have, in addition to their inefficiency in computational effort, nontrivial prob-

lems during implementation, i.e, convergence problems and sensitivities to model
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specification (here the specification refers to, for example, specification of prior dis-
tribution in MCMC methods, and specification of marginal distribution in particle
filter methods). For example, the computational bottleneck of methods involving nu-
merical integration when evaluating the prediction and updating densities makes it
difficult to apply to dynamical systems with high dimensions (Fruhwirth-Schnatter,
1994; Kawakatsu, 2007). Small misspecification in marginal distributions can makes
particle filter methods suffer (Creal, 2008), even when the observations are mea-
sured at high frequencies. Designs with intensive measurement are the situations
when particle filter may provide moderate improvements over normal theory based
ML. Convergence problems and sensitivities to prior distribution have long existed
in Bayesian methods, such as MCMC approaches. Many factors may influence the
severity of the problems. In real data analysis, sophisticated modifications of the prior
distributions or of the sampler are needed to ensure convergence, although theoreti-
cally the sequence will always converge. Normal theory based ML is thus still valuable
because the implementation is straightforward and the risks of mal-implementation
are relatively low.

Third, other methods that are easy to implement such as GMM and EMM are
at best as good as normal theory based ML. One issue associated with the results
reported by Jacquier (1994) arises in the literature. Several researchers re-examined
the performance of normal theory based ML reported in Jacquier (1994) and they
found that the performance of normal theory based ML is “nowhere as near as bad
as reported by JPR (Jacquier (1994))”, (Sandmann & Koopman, 1998, p.284; Breidt
& Carriquiry, 1996). Compared to other researchers results (Harvey & Shephard,
1996; Kirby, 2006), normal theory based ML seems to perform significantly poorer
in Jacquier’s paper. These researchers argued that Jacquier’s results may suffer from
problems of poor starting values, different convergence criteria or inefficient imple-

mentation of the algorithm and thus advocated paying special caution to the results
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concerning normal theory based ML method in Jacquier (1994). Subsequent work,
such as that in Andersen, Chung, and Sorensen (1999), where the author’s conclu-
sions were rested on Jacquier’s results, also need special attention (this paper simply
quoted the results from Jacpuier’s paper). If using Sandman and Koopman’s results,
normal theory based ML provides better estimates than EMM with a time series
length of 500 and comparable estimates with EMM when the time series length in-
creases to 2000 (Sandmann & Koopman, 1998; Andersen et al., 1999). GMM seems
to be relatively inefficient and inaccurate compared to EMM and normal theory based
ML.

In short, the normal theory based ML method or the Gaussian Kalman filter ap-
proach is a valuable alternative to other existing methods that cater for non-Gaussian
processes. This thesis only focuses on the normal theory based ML approach. In the
next chapter the asymptotic properties of normal theory based ML estimators and

associated standard error estimators will be discussed.
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CHAPTER 4

STANDARD ERROR ESTIMATORS FOR SSM

This chapter will introduce two types of SE estimators for state space models.
The first type of SE estimators are based on the information matrix and they assume
data are normally distributed. The second type of SE estimators are based on the
sandwich asymptotic covariance matrix. They are proposed to adjust for violations
of the normality assumption. Section 4.1 will introduce the asymptotic theory for
normal data and SE estimators which are based on the information matrix. Section
4.2 will introduce the asymptotic theory for non-normal data and the sandwich type
SE estimators.

Regularity conditions need to be assumed to ensure appropriateness of asymp-
totic theory for estimators. In this thesis, all state space models are assumed to be
time invariant, stationary, controllable and observable so that the asymptotic theory
introduced in the following sections is valid. Although the state space model can
be time-varying, this is beyond the scope of this thesis. Stationarity, controllability
and observability are typical requirements for state space models to use the asymp-
totic theory (Shumway & Stoffer, 2004, p.345-347). For definitions of stationarity,

controllability and observability, please refer to Appendix B.
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4.1 Information Based SE Estimators

4.1.1 Asymptotic Covariance Matrix and Standard Error

Under the Gaussian assumption, the asymptotic properties of ML estimates for the
standard state space model have been well-studied. For Gaussian processes, under
regularity conditions, the ML estimates are consistent and asymptotically normal

(Shumway & Stoffer, 2004, p.345-347; Caines, 1988, p.426-480),
\/T (§—90> — N (O,Iil (00))

where 6 is the true parameter and the information matrix, Z (6), is

T .

(0) = —LmT 'Y E[i (0)]

=1
where I, () is the second derivative of the log-likelihood function. The definition
of the information matrix is slightly different from that of the information matrix
for independent data. The limit of average F {lt (9)} is used here because, although
E {lt (9)} becomes stable as ¢ — 00, it can vary substantially with small ¢s.

The asymptotic covariance matrix is computed by dividing the inverse of the

information matrix by 7. And the standard error for the ith component in 6 is the

[ 60)]

square root of the ith diagonal element in the covariance =

Algebraically,

SEinoq =\ Etollis,

4.1.2 Standard Error Estimators

Three SE estimators have been proposed for SE;,t,;. They are the observed
information based SE estimator, SEo (Shumway & Stoffer, 2004, p.347), the expected
information based SE estimator, SEp (Cavanaugh & Shumway, 1996) and Harvey’s
SE estimator, SE (Harvey, 1989, p.140-142).

The observed information based SE estimator uses the negative Hessian matrix

as an estimator of Z (fy). The negative Hessian matrix, also called the observed
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information matrix, is given by,
~ 1. .

As it is shown in the above equation, the Hessian matrix is the second derivative
of the log-likelihood function. The SE estimates are then obtained by the equation,
— -1
}S’E‘O72 — ( OrT)” .

The expected information based SE estimator takes the expectation of the Hessian

matrix, and uses it to compute the SE estimates. Algebraically, SE g is given by,

1
@E’i _ (I?)u
where
~ 1L PSR
Ip=—72E [0 () [Ho] - (4.2)
t=1

The expectation operation is taken under the assumption (Hg) that the data, {y:},
follow normal distributions and that the model is correctly specified.

The third estimator is Harvey’s SE estimator. When Harvey derived the estimator
of the information matrix, he first took the expectation of the Hessian matrix so that
the formula was greatly simplified. After taking expectation, he got the expected
information matrix as follows (Harvey, 1989, p.142),

1 [&nL 1 Z Oer\ o 10e,\ 1, (9%;'0%
Ipii (0) = —=E =_SE »ol ) -2 L
pi (0) = =7 <aeiaej> TZ{ ((a@) t aej> 2”( 00, ae)}

t=1

92InL
00,00

where is the second derivative of the log-likelihood function. The computation of
the first term, however, is very complicated (Cavanaugh & Shumway, 1996). Harvey
then suggested replacing expectation of the first term by current estimates. The
resulting matrix, namely, Zy, can be used as an approximation of Z (6y). Replacing
parameters in Zy by parameter estimates will yield Zy. Iy can be used to compute

- -1
SE estimator. The resulting SE estimator is defined as SEy = %

Harvey’s SE estimator only involves first derivatives and thus is the most compu-
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tationally efficient. The expected information based SE involves complicated recur-
sions to take the expectation and thus it is the most computationally intensive. In
this thesis only the observed information based SE and Harvey’s SE estimator are

studied.

4.2 Sandwich Type SE Estimators

4.2.1 Asymptotic Covariance Matrix and Standard Error

When the distribution assumption is violated, while the point estimates are still
consistent (Dunsmuir, 1979; Caines, 1988), the standard error estimates may be bi-
ased. Several lines of research have studied the asymptotic theory for various time
series models when data are not normally distributed (Dunsmuir, 1979; Dunsmuir &
Hannan, 1976, 1978; Caines, 1988; White, 1984). They arrived at similar conclusions
of asymptotic normality, although they used different sets of conditions and they ad-
dressed the problem from different perspectives, i.e., from frequency domain or time
domain. Only Caines’ work is presented here to illustrate the asymptotic normality
of (Q)ML estimates because all formulas in Caines’ work are expressed in the form
of time domain representation.

Caines (1988) studied the asymptotic properties of a general class of estimators for
non-Gaussian dependent data. This class of estimators includes (Q)ML estimators,
least square estimators, and other estimators that minimize a discrepancy function of
prediction errors. Let 6% be the vector that maximizes Ly = T~' Y E [l, (6)] where
l; (0) is the log-likelihood function at time ¢. Under mild regularity conditions (Caines,

1988; p.488-489, p.494-496, p.498-500, p.518-522),
VTB;? Az (6 — 07) = N (0,1), (4.3)

where

Ar=-T" iE iz (67)]

t=1
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and
T

B = var (TW g Iy (9;)) =T'E [i ACSOACS

t=1 t=1

So the estimator d7 roughly follows a normal distribution with a mean of 07 and a
covariance matrix of A7'BrAL!/T.

If further assumes that B = lim By exist then,
VT (67— 0*) — N (0,A"'BA™"), (4.4)

where A = lim A7 and 6* becomes the maximum of L = lim L.

Caines’ conditions are complicated and further work on whether a standard state
space model satisfies those conditions is needed. Results from Dunsmuir’s (1976)
work, however, can be used to show that the sampling distribution of (Q)ML es-
timates for a standard state space model does follow a normal distribution. The
asymptotic covariance matrix that Dunsmuir obtained (Dunsmuir, 1979) also had
the form of sandwich, that is, Q'TIQ ™. And € ( orII) was also the limiting value
of the second (the variance of the first) derivative of the log-likelihood function. But
the likelihood function used in Dunsmuir’s paper was defined from the frequency
perspective. Further work is needed to examine whether the asymptotic covariance
matrix derived from frequency domain is the same as Caines’ covariance matrix. I

also include some discussion on the regularity conditions in Appendix C.

4.2.2 Standard Error Estimators

Three sandwich type SE estimators have been proposed based on asymptotic
normality (4.3). These SE estimators rest on different estimators of the covari-
ance matrix, namely, A7-'ByAZ'/T. The two sandwich type SE estimators pro-
posed by Papanastassiou (2006) use I as the estimator of Ay. For estimation

of Br, Papanastassiou (2006) showed numerically that the distances between B, =

'y E [lt (5) lg (5) ’ 7-[0} and By and distances between B; = 7! > A (5) lé (5)
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and Br were negligible. The distances were measured in terms of the relative MSE of
the ordered eigenvalues of the matrices and the distances are smaller than 1 x 1073,
And then Papanastassiou (2006) simply used the two combinations of Zr, By and B,
to estimate the covariance matrix. More specifically, the first SE estimator is given

by,

and the second SE estimator is given by,
@Sng,i = (fglﬁ2fgl)ii/T.

The expectation operation in A is generally complicated to compute. Ty is an
alternative estimator other than fE, because if the asymptotic normality is validate
Zo is also a consistent estimator of A in that Zo — Ay — 0 as T — oo (Caines, 1988,
p.523-524). Thus in this thesis, I only include SﬁESWPM- and I drop the expectation
operation in gESWpl,i-

White (1984) also proposed a sandwich type SE estimator based on asymptotic
normality discussed here. Instead of using the expected information based SE esti-
mator to estimate Ar, the observed information based SE estimator, fo, was used.

For By, White (1984) proposed a new estimator, namely,

B - 1 {SU@)(0)+Y z i, (0)ir, (9)
+Hoer (B) 1 (9)]}

where s = o (T1/3) and s — 0o as T' — oo. Thus the formula for SE estimator is,
‘@SWW,i: (Z6'BsZ5"), /7.

In short, this thesis will explore the finite sample properties of four SE estimators,
§EO, SE H, SE swp, and SE swy, under different conditions. And in the next chapter

the specific design for simulation studies will be described.
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CHAPTER 5

SIMULATION DESIGN

The main objective of this thesis is to compare SE estimators for dynamic factor
analysis when data are non-normally distributed. Five factors that may influence the
performance of SE estimators are studied: distributions of the data, the time series
length, the number of subjects, initial settings and the signal-to-noise ratio. Section
5.1 discusses how these five factors may influence the performance of SE estimators.

Section 5.2 describes the simulation design.

5.1 Possible Influences on the Performance of SE Estimator

Distribution of the data is one key factor that would influence the performance
of SE estimators. Since the information based SE estimators are derived under the
assumption that data are normally distributed, it is expected that they would be, to
some extent, influenced by violations of the normal assumption. Results from inde-
pendent data showed that the information based SE estimators fail to give consistent
estimation of standard errors because they ignore the influences of kurtosis (Yuan &
Hayashi, 2006). Consequently, sandwich type SE estimators which are derived from
the asymptotic normality that takes into account the deviation from the Gaussian
distribution are then recommended (Yuan & Hayashi, 2006). However, the inferences
of kurtosis on some parameter estimates of dependent data may be limited. For ex-
ample, Dunsmuir (1979) proved that the asymptotic covariance matrix for AR and

MA weights in a vector ARMA model does not depend on the fourth moment of
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random shocks. The asymptotic covariance matrix for these parameters is actually in
the same form as when data are normally distributed. But the asymptotic covariance
matrix for covariance components, such as the variances of random shocks, is still
influenced by kurtosis. Note that Dunsmuir’s results are legitimate asymptotically.
Finite sample performance may be quite different. The vector ARMA model is a
highly related model. As shown in section 3.1, it is a special case of the state space
model.

The second factor concerning the finite performance of SE estimators is the time
series length. The performance of SE in long time series could be very different from
the performance in short time series. This is because large sample performances
are governed by theorems of convergence. These theorems are applicable only when
time series length becomes fairly large. Finite sample properties of consistent SE
estimators need to be carefully studied.

The third factor that influences the performance of SE estimators is initial settings.
Two types of initial settings that can be commonly seen in substantive research are
the noninformative initial setting and the stationary initial setting. When the non-
informative initial setting is used, a diagonal matrix, kI, where « is usually a large
positive number, is utilized as the initial factor covariance matrix. This type of initial
setting is suitable for data with long time series length. When time series is short,
point estimates and likely SE estimates would be influenced and more biased. The
stationary initial setting expresses the unknown initial factor covariance matrix in
terms of other model parameters. By equation, the initial factor covariance matrix is
given by vec (Py) = [I — ® @ ®] " vec (Q). This type of initial setting is suitable for
stationary data.

Another factor that influences SE estimation is the number of participants. Extra
participants may contribute extra information and thus with more participants, the

performance of (quasi-)maximum likelihood ((Q)ML) estimators and SE estimators
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can be expected to be better. In other words, there are two ways to increase the
number of observations, one is to increase the time series length and the other is to
collect more participants. In this thesis the combination effects of time series length
and the number of participants will be examined. This combined effect is of interest
because in real data analysis, collecting observations from extra participants is less
expensive then increasing the time series length. Suppose a Researcher A collects data
from 50 participants and each has 10 observations while another Researcher B surveys
10 participants but each has 50 observations. Both data sets have 500 observations,
but the latter design is likely to be more expensive. It is thus worthwhile to see
whether the performance of quasi-maximum likelihood estimators and SE estimators
for the first data set is comparable to performance of estimators for the second data
set. This may help for substantive researchers choose less expensive designs while
maintaining the performance of estimators.

The signal-to-noise ratio is the last factor. It is the ratio of variance that can be
explained by latent processes to variance of measurement errors. In a standard state

space model, the signal-to-noise ratio for the ith component of a stationary process,

{y:}, is defined as, (‘A‘(/;)Iz Jii , where A is the observation matrix; P is the steady
covariance matrix of the latent state; and R is the covariance matrix of the mea-
surement errors. The influences of the signal-to-noise ratio on (Q)ML estimates have
been studied indirectly. Previous research found that the finite sample performance
of (Q)ML estimator was influenced by the variability of the latent factors (Jacquier,
1994; Harvey & Shephard, 1996). With larger variation in the latent factors, the
(Q)ML estimates got closer to the true value and yielded smaller root mean square
errors (Jacquier, 1994; Harvey & Shephard, 1996). However, in those models, the
variation of measurement errors and the factor loadings were known. Thus the key

factor that influenced the performance of (Q)ML estimator was the signal-to-noise

ratio, which is the ratio of the variation of latent factors to the variation of measure-
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ment errors. SE estimation may also be vulnerable to a low signal-to-noise ratio. To
ensure that it is the signal-to-noise ratio that influences that the performance of SE
estimates, the signal-to-noise ratio will be manipulated in different ways and results
of conditions varying in how signal-to-noise ratio is manipulated will be compared.
In short, the thesis investigates the influences of these five factors using one sim-

ulation study.

5.2 Simulation Design

The finite sample performance of two types of standard error estimators will be
studied under various distribution, length, number of participants, initial setting, and

signal-to-noise ratio conditions using a Monte Carlo simulation.

5.2.1 The True Model

A bivariate AR(1) latent state process measured by six indicators in total consti-

tute the true model. The measurement model is:

Yy Xt \
Y1t A O V1¢
Yot Az 0 Vo
Yst Az 0 Ty U3y (5.1)
Yar 0 Axn ot Uy
Yst 0 A Ust
| Yot | I 0 A | | Vot |
in which A1 = X217 = 1 and A2 = A3 = Ay = Ao3 = .8. The observation noise

variables, v;, are identically and independently distributed with a mean vector of

zero and a diagonal covariance matrix of R. The state vector x; follows a VAR(1)

model, that is,

Xy = Px; 1 + Wy
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6 .3
where & = and wy ~ MD(0,Q) . MD (u,X) represents a distribution

3 .6

with a mean of u and a covariance matrix of 3. The covariance matrix of the initial
latent factor xg, P, satisfies the equation (3.12). This will ensure that the time series
is generated from a stationary system. Figure 1 gives the visual representation of this

model.
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Figure 5.1: The path diagram of the simulated model.

6

5.2.2 Factors Manipulated

Five variables are manipulated in this study: the distribution of data (of noise
variables), time series length, number of participants, initial settings and the signal-to-
noise ratio. For distributions of data (of noise variables), three different distributions
will be used: Normal, log-normal (with mean shifted to 0), and e—contaminated

normal (€ = .05, ¢=15). Log-normal is included to study the impact of skewness and
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kurtosis while e—contaminated normal are used to study the influence of kurtosis. All
of the distributions will share the same first two moments. Specifically, the means of
the two noise variables are fixed at zero. The covariance matrices, R and Q, under
different signal-to-noise conditions are summarized in table 5.2.1. The third and
fourth moments of the two noise variables vary across different distribution conditions.
For example, in the contaminated normal condition, the noise variables still have zero
mean and the same second and third moments as that in normal condition, but the
kurtosis is different. The kurtosis in the contaminated normal condition is higher
than that in the normal condition. Table 5.2.2 reports the measures of skewness and

kurtosis of the two noise variables under different distributional conditions.

TABLE 5.1

PARAMETER VALUES UNDER DIFFERENT SIGNAL-TO-NOISE RATIO

CONDITIONS
P, 2.5 1 0.5
Ts/m = O Or 3.2 Model 1-1 Model 1-2 Model 1-3
Q:;R; Q:2R» QiR
rs/n = 1 or 0.64  Model 2-1 Model 2-2 Model 2-3
QsRe Q:R4 Q:iR;
Ts/n = .25 or .16 Model 3-1 Model 3-2 Model 3-3
Q3R8 Q2R7 Q1R5
. 25 1 1 4 5.2
Resulting P [ 1 25 1 [ 4 1 1 [ 2 5 1
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For time series length and number of participants, eight conditions are included.
To evaluate the influence of time series length, four length conditions are used, T' = 50,
100, 200 and 500. 50 and 100 are time series length that can be commonly seen in
psychological dynamic studies. These are chosen to study performance in small to
moderate samples. The two longer time series length are included for comparison
purpose. To evaluate the combined effects of time series length and number of par-
ticipants, four conditions that share the same total number of observations but differ
in time series length and the number of participants are considered. Specifically,
the following four conditions are adopted: N = 10 & T =50, N = 20 & T = 25,
N =25& T =20,and N =50 & T = 10.

Two types of initial settings are used, the noninformative initial setting and the
stationary initial setting. The noninformative initial setting uses a diagonal matrix
kI as the initial factor covariance matrix. In this thesis, x is set to be 100. The
stationary initial setting expresses the unknown initial factor covariance matrix in
terms of other model parameters. By equation, the initial factor covariance matrix is
given by vec (Py) = I — ® @ ®] " vec (Q).

For signal-to-noise ratio conditions, three levels are chosen: high, moderate and
low. Signal-to-noise ratio is defined as (APA),, /R;; where vec(P) = [I — ® @ ®]
vec (Q) . When time series approaches steady state, the signal-to-noise ratio can be
manipulated by altering values of A, R, ® and Q. To simplify the problem, this thesis
uses one set of A and ®. With a given signal-to-noise ratio, three sets of R and Q
are chosen to obtain the target signal-to-noise ratio. Specifically, I first choose three
Qs so that the variance of latent factors, P;;, equal to .5, 1 and 2.5. After choosing
Qs, I pick up the variance of the measurement errors which, in combination of the
predefined A, ® and Q, will achieve the target signal-to-noise ratio. The specific

values of the model parameters in this study are listed as follows: (a) the covariance

37



203 —-.07 406 —.14

matrix of w; has three conditions Q; = , Qo = ,
—.07 .203 —.14 406
1.015 —.35
and Q3 = ; (b) the covariance matrix of measurement errors will
—.35 1.015

be assigned to seven different sets of values, Ry = diag(.1,6), Ry = diag (.2,6),
Rs = diag (.5,6), Ry = diag (1,6), Rs = diag (2,6), Rg = diag (2.5,6) and R; =
diag (4,6), Rg = diag(10,6). Table 4.1 lists models with different signal-to-noise
ratios r,/, under each distributional condition. In short, three levels of signal-to-noise
ratio are included and for each signal-to-noise ratio condition, the signal-to-noise ratio
is manipulated via three ways.

To summarize, the simulation study is carried out using a 3 x 8 x 2 x 3 x 3

(Distributionx T N xInitial SettingsxRatiox Ways of Manipulating Ratio) design.

5.2.3 Data Generation

With predefined model parameters, the following procedures are employed to gen-
erate samples accordingly:

S1. Generate an initial state vector, xo from M D (0, Pg). This thesis uses the Py
as defined in (3.12).

S2. Generate a process noise vector w; from M D (0, Q) where t =1,2,...,T.

S3. Compute a new state vector x; using the equation (3.2) and previous latent
factor, x;_1.

S4. Generate an observation noise vector v; from M D (0,R).

S5. Compute a new observation, y;, using the equation (3.1) and current latent
factor, x;.

S6. Update the time indicator subscript ¢ and repeat Step 2-5 7' times.

S7. Save the T data points.

Note that M D can be any of the four aforementioned distributions. Appendix A
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describes how to generate samples from the four aforementioned distributions. And
in the above procedure, no burn-in periods are used because the initial conditions

have taken into account the possible influences of the settings of initial conditions.

5.2.4 The Fitted Model

Data are fitted by the true model, that is, a latent vector AR(1) model with three
indicators for each factor. Algebraically, the fitted model is defined by (5.1) and (5.2).
A1 and Ag; are fixed to one to help identification. For each simulated sample, the
(Q)ML estimates and the four SE estimates @o, SE o, @Swpl and @SWW will
be computed. In the computation of EESWW, s will be set to s = {Tl/‘{“] where [z]
is the largest integer that is no larger than z. [Tl/ 3'1} is used so that more cross-
product terms are included and thus the difference between @SWW and §E’SWP1 is
adequately large.

Results of interest are convergence rates, the performance of the normal theory
based ML estimator, the performance of standard error estimators and interval es-
timates. The accuracy of the (Q)ML estimator is evaluated using bias. The bias is
given by bias; = M~! Zj]‘il (QA” — 9i> where é” is the estimate of the ith parameter
obtained when analyzing the jth replication; 6; is the true value of the ith param-
eter; and M is the number of converged replications in the simulation study. To
evaluate the performance of SE estimators, the relative bias of the ith parameter,
rbias; = M1 Z;W (@u — SEemp,i) /S Eempi, is computed. SE.,,,; is the empirical
SE estimate of the ith parameter.

Generally speaking, SE estimators provide information on the accuracy of point
estimates. They can be used to test a hypothesis about parameters and to construct
confidence intervals. A confidence interval gives a range of plausible values for pa-
rameters. In addition to the single value provided by point estimates, a confidence

interval can tell how likely the true value will fall into the interval. If the SE esti-
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mator of interest gives good estimates of the true standard error and the sampling
distribution of the target consistent statistic is symmetric, the probability that the
confidence interval computed using this SE estimator fails to cover the true value
should be close to the nominal level. This probability is called the mis-coverage rate.
Thus, by examining how close to the nominal level the empirical mis-coverage rate
is, we can examine the performance of SE estimator indirectly. This is important
because in real data analysis, researchers are more concerned about the accuracy of
the inferences they make based on SE estimators. In thesis, the mis-coverage rates of
confidence intervals based on different SE estimators will be studied.

The parameter estimation is conducted using the nlm optimizer in R and when a
Heywood case is encountered, the sample is analyzed again using the optim optimizer.

All SE estimates are computed using a customized program written in R.
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CHAPTER 6

RESULTS

Simulation results are reported in this chapter. Section 6.1 discusses convergence
rates for all conditions. Section 6.2 and section 6.3 summarize results concerning
point estimates and standard error estimates respectively. Since different ways of
manipulating signal-to-noise ratios do not influence the bias of point estimates and
the relative bias of standard error estimates in most conditions, I decide to focus on
one way of manipulating signal-to-noise ratios (models in the second column of table
5.1). Conditions in which the influences of methods of manipulating signal-to-noise
ratios are observed are summarized and discussed in Appendix D. Detailed results
of all conditions are included in the supplemental file and are available on request to

the author.

6.1 Convergence Rates

The number of samples to be included in the analysis is summarized in table
6.1 and table 6.2. In each condition, 1000 samples are simulated. Samples that do
not converge or samples with estimated covariance matrices that are not positive-
semidefinite are excluded from further analysis in this thesis. Since results are based
on clean samples, one should not overgeneralize the findings of this thesis to irregular
samples.

From the following table we can see that convergence rates are influenced by the

time series length. As the time series length increases, convergence rates increase.
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Adding participants also helps improving convergence rates. And as a product of the
time series length and the number of participants, the total number of observations
also influences convergence rates. Convergence rates increase as the total number of
observations amplifies. The effect of the data distribution depends on the total num-
ber of observations. When the total number of observations is small, the convergence
rates in the normal data condition are substantially higher than in the non-normal
data conditions. However, when the total number of observations is large, the dif-
ferences in convergence rates across distribution conditions are negligible. Initial
settings also show influences on convergence rates. Convergence rates are lower when
the stationary initial setting is used than when the noninformative initial setting is
used. This is perhaps due to the fact that when the stationary initial setting is used,
initial factor covariance matrix is based on the estimates of model parameters. The
likelihood function is then more complicated and thus it is more difficult to find the
solution. Therefore convergence rates are lower when the stationary initial setting is
used.

The effect of the signal-to-noise ratio is not uniform. As shown in table 6.1 and
table 6.2, when the total number of observations is large, the convergence rates are
lower in high ratio conditions. One possible explanation of this seemingly counterin-
tuitive phenomenon is that convergence rates are influenced by two factors which bind
to each other in the simulation study but affect convergence rates differently. These
two factors are the signal-to-noise ratio and the distance between the true parameter
values and the boundary of parameter space. In this thesis, signal-to-noise ratios are
manipulated by adjusting the variances of measurement errors. As a result, the vari-
ances of measurement errors are closer to 0, the boundary of parameter space, in the
high ratio conditions than in the low ratio conditions. Hence in this thesis, a higher
signal-to-noise ratio is always associated with a shorter distance and a lower ratio

with a longer distance. However, these two factors, ratio and distance, affect conver-
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gence rates differently. When the total number of observations is small, the influence
of the signal-to-noise ratio dominates. And since a higher ratio indicates more infor-
mation, convergence rates thus increase as the signal-to-noise ratio increases. This
is confirmed by the fact that the empirical standard error estimates in the low ratio
conditions are larger than in the high ratio conditions. However, the influences of
signal-to-noise ratios reduce as the total number of observations increases. This is
because when the total number of observations is large, even the data sets in the low
ratio condition contain enough information to ensure convergence. In other words,
when the total number of observations is sufficiently large, the influence of signal-
to-noise ratios is negligible and the effect of distances becomes more obvious. When
the true parameter value is closer to the boundary of parameter space, the chances
of suffering from convergence problems are higher and thus the convergence rates
are lower. Since the distance between the true parameter value and the boundary
of parameter space is smaller in the high ratio condition, the convergence rates are
lower in the high ratio condition when the total number of observations is sufficiently
large.

Convergence rates appear to be somewhat lower than some previous papers, i.e.,
Z. Zhang et al. (2008) and Song and Ferrer (2009). This is perhaps due to three
reasons. First, the signal-to-noise ratio in this study is lower. For example, Z. Zhang
et al. (2008) used models with signal-to-noise ratios ranging from 1 to 10 and Song and
Ferrer (2009) used signal-to-noise ratios ranging from around 2.5 to 16. In this thesis,
however, the signal-to-noise ratio ranges from .25 to 5. When the total number of
observations is small, models with lower ratios tend to have lower convergence rates.
Second, different initial settings are used in this thesis. In the two previous papers,
the initial factor covariance matrix was treated as known and it was computed based
on true parameter values and the stationarity assumption. In other words, these two

papers used extra information that is usually unknown in real data analysis during the
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estimation process. In contrast, the two initial settings used in this thesis do not rely
on the information that is usually unknown in the real data analysis. The stationary
initial setting treats the initial factor covariance matrix as unknown and estimates
the initial factor covariance matrix based on estimates of other parameters. Therefore
the estimation using this initial setting is more difficult. The noninformative initial
setting uses kI as the initial factor covariance matrix where x is an arbitrary large
positive number. In this thesis kK = 100. This matrix is quite far away from the
true initial covariance matrix. Thus it is not surprise that lower convergence rates
are observed. Third, Song and Ferrer (2009) used the expectation-maximization
algorithm (EM) to obtain point estimates. It is generally accepted that the EM
algorithm has higher convergence rates than the Newton-type algorithm. Since the
Quasi-Newton algorithm was used in Z. Zhang et al. (2008) and the Newton-Raphason
algorithm is used in this thesis, it is not surprise that the convergence rates in Song
and Ferrer (2009) were higher than the convergence rates in Z. Zhang et al. (2008)
and in the current thesis. The shortcoming of the EM algorithm is that SE estimates
cannot be obtained directly. As noted in Song and Ferrer (2009, p360), even though
there exist some approaches to overcome this limitation, e.g., a modified EM algorithm
(Meng & Rubin, 1991) and a bootstrapping method specific to DFA models (G. Zhang
& Browne, 2010), examination on whether those methods can be applied to the state
space model is needed.

Finally, since the convergence rates in the conditions with short times series
lengths and low signal-to-noise ratios are strikingly low, results in these conditions
are not as faithful as results in other conditions. A 50%-convergence-rate standard is
used to judge whether or not results of this condition are trustworthy. And thus the
condition T50N1 with low to medium signal-to-noise ratios and condition 7T100N1
with medium signal-to-noise ratios are excluded from further analysis. A complete

report of results is included in the supplemental file and is available on request to the
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author.

TABLE 6.1

NUMBER OF CONVERGED SAMPLES WHEN THE STATIONARY INITTIAL
SETTING IS USED

T50N1 T100N1 T200N1 T500N1
N LN CN N LN CN N LN CN N LN CN

M11 719 651 694 903 838 836 920 925 919 939 940 944
M12 657 622 549 811 759 781 864 838 823 839 830 861
M13 569 530 558 741 729 688 783 799 771 795 789 785

M21 665 590 547 891 861 854 952 961 967 961 960 978
M22 672 615 516 895 824 812 923 895 911 927 952 928
M23 560 547 439 831 806 787 892 888 880 937 862 867

M31 188 105 126 556 380 398 897 750 759 998 889 948
M32 156 176 160 561 501 433 884 850 709 971 966 934
M33 179 174 162 550 525 443 890 854 738 981 918 918

T10N50 T20N25 T25N20 T50N10
N LN CN N LN CN N LN CN N LN CN

MI11 931 941 955 940 940 959 945 951 944 936 942 938
M12 832 841 842 790 818 865 829 817 861 846 828 870
M13 757 788 826 789 788 832 778 800 813 798 785 802

M21 974 974 980 969 978 981 971 967 980 974 978 977
M22 930 962 958 939 947 956 935 951 952 937 929 931
M23 931 855 878 925 829 875 935 847 856 938 847 827

M31 988 890 943 994 931 957 998 935 934 999 940 963
M32 949 959 929 970 973 934 978 970 942 972 984 948
M33 967 931 910 973 936 907 972 927 925 972 940 926

Note: Symbols in the first column stand for models in table 5.1. M11, M12, and M13 belong to the

high signal-to-noise ratio condition and M33, M32, and M33 belong to the low signal-to-noise ratio
condition. The three models in the middle have medium signal-to-noise ratios. The length of the
series is given by the number following the letter T in the first row and the number of participants
is given by the number following the letter N in the first row. N, LN and CN in the second row
stand for the normal, the log-normal and the contaminated normal distribution respectively.
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TABLE 6.2

NUMBER OF CONVERGED SAMPLES WHEN THE NONINFORMATIVE INITIAL
SETTING IS USED

T50N1 T100N1 T200N1 T500N1
N LN CN N LN CN N LN CN N LN CN

M11 803 766 789 970 927 941 998 985 987 1000 1000 1000
M12 763 748 723 954 942 880 991 988 971 994 999 992
M13 776 707 747 912 898 904 934 921 942 961 959 950

M21 700 656 607 938 912 905 998 986 996 1000 1000 1000
M22 711 677 610 957 934 917 997 989 997 1000 1000 1000
M23 678 714 602 946 941 919 994 989 988 999 998 997

M31 222 239 200 609 616 491 925 885 812 1000 966 982
M32 252 245 215 663 600 490 809 789 668 999 987 982
M33 260 253 197 640 611 492 943 921 793 999 999 985

T10N50 T20N25 T25N20 TH50N10
N LN CN N LN CN N LN CN N LN CN

M11 923 928 934 934 931 934 938 869 935 940 932 947
M12 919 920 944 896 917 939 839 849 885 940 955 947
M13 862 850 884 870 869 885 898 855 879 894 906 919

M21 986 972 983 973 957 974 976 965 976 1000 997 1000
M22 951 947 952 954 940 956 916 888 912 952 928 947
M23 954 926 958 967 951 972 975 962 958 968 942 928

M31 1000 879 941 1000 935 962 1000 935 976 1000 915 976
M32 991 932 889 980 950 933 988 960 942 998 984 961
M33 984 862 826 973 915 892 980 924 919 983 934 935

Note: Symbols in the first column stand for models in table 5.1. M11, M12, and M13 belong to the high
signal-to-noise ratio condition and M33, M32, and M33 belong to the low signal-to-noise ratio condition.
The three models in the middle have medium signal-to-noise ratios. The length of the series is given by
the number following the letter T in the first row and the number of participants is given by the number
following the letter N in the first row. N, LN and CN in the second row stand for the normal, the log-normal
and the contaminated normal distribution respectively.
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6.2 Point Estimates

To evaluate the performance of point estimates, bias and total absolute bias under
various conditions are summarized in the following tables. Results across various
length conditions are included in table 6.3, 6.4,6.5, 6.6, 6.7, and 6.8. Results of Multi-
subject conditions are included in table 6.11, 6.12, 6.9, and 6.10. Since convergence
rates are low in conditions 7'/50/N1 and T100N1 with low signal-to-noise ratios and
condition T50N1 with medium ratios, results of those conditions are not reported in
the following four tables. Thus our attention centers on conditions with reasonable
convergence rates.

From table 6.3, 6.4,6.5, 6.6, 6.7, and 6.8, we can see that as expected, the accuracy
of point estimates generally improves as the times series length increases. Similarly,
as the signal-to-noise ratio increases, the accuracy of point estimates improves. More-
over, the bias in the non-normal data conditions is generally larger than that in the
normal data condition.

Concerning the comparisons between the two initial settings, we can see by com-
paring table 6.3, 6.4, 6.5 and table 6.6, 6.7, and 6.8 that the effect of initial settings
depends on the time series length and the signal-to-noise ratio. As the time series
length increases, the influence of initial settings on the accuracy of point estimates de-
creases. Similarly, as the signal-to-noise ratio increases, the effect of initial settings di-
minishes gradually. In general, as opposed to using the noninformative initial setting,
using the stationary initial setting results in more accurate estimates of the transition
matrix ®. The differences between the two initial conditions for other parameters
are not uniform. In some conditions, the stationary initial setting outperforms the
noninformative initial setting whereas in other conditions, the noninformative initial
setting gives more accurate parameter estimates.

With regard to the trade-off between increasing the time series length and the

number of participants, the bias of point estimates, among the conditions that share
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the same total number of observations, is smaller in conditions with longer time se-
ries lengths but fewer participants (see table 6.11, 6.12, 6.9, and 6.10). For example,
estimates obtained in condition T500/N1 are more accurate than estimates in condi-
tion T'10N50. The differences between conditions with longer time series lengths and
fewer participants and conditions with shorter time series lengths and more partic-
ipants depend on initial settings and signal-to-noise ratios. By comparing table 6.9
and table 6.10, we can see that when the stationary initial setting is used, the dif-
ferences in bias among conditions that share the same total number of observations
are within an acceptable range. In contrast, when the noninformative initial set-
ting is used, bias is remarkably larger in conditions with shorter time series lengths
than in conditions with longer time series lengths. This suggests that for designs
with multiple participants and short time series lengths, it is better not to use the
noninformative initial setting. Moreover, the signal-to-noise ratio also influences the
differences among conditions that share the same total number of observations. By
comparing table 6.9, 6.9 and table 6.11, 6.12, we can find that as the ratio increases,
the differences gradually decrease. In short, even though the estimates in conditions
with longer time series lengths are still more accurate, designs with shorter time series
lengths but more participants have the advantage of lower experimental costs. Thus
when the stationary initial setting is used, designs with shorter time series lengths are
still useful alternatives that deserve considerations. This is especially true when the
time series length is not extremely short, i.e., the condition 7T50N10 and when the
signal-to-noise ratio is high, that is, when most variation in the observed variables is
caused by the latent process rather than the variation in measurement errors.

The signal-to-noise ratio also influences the accuracy of point estimates. The bias
of point estimates in the high ratio conditions is smaller than that in the low ratio

conditions.
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6.3 Standard Error Estimates

In this section, simulation results of standard error estimators are summarized
according to the influences of related factors. These factors include the distribution
of data, the time series length, the initial settings, the trade-off between increasing the
time series length and increasing the number of participants and the signal-to-noise

ratio.

6.3.1 Data Distribution

To illustrate the effect of the data distribution on the performance of standard
error estimators, figure 6.1 which compares results of different distribution conditions
is included. Figure 6.1 graphs the results of SE estimators obtained when fitting model
M22 using the stationary initial setting under different distribution conditions. The
relative bias (the ratio of average bias to the empirical SE estimates) of SE estimators
is visualized in the first row of figure 6.1 and mis-coverage rates using different SE
estimators visualized in the second row. Figure 6.1 shows that the relative bias of
SE estimators in the normal data condition is generally smaller compared to the two
non-normal conditions and the mis-coverage rates in the normal data condition are
closer to the nominal level.

With regard to the comparisons among SE estimators, we can see that differences
in the performance of SE estimators vary across distribution conditions. In the nor-
mal data condition, the relative bias of sandwich-type SE estimators is comparable to
that of information based SE estimators whereas in the non-normal data conditions,
sandwich-type SE estimators yield smaller relative bias compared with information
based SE estimators. More specifically, when data do not follow the normal distri-
bution, information based SE estimators tend to underestimate the empirical stan-
dard error estimates of parameters. When evaluating the mis-coverage rates, results

are slightly different. Only Papanastasious’ sandwich SE estimator, @SWP17 out-
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performs information based SE estimators in the non-normal data conditions. The
mis-coverage rates using White’s sandwich SE estimator, EESWW, are more inflated
than using information based SE estimators in the normal and log-normal conditions.
In short, @Swpl is more preferable for non-normal data compared with other SE
estimators.

The effect of data distributions interacts with the effect of the time series length.
Generally, the differences across distribution conditions decrease as the time series
length increases. Detailed discussions on the interaction effects are included in sub-

section 6.3.2.
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6.3.2 Time Series Length

Figure 6.2 and figure 6.3 are included to illustrate the effect of the time series
length on the performance of SE estimators. Since for information based SE estima-
tors, the effect of time series length varies across distribution conditions, figure 6.2
and figure 6.3 compare results of SE estimators across different length and distribu-
tion conditions. The relative bias of SE estimators obtained when fitting model M22
using the stationary initial setting is visualized in figure 6.2 and the corresponding
mis-coverage rates are visualized in figure 6.3.

From figure 6.2 and figure 6.3, we can see that the effect of the time series length
differs across different SE estimators. For sandwich-type SE estimators, the relative
bias decreases and the corresponding mis-coverage rates approach the nominal level
as the time series length increases. For information based SE estimators, however, the
effect of time series length displays different patterns across distribution conditions.
In the normal data condition, the accuracy of SE estimates and the control on mis-
coverage rates improve with the time series length. In the non-normal data conditions,
however, as the time series length increases, no substantial improvements are observed
for covariance component parameters (the variance-covariances of state noise Q and
the variance-covariances of measurement errors R). But for non-covariance compo-
nent parameters (the measurement matrix A and the transition matrix ®), small
improvements in the accuracy of information based SE estimates and the control on
corresponding mis-coverage rates are observed as the time series length increases.

The effect of the time series length interacts with the effect of the signal-to-noise
ratio. Figure 6.4 and figure 6.5 evaluate the effect of the time series length under
different ratio conditions. We can see from these two figures that among conditions
that have the same time series length, the relative bias of SE estimators is larger in
conditions with lower ratios. This indicates that for data with low signal-to-noise

ratios, a longer time series length is needed to obtain desired control on mis-coverage
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rates and desired accuracy of SE estimates.

Concerning the comparisons among SE estimators, Papanastassiou’s sandwich SE
estimator, @gwpl, shows advantages in estimating the empirical standard error es-
timates for non-normal data in terms of smaller relative bias and better controlled
mis-coverage rates. Even though the relative bias of information based SE estimators
for A and @ is negligible in conditions with sufficiently long series lengths and ade-
quately high signal-to-noise ratios, it is not otherwise. The same pattern applies to
the mis-coverage rates based on information based SE estimators. When the signal-
to-noise ratio is low, the mis-coverage rates of ® and A using information based SE
estimator are inflated. Thus information based SE estimators are less preferable to
Pananastassiou’s sandwich SE estimator. White’s sandwich SE estimator, SE SWyy » 18
not recommended because when the time series length is short and when the signal-to-
noise ratio is high, the mis-coverage rates using S/'ESWW are more inflated compared
with using other SE estimators (see figure 6.3). This is especially apparent in the
normal data and the log-normal data conditions.

In short, the simulation study suggests that for normally distributed data, all SE
estimators are suitable for the standard errors of parameters. For non-normal data,
however, while sandwich-type SE estimators are still appropriate for all parameters,
information based SE estimators are only suitable for non-covariance component pa-
rameters and only when the time series length is sufficiently long and the signal-to-
noise ratio is adequately high.

Results in most other conditions agree with the findings discussed above (Please
contact the author for specific results of other conditions). However, there are some
exceptions. In the low ratio and the log-normal data conditions, the relative bias of
SE estimators may increase as the time series length increases. This reveals some
inconsistency in the estimation. Nevertheless, even in these conditions, mis-coverage

rates are still better controlled in long length conditions compared with short length
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conditions.
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6.3.3 Initial Settings

Figure 6.6 and figure 6.7 are included to illustrate the effect of initial settings.
To visualize related interaction effects, figure 6.6 and figure 6.7 compare the relative
bias and mis-coverage rates obtained when fitting model M12 across different initial
setting, length and number-of-participant conditions. Results in the first row of these
two figures are obtained using the stationary initial setting and results in the second
row using the noninformative initial setting. Columns in these two figures differ in
the time series length and the number of participants.

We can see from the following figures that the effect of initial setting is different
across different SE estimators. Harvey’s SE estimator is most sensitive to initial
settings. The relative bias of Harvey’s SE estimator for ® and A is smaller and
the corresponding mis-coverage rates are better controlled when the stationary initial
setting is used compared with when the noninformative initial setting is used. The
other three SE estimators display smaller differences between the two initial conditions
compared with Harvey’s SE estimator, indicating that these SE estimators are less
influenced by initial settings.

Generally, the effect of initial settings is attenuated by the time series length.
With a time series length as long as T' = 500, the differences between the two initial
conditions are negligible. By comparing the first column and the third column of
the following figures, we can see that the effect of adding participants when the time
series length is short differs across the two initial conditions. If the noninformative
initial setting is used, adding participants when the time series length is short does
not improve the accuracy of SE estimators and the control of mis-coverage rates. In
contrast, if the stationary initial setting is used, the accuracy of SE estimators and
the control of mis-coverage rates are substantially improved in the conditions with
more participants. In other words, the differences between the two initial conditions

are larger when data involve multiple participants.
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6.3.4 Trade-Off Between Increasing T and N

Either increasing the time series length or increasing the number of participants
improves the accuracy of estimation. However, increasing the time series length is
more expensive. Thus between among designs that share the same total number
of observations, designs with shorter time series lengths are less expensive. And it
would be encouraging if the results of designs with shorter time series lengths are
comparable to the results of designs with longer time series lengths.

To illustrate the differences among conditions that share the same total number
of observations, figure 6.8 and figure 6.9 are included. Given the limits of space,
only the results of conditions T10N50, T50N10 and T500N1 are included. Since the
simulation study shows that the differences among conditions with the same total
number of observations are influenced by initial settings. Figure 6.8 and figure 6.9
graph the results of conditions that share the same total number of observations
across different initial conditions.

From figure 6.8 and figure 6.9 we can see that when the stationary initial set-
ting is used, the differences among conditions that share the same total number of
observations are negligible whereas when the noninformative initial setting is used,
results are substantially better in conditions with longer time series lengths. The SE
estimates obtained using the noninformative initial setting in conditions with short
time series lengths, i.e., T10N50, are unacceptably biased and the mis-coverage rates
in these conditions are severely inflated.

Concerning the comparisons among SE estimators, sandwich-type SE estimators
generally outperform information based SE estimators. However, the advantage of
using sandwich-type SE estimators decreases as the signal-to-noise ratio increases.
Detailed discussions on the effect of the signal-to-noise ratio are included in the sub-
section 6.3.5. However, given the much shorter time series lengths of multi-subject

conditions considered in this subsection, figure 6.10 and figure 6.11 are still included
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to illustrate the effect of the signal-to-noise ratio. By examining figure 6.10 and fig-
ure 6.11, we can see that the differences in the relative bias of ® and A among SE
estimators are substantially smaller in the high ratio conditions compared with the
low ratio conditions. And the mis-coverage rates using different SE estimators are
comparable to each other.

In short, the simulation study suggests that when the stationary initial setting
is used, conditions with shorter time series lengths but more participants yield sim-
ilar results as conditions with longer time series lengths but fewer participants. In
addition, sandwich-type SE estimators generally outperform information based SE
estimators even though information based SE estimators work adequately well when

the signal-to-noise ratio is high.
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6.3.5 Signal-To-Noise Ratio

The performance of SE estimators is influenced by signal-to-noise ratios. Figure
6.12 displays the relative bias of SE estimates and corresponding mis-coverage rates
under different ratio conditions. Results are obtained when the stationary initial
settings are used. We can see that the relative bias of SE estimates is smaller and the
mis-coverage rates are closer to the nominal level in the conditions with higher signal-
to-noise ratios. The effect of signal-to-noise ratio is uniform across other conditions.

And when the signal-to-noise ratio is high, the White’s sandwich-type SE esti-
mator, EESWW, may give more severely biased SE estimates of ® than information
based SE estimators. This is especially apparent when the time series length is not

sufficiently long.
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CHAPTER 7

DISCUSSIONS

In this thesis, the main objective is to examine the finite sample performance of
information based SE estimators and sandwich-type SE estimators for dynamic factor
analysis. The consequence of violation of the normality assumption is of primary
interest. A Monte Carlo simulation is conducted so that the performance of these
two types of SE estimators are examined in terms of bias and mis-coverage rates
under various distribution, length, initial setting, number-of-subjects and signal-to-
noise ratio conditions. Discussions of results are divided into five parts. Section 7.1,
section 7.2 and section 7.3 discuss the findings concerning the normal theory based
ML estimates, SE estimates and interval estimates respectively. Section 7.4 discusses
several limitations of this thesis. Overall implications for applied research are included

in section 7.5.

7.1 The Normal Theory Based ML Estimator

7.1.1 The Normal Theory Based ML Estimates Are Less Biased when the Time
Series Length Is Sufficiently Long

A major finding of the simulation study in this thesis is that the normal theory
based ML estimates become less biased as the length of the time series increases.
When the time series length is sufficiently long, parameter values can be accurately
recovered by the normal theory based ML estimates irrespective of the data distri-

bution. The estimates of the noncovariance component parameters (the transition
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matrix ® and the measurement matrix A) show smaller bias than the covariance
component parameters (the covariance matrix of the measurement errors R and the
covariance matrix of the state noise Q). That the bias reduces as the time series length
increases is in accordance with the previous findings of the asymptotic distribution of
the normal theory based ML estimator. It is well established that ML estimates ob-
tained using the state-space approach are consistent and efficient if data are normally
distributed and the model is correctly specified (Caines, 1988; Harvey, 1989). With
regard to non-normal data, Harvey and Shephard (1996, section 3) claimed, based
on the work of Dunsmuir (1979), that the normal theory based ML estimator which
ignored the non-normality of data was still consistent and asymptotically normal.
The simulation study in this thesis also shows that the accuracy (the bias) of the
normal theory based ML estimator is influenced by the signal-to-noise ratio. When
the signal-to-noise ratio is low, a much longer time series length is needed to obtain
the desired accuracy. Thus the signal-to-noise ratio is an important factor that ap-
plied researchers need to take into account in the preparation of studies on dynamics.
Even though it can be intuitively expected that the performance of parameter esti-
mators is influenced by the quality of data, it is unclear how to quantify the quality
of data. The signal-to-noise ratio provides a way to quantify the quality of data and
thus it will be helpful in making experimental design decisions. The signal-to-noise
ratio is related to the communality in factor analysis and the growth curve reliability
in longitudinal analysis'. The communality and the growth curve reliability (GCR)
measure the proportion of variance in a variable that can be explained by all common
factors jointly (or by interindividual differences in change). In time series analysis,
the signal-to-noise ratio is related to the proportion of variation in a variable that can

be explained by all latent series. This proportion is a monotonically increasing func-

1
T‘S/n—‘rl

tion of the signal-to-noise ratio, i.e., 1 — where r,/, denotes the signal-to-noise

!There are many growth curve reliabilities. Here I discuss the one used in Hertzog, Lindenberger,
Ghisletta, and Oertzen (2006).
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ratio. Therefore, higher signal-to-noise ratios are associated with higher proportions
of variance explained by all latent series. And previous simulation studies showed
that communality and the growth curve reliability exhibited similar influences on
the parameter estimation and statistical inferences in covariance structure analysis
and in longitudinal analysis (MacCallum, Widaman, Preacher, & Hong, 2011; Mac-
Callum, Widaman, Zhang, & Hong, 1999; Hertzog et al., 2006; Hertzog, Oertzen,
Ghisletta, & Lindenberger, 2008). Signal-to-noise ratios, communalities and GCRs
are related to but different from the reliability. When there are no specific factors or
no intraindividual differences, these three indices are indicators of the reliability. 2
The finite sample performance of the normal theory based ML estimator for non-
normal data has been examined in a few previous studies (Harvey & Shephard, 1996;
Ruiz, 1994; Sandmann & Koopman, 1998). However, their attentions mainly centered
on the sample size that can be often seen in typical economic studies (7" > 500), which
is usually much longer than the time series length considered in social and behavioral
studies. And the model examined in those papers was a scalar state space model.
The generalization of the findings obtained from a scalar model to a multivariate
model is questionable. Note that usually, a multivariate state space model is needed
in order to do the dynamic factor analysis. In this thesis, the performance of the
normal theory based ML estimator is examined using time series lengths that can
be often seen in social and behavioral studies, which are much smaller than the

sample sizes used in economic studies. And a typical multivariate DFA model is used

2Strictly speaking, reliabilities in factor analysis and in longitudinal data analysis are different
from communalities and GCRs. In factor analysis, the variance of an observed variable can be
decomposed into common variance (variance explained by common factors), specific variance (vari-
ance explained by specific factors) and error variance. The reliability is defined as the proportion of
variance in an observed variable explained by both the common factors and the specific factors. In
longitudinal data analysis, the variance of an observed variable can be decomposed into interindivid-
ual differences in change, intraindividual variations and error variance. The corresponding reliability
is defined as the proportion of variance in an observed variable that is explained by interindividual
differences in change and intraindividual variations. If there are no specific factors or no intraindi-
vidual variations, the communality and the GCR can be used as indicators of reliabilities. Similarly,
when the disturbance series, {w;}, is purely measurement error series, 1 — Wlﬂ where 7/, denotes
the signal-to-noise ratio can be viewed as an indicator of the reliability of time series.
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in the simulation study. Thus this thesis is more informative for applied research in
social and behavioral area. Song and Ferrer (2009) and Z. Zhang et al. (2008) recently
studied the finite sample performance of the ML estimator obtained using the Kalman
smoother algorithm in the context of dynamic factor analysis. However, their study
was restricted to normally distributed data. And the effect of the signal-to-noise ratio
was not emphasized. This thesis extends the results of Song and Ferrer (2009) and
Z. Zhang et al. (2008) to non-normal data. And the effect of the signal-to-noise ratio
is examined.

7.1.2 Results from Designs that Share the Same Total Number of Observations but
Differ in Time Series Length Are Comparable.

This thesis compares two types of experimental designs, one with fewer partic-
ipants but a longer time series length and the other with more participants but a
shorter time series length. Comparisons are made among conditions that share the
same total number of observations. Simulation results show that if the stationary
initial setting is used, the accuracy of parameter estimates in the multiple-subject
conditions with shorter time series lengths is only slightly inferior to that in the
single-subject conditions with much longer time series lengths. And the differences
become negligible when the signal-to-noise ratio is high. Note that the signal-to-noise
ratio in this thesis is lower than the ratio used in previous papers, i.e., Z. Zhang et
al. (2008) and Song and Ferrer (2009). We thus expect smaller differences among
conditions that share the same total number of participants under the conditions of
previous papers. However, one should not overgeneralize the simulation results to
experimental designs with time series lengths that are arbitrary short. A reasonable
number of occasions is always needed to accurately model the underlying process.
Our simulation study only compares conditions with time series lengths that are
larger than 10. The pattern of results from data with shorter time series lengths

can be different from the pattern found in this thesis. For example, the parameter
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estimation from data with 100 subjects and 5 waves may be less accurate than the
parameter estimation from data with 1 subject and 500 time points. Another issue
that requires special caution is that this thesis implicitly assumes, when analyzing
the multi-subject data, that all participants are governed by the same process. In
real data analysis, a test on the homogeneity of the underlying systems of different

participants is always needed.

7.2 Standard Error Estimators

7.2.1 Papanastassiou’s Sandwich SE Estimator Gives Better Performance

The simulation study indicates that whereas for normal data, the four SE estima-
tors yield similar performance, for non-normal data, Papanastassiou’s sandwich SE
estimator, §E5Wpl, outperforms the other SE estimators in terms of smaller relative
bias and better controlled mis-coverage rates. And the advantage of using Papanas-
tassiou’s sandwich SE estimator is more substantial for ® and A than for R and
Q. Even though information based SE estimators work adequately well for ® and A
when the time series length is long and when the signal-to-noise ratio is high, they
do not otherwise.

For designs with multiple subjects but shorter time series lengths, the simulation
study indicates that when the stationary initial setting is used, similar accuracy of SE
estimates and comparable control in mis-coverage rates are observed among conditions
that share the same total number of observations. Generally, in multi-subject data
conditions (conditions with N > 1), sandwich-type SE estimators yield accurate
SE estimates and the corresponding mis-coverage rates are well controlled across all
ratio conditions. And information SE estimators yield downward biased SE estimates
and inflated mis-coverage rates, especially when the signal-to-noise ratio is not high
(medium or low).

Thus in general, it is safer to use Papanastassiou’s sandwich SE estimator.
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Between the two sandwich-type SE estimators, the performance of SE SWwyy 1S gen-
erally comparable to SE swp,, €xcept in conditions where the time series length is
short and the signal-to-noise ratio is high. In this situation, ,@SWW tends to show
larger negative bias than EESWN. This is against our expectation. @SWW is sup-
posed to give better performance than SE swp, because SE swy, tries to capture the
dependence among [;s. To evaluate the dependence among Is, figure 7.1 is included.
I use the approximate auto- and cross-correlations to study the dependence among
Is (please refer to Appendix E for technical details). Because all models in this thesis
have 17 parameters, [, contains 17 univariate derivative series. Figure 7.1 graphs the
approximate ACFs of all the 17 derivative series. We can see from figure 7.1 that for
non-normal data, ;s based on the prediction error decomposition do not appear to
be serially correlated or the dependence among I;s is negligible. Further discussions

on the cross-correlations of {lt} can be found in Appendix E.
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Figure 7.1: All approximate ACFs of {lt} when true parameters are known. Results
are obtained based on samples generated from model M12 and under the 7" = 500
and the contaminated normal data condition.

The two information based SE estimators give similar SE estimates in many con-

ditions studied in this thesis. Even though when the noninformative initial setting
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is used and when the time series length is short, Harvey’s SE estimator shows larger
downward relative bias than the observed information based SE estimator. The per-
formance of Harvey’s SE estimator can be substantially improved by using the sta-
tionary initial setting. Therefore, given its computational efficiency, Harvey's SE
estimator is a useful alternative to the observed information based SE estimator.
There have been relatively few studies exploring the finite sample performance of
standard error estimators for DFA models, especially under the framework of state-
space models. The available evidence is limited in scope and cannot be generalized
directly to DFA models (Papanastassiou, 2006). This thesis extends the findings of
previous papers by examining the finite sample performance of standard error es-
timators under conditions that can be encountered in typical social and behavioral
studies. Dynamical studies in social and behavioral areas usually involve samples with
limited number of occasions, severe deviation from the multivariate normal distribu-
tion, less-than-perfect signal-to-noise ratios and multiple latent concepts. All these
factors are considered in this thesis. Thus this thesis will enrich the understanding of
finite-sample properties of SE estimators for the dynamic factor analysis.

7.2.2 Information-Based SE Estimators Work Only When the Time Length Is Long
and When the Ratio Is High

The simulation study indicates that for the non-covariance parameters (A and ®),
the performance of information based SE estimators depends on the time series length
and the signal-to-noise ratio. When the time series length is long and when the signal-
to-noise ratio is high, standard errors of A and ® can be accurately estimated by
information based SE estimators and interval estimates of A and ® yield mis-coverage
rates that are close to the nominal level. In medium ratio conditions, the accuracy
of information based SE estimates and the controlled on mis-coverage rates improved
as the time series length increases. In contrast, for Q and R, information based SE

estimates are uniformly downwards biased and interval estimates using information
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based SE estimates always produce highly inflated mis-coverage rates. In low ratio
conditions, however, information based SE estimators tend to severely underestimate
the standard errors across all length conditions considered in this thesis. And the
interval estimates using information-based SE estimates produce inflated mis-coverage
rates.

Though counterintuitively, this result is in agreement with the findings of Dunsmuir
and Hannan (1976) and Dunsmuir (1979, p499). The results of these papers implied
that the vector ARMA model, under some regularity conditions, can be separately
parameterized. And the sandwich-type asymptotic covariance matrix was blockwise
diagonal. And only the asymptotic covariance matrix of covariance component param-
eters depends on the fourth moments of noise variables. The asymptotic covariance
matrix of the autoregressive weights and moving average weights is not influenced by
the fourth moments of noise variables. However, Dunsmuir (1979) also noted that
this parameterization separation may not always apply to models observed with noise,
i.e., the state space model, even though the asymptotic normality is still valid (but
the covariance matrix is not blockwise with respect to the partition of parameters) if
the fourth moments of the noise variables exist (Dunsmuir, 1979, p499-p500). More
thorough work on the asymptotic covariance matrix of the normal theory based ML

estimator for the state space model is needed.

7.2.3 'The Negative Relative Bias of SE Estimators

The simulation study shows that in most conditions, SE estimates tend to under-
estimate the standard errors of parameters, even in the normal data conditions. One
explanation of the negative relative bias in the normal data conditions is that SE es-
timates are computed using the formulas derived based on the asymptotic covariance
matrix, i.e., the inverse of the Fisher information matrix. This covariance matrix is

the smallest covariance matrix that any estimator can attained. Let SE, denotes the
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asymptotic standard error based on the asymptotic covariance matrix. The empirical
SE estimates estimate the variance of point estimates for certain sample size, namely,
SFEr. Since SE, is based on the lower bound of the covariance matrix of estimators,
it is reasonable that the estimates of SE, are smaller than the estimates of SEr. In
the simulation study, empirical SE estimates are estimates of S Er and standard error
estimates are estimating SFE,. Thus it is natural that SE estimates in the normal data
condition produce negative bias.

Another explanation for the negative relative bias in the normal data condition is
that all SE estimators considered in this thesis are not unbiased SE estimators. This
is because the asymptotic covariance matrix of parameters is scaled by % rather than
ﬁ where k is the number of parameters in the proposed DFA model. The rationale
is analogous to the correction of the degree of freedom when estimating the error
variance in regression analysis. k degrees of freedom are lost because the k estimated
parameters are used in computing the prediction errors. This explanation also applies
to the two sandwich SE estimators in the non-normal data conditions.

In addition, information based SE estimates are negatively biased in non-normal
data conditions, especially for R and Q. This is likely due to the fact that information
based SE estimates are asymptotically downward biased, especially for R and Q. This
is because information based SE estimates rely on the Fisher information matrix,
which is the lower bound of the covariance matrix of any estimator. When the
normality assumption is violated, the covariance matrix of the normal theory based
ML estimator is believed to become larger (i.e., the point estimates are less efficient).

Thus it is reasonable that information based SE estimates display negative bias in

the non-normal data conditions.
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7.3 Interval Estimates

For non-normal data, the simulation study indicates that based on the normal
theory based ML estimates, the interval estimates using Papanastassiou’s sandwich
SE estimates display most accurate mis-coverage rates - mis-coverage rates that are
closest to the nominal level. Mis-coverage rates of interval estimates (based on Pa-
panastassiou’s sandwich SE estimates) approach the nominal level as the time series
length increases and as the signal-to-noise ratio increases. And the mis-coverage rates
for @ and A are better controlled than those for R and Q. This indicates that for R
and Q, longer time series lengths are needed in order to construct confidence intervals
that have correct mis-coverage rates.

The mis-coverage rates of interval estimates for ® and A using information based
SE estimates are close to the nominal level when the time series length is long
(T'" = 500) and when the signal-to-noise ratio is high (high ratio condition). In-
terval estimates for R and Q using information based SE estimates display high
mis-coverage rates across all non-normal data conditions in the simulation study.

For normal data, interval estimates using different SE estimates display similar
mis-coverage rates and the mis-coverage rates are close to the nominal level as long

as the time series length is sufficiently long.

7.4 Limitations of Current Thesis

Several limitations of current thesis are discussed below. First, the simulation
study of this thesis is based on stationary data. Thus a test on stationarity or a
method that can remove nonstationary components is needed. The chow test and
the forecast scores test detailed in Liitkepohl (2005) are two available methods. In
addition, preliminary treatment can be conducted to make the data more stationary.
For example, a linear trend in a data set can be identified and thus removed by

regressing observed scores on time.
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Second, in the simulation study, models are always correctly specified. In reality,
however, it is difficult to identify the structure of a latent process. One possible way
is to compute the composite scores of each latent factor and treat the composite series
as a manifest version of the latent factor series. Then procedures of identifying the
structure of manifest series and the procedures of checking the adequacy of models can
be applied to the composite series. Nevertheless further research on how to identify
the structures of a latent process is needed.

Third, this thesis implicitly assumes that for multi-subject data, there are no
individual differences in the underlying system. Thus a method that can identify
a homogeneous subgroup or a test examining the homogeneity of the underlying
systems of different participants is needed. Unfortunately, we are not aware of any
well-established method or test. A method proposed by Nesselroade and Molenaar
(1999) has been used in some applied research (Chow et al., 2004). This approach
compares participant’s lagged covariance matrices via an algorithm that is similar to
the cluster analysis. Overall this is a problem that deserves more thorough research.

Finally, in this thesis, I only consider the situation that a latent non-normal process
is contaminated by non-normal measurement errors. It is possible that the non-
normality in real data only comes from the measurement errors or from the latent
series. However, since the models considered in this thesis show larger departure
from the standard normal model, it is likely that the influence of non-normality in
this thesis is larger than that in those situations. Hence SE estimators that give good
performance in this thesis are expected to give better performance in situations where
only measurement errors do not follow a normal distribution or only the latent series

is not a normal process.
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7.5 Implications for Applied Research

This thesis provides useful information for applied researchers who are interested
in modeling intraindividual variation. First, model parameters can be accurately
recovered by the normal theory based ML estimator as long as the time series length
is sufficiently long, even if data do not follow a multivariate normal distribution.
How long is sufficiently long depends on the data distribution, the signal-to-noise
ratio and the complexity of the DFA model. For non-normal data with low signal-to-
noise ratios, a longer time series length is needed to obtain desired level of accuracy.
For models considered in this thesis, a time series length of 200 seems to be sufficient
for the transition matrix ® and the measurement matrix A across all distribution
and signal-to-noise ratio conditions. For R and Q, this number increases to 500.

Second, Papanastassiou’s sandwich SE estimator, SE SW,., is generally more prefer-
able to the other SE estimators. Mis-coverage rates of interval estimates constructed
using Papanastassiou’s sandwich SE estimates are closer to the nominal level than
those using other SE estimates. In general, for models considered in this thesis, a time
series length of 500 is needed so that interval estimates of A and ® using Papanas-
tassiou’s sandwich SE estimates can be trusted across all ratio conditions. For R and
Q, even a length of 500 is not sufficient for interval estimates to be trusted if the
signal-to-noise ratio is low. Interval estimates using information based SE estimates
are trustworthy only when the time series length is long (7" = 500) and when the
signal-to-noise ratio is high (r,/, = 5 or 3.2) and only for A and ®. Generally, longer
time series lengths are needed in order to obtain reliable interval estimates when the
signal-to-noise ratio is low.

Third, experimental designs with multiple participants but relatively short time
series lengths are suitable for the dynamic factor analysis. However, this conclusion
depends on the complexity of the model and the quality of data (the signal-to-noise

ratio). A reasonable time series length is always needed to accurately recover the
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underlying dynamical process. And a longer time series length is needed when the
complexity of the model increases and the quality of data deteriorates.

Finally, the DFA model is often used to model self-reported data (e.g., Chow et
al., 2004; Musher et al., 2002). Thus, the results of this thesis can be applied to self-
reported data. For bio-signal data, e.g., fMRI data, however, extensions on the state
space models considered in this thesis are needed. For example, if the hemodynamic
response function is estimated using the parametric method, the observation matrix
A is known but time varying. Detailed discussions can be found in Ho (2003); Smith,

Pillai, Chen, and Horwitz (2010, 2012).
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APPENDIX A

DATA GENERATION

Since complicated multivariate non-normal distributions are involved, special pro-

grams developed in R are introduced to generate samples from target distributions.

Log-Normal

Suppose the sample Y from a target log-normal distributions with mean of y and
covariance of X is of interests. Note that p is solely determined by 3. Let X =logY.
From probability theories, X follows a normal distribution, N (u,D). Moreover, u

and X are functions of u and D.

pi = E(y)
= B(e) (A1)
= exp (t’u + ;t’Dt) (A.2)

= exp (u; + .5d;;)
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oij = cov(y;,y;)
= E(ysy;) — E(v) E(y;)
= E(e"e™) — pipy
= FE (et/x) — Ml (A.3)
= exp (t’u + ;t/Dt) — il
= expu; +u; +.5(di; + dj; + 2di;)] — pip; (A4)

= pipy [exp (dij) — 1]

where t = (0,0,...,1,...,1,...,0).

Y

Let u = 0. Then by inverting (A.2) and (A.4) we would obtain that

d;; = 2log (p;) and d;; = log ( %ij + 1) . (A.5)
Hifbg

Thus the sample Y can be generated using the the following steps:
e Compute D from X using equation (A.5).

e Generate a sample X ~ N (0,D).

e Compute Y using the transformation Y = eX.

e Shift the mean of Y to 0 by subtracting Y from pu.

t Distribution

Data from a t(df=p) distribution with a zero mean vector and a covariance matrix,
3 can be generated using the following procedure:
S1. Generate x from M N (O, %E) and 22 from X;Q) independently.

S2. The dat t 1to —X—.
e data vector, y, equa om

Contaminated Normal

Suppose a e—contaminated normal distribution with zero mean and a target co-

variance matrix, 3 is of interests. The density function of this distribution has the
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form (Anderson, 2002, p55),
(1—¢)N,(0,D)+ €N, (0,cD)

where N, (0,D) denotes a p—variate normal distribution with mean zero and covari-
ance matrix, D. ¢ is the multiplier of the covariance matrix of one of the two normal
distributions and € be the percentage of this normal component. The covariances
matrix of contaminated normal distribution is given by ¥ = (1 — € 4 ce) D. Data is
generated using the following steps:

S1. Compute a covariance matrix, D = =/i—etce.

S2. Generate a random number, u~U(0,1). If u > ¢, draw a data vector, x; from
MN (0,D) and from M N (0, cD) otherwise.

S3. Save all vectors and the resulting data set is the target sample.
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APPENDIX B

STATIONARITY, CONTROLLABILITY AND OBSERVABILITY

Stationarity. A question of interest regarding the performance of estimation is whether
or not the system is stationary. In an unstable system, the random shocks may some-
times excite the system and the resulting observations change erratically. Then the
theorems of convergence may not apply. A wide sense stationary process, instead, is
relatively stable in that its means and covariances across time are the same. Formally

speaking, a m-component times series, {y,}, is stationary, if,
E (Z yt,i) < o9,
i=1
E(y:) = pand

E(ye,yir) = E(Ys,Ystr)

fort,s =1,2,...,T and k = 0,1,.... In the context of the state space model, the
latent state, {x;}, and consequently the observed process, {y:}, is stationary if and
only if,

N (@) <1

where \; (A) is the ith eigenvalue of A.

Controllability. The second condition that is worth mentioning is controllability. In

the state space model, the m step ahead latent state can be determined by the current
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state and the m future random shocks,

m—1

Xitm = Z @jwt + @mxt
=0
= CU, +®"x,
where m is the dimension of the state vector, x;, and C = [I, ®, ®2 ... &™ 1] and
/
U, = (W:e e Wy +1) . The process is controllable if any value of x;;,, can be

obtained from any value of x; by controlling U, (Shumway & Stoffer, 2004). Mathe-

matically, if rank (C) = m, the system is said to be controllable.

Observability. The third condition concerns the amount of information of x; that
can be inferred from m future observations. In an observable pure signal system (the
system without any noise term), the m future observations can be directly mapped

into the space of x;, that is,

(y;, e >y1/t+m—1) = x,0’

or
Xy = (O/O)_l o’ (y;7 SR 7y;+m—1),

where O' = [A/, ®'A’, ..., ®™ 1 A’]. The invertibility of O’O requires O to be of full

rank. In other words, the process is observable if rank(O) = m.
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APPENDIX C

CONDITIONS FOR ASYMPTOTIC NORMALITY

Caines listed three major regularity conditions. First, the observed process has to
be exponentially stable. A process is said to be exponentially stable, if the dependence
of the moments on preceding observations decays exponentially. This condition allows
the use of the main convergence theorems. Second, the predictors of the observations
need to be a family of exponentially stable predictors. This family of predictors
produces exponentially stable estimates if the input process is exponentially stable.
Third, the criterion function, such as likelihood function, needs to be appropriately
bounded. For formal definitions of these conditions, please refer to Caines(1988,
chapter 8).

This set of regularity conditions has a weak version and a strong version. In the
strong version, it also requires the second derivative of the predictors of observations
to be a family of exponentially stable predictors. However, in the weak version,
only the predictor and its first derivative are required to satisfy this condition. The
weak version of the regularity conditions is adequate to establish the consistency
of estimates (Caines, 1988, p.517). A standard state space model (a state space
model that is stationary, controllable and observable) satisfies the weak version of
the regularity conditions (see discussions in Caines, 1988 on p.488-489, p.494-496 and
p.498-500). Thus normal theory based ML estimates for the standard state space

model are consistent. The strong version of the regularity conditions permits the
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asymptotic normality. However, it is unclear whether or not the standard state space
model satisfies the strong version of conditions.

In an unpublished paper, White (1984) derived the same asymptotic normality
using a different set of conditions. For example, instead of using the concepts of
exponentially stable, he used mixing conditions to define the stability required for
convergence theorems. No discussions on whether the standard state space model
will meet the conditions are found, however.

Dunsmuir and Hannan (1976) established the asymptotic normality for normal
theory based ML estimates of a close related model. This model contains all times
series models that can be transferred to a vector MA model with infinity order. They
also extended their results to the autoregressive signal plus noise model (Dunsmuir,
1979). The state space model can be viewed as the autoregressive signal plus noise
model. From their results, normal theory based ML estimators had the asymptotic
normality similar to the one defined in (4.4). However, their results were discussed

from the frequency perspective and thus were less straightforward.
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APPENDIX D

INFLUENCES OF HOW THE SIGNAL-TO-NOISE RATIO IS MANIPULATED

To illustrate that in most conditions, how the signal-to-noise ratio is manipulated
would not influence the performance of the normal theory based ML estimator and SE
estimators, figure D.1 and figure D.2 are included. Figure D.1 and figure D.2 graph the
relative bias of normal theory based ML estimates and SE estimates under conditions
that vary in how the signal-to-noise ratio is manipulated. Model M11, M12 and M13
share the same signal-to-noise ratio. However, they differ in variances of measurement
errors and variances of latent factors. The same applies to model M21, M22, M23 and
model M31, M32, M33. From figure D.1, we can see that the relative bias of normal
theory based ML estimates is comparable among conditions that have the same signal-
to-noise ratio, indicating that how the signal-to-noise ratio is manipulated does not
influence the accuracy of the normal theory based ML estimator. From the first
and the third columns of figure D.2, we can see that how the signal-to-noise ratio is
manipulated does not affect the relative bias of SE estimators as well. In the second
column, the relative bias of covariance component parameters (points on the right
to the vertical dashed line) differs across different models. This is likely due to the
fact that the skewness and the kurtosis of these three models are also changing in the
second column (when noise variables follow the log-normal distribution). Note that
the skewness and the kurtosis of the log-normal distribution are related to the first

and second moments, that is, the mean and the variance. Thus when the signal-to-
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noise ratio is manipulated via adjusting the ratio of variances of measurement errors
to variances of latent factors, the skewness and the kurtosis are also manipulated.
Consequently, the differences in the relative bias of SE estimates across models are
observed in the second column. For some other distributions, however, the skewness
and the kurtosis are independent of the first two moments, for example, normal
distribution and contaminated normal distribution. Hence for the first and the third
columns, no substantial differences are observed among model M11, M12 and M13.

Figure D.3 graphs the mis-coverage rates of conditions illustrated in figure D.2.
Mis-coverage rates are compared across models that differ in how the signal-to-noise
ratio is manipulated. We can see from this figure that as long as the signal-to-noise
ratio and other conditions are fixed, how the signal-to-noise ratio is manipulated does
not affect mis-coverage rates.

Results of many other conditions agree with the findings mentioned above. How-
ever, there are some exceptions. Exceptions are observed only when examining the
influences of ways of manipulating the signal-to-noise ratio on SE estimators. The
observed influences on the performance of the normal theory based ML estimator
are trivial across all conditions. Those exceptions in which the influences of ways of
manipulating the signal-to-noise ratio are observed can be grouped into three classes.
For the first class of exceptions, a few problematic samples with large sandwich-type
SE estimates are observed. Figure D.4 displays one example of this type of excep-
tions. The signal-to-noise ratio in figure D.4 is lower than in figure D.2. We can
see by comparing the three plots in the first column (the normal data conditions) of
figure D.4 that the relative bias of sandwich-type SE estimates differ across model
M31, M32 and M33.

Figure D.5 displays an example of another class of exceptions. For this class of
exceptions, a few problematic samples with large point estimates are observed. The

time series length in figure D.5 is longer compared with figure D.2 (500 vs 50). As
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shown in the second column (the log-normal data condition) of figure D.5, the relative
bias of SE estimates appears to be different across models in which the signal-to-noise
ratio is manipulated via different ways.

Figure D.6 displays an example of the third class of exceptions. Different from
figure D.4, the time series length is shorter in figure D.6 (10 vs 50) but the number
of participants is larger (50 versus 1). And the noninformative initial setting is used
in figure D.6. By comparing the rows of figure D.6, we can see that the relative
bias of SE estimators (except for Harvey’s SE estimators) of transition matrix, A,
increases from the first row to the last row. Examinations on the histograms of point
estimates and SE estimates show that no problematic samples are observed. This
indicates that the observed information based SE estimator and the two sandwich-
type SE estimators are influenced by how signal-to-noise ratio is manipulated when
time series length is as short as 10. Specifically, they underestimate the empirical SE
estimates of A when both factor variances and measurement error variances are low,
that is, when the total observation variances are low.

Table D.1 summarizes conditions that different classes of exceptions are observed.
0 means the condition is clean. No influences of how signal-to-noise ratio is manip-
ulated are observed. 1 to 3 indicate which class of exceptions is observed. We can
find from this table that, first, more conditions involve problematic samples in the low
signal-to-noise ratio conditions. Second, in the median signal-to-noise ratio condition,
problematic samples are observed in conditions with short time series length. Third,
more conditions involve problematic samples when the noninformative initial setting
is used. This indicates that, first, increasing signal-to-noise ratio helps to reduce
the chances of observing problematic samples. Second, increasing time series length
also helps to avoid observing problematic samples. Third, using appropriate initial
settings is beneficial in eliminating the chances of observing problematic samples.

Figure D.7, figure D.8 and figure D.9 visualize mis-coverage rates of conditions in
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which the three classes of exceptions discussed above are observed. In all these three
figures, mis-coverage rates are compared across models that differ in how signal-to-
noise ratio is manipulated. We can see from figure D.7 and figure D.8 that when the
first two classes of exceptions are observed, mis-coverage rates are roughly comparable
across conditions varying in how the signal-to-noise ratio is manipulated. This indi-
cates that when the first two classes of exceptions are observed, mis-coverage rates are
still not influenced by how signal-to-noise ratio is manipulated. However, in case the
third class of exceptions are observed, mis-coverage rates are influenced by how the
signal-to-noise ratio is manipulated. Figure D.9 illustrates one example. As shown in
table D.1, the third class of exceptions are observed in multi-subject conditions with
time series lengths that are shorter than 20 and only when the noninformative initial
setting is used. Even though differences among conditions varying in how the signal-
to-noise ratio is manipulated are observed when the noninformative initial setting is
used, it does not affect the conclusions of subsection 6.3.3 and subsection 6.3.4, that
is, the stationary initial setting is preferable to the noninformative initial setting and
Harvey’s SE estimator is more sensitive compared with other SE estimators. There-
fore discussions on the third class of exceptions are not included in subection 6.3.3

and subsection 6.3.4.
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APPENDIX E

DIFFERENCES BETWEEN PAPANASTASSIOU’S SANDWICH SE
ESTIMATOR AND WHITE’S SANDWICH SE ESTIMATOR

Papanastassiou’s sandwich SE estimator and White’s sandwich SE estimator differ
in whether or not the estimates of the lagged auto- and cross-covariance matrices,
Cov (Zt,i;) (t # s), are included. As shown in subsection 7.2.1, the approximate
lagged autocorrelations of {lt} are close to zero. This suggests that the diagonal
elements of Cov (l}, lg) are close to zero or are ignorable when ¢ # s. In this appendix,
we further evaluate the off-diagonal elements of Cov (it, z;) numerically. Specifically,
we show that when the true parameter values are known, the approximate lagged
cross-correlations of {lt} are also negligible.

The log-likelihood function at time ¢ of a stationary state space model is given
by —2l, = log|X,| + €}, e, where e, and X, are defined in section 3.2. Thus the

first-order derivative of the log-likelihood function at time ¢ is

: ol
== [(0;1)'@ 2% e — s (37 0 ;) dt] (E.1)
where 6, = 8vea(;(,2t), é = %, o, = vec (X;) and s; = vec (e€}). Since the expectation

of I, is zero, Cov (it, l;) = Eltl; Therefore, we only need to evaluate Eltl’s To see

why the expectation of [, equals zero, we first express lg as

Ell=—5 [(0[1>,dt +2F (/3 '¢,) — E(s)) (T, @ 3 dt} .
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We known that Es; = vec (E (e;e})) and E (e.€}) = AE [(xt — xi’l) (xt - xil)/} A+
R. Because P! is the unconditional error variance of x! '(Anderson & Moore,
1979), Pt = E [(xt —xi7) (% - xil)/} And thus E (ee])=AP! 'A’ + R= X,

and Es, = 0,. Hence the expectation of /; can be simplified as

El't _ _5 |:<O_t—1)lo'.t +92F (e;Z}t‘let) — 0'; (Et—l ® Et_l) O-t:|

= —E(eX"é).

To see why F (e;z:; 1ét) = 0, we can examine the derivatives, €;, one by one, that is,

t—1
examining F (egz;l%) (¢ = 1,..., n.p). Note g—g: = a% (yt — Ax§_1>: —8‘;’; It

is a linear function of past observations, Y;_; = {y1,¥2,.-.,¥i-1}-
_,0e _ de
p(em) = u(mre(2)
_ OAx!™!
= —tr (Zt ) ( 09: e;>>
B OAxI! N/
—tr <Et 1E[ 89: (yt—Axi 1)])

Since the Kalman filter estimator, Ax!™!, is the best linear estimator of y;, the predic-

tion error e, is orthogonal to the space spanned by Y;_; (Anderson & Moore, 1979, see

Chapter 5). Thus E [8%2_1 (yt — Axi_l)/} = 0. And as a result, F (e;Eflg—‘;‘:) =
0. This can be applied to the derivative with respect to any parameter. Thus,

E (eQEt_ lét) = 0. This immediately follows that,

El, = —E (€% ")
= 0.
In short, we only need to evaluate Eltl; for t # s.

Since the expectation operation involved in Elﬂg is difficult to compute, we use an

average to approximate the expectation operation. Specifically, we use the approxi-

_ _ N L .
mate auto- and cross-covariance matrix, 5= > ;27" P Ul ;» where [, ; is the
s1m k2
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first derivative at time k for the jth sample and h = t—s. (E.1) is used to compute l;.
In (E.1), &, and X; can be computed using the Kalman filter algorithm (see section

3.2). The following algorithm can be used to compute &, and ¢; for t =1,...,T,

X7 = (x5 @T) 6+ dxlT

& = —(xVel)a- A%l
pil = (I+C,,) [(®P ) @I]d+(®@2®)pl " +4

6 = (I+Cpy) (AP ) @T]a+ (A A)pl" +1¥

k = [(Z7'A) o1 p/ "+ (7 0P ) Ca— (3 0K, 6
71 = (e ek + Ké

pi = pi ' —[(P'A) @Ik (P ®K,)a- [I® (KA)|p"

where Cy, is the commutation matrix for any k£ X p matrix M and for any vector m

or matrix M,m denotes the first-order derivative of m with respect to the parameter

vector, #, that is, m = % (or m = 8V%%§M) when taking the first-order derivative

of a matrix M). If the stationary initial setting is used, the initial factor covariance

matrix is defined as vec (Pg) = [I — ® @ ®] ' vec (Q). Then,

po = I-22®8] ¢
+ { [[I —® @] ' vec (Q)]’ I-P® @]—1}
x (1®C,@T) (Li+ Cp) (I, ® vec (®)) ¢.
Thus with true parameter values and a given sample, we can approximate the auto-
and cross-covariance matrix via the aforementioned algorithm and the Kalman filter

algorithm. Since the meaning of a covariance matrix depends on its measurement

scale, we display the results of correlation matrix. Specifically, the auto- and cross-
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correlation matrix is computed by,

. 1 Nom Tl e ~1/2
Cor (Iy, ;,,) = N Th) ; ]; Dg "l il 41,/ Ds

. . . . N..
where Dyg is a diagonal matrix whose diagonal elements are the same as S = + 1 T 2t
stm

z{zl l'k,jl';cyj and h = s —t. We then can obtain the approximate auto- and cross-
correlation matrix, Cor (it, lft +h), by averaging the sample auto- and cross-correlation
matrix across 1000 simulated replications.

For models considered in this thesis, there are 17 parameters. And thus {lt}

17x16

contains 17 univariate derivative series and this follows that there are 136= 5

cross-correlation functions. Figure E.1 graphs all the 136 CCFs of {lt} We can
see that approximate cross-correlations are very close to zero when lags are greater
than 1. The approximate lag-1 cross-correlations are relatively larger. The largest

ol
0P22

approximate lag-1 cross-correlation is the one between and a‘g{il and it is smaller

than .09.
In sum, we show numerically that the lagged auto- and cross-correlation matrices
and hence the lagged auto- and cross-covariance matrices are nearly zero matrices.

And thus the linear dependence among ;s is ignorable.
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Figure E.1: All approximate CCFs of {lt} when true parameters are known. Results
are obtained based on samples generated from model M12 and under the 7" = 500
and the contaminated normal data condition.
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