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KRYLOV INTEGRATION FACTOR METHOD FOR HIGH SPATITAL
DIMENSION CONVECTION-DIFFUSION PROBLEMS ON SPARSE GRIDS

Abstract
by

Dong Lu

Integration factor (IF) methods are a class of efficient time discretization meth-
ods for solving stiff problems via evaluation of an exponential function of the corre-
sponding matrix for the stiff operator. The computational challenge in applying the
methods for partial differential equations (PDEs) on high spatial dimensions (multi-
dimensional PDEs) is how to deal with the matrix exponential for very large matrices.
Compact integration factor methods developed in [Nie et al., Journal of Computa-
tional Physics, 227 (2008) 5238-5255] provide an approach to reduce the cost pro-
hibitive large matrix exponentials for linear diffusion operators with constant diffusion
coefficients in high spatial dimensions to a series of much smaller one dimensional
computations. This approach is further developed in [Wang et al., Journal of Compu-
tational Physics, 258 (2014) 585-600] to deal with more complicated high dimensional
reaction-diffusion equations with cross-derivatives in diffusion operators. Another ap-
proach is to use Krylov subspace approximations to efficiently calculate large matrix
exponentials. In [Chen and Zhang, Journal of Computational Physics, 230 (2011)
4336-4352], Krylov subspace approximation is directly applied to the implicit inte-
gration factor (IIF) methods for solving high dimensional reaction-diffusion problems.
Recently the method is combined with weighted essentially non-oscillatory (WENO)

schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-
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388] to efficiently solve semilinear and fully nonlinear convection-reaction-diffusion
equations. A natural question that arises is how these two approaches may perform
differently for various types of problems. In the first part of this dissertation, we
study the computational power of Krylov IF-WENO methods for solving high spa-
tial dimension convection-diffusion PDE problems (up to four spatial dimensions).
Systematical numerical comparison and complexity analysis are carried out for the
computational efficiency of the two different approaches. We show that although the
Krylov IF-WENO methods have linear computational complexity, both the compact
IF method and the Krylov IF method have their own advantages for different type
of problems. This study provides certain guidance for using IF-WENO methods to

solve general high spatial dimension convection-diffusion problems.

In the second part of this dissertation, we combine the Krylov integration factor
methods with sparse grid combination techniques and solve high spatial dimension
convection-diffusion equations such as Fokker-Planck equations on sparse grids. Nu-
merical examples are presented to show that significant computational times are saved

by applying the Krylov integration factor methods on sparse grids.
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CHAPTER 1

INTRODUCTION

Efficient and accurate temporal numerical schemes are important for the perfor-
mance of high order accuracy numerical simulations. A number of state-of-the-art
high order time-stepping methods were developed in the literature. Here we just give
a few examples and do not provide a complete list. For example, the total variation
diminishing (TVD) Runge-Kutta (RK) schemes [13, [14], 45, [47]; spectral deferred
correction (SDC) methods [4, 11} 21, B2, B9]; high order implicit-explicit (IMEX)
multistep / RK methods [I}, O, 27, 52}, 57]; hybrid methods of SDC and high order
RK schemes [§]; etc.

Integration factor (IF) methods are a class of “exactly linear part” time discretiza-
tion methods for the solution of nonlinear partial differential equations (PDEs) with
the linear highest spatial derivatives. This class of methods performs the time evo-
lution of the stiff linear operator via evaluation of an exponential function of the
corresponding matrix. Hence the integration factor type time discretization can re-
move both the stability constrain and time direction numerical errors from the high
order derivatives [3] 10} 20, 28, [38]. Here time direction numerical errors are numerical
errors for solving the semi-discretized ODE system resulting from spatial discretiza-
tions of the PDE. In [42], a class of efficient implicit integration factor (IIF) methods
were developed for solving systems with both stiff linear and nonlinear terms. A
novel property of the methods is that the implicit terms are free of the exponential
operation of the linear terms. Hence the exact evaluation of the linear part is decou-

pled from the implicit treatment of the nonlinear terms. As a result, if the nonlinear



terms do not involve spatial derivatives, the size of the nonlinear system arising from
the implicit treatment is independent of the number of spatial grid points; it only
depends on the number of the original PDEs. This distinguishes IIF methods [42]
from implicit exponential time differencing (ETD) methods in [3].

Nonlinear convection-diffusion-reaction (CDR) systems of equations [22] are com-
mon mathematical models in applications from biology, chemistry and physics. A

CDR system defined on a multidimensional spatial domain has the following general

form
d
i+ Y fil@)e, = V- (D(@)Vid) + (i), (1.1)
i=1
where « is the unknown vector function, ﬁ,i =1,---,d are flux vector functions in

d spatial dimensions, D(#) is the diffusion matrix and it could be nonlinear, and 7" is
the reaction term. Often the CDR models in applications have nonlinear convection
and reaction terms, but a linear diffusion term V - (DV), where D is the diffusion
matrix that is independent of #. In such case, the system is semilinear. To numeri-
cally solve this time-dependent problem , a nonlinear stable discretization suit-
able for hyperbolic PDEs is needed for the nonlinear convection terms, to deal with
the convection-dominated cases or a spatial mixture of convection-dominated and
diffusion-dominated cases. Weighted essentially non-oscillatory (WENO) schemes
are such kind of nonlinear stable discretizations. They are a class of popular high
order numerical methods for solving hyperbolic PDEs whose solutions have complex
solution structures. It is robust to apply WENO schemes in discretizing the convec-
tion terms in a general convection-diffusion problem, as that shown in [37]. We use
WENO schemes to solve convection-diffusion equations so that various situations in
a general problem can be dealt with directly.

WENO schemes have the advantage of attaining uniform high order accuracy in

smooth regions while maintaining sharp and essentially monotone transitions in large



gradient regions of the solution. WENO schemes are designed based on the successful
ENO schemes in [17,[47]. The first WENO scheme was constructed in [34] for a third
order finite volume version. In [23], third and fifth order finite difference WENO
schemes in multi-space dimensions were constructed, with a general framework for
the design of the smoothness indicators and non-linear weights. The main idea of
the WENO scheme is to form a weighted combination of several local reconstructions
based on different stencils (usually referred to as small stencils) and use it as the final
WENO reconstruction. The combination coefficients (also called non-linear weights)
depend on the linear weights, often chosen to increase the order of accuracy over that
on each small stencil, and on the smoothness indicators which measure the smooth-
ness of the reconstructed function in the relevant small stencils. Hence an adaptive
interpolation or reconstruction procedure is actually the essential part of the WENO
schemes. Later, WENO schemes on unstructured meshes (e.g. arbitrary triangular
or tetrahedral meshes) were developed to deal with complex domain geometries, see
e.g. [201 35 55, 56].

Recently, we developed IITF-WENO methods for solving nonlinear CDR, systems
in [24]. The methods can be designed for arbitrary order of accuracy. The stiffness of
the system is resolved well and the methods are stable by using time step sizes which
are just determined by the non-stiff hyperbolic part of the system. Large time step
size computations are obtained. For CDR systems defined on high dimensional
spatial domains, the major computational challenge in applying the methods is how
to deal with the matrix exponential for very large matrices. Currently there are two
approaches to deal with the large matrix exponential problem in ITF methods. One
is the class of compact implicit integration factor (cIIF) methods in [33, 43]. cIIF
methods reduce the cost prohibitive large matrix exponentials for linear diffusion
operators with constant diffusion coefficients in high spatial dimensions to a series of

much smaller one dimensional computations.



This approach is further extended in [53] as an array-representation technique to
deal with more complicated high dimensional reaction-diffusion equations with cross-
derivatives in diffusion operators. The method is termed as array-representation
compact implicit integration factor (AcIIF) method. Another approach is to use
Krylov subspace approximations to efficiently calculate large matrix exponentials. In
[7], Krylov subspace approximation is directly applied to the ITF methods for solving
high dimensional reaction-diffusion problems.

A natural question that arises is how these two approaches may perform differ-
ently for various types of problems when they are applied to solve more complicated
CDR equations. In the first part of this dissertation, we study the computational
power of Krylov ITF-WENO methods for solving high spatial dimension convection-
diffusion PDE problems (up to four spatial dimensions) by direct numerical simu-
lations. Systematical numerical comparison and complexity analysis are carried out
for the computational efficiency of the two different approaches. We show that al-
though the Krylov ITF-WENO methods have linear computational complexity, both
the compact IIF method and the Krylov IIF method have their own advantages for
different type of problems. This study provides certain guidance for using IIF-WENO
methods to solve high spatial dimension problems.

In the second part of this dissertation, we aim at achieving more efficient compu-
tations of Krylov ITF schemes than the existing work in the literature by developing
the Krylov ITF schemes on sparse grids for high spatial dimension problems. In re-
cent years, sparse-grid has become a major approximation tool for high-dimensional
problems. It has been successfully used in many scientific and engineering applica-

=1y degrees of freedom

tions. Discretizations on sparse grids involve O(N - (log V)
only, where d denotes the underling problem’s dimensionality and N is the number
of grid points in one coordinate direction. A detailed review on sparse-grid technique

can be found in [6]. Sparse-grid techniques were introduced by Zenger [54] in 1991 to



reduce the number of degrees of freedom in finite-element calculations. The sparse-
grid combination technique, which was introduced in 1992 by Griebel et al. [15], can
be seen as a practical implementation of the sparse-grid technique. In the sparse-
grid combination technique, the final solution is a linear combination of solutions on
semi-coarsened grids, where the coefficients of the combination are chosen such that
there is a canceling in leading-order error terms and the accuracy order can be kept
to be the same as that on single full grids [15, 30} B1].

The rest of this dissertation is organized as following. In chapter 2, we first re-
view the IIF-WENO methods for solving CDR equations developed in [24]. Then
we present two different approach to deal with the high dimensional problems; i.e.,
the direct Krylov approach and the AcIIF approach. In order to compare it with
the Krylov approach, we combine the AcIIF method with WENO method for solving
CDR equations. After that, Krylov ITF methods on sparse grids are developed. In
chapter 3, we perform systematical numerical comparison and complexity analysis for
applying these two approaches to various high dimensional problems including three
and four dimensional Fokker-Planck equations. In chapter 4, we perform extensive
numerical experiments to test the sparse-grid Krylov IIF methods and show signif-
icant savings in computational costs by comparisons with single-grid computations.

Conclusions are given in chapter 5.



CHAPTER 2

NUMERICAL METHODS

In section 2.1, we briefly review the IIF-WENO methods for solving CDR equa-
tions developed in [24]. In section 2.2, we present two approaches for dealing with high
dimensional problems: Krylov approximation method and compact/array-representation
method. For the AcIIF method designed in [53], we combine it with WENO method
and derive the corresponding schemes for solving CDR equations. In section 2.3, we

develop the krylov IF methods on sparse grids. In section 2.4, linear stability analysis

of the I1TF2 scheme(2.10)) for CDR equations is given.

2.1 TIIF-WENO methods

The method of lines (MOL) approach is applied to the equation (1.1)). For the
simplicity of presentation, we consider the scalar equation case. The system case
is solved component by component following the same procedure as the scalar case.
For nonlinear convection terms Y0 fi(w),,, the third order finite difference WENO
scheme with Lax-Friedrichs flux splitting [46] is used. The second or fourth order
central finite difference scheme (depending on the order of accuracy of IIF time
discretizations) is used to discretize the diffusion terms.

For the convection terms, the conservative finite-difference schemes we use approx-
imate the point values at a uniform (or smoothly varying) grid in a conservative fash-
ion. The finite difference WENO schemes approximate derivatives of multi-dimension

in a dimension by dimension way. For example, the z-direction derivative f(u), at a



grid point is approximated by a conservative flux difference

1 4 A
f()z]o=a; = A_x(fi+l/2 — fic1/2), (2.1)

where for the third order WENO scheme the numerical flux fiﬂ /2 depends on the
three-point values f(u;) (here for the simplicity of notations, we use u; to denote the
value of the numerical solution u at the point x; along the line y = y;, 2 = 2, with
the understanding that the value could be different for different y and z coordinates),
[l =i—1,i,i+ 1, when the wind is positive (i.e., when f’(u) > 0 for the scalar
case, or when the corresponding eigenvalue is positive for the system case with a
local characteristic decomposition). This numerical flux fi+1 /2 1s written as a convex
combination of two second order numerical fluxes based on two different substencils of
two points each, and the combination coefficients depend on a “smoothness indicator”
measuring the smoothness of the solution in each substencil. The detailed formulae
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where
_ M _ A —0.1 (2.3)
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dy = 2/3,dy = 1/3 are called the “linear weights”, and By = (f(uiy1) — f(w;))? 51 =
(f(u;)— f(u;_1))? are called the “smoothness indicators”. ¢ is a small positive number
chosen to avoid the denominator becoming 0. We take € = 1072 in this dissertation.

When the wind is negative (i.e., when f'(u) < 0), right-biased stencil with nu-
merical values f(u;), f(u;1) and f(u;12) are used to construct a third order WENO
approximation to the numerical flux fi+1 /2. The formulae for negative and positive

wind cases are symmetric with respect to the point x;,;/2. For the general case of



f(u), we perform the ”Lax-Friedrichs flux splitting”

fru) = (f (u) = aw), (2.4)

where o = max, |f'(u)|. fT(u) is the positive wind part, and f~(u) is the negative

wind part. Corresponding WENO approximations are applied to find numerical

fluxes f:A /2 and fl 12 respectively. Similar procedures are applied to the other
directions for g(u), and h(u),. See [23, 46] for more details. For diffusion terms,
central differences are used. After spatial discretizations, a semi-discretized ODE
system

a4 - ~

— = W(U) + Fo(U) + R(0) (2.5)

—

is obtained. Here U = (u;)1<i<n, Fa(U) = (Fuy(0))1<icn, Fo(U) = (Fui(U))1<icn,
R = (r(u;))1<i<n. N is the total number of grid points, Fy(U) is the approximation
for the diffusion terms by the second or fourth order finite difference schemes, and
Fdi is a linear or nonlinear function of numerical values on the approximation stencil.
If the diffusion term is linear, ﬁd([j ) = CU where C' is the approximation matrix
for the linear diffusion operator by the central finite difference scheme. ﬁa((j ) is the
approximation for the nonlinear advection terms by the third order finite difference
WENO scheme, and Fai is a nonlinear function of several numerical values on the
WENO approximation stencil. R(U) is the nonlinear reaction term, and r(u;) is a
nonlinear function which only depends on numerical values at one grid point. In [24],
we developed a method to deal with the nonlinear diffusion terms by factoring out
the linear part which mainly contributes to the stiffness of the nonlinear diffusion
terms, then applying the integration factor approach to remove this stiffness. In this
dissertation, our main focus is on studying the computational complexity of Krylov
and compact IIF methods for high dimensional problems. Hence we simplify our

discussions to problems with linear diffusion, i.e., Fy(U) = CU. IIF methods for



(2.5) are constructed by exactly integrating the linear part of the system. Directly
multiply (2.5) by the integration factor e~“* and integrate over one time step from

t, to t,11 = t, + At, to obtain

Aty
Ultpir) = €200 (8,) + 4% / e CTF(U(t, + 7))dr
0

Aty .
4 CAn / e “TR(U(t, + 7))dr. (2.6)
0

Two of the nonlinear terms in have different properties. The nonlinear reac-
tion term R(U) is usually stiff but local, while the nonlinear term F,(U) derived
from WENO approximations to the convection term is nonstiff but couples numer-
ical values at grid points of the stencil. Hence we use different methods to treat
them and avoid solving a large coupled nonlinear system. For the stiff reaction term
e~ CTR(U(t,+7)), we approximate it implicitly by an (r — 1)-th order Lagrange poly-
nomial with interpolation points at t,,.1,%,,...,t,r2—. The nonstiff convection term
is highly nonlinear due to the WENO approximations. Different from the nonlin-
ear reaction term, we approximate the nonlinear convection term e‘CTﬁa([j (tn +7))
explicitly by an (r — 1)-th order Lagrange polynomial with interpolation points at

tn,tn_1,---ytni1_r. The r-th order ITF scheme for CDR equations is obtained as

—

0
Un+1 = €CAtnU +At {Oén+1ﬁ n+1 + Z Oy i€ C(Atn—; R(ﬁnJﬂ)

1=2—7

0
3 BB (T,0)), (2.7)

i=1—r

where the coefficients

1

Atn T—TJ
am:m/ 11 dT i=1,0,—1,---,2—r; (2.8)

j=o-rjsi !




0

1 Atn T —T; .
Brvi = A_tn/o H dr, 1=0,—-1,-2,--- 1 —r. (2.9)

j=torgi T
o= Al 10 = 0, 7 = =S b Aty for i = —1,-2,-3,--- ;1 — 7. U, is the
numerical solution for U (t,4;). Specifically, the second order scheme (IIF2) is of the

following form

—

Un+1 = BCAtn(jn + Atn {Oln+1é((7n+1) + anQCAtné<ﬁn)
4By eC@tT A () 4 BneCAtnﬁa(ﬁn)} , (2.10)
where

1 1 At 1 At
n — 5y On = 355 Mn—-1— — - y Pn — = AZfnf .
@ 2 Ont1 2 B ! 2Atnfl 6 Atnfl( 2 - 1)

And the third order scheme (IIF3) is

—

U,i1 = e“20, + At,, {anﬂﬁ(ﬁnﬂ) + (xnecm”ﬁ(ﬁn) + an,leC(At”At"—l)R(ﬁn,l)
()}

(2.11)

—i—ﬁn,geC(At"+At”*l+At"*2)ﬁa((}n,g) + anlec(At"JrAt"*l)F;(ﬁnfl) + ﬁn€CAt”

where
1 At,  At,_

Gnt1 = (Atn+At,H)< 3 t— )
LA Rty

- Atn_l( 6 5 )
At?
6At,_1(At,_1 + At,,)’
5 =1+ 1 [Ati N At,,
T Aty (At + Aty 3 2

1 A2 At
— n (At + At
Atn,lAtH[ 3 T (Atn-1 + Atno)],

B 1 (Atﬁ N AtnAtn_l)
Aty oAty + Aty ) 3 2 '

Qn

Qp—1 =

(2At,—1 + At,_0)],

Bn—l =

6n72
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Remark: Theoretical analysis including stability and error analysis of the ITF schemes
for convection-diffusion-reaction equations is given in [24, 25]. Due to the nonlinear-
ity of WENO schemes [46] and the global property of the exponential integrator in
the IIF schemes, theoretical analysis of the complete IIF-WENO schemes is still an

open problem and it will be one of our future work.

2.2 Two approaches for high dimensional problems

The efficiency of IIF schemes for high dimensional problems largely depends on
the methods to evaluate the product of the matrix exponential and a vector, for

CAt

example e““v. For PDEs defined on high spatial dimensions (2D and above), a large

and sparse matrix C' is generated in the schemes (2.7). But the exponential matrix
e“At is dense. For high dimensional problems, direct computation and storage of such
exponential matrix are prohibitive in terms of both CPU cost and computer memory.
Two approaches have been developed to solve this problem. Here we discuss and
compare the computational efficiency of these two approaches when they are applied
to IIF-WENO methods for solving high dimensional problems. We first review the

Krylov approximation method. The Krylov approximation method was applied to

ITF schemes in [7]. It has been applied for solving CDR equations in [24].

2.2.1 Krylov approximation method

Notice that we do not need the full exponential matrices such as e“?! itself,
but only the products of the exponential matrices and some vectors in the schemes
(2.7). The Krylov subspace approximations to the matrix exponential operator is
an excellent choice in terms of both accuracy and efficiency. Follow the literature

(e.g. [12, 41]), we describe the Krylov subspace methods to approximate e“2fv as

11



following.

The large sparse matrix C' is projected to the Krylov subspace

Ky = span{v, Cv, C?v,--- ,CM 1y}, (2.12)

The dimension M of the Krylov subspace is much smaller than the dimension N
of the large sparse matrix C. In all numerical computations of this dissertation, we
take M = 25 for different N, and accurate results are obtained in the numerical
experiments. An orthonormal basis Vi = [vy, vg, v, -+, vp] of the Krylov subspace

Ky is generated by the well-known Arnoldi algorithm [51]:

1. Compute the initial vector: vy = v/||v]].
2. Perform iterations: Do j =1,2,---  M:
1) Compute the vector w = C;.
2)Doi=1,2,---,7:
(a) Compute the inner product h; ; = (w,v;).
(b) Compute the vector w = w — h; jv;.
3) Compute hji1; = [Jwl|s.
4) If hjyq1; =0, then
stop the iteration;
else

compute the next basis vector v;41 = w/hji1 ;.

In the Arnoldi algorithm, if h;;1 ; = 0 for some j < M, it means that the convergence
has occurred and the Krylov subspace is K = span{vy, v, - -+ ,v;}, so the iteration
can be stopped at this step 7, and we assign the value of this j to M. This algorithm
will produce an orthonormal basis V) of the Krylov subspace Kj;. Denote the M x M

upper Hessenberg matrix consisting of the coefficients h; ; by Hjs. Since the columns

12



of V), are orthogonal, we have
Hy = V5ECVy,. (2.13)

This means that the very small Hessenberg matrix H,; represents the projection of
the large sparse matrix C' to the Krylov subspace K;, with respect to the basis V).

VT CAt

Also since V), is orthonormal, the vector Vj,V,;e“~"v is the orthogonal projection of

e“2ty on the Krylov subspace K, namely, it is the best approximation to e““*v in

K. Therefore
eCAy ~ VMVAEeCAtv = BVMVAEeCAtvl = BVMVAEeCAtVMel,

where 5 = ||v||2, and e; denotes the first column of the M x M identity matrix ;.

Using ([2.13)) we obtain the approximation
O ~ BVefiBle, (2.14)

Thus the large e““* matrix exponential problem is replaced with the much smaller

Hpr At

problem ef4t The small matrix exponential e will be computed using a scaling

and squaring algorithm with a Padé approximation, see [12, 18, [41]. Then the Krylov

approximations are directly applied in schemes ({2.7)), (2.10)) or (2.11]) to obtain Krylov
ITF schemes for CDR equations [24]. The r-th order Krylov IIF scheme for CDR

equations has the following form

UnJrl = Atn&n+lR(Un+l) + ’VO,nVM,O,ne MOnZin ey
-1
Hyr— Atn—T1— Hppion(Aty—T;
+Atn ﬁn—&-l—rfyl—r,nVM,l—r,ne M1—rn(Ata=T1 T)€1+ E ’Vi,nVM,i,ne Min(Btn TZ)el 5

1=2—r

(2.15)
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where vy, = ||Un + Atn(ané(ﬁn) + /Bnﬁa([jn))Hg, Varon and Hprg, are orthonor-
mal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vector U, + Aty (anB(U,) + BuFa(Un). i = | Fa(Uns1-)ll2> Vari—rn
and Hps1-,, are orthonormal basis and upper Hessenberg matrix generated by
the Arnoldi algorithm with the initial vector F_;([jnﬂ,r). Yim = Hanﬂ-ﬁ(ﬁnﬂ) +
ﬁn_’_ifil(ﬁn_t'_i) l2, Varin and Hyy; , are orthonormal basis and upper Hessenberg matrix
generated by the Arnoldi algorithm with the initial vectors oan}?((jnH)—l—ﬁnHF_’;(ﬁnH),
fort =2—7r,3—r,---,—1. Notice that Vason, Vari—rn and Vagipn, @ =2 — 1,3 —
r,---,—1 are orthonormal bases of different Krylov subspaces for the same matrix
C, which are generated with different initial vectors in the Arnoldi algorithm. Specif-

ically, the second order Krylov IIF (KrylovIIF2) scheme has the following form

—

Uit = SALE(Tn) + Yo Var o me10m B0 ¢y
(At,)?

2At,

N | —

(7—17nVM7_17n€HM’71’n(Atn+Atn_1)€1) ’ (216)

where g, = ‘

Un+ Ay (3B(0,) + 5 (30 + Aty ) Fo(Th))|

5’ VM,o,n and HM,O,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algo-

- = 1

rithm with the initial vector U, +At, (%R(Un) Y= (% + Atn,l)ﬂ(ﬁn)). Yoim =

| Fo(Un1) |2, Va1, and Hpy 1, are orthonormal basis and upper Hessenberg ma-
trix generated by the Arnoldi algorithm with the initial vector ﬁa(ﬁn,l) And the

third order Krylov IIF (KrylovIIF3) scheme has the form

. INL, +3AL,_, = -
Un = n n AtnR Un ’I’LV n H]W,O,nAtn
b= D et Bln) + 20nVitane 0
2(At,)? + 3AL, Aty
Atn n n n 3 nv Com HM’*2xn(Atn+Atn71+Atn72)
" (6At”—2(Atn—1 + Atn_Q)fy 2.0V M,—2,n€ ey

+ry—1,nVM,—I,neHM'il'n(Atn+Atn7l)61) 5 (217)

where v, = |[|U, + Atn(anﬁ(ﬁn) + Bnﬁa(ﬁn))ﬂg, Viron and Hpr g, are orthonormal
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basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the
initial vector U, + Atn(anﬁ(ﬁn) + ﬁnﬁa(ﬁn)) YVom = ||Z?;((7n,2)||2, Vi, 2., and
H\py, s, are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi
algorithm with the initial vector F’a(ﬁn_g). Yoim = ||an_1ﬁ((7n_1) + Bn_lﬁ_’;((jn_l)HQ,
Va,—1n and Hys 1, are orthonormal basis and upper Hessenberg matrix generated
by the Arnoldi algorithm with the initial vectors an_lﬁ(ljn_l) + 6n_1ﬁa(ljn_1). See
the equation for values of «a,, B, @pn_1, Bn_1.

As that pointed out in [24], in the implementation of the Krylov approximation
methods we do not store matrices C', because only multiplications of matrices C' with
a vector are needed in the methods, and they correspond to certain finite difference

operations.

Remark. By the analysis in [12 19], an error estimation of the Krylov subspace

approximation ([2.14]) is
P2y — BVyefMBle ||, < 108e~M*/GrA), (2.18)

where M is the dimension of the Krylov subspace, and eigenvalues of the matrix C'
are in the interval [—4p,0]. For a fixed pAt, the Krylov approximation error (2.18)
decays exponentially with respect to the square of the Krylov subspace dimension

M.

2.2.2 Compact / array-representation method

We first review the compact IIF (cIIF) method and the array-representation com-
pact IIF (AclIF) method for solving high dimensional reaction-diffusion equations,
developed in [43] and [53]. Then we discuss how to apply the cIIF / AcITF method

in the I[TF-WENO schemes for solving high dimensional CDR equations.
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2.2.2.1 clIF/AclIIF for reaction-diffusion equations

We illustrate the cIIF method by solving a two-dimensional reaction-diffusion
equation with constant diffusion coefficient
ou _ Pu  0u

E_D(@—I_@_y?)—'_}%(u)’ (,y) eQ={a<z<bec<y<d} (2.19)

with periodic boundary conditions in the y—direction and no-flux boundary condi-

tions in the x—direction. The spatial domain is partitioned by a rectangular mesh

with N, +2 and N, +2 grid points in each direction. The grid sizes are h, = Al;;‘_ll, and
hy = ]\‘?;fl. Using the second order central difference discretization on the diffusion
Yy

terms, a system of ODEs

duij p(iti = i+ Uiy | Wigr1 — 2+ Ui

di n2 h2

is obtained. The idea of cIIF method [43] is that in stead of representing numerical
values u; ; in a large vector, numerical values are organized and stored in a matrix

(see (2.22))). The semi-discretized ODE system is written in a compact form

% =AU +UB + R(U), (2.21)

where the three matrices U, A and B are

Uiy,1 Ur2 -+ UN, UL,N,+1
- U2,1 U22 +++  U2N, U2, Ny +1

Un,x(n,+1) = ; (2.22)
UN,1 UN,2 *°° UN, N, UN,N,+1
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—2 2
5 3
1 -2 1
D 1 -2 1
Anon. = 75 o , (2.23)
1 -2 1
2 2
3 3
-2 1 0 0 1
1 -2 1 0 0
plo 1 -2 1 .- 0
BN, +1)x(N,+1) = = S : (2.24)
) T T .
0 0 1 -2 1
1 o --- 0 1 =2

Then following the similar procedure for deriving ITF methods [42], we multiply (2.21))
by the integration factors e=4! from the left and e~B? from the right, and integrate

over one time step from ¢, to t,.1 = t, + At to obtain
At
U, = e*2U, B + eAAt(/ e RU(t, +7))e PTdr)eP. (2.25)
0

We approximate the integrand in (2.25)) by an (r — 1)th order lagrange interpolation
polynomial with interpolation points at ¢,,.1,%,,...,t,12 ., and obtain the rth order

cITF scheme for two-dimensional reaction-diffusion equations

r—2
U, = U, B + At (alR(UnH) + Z a_ie(i“)AAtR(Un_i)e(i+1)BAt>, (2.26)
i=0
where
1[5 7+ kAt
= T g, S1<i<r—2. 9.27
“ At/o L a=na™” == (227)

ki
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In particular, the second order cIIF scheme (cIIF2) is

At

At
Un+1 _ 6AAt <Un + TR(Un)>6BAt 4+ —

5 B(Un). (2.28)

Note that the matrices A and B have sizes of a one-dimensional problem. Hence
in cIIF schemes , for a two-dimensional problem, we only need to com-
pute matrix exponentials for matrices with sizes of one-dimensional problems. This
fact also holds for cIIF schemes of three-dimensional reaction-diffusion equations, as
shown in [43].

In order to solve reaction-diffusion problems with cross-derivatives and non-constant
diffusion coefficients on higher spatial dimensions, cIIF method has been extended to
the array-representation compact IIF (AcIIF) method in [53]. We review the AcIIF
method [53] in the following and then describe the procedure to apply this approach
to our ITF schemes for CDR equations in the next subsection. The numerical solu-
tions are stored in multi-dimensional arrays, for example, a two-dimensional array
U= (Ugny) k1 =1,--+ | Nyjko = 1,--- N, + 1 for the two-dimensional problem
—. If we fix the second index ko, the two-dimensional array U defines a
vector

U<:7 k2) - (Ul,kzu U2,k27 ) UNz,kg)T' (229)

Then the array U can be considered as the collection of these vectors on a one-
dimensional array, with k, going through from 1 to N,+1. This collection is presented

using symbol ) in [53], so we can write

U= & Ul k) (2.30)

1<ky<Ny+1

The finite difference operators are linear operators in ([2.20)) since the diffusion terms

18



here are linear. Define finite difference operators £, and £, as

Uk1+1,k2 - 2[]16177@ + Uk1*17k2
2
h;

(‘CwU)/ﬂ,ka = D( )7 (2'31)

and
2Uk‘1 ko + Ukl Jko—1
h?
Y

U 1,k2 -
(LyU) gy py = D(12H ), (2.32)

then the semi-discretized scheme ([2.20)) with the array U can be written as

% = (L, + L,)U + R(U). (2.33)

Apply IIF schemes, e.g., the second order IIF scheme (I1F2) [42] in (2.33)) to obtain

At At
Ups1 = e“”‘ymt(Un + TR(U,L)) + = B(Unt). (2.34)

To implement the scheme ([2.34]) using array-representation technique, we first repre-

sent

LU= (X AU, k), (2.35)

1<ky<Ny+1

where A is given in (2.23)). So the exponential of £, can have the array-representation

U = Q) U k). (2.36)
1<ky<Ny+1
Similarly,
e = (K BTk, ), (2.37)

where B is given in (2.24)). Since £, and £, commute with each other for this constant

L)AL _ Lot Ly

diffusion coefficient equation case, e£= At The array-representation

form of the ITF2 scheme [42], i.e., the AcIIF2 scheme for the 2D reaction-diffusion
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equation ([2.19), is

Unﬂ—%R(UnH): & eAN< ) eBAtV(kl,:))(:,k:z), (2.38)

1<k <N,+1 1<k1 <Ny

where V = U, + %R(Un). Similarly the AcIIF2 scheme for a 3D reaction-diffusion

equation with constant diffusion coefficient and without cross-derivatives is

At
Uns1 — TR(UTH—I)
- @ e @ (@ Atttk k)
1<kg <Ny 1<k; <Ng 1<ky <Ng
1<k3<N 1<k3<N; 1<kg <Ny

(2.39)
where V' = Un—l—%R(Un), U is a three-dimensional array to store the numerical values
of u, Ny, Ny, N, are number of spatial grid points in z,y, z directions respectively.
Aq1, Aag, Azs are differential matrices for approximating diffusion operators in z, y, z
directions respectively, and they have sizes of a one-dimensional problem, i.e., N, X
Nz, Ny, x N, and N, x N,.

It is easy to see that the AclIF2 scheme is equivalent to the cIIF2 scheme
([2-28). As that pointed out in [53], AcIIF schemes are actually equivalent to cIIF
schemes for reaction-diffusion equations without cross-derivatives. However, AcIIF
schemes can be easily applied to more general high dimensional reaction-diffusion

equations with cross-derivatives as shown in [53].

2.2.2.2 AclIF-WENO schemes for CDR equations

Since AclIF method is an efficient approach for solving high dimensional reaction-
diffusion equations, we apply it in the IIF-WENO schemes for solving high dimen-

sional CDR equations. We present the schemes for the general three and four spatial
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dimension cases that CDR equations have cross-derivatives and the diffusion coef-
ficients can be non-constant, such as the Fokker-Planck equations in the following
chapter 3. For such cases with non-constant diffusion coefficients, differential matri-
ces can not commute and an operator splitting is needed to achieve the second order
accuracy in AclIF approach. Hence we use the second order AcIIF scheme here.
Consider the three dimensional case of CDR equation , d = 3, with cross-
derivatives for the linear diffusion terms and periodic boundary conditions. For the
simplicity of presentation, we consider the scalar equation case. The system case
is solved component by component following the same procedure as the scalar case.

The diffusion matrix D is

ai + as b1 bg
D= bl as + ¢ b3 ) (240)
by bs Ca + C3

where a;, b; and ¢;, i = 1,2, 3 are constant or non-constant coefficients of the diffusion

terms. The diffusion terms can be grouped into three classes for the convenience of

applying the AclIF method, i.e., (alaz—; + 2b1#2x2 + clai—;)u, (ag 82?2 + 2by 8$??9$3 +
62
Ox3?

Ju, and (Clg% + 2b3 8a:§(‘29x3 +c3 8222)% Applying the second order IIF-WENO

C2

scheme ([2.10)) to the equation and re-grouping the exponential terms, we obtain

—

Upy1 = €CAt" (ﬁn + Atnanﬁ<ﬁn) + At”ﬂ”ﬁa(ﬁn)>
1 OBttt 1) ( Aty Bt ﬁa(ﬁnil)) + Atpons1 B(Ung) (2.41)

= @1 + ®2 + Atnan—i—lé(ﬁn—kl)a

where
O1 =2V, Vi AU, + Ataon R(U,) + At B Fo(U), (2.42)
62 = 6C(Atn+Atnil)‘727 ‘72 = At'rzﬁn—l-ﬁa(U:n—l)- (24?))
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Qs Ui 1, Pn_1, Bn are given in . Then we can apply the array representation
approach in computations of the matrix exponentials. Numerical solutions for u
are stored in a three-dimensional array U with size N7 X Ny X N3, where Ny, N,
and N3 are numbers of grid points of three spatial directions respectively. First
we use L1 to denote the second order central finite difference approximation of

22) as

Fo fo 0
(al 8112 + 2b1 812181'2 + Cl oz

aq
(£12U)k1,k2,k3 :ﬁ(UkH—lJm,ka - 2Uk17k2,k3 + Uk1—17k2,/€3)
1

2b,
+ Ahih (Uk1+1,k2+17k3 + Uk1—1,k2—17k3 - Uk1+1,k2—17k3 - Ukl—l,k2+1,k3)
1762

&

_|__
h3

(Uki ko t1,ks = 2Uky ko ks + Uky ko —1,03)-
(2.44)

where hy, he and hg (not used in the above equation) are the grid sizes of the three
spatial directions respectively. Similarly we can define finite difference operators L3
and Lo3. The diffusion terms in the equation are approximated by Fd([j ) = cU =
(L12 + L13 + Lo3)U. To derive the array representation of the operator L9, we fix
k3 in the three-dimensional array U(:,:, k3) which represents a N; x Ny matrix, and

collect all these two-dimensional matrices along a vector. This leads to

U= ® U(:y:, ks).

1<k3<N3

For constant diffusion coefficient cases, we can define a linear mapping A;,, from a

matrix space consisting of all Ny x Ny matrices to itself as following

2b
(A1aM); ; :Fllhz(MiH,jH + M1 ;-1 — M1 j11 — Miv1-1)
(2.45)
a 1
+ h—%(MiH,j —2M; ; + Mifl,j> + h_I%(Mi,j+1 —2M; ; + Mi,j71>-
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Then, the array representation of £15 and its exponential are

£12U: ® AIQU(:y:ak?))’

1<k3<N3
eF1Al = ® A2 (2 1 k).
1<ks<N3
Similarly, the array representations for £13 and Lo3 can be written in terms of A3 and
Ass respectively. Note that here Aqo, Aj3, Asz and their exponentials are actually
(N7-Ng) X (Ny-Na), (N1-N3) x (N1 N3) and (Ng- N3) x (N2 N3) matrices respectively.

For schemes - , vectors Vl and 172 are stored in three-dimensional
arrays V1 and V5 as that for U. If L£q5, £13 and L93 commute with each other as the
case that the diffusion coefficients are constants, application of array representations
to (2.42)) and leads to direct decomposition of large matrix exponentials for C
to much smaller ones. For detailed formulas in implementation the method, see the
equations in in section 2.2.2.3.

If £15, L£13 and L3 do not commute with each other as the case that the diffusion
coefficients are not constants, two modifications to the method are needed. One is
that the finite difference operators L5, £13 and Lo3 may depend on other spatial
dimensions since the diffusion coefficients can be functions of all spatial variables.
For example, different index k3 results in different finite difference operators £, and
different linear mappings A;5. Hence the linear mappings are represented by .A’f%, A%
and A’§§ in such cases. The other is that the Strang operator splitting [49] is needed
to obtain a second order accuracy. By the Strang symmetric operator splitting, we

have

ANtn ANtp Atn Atln
eCAtn — 6(£12+£13+£23)Atn — eTﬁueTﬁmeAtnﬁQSeTﬁlaeTﬁu + O(Atng) (246)

Then array representations are applied in (2.42]) and ([2.43]) for decomposition of large
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matrix exponentials of C'. See the equations in (2.51)) and (2.52)) in section 2.2.2.3
for detailed implementation formulas.
Similarly, for a four dimensional CDR equation (1.1)), d = 4, with cross-derivatives

for the linear diffusion terms and periodic boundary conditions, the diffusion matrix

D is
a1 + as + as by by bs
D bl ay + as + 1 b4 b5 7 (247)
b by ag + C2 + ¢4 be
b3 b5 b@ C3 + C5 + Cg

where a;, b; and ¢;, i = 1,2,3,4,5,6 are constant or non-constant coefficients of the

diffusion terms. The diffusion terms can be grouped into six classes for the conve-

nience of applying the AcIIF method, i.e., (ala(z_j? + 2by az?;m + 6222)% (QQBz_; +

92 92 92 9> 92 9?2 9?2 92
2b2 Ox10x3 + G 81:32)7”[" (a38x12 + 2638:{;181‘4 + 0385042)71" (a48x22 + 2b48:c26x3 + C48x32)u’

(%%%—265%&4%—05%)% (ag ai; +2bg (%fgu +cg aizg Ju. We apply the second order
I[TF-WENO scheme and obtain the same form schemes —, but with
a much larger system size. Again we can apply the array representation approach in
computations of the matrix exponentials. Numerical solutions for u are stored in a
four-dimensional array U with size N; X Ny X N3 x Ny, where N1, Ny, N3 and Ny are

numbers of grid points of four spatial directions respectively. We use L5 to denote

. . . . 2 2 2
the second order central finite difference approximation of (a; 8212 +2b; 83:?312 +c 3222)

as

3]
<£12U)k17k21k37k4 - ﬁ(Uk1+1,k27k3,k4 - 2Uk17k2,k37k4 + Uk1—17k27k3,k4>
1

2b,
+ 4h h (Uk1+1,k2+1,k‘3,]€4 + Uk1*1,k‘271,k3,k‘4 - Uk‘1+1,k271,k‘3,k4
1762

C1
— Uky 1 ko4 1ks ks) T ﬁ(Uk17k2+1:k3,k4 — 2Uk, ko ks ks Uk ko —1ks k) -
2

(2.48)
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Similarly Lq3, L4, Lo3, Lo4 and L34 are defined. Then the diffusion terms in the
equation are approximated by Fd((?) = CU = (Ly2+ Li3+ Lag+ Log + Log + L34)U.
To derive the array representation of the operator L9, we fix k3 and k4 in the four-
dimensional array U(:,:, k3, k4) which represents a N7 x Ny matrix, and collect all

these two-dimensional matrices along a vector to obtain

U= ® U(:, ks, k).

1<k3<N3
1<k, <Ny

The same linear mapping A is defined as (2.45)) for three dimensional cases. The

array representation of L5 and its exponential are

£12U: ® AlgU(Z,I,kﬁg,]{q),

1<k3<Ns3
1<kg<Ny

eﬁlgAtU — ® e’AletU(I, 0 ]{?3, k4)

1<k3<Nj3
1<kg<Ng

Similarly, the array representation for L3, L4, Lo3, Lo4 and L34 can be written in
terms of Ays, A4, Az, Asg and Az, respectively.

For schemes - , vectors 171 and ‘72 are stored in four-dimensional arrays
Vi and V5 as that for U. If L9, L13, L14, L3, Lo4 and L34 commute with each other,
array representation is applied in schemes - to decompose large matrix
exponentials for C' to much smaller ones. For detailed formulas in implementation of
the method, see the equations and in section 2.2.2.3.

If Lo, L13, Ly4, Lo3, Lo4 and L34 do not commute with each other(e.g., the
case that the diffusion coefficients are not constants), again two modifications are
needed in the method. One is that the linear mappings may depend on other spatial
dimensions since the diffusion coefficients can be functions of all spatial variables.

For example, different indexes k3, k4 result in different finite difference operators L9
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and different linear mappings A;». Hence the linear mappings are represented by
Algha - pghaks - plaks - gRiks - AkRs and ASY™ in such cases. The other is that again
the Strang symmetric operator splitting is needed to achieve a second order accuracy.

Namely, we have

OOt _ (Liz+Liz+Lia+Loz+Loa+L34) Aln :e%ﬁm 6%5246%£23 e%ﬁm e%»clBeAtnElZ

e%ﬁlg’e%ﬁl‘le%[’??’e%ﬁ%e%ﬁ% + O(Ati)

(2.49)

Then application of array representation in (2.42) and (2.43)) leads to decomposition
of large matrix exponentials of C' into much smaller ones. See the equations ([2.55]) -

(2.58) in section 2.2.2.3 for detailed implementation formulas.

Remark: All linear mappings (i.e., Ajz, A3, etc) here are actually N x N? matri-
ces if all spatial directions have the same number of grid points V. Although matrix
exponentials in any higher dimensional problems can be reduced to computations of
such N2 x N? matrices’ exponentials, it is still expensive to directly calculate them
as shown in the following numerical experiments. Applications of Krylov subspace
approximations of section 2.2.1 in computations of these N? x N? matrices’ expo-
nentials are still necessary for the efficiency of the AclIF-WENO method for high

dimensional CDR problems.

Remark: An advantage of cIIF / AclIF schemes is that they have simpler for-
mulations than the Krylov IIF schemes, hence easier to code the algorithms. For
multidimensional CDR or reaction-diffusion problems whose diffusion terms do not
have cross-derivatives, cIIF / AclIF schemes can be directly applied because we only
need to compute matrix exponentials for matrices with sizes of one-dimensional prob-
lems, i.e. N x N matrices with N the number of grid points in one spatial direction.
Such matrix exponentials are computed using a scaling and squaring algorithm with

a Padé approximation. They are computed and stored before the time evolution, and
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directly used at every time step [43]. As that shown in the numerical experiments
of the chapter 3, the cIIF / AclIF schemes implemented this way are more efficient
than the Krylov ITF schemes for problems which do not have cross-derivative diffusion

terms, on not very refined meshes.

2.2.2.3 Detailed formulae for AcIIF-WENO schemes.

(1) For the three dimensional CDR equation, if L9, £13 and L3 commute with

each other, then

® eA23At"< ® eABAt"( ® eAlQAt"V1(1a37k3)>(17k2a3)>(kh:a:)v

1<k1<N1 1<ko<N2 1<k3<N3
@2 _ ® eAgg(Atn+Atn_1) ( ® eAl:&(Atn"FAtn—l)
1<k1<N1 1<k2<N2
< ® AlQ(Atn+Atn 1)V2( ) 7k )> (:7k27:)> (k17:7:)'
1<k3<N3
(2.50)
If £15, £13 and L93 do not commute with each other, then
k3 Atp k2 Atn
® 6 2 < ® 6 2 k27')> (I,I,k‘g),
1<k3<N3 1<ko<N3
k ko Aty k3 Atn
® eAzéAtn< ® A A < ® A Vi 7;71.33)>(:,k2,:)> (k1,:,0);
1<k1 <Ny 1<ko<No 1<k3<N3
(2.51)

and

ko (AthrAtn 1)

@2 _ ® AkB (Atn+Atn 1) ( ® .A

1<k3<N3 1<k2<N2

Vo' (o, ko, )) (i, k3),

ko (Atn+Atn 1)

k
VQ*: ® 6A2§(Atn+Atn1)< ® -A > (252)

1§k1§N1 1§k2§N2
ky (Btn+Btn )
< ® A VQ(:u:vk3)> (:)k%:)) (kl’:7:)'
1<k3<N3
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(2) For the four dimensional CDR equation, if Lo, L13, L14, Lo3, Log and L34

commute with each other, then

® €A34Atn ® 6A24Atn ® e.Angtn ® 6A14Atn ® €A13Atn

1<k <Np 1<k <Ny 1<Ic1<N1 1<ko <Ny 1<ko <Ny
1<ko<No 1<k3<N3 1<ky<Ny 1<k3<N3 1<ky<Ny

® eAIQAtn‘/l(:;:ak3ak4) (:ak27:7k4) (:ak27k37:) (kl,l,l,k4) (k17:7k3a:) (k17k27:a:)7

1<k3<Ng3
1<kg<Ny
(2.53)
0, = ® 6A34(Atn+Atn—1) ® 6A24(Atn+Atnfl)
1<k <Ny 1<k; <Ny
1<ky <Ny 1<k3<Ns3
® e-AQS(Atn"FAtn—l) ® eA14(Atn+Atn—1)
1<kq <Ny 1<ky<Ng
1<k <Ny 1<k3<N3 (2.54)
A13(Atp+Nty— A1o (Dt +ANtpy— .. . .
® eA13(DtntAtn_1) ® eAr2(Dtnt+Atn 1)V2(.,.,k3,k4) (:, k2, 1, k)
1<kg<No 1<kz<Ng
1<k <Ny 1<kq<Ny

(:7k27k37:) (k15:7:7k4) (k15:7k37:) (k17k27:7:)'

If L1o, L13, L14, Lo3, Log and L34 do not commute with each other, then

= @ ATE| Q@ MTE| @ MU @ M
2 2 2

1<ky <Nj 1<ky <Np 1<k <Ny 1<ko <Ny
1<ko <Ny 1<k3<N3 1<ky<Ny 1<k3z<N3

kz kg Aty
® 6 2 Vl ( 7k27 :7k4) (:7k27k37:) (klv 5 :7k4) (klv :7k37 :) (k17k27:7 :)7

1<kg<No
1<ky <Ny
(2.55)
k4At kg ky Aty kz k3 Atp k1 kg Atp
= Q i Q@ MR Q@ MR Qe
1<k3<N3 1<ka <N 1<ka<No 1<k <Nj
1<ky <Ny 1<ky <Ny 1<k3<N3 1<kg <Ny
kq,k3 At kq,k At
A 1:73 Atn A 1:72 Atn . i X .
® € 2 ® € V(ktha 7') (klv'ak37-) (kla'a'7k4)
1<k <Np 1<k <Ny
1<k3<N3 1<kg <Ny
(i3 ko, k3, 1) | (55 k2,05 ka) | (20 K3, Rg).
(2.56)
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And

k1,ko (Atn+Atn 1) k1,k3 (Atn+Atn 1) ki,kg (Atn+AOty,_1)
Q) e Q) e Q e

1<k{ <Ny 1<ki <Ny 1<k1<Np
1<ko<Np 1<k3<N3 1<k <Ny
Ak2 k3 (Atn+Atn 1) AkQ kg (AthrAtn U,
X X Va (ks )
1<kg <Ny 1<kg <Ny
1<k3<Nj 1<kg<Ny

(I, kQ, kg, )> (]{71, el k?4)) (kl, o k‘g, )) (l{}l, kg, o :),

(2.57)
k k k k (At»,ﬁ-Atn 1) k k3 (Atp+Aty,_ 1)
e @ i @ i @ i
1<k3<N3 1<ko <Ny 1<ko <Ny
1<ky <Ny 1<k <Ny 1<k3z<Nj
kl ky (Atn+Atn 1) k1,k3 (Atn+Atn 1) k1,kg (Atn+Aty,_1)
Q) et Q) et Q) et
1<k; <Ny 1<k <Np 1<k <Ny
1<kg<Ny 1<k3<Ng 1<kg<No
‘/2(]{1, k2a 5 )) (kh ) k37 )) (k17 Y k4)) (:7 k2a k37 )) (:7 k2a 5 k4)> (:7 ) k37 k4)
(2.58)

2.3 Krylov IF method on sparse grids

To achieve further efficiency in solving the CDR equations on high spatial
dimensions by Krylov IIF schemes, we present the Krylov IIF schemes on sparse grids
by sparse-grid combination technique. The basic idea of sparse-grid combination
technique is that by combining several solutions on different semi-coarsened grids
(sparse grids), a final solution on the most refined mesh is obtained. The most
refined mesh is corresponding to the usual single full grid. Since the PDEs are
solved on semi-coarsened grids which have much fewer grid points than the single full
grid, computation costs are saved a lot. The final solution obtained by sparse-grid
combination technique is required to have the similar accuracy as that by solving the
PDEs directly on a single full grid. For example see [15] [30, [31].

Here we use two dimensional (2D) case as the example to illustrate the idea.
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Figure 2.1. Semi-coarsened sparse grids {Q2} with the finest level
Ny = 3.

Higher dimensional cases are similar. Consider a 2D domain [a, b]?. The construction
of semi-coarsened grids is as follows. We first partition the domain into the coarsest

mesh, which is called a root grid Q% with N, cells in each direction. The root grid

b—a
Ny

mesh size is H = The multi-level refinement on the root grid is performed to
obtain a family of semi-coarsened grids {22}, The semi-coarsened grid {Q"2} has
mesh sizes hy, = 27" H in the x direction and hy, = 272 H in the y direction, where
ly, =0,1,--- ,Np, Il = 0,1,---, N, see figure Superscripts [y, ls indicate the
level of refinement relative to the root grid Q%° and N indicates the finest level.
Therefore, our finest grid is QV=V with mesh size h = 2=V H for both z and y
directions.

To solve equation (L.1)), we will use the second order Krylov IIF (KrylovIIF2)
method or the third order Krylov IIF (KrylovIIF3) scheme for time

discretization. Spatial discretizations are the classical second or fourth order central

schemes for diffusion terms, and the third order WENO scheme or the upwind scheme
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for convection terms. Following the spare-grid combination techniques, rather than
on a single full grid, the PDE (1.1]) is solved on the following (2N, + 1) sparse grids
{Qll,lg}I:

{QO,NL QLNL=1 . Ni-11 QNL,O} and {Q(LNL—l QLNL=2 .. QNi-21 QNL—l,O}.
And I denotes the index set
I:{(ll,lg)’ll—l-lQ:NL or l1+l2:NL—1}

By carrying out time marching of the PDE using Krylov IIF schemes on these
(2N7, + 1) sparse grids, we obtain (2N + 1) sets of numerical solutions {U"2};
(one set of numerical solution is obtained on each sparse grid). The next step is
to combine solutions on sparse grids to obtain the final solution on the finest grid
QNe-Ne - The key point here is that the PDE is never solved directly on QV2-Vt in
order to save computational costs. To extend numerical solutions on sparse grids
to that on the finest grid, we apply a prolongation operator PV2-Vt (defined in the
spare-grid combination techniques [15, 30} [31]) on each sparse grid solution U2 to
obtain (2N, + 1) solutions on the finest grid QV2:V2. And finally, these solutions are
combined to form the final solution UMVt on QNeNz,

Next we provide details on the prolongation operator PVt Prolongation op-
erator PVe-No maps numerical solutions {U"2}; on sparse grids onto the finest grid
QNe-Ne - And a prolongation operator is basically an interpolation operator. For
example, U2 is numerical solution on Q"2 then PNt-NeJl!2 gives numerical val-

ues on the most refined mesh QNe-NL,

For the 2D case, first in one direction(e.g.
the z direction), we construct (N,2!1~!) quadratic interpolation polynomials P?(x),
i =1,---,N,2171 by the third order Lagrange interpolation. Each interpolation

uses three adjacent grid points to construct a quadratic polynomial. Note that a
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higher order interpolation is needed for comparable numerical accuracy as that of
the numerical schemes, if higher order accuracy numerical schemes are used to solve
PDEs on sparse grids (see [15], 30, 31]). Then we evaluate P?(x) on the grid points
of QN2 which is the most refined meshes in the x direction. Next, in the other
direction (e.g. the y direction), we construct (N,2271) quadratic interpolation poly-
nomials sz(y), j=1,---,N,2271 and evaluate them on the grid points of QVz-Vr,
At last we get PNoNegl2 | defined on the finest grid QN2 We summarize the

algorithm of Krylov ITF scheme on sparse grids as following.

Algorithm: Krylov ITF scheme with sparse-grid combination technique

e Step 1: Restrict the initial condition u(z,y,0) to (2N, +1) sparse grids {Q2};
defined above;

e Step 2: On each sparse grid Q12 solve the equation (1.1)) by KrylovIIF scheme
to reach the final time 7. Then we get (2N, + 1) sets of solutions {U"2};

e Step 3: At the final time T,

— on each grid Q42 apply prolongation operator PVo-Nt on Uh+2, We get
PN Negyhilz - defined on the most refined mesh Qe

— do the combination to get the final solution

UNL,NL _ Z pPNeNeprlle Z PNeNLprlle (259)

li+l2=Np, Li+lo=Np—1

For three dimensional (3D) or higher dimensional problems, the algorithm is sim-
ilar although prolongation operations are performed in additional spatial directions.
The sparse-grid combination formula for higher dimensional cases can be found in

the literature, e.g. in [I5]. Specifically the 3D formula is

UNL,NL,NL — E PNL,NL,NL Ullal2713 —9 E PNLvNL»NL Ullyl2713

l1+l2+I3=Nyp, l1+lo+Ii3=Np—1

4 § PNLvNLvNL Ullvl27l3.
l1+l2+I3=Nr -2

(2.60)
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2.4 Linear stability analysis of the IIF2 scheme for CDR equations.

To analyze the linear stability of ITF schemes, we use the following scalar linear

test equation
uy = au — du + ru, with r € C,and a,d € R,d > 0. (2.61)

In the context of solving CDR equations, a and d actually represent spatial dis-
cretizations for the convection term and the diffusion term respectively. Following
the stability analysis approach in [42], we show boundaries of the stability regions in
the complex plane for rAt, a family of curves for different values of dAt and aAt,
and indicate the corresponding stability regions. Here we present the analysis of the
ITF2 scheme as an example. More details and analysis results can be found in
[24].

Applying the ITF2 scheme to the equation ([2.61]) with a uniform time step

size At, then substituting u, = e™ into the resulting equation, we obtain

Ao A3 ,
(1-— 5)6226 = e_dm(l + 5 + iaAt)ew — gAte_szt, (2.62)

where A = rAt has a real part A\, and imaginary part \;. Solve the equation ([2.62])

for A\, and \; to have

\ - BiC =BGy

" A1B2 - A2317 (263)
v A = A0y

t AZBl - AlBQ7
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where )

1 1
A= e‘dm§ cosf + 5 cos 20,

1 1
B, = —e_dAt§ sin @ — 5 sin 20,

3
C, = _ 9 Ape—2ant + e~ 1 + —aAt) cos ) — cos 20,
2 2 (2.64)

1 1
Ay = e_dAti sin 6 + 5 sin 20,

1 1
By = e*dmi cos O + 5 Cos 20,

3
Cy = e (1 + iaAt) sin @ — sin 26.

\

Stability regions in the complex plane of rAt for different values of dAt under a fixed
value of aAt are presented in Figure 2.2l As examples we choose four different aAt
values: aAt = 1.0, aAt = 10.0 , aAt = —1.0 and aAt = —10.0. The points on
boundaries of stability regions are obtained by varying 6 from 0 to 27 in and
. A stability boundary curve divides the whole complex plane into the stable
region and the unstable region for a pair of fixed values of dAt and aAt. Based on
analyzing the growth factor of the scheme for some special values of dAt, aAt
and A, we find that the stable regions always include the point A = (—20,0) for any
values of dAt and aAt used in Figure 2.2l Then stable and unstable regions are
determined and shown in Figure 2.2 From Figure 2.2] we can see that the whole
regions outside of the stability boundary curves are stable regions, which shows that
the ITF2 scheme has large stability regions. For a fixed aAt, the stable region
becomes larger with the increase of the value of dAt. Next we show stability regions
for different values of aAt under a fixed value of dAt in Figure 2.3 dAt = 1.0,
dAt = 2.0, dAt = 10.0 and dAt = 20.0 are chosen as examples. Again, analysis
of the growth factor of the scheme for some special values of dAt, aAt and
A, we find that the stable regions always include the point A = (—10,0) for any
values of aAt and dAt used in Figure 2.3 Stable regions for the cases shown in

Figure [2.3] are the whole regions outside of the stability boundary curves. For a
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fixed dAt, the stable region becomes smaller with the increase of the value of |a|At
which corresponds to the convection terms. Based on the linear stability analysis, we
conclude that the diffusion term tends to stabilize the scheme, while the convection
term gives constraints on time step sizes. Due to the implicit property of the scheme,
the stability regions are quite large and often include the whole left complex plane,
with a relatively large size diffusion parameter d and a mild size convection parameter

Q.
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Figure 2.2. Linear stability regions of the ITF2 scheme ([2.10) for different
values of dAt under a fixed value of aAt. (a) aAt = 1.0; (b) aAt = 10.0;
(c) aAt = —1.0; (d) aAt = —10.0.
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Figure 2.3. Linear stability regions of the ITF2 scheme (2.10) for different
values of aAt under a fixed value of dAt. (a) dAt = 1.0; (b) dAt = 2.0; (c)
dAt = 10.0; (d) dAt = 20.0.



CHAPTER 3

NUMERICAL EXAMPLES FOR COMPUTATIONAL COMPLEXITY STUDY
OF KRYLOV INTEGRATION FACTOR WENO
METHOD

In this chapter, we use different types of numerical examples to systematically
compare the computational efficiency of two different approaches in using integration
factor methods for solving high dimensional problems. Examples include equations
with analytical solutions, convection-dominated equation, a stiff reaction problem
from mathematical modeling of the dorsal-ventral patterning in Drosophila embryos,
and three dimensional and four dimensional Fokker-Planck equations. We test the
convergence and CPU times, and analyze computational complexity of numerical
schemes via mesh refinement studies. We perform simulations on different meshes
including very fine ones. Computations on fine meshes are needed to resolve small
structures in complicated solutions which often arise in application problems. Com-
parisons of computational efficiency by different methods on very fine meshes in this
dissertation can provide certain guidance in choosing the suitable numerical methods.
All of the numerical simulations in this chapter are performed on a 2.3 GHz, 16GB

RAM Linux workstation.

3.1 Diffusion problems

We first test problems without convection, i.e., study computational complexity of
both approaches without considering the cost of WENO scheme. Then the complete

convection-diffusion problems are tested in the next subsection.
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3.1.1 Diffusion problems without cross-derivatives

Example 1 (A problem with linear reaction). We consider a reaction-

diffusion problem with linear reaction

— =02V - (Vu) + 0.1u.

First we test the two dimensional case defined on the domain Q = {0 < z < 27,0 <
y < 2w}, subject to no-flux boundary conditions at x = 0,z = 27 and periodic

boundary conditions in the y-direction, i.e.,

ou ou
e = _—(2 =0: = 2 .
8x<0’y’t) 8x< ™, y,t) =0; u(z,0,t) = u(x,2m,t)

The initial condition is u(x,y,0) = cos(x) +sin(y). The exact solution of the problem
is u(z,y,t) = e %"(cos(x) + sin(y)). We compute the problem until the final time
T =1 by the second order cIIF /AcIIF scheme or (they are equivalent),
and the second order Krylov ITF scheme with the convection term F, = 0. Since
the problem has a linear reaction term, the local implicit equation is just a linear
equation and can be solved directly. We test the L™ errors, numerical accuracy orders
and CPU times on successively refined meshes to compare the two approaches. The
total numbers of multiplication and division operations at one time step are counted.
The cIIF2 method needs 2N3 4+ 8N? 4 6N operations, where N is the number of
grid points in each spatial direction. The KrylovIIF2 method for this problem needs
(M? +12M + 7)N? 4+ (M? 4+ 20M + 7)N + O(M?3) operations at every time step. M
is the dimension of Krylov subspace. M = 25 for all examples in this dissertation,
and M does not need to be increased when the spatial-temporal resolution is refined.
Here O(M?) term is the number of operations for computing matrix exponential of a

Hy At

small M x M matrix such as e . Since it is a small constant which is independent
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of N, we omit it. Hence for M = 25, the number of operations at one time step for
the KrylovIIF2 scheme is estimated to be 932N?+ 1132N. This is a two dimensional
problem with N? grid points. So the KrylovIIF2 scheme has a linear computational
complexity, while the computational complexity of the cIIF2 scheme is not linear.
However, their computational efficiency depends on the size of the problem. The
numerical errors, accuracy orders, CPU times (time unit: second) for a complete
simulation, for time evolution part and for one time step are listed in Table
and Table for the clIF2 scheme and the KrylovIIF2 scheme. We also list the
ratios of corresponding CPU times on an N x N mesh to that on a % X % mesh, to
study the computational complexity of these two approaches. Both methods give the
same numerical errors and the second order accuracy. For this two dimensional time
dependent parabolic problem, we achieve large time step size computation At = 0.5k
by using the IIF method. A linear computational complexity method should have
the CPU time ratio be 8 for a complete time evolution and the ratio 4 for one time
step. The KrylovIIF2 scheme’s CPU time ratios shown in Table verify its linear
computational complexity. On the other hand, although the cIIF2 scheme’s CPU
time ratios shown in Table are not linear, the cIIF2 scheme is more efficient
than the KrylovIIF2 scheme on 40 x 40, 80 x 80 and 160 x 160 meshes, because the
cITF2 scheme has a much smaller coefficient 2 in its leading operation amount than
the KrylovIIF2 whose leading operation amount coefficient is 932. On more refined
meshes 640 x 640 and 1280 x 1280, the KrylovIIF2 scheme is more efficient than the
clIF2. On 320 x 320 mesh, the cIIF2 scheme is more efficient than the KrylovIIF2
scheme for one time step, but KrylovIIF2 is more efficient for the complete simulation
and for the whole time evolution. This is because that cIIF schemes compute matrix
exponentials (e.g., matrix exponentials for N x N matrices AAt and BAt) before
the time evolution and at the last time step when At changes to reach the final time

T. So additional CPU times are needed. Other strategies to improve computational
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efficiency can be explored further here, for example, interpolation in time for the
last time step rather than recomputing matrix exponentials. This will be one of our
future work.

We perform the same test for third order schemes. The third order cIIF scheme
cITF3 (the scheme with 7 = 3) and the third order KrylovIIF scheme KrylovIIF3
are used to compute the same two-dimensional problem until the final time
T = 1. The comparison results are presented in Table |3.3| and Table Both
methods have comparable numerical errors and accuracy orders. We observe higher
than third order (around fourth order) numerical accuracy orders because we used
a fourth order central difference scheme to discretize the diffusion terms. This is
for the purpose of having comparable spatial and temporal numerical errors. Again
as that in the second order schemes, the Krylov IIF scheme KrylovIIF3 shows a
linear computational complexity, while the cIIF scheme cIIF3 does not. However,
clIF3 is more efficient than KrylovIIF3 on not very refined meshes such as 40 x 40,
80 x 80, 160 x 160 and 320 x 320. On very refined meshes 640 x 640 and 1280 x 1280,
KrylovIIF3 is more efficient.

Then we test the three dimensional case defined on the domain 2 = {0 <
r <m0 <y <m0 <z < 7}, subject to no-flux boundary conditions. The
initial condition is u(x,y,z,0) = cos(z) + cos(y) + cos(z). The exact solution is
u(z,y, z,t) = e " (cos(z) +cos(y) + cos(z)). We count the total numbers of multipli-
cation and division operations at one time step. The cIIF2 scheme needs 3N* + 4 N3
operations, while the KrylovIIF2 scheme requires (M?+8M +6) N*+12M N*+O(M?)
operations. N is the number of grid points in each spatial direction. Again M is the
dimension of the Krylov subspace and M = 25. O(M?) term is the number of oper-
ations for computing matrix exponential of a small M x M matrix such as efm4?,
Since it is a small constant which is independent of N, we omit it. Hence for M = 25,

the number of operations at one time step for the KrylovIIF2 scheme is estimated to
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be 831 N3 4+ 300N?2. Since three dimensional problem has N3 grid points, the com-
putational complexity of the KrylovIIF2 scheme is linear, while the computational
complexity of the cIIF2 scheme is not linear. Again as that for the two dimensional
problem, their computational efficiency depends on the size of the problem. We
compute the problem until the final time 7" = 1. The numerical errors, accuracy
orders, CPU times for a complete simulation, for time evolution part and for one
time step, and the ratios of corresponding CPU times on an N x N mesh to that on
a % X % mesh are listed in Table and Table for the cIIF2 scheme and the
KrylovIIF2 scheme. Both methods give the same numerical errors and the second
order accuracy. For a three dimensional time dependent problem with At = h/3, a
linear computational complexity method should have the CPU time ratio be 16 for a
complete time evolution and the ratio 8 for one time step. The KrylovIIF2 scheme’s
CPU time ratios shown in Table verify its linear computational complexity. How-
ever, the cIIF2 scheme is more efficient than KrylovIIF2 scheme on 10 x 10 x 10,
20 x 20 x 20, 40 x 40 x 40, 80 x 80 x 80, and 160 x 160 x 160 meshes, because the
cITF2 scheme has a much smaller coefficient 3 in its leading operation amount than
the KrylovIIF2 whose leading operation amount coefficient is 831. On the most re-
fined mesh 320 x 320 x 320, the KrylovIIF2 scheme is more efficient than the cIIF2.
We can also see that the clIF2 scheme needs slightly additional CPU times to com-

pute a few N x N matrix exponentials before the time evolution and at the last time

step.
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TABLE 3.1

EXAMPLE 1. 2D CASE, CIIF2 SCHEME

N x N L*>® error  Order CPU(s) R1 CPUI(s) R2 CPU2(s) R3
40 x 40 7.45 x 107* 0.13 0.09 0.0031
80 x 80 1.86 x 107*  2.00 1.43 11.06 1.04 12.21 0.025 7.92
160 x 160  4.66 x 107> 2.00 18.26 12.73 14.21 13.66 0.20 8.02
320 x 320 1.16 x 107> 2.00 269.66  14.77  225.03 15.84 1.77 8.88
640 x 640 291 x 107 2.00  4,667.67 17.31 4,328.65 19.24 19.58 11.07
1280 x 1280 7.28 x 1077 2.00  79,855.09 17.11 76,837.65 17.75  180.42 9.22
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TABLE 3.2

EXAMPLE 1. 2D CASE, KRYLOVIIF2 SCHEME

N x N L>* error Order CPU(s) Rl CPUl(s) R2 CPU2(s) R3
40 x 40 7.45 x 1074 0.50 0.50 0.04
80 x 80 1.86 x 107*  2.00 3.56 7.16 3.56 7.16 0.14 3.58
160 x 160  4.66 x 107> 2.00 27.34 7.68 27.34 7.68 0.54 3.92
320 x 320  1.16 x 107°  2.00 219.15 8.02  219.15 8.02 2.15 4.01
640 x 640 291 x 107 2.00  1,828.21 834 1,828.21 8.34 8.91 4.15
1280 x 1280 7.28 x 1077 2.00  14,174.02 7.75 14,174.02 7.75 34.66 3.89
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EXAMPLE 1. 2D CASE, CIIF3 SCHEME

TABLE 3.3

N x N L*>® error ~ Order  CPU(s) R1  CPUl(s) R2 CPU2(s) R3
40 x 40 1.47 x 107° 0.21 0.16 0.01
80 x 80 9.18 x 1077 4.00 2.43 11.37 1.96 12.31 0.05 7.82
160 x 160 5.74 x 1078 4.00 34.41 14.18 30.38 15.49 0.49 9.44
320 x 320 3.59x 107  4.00 433.57 12.60 397.46 13.08 3.41 7.01
640 x 640  2.29 x 10710 3.97 7,782.29 1795 7,385.89 1858  33.51 9.83
1280 x 1280 2.89 x 10711 299  145987.45 18.76 141,798.99 19.20 332.66 9.93
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TABLE 3.4

EXAMPLE 1. 2D CASE, KRYLOVIIF3 SCHEME

N x N L>® error  Order CPU(s) Rl CPUI(s) R2 CPU2(s) R3
40 x 40 1.47 x 107° 1.13 1.12 0.09
80 x 80 9.18 x 1077 4.00 7.45 6.60 7.39 6.59 0.28 3.22
160 x 160  5.74 x 1078 4.00 62.08 8.33 61.58 8.34 1.21 4.37
320 x 320 3.59x 107  4.00 504.81 813  500.40  8.13 4.90 4.06
640 x 640  2.35 x 10710 3.94  3,743.59 7.42 3,696.45 7.39 17.63  3.60
1280 x 1280 1.25 x 107'*  4.23  33,080.77 8.84 32,580.07 8.81 80.09 4.54
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TABLE 3.5

EXAMPLE 1. 3D CASE, CIIF2 SCHEME

N xNxN L*>® error  Order  CPU(s) R1  CPUI(s) R2 CPU2(s) R3

10 x 10 x 10 2.24 x 1073 0.0061 0.0057 0.00054

20 x 20 x 20 5.79 x 107*  1.95 0.21 34.99 0.21 36.76 0.010 19.12

40 x 40 x 40 1.87 x 107*  1.63 6.93 32.67 6.90 32.96 0.18 17.05

80 x 80 x 80  5.50 x 107°  1.77 230.83 33.33 230.60 33.42 2.99 16.94
160 x 160 x 160 1.53 x 1075 1.85 8,792.19  38.09 8,790.15 38.12 55.13 18.42
320 x 320 x 320 4.06 x 107¢ 1.91 367,739.27 41.83 367,712.22 41.83 1242.62 22.54
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TABLE 3.6

EXAMPLE 1. 3D CASE, KRYLOVIIF2 SCHEME

N xNxN L*>® error  Order  CPU(s) R1  CPUI(s) R2 CPU2(s) R3

10 x 10 x 10 2.24 x 1073 0.22 0.22 0.02

20 x 20 x 20 5.79 x 107*  1.95 3.06 14.15 3.06 14.15 0.15 7.02

40 x 40 x 40 1.87 x 107*  1.63 50.54 16.49 50.54 16.49 1.30 8.51

80 x 80 x 80 550 x 107°  1.77 850.24 16.82 850.24 16.82 11.06  8.53
160 x 160 x 160 1.53 x 107> 1.85  13,637.13 16.04 13,637.13 16.04  89.28  8.07
320 x 320 x 320 4.06 x 107¢ 1.91 225543.28 16.54 225,543.28 16.54 735.62 8.24




Example 2 (A problem with nonlinear reaction). We consider a reaction-
diffusion problem with nonlinear reaction
ou  *u  O*u

= —— + = —u? + e *cos?*(mx) cos®*(my) + (2m% — 1)e~ " cos(wx) cos(my).

ot 02 o2

The PDE is defined on the two dimensional domain (z,y) € (0,1) x (0, 1), subject
to no-flux boundary conditions. The initial condition is u(x,y,0) = cos(mwx) cos(my).
The exact solution of the problem is u(x,y,t) = e *cos(mzx)cos(my). We compute
the problem until the final time 7' = 1 by the cIIF2 scheme and the KrylovIIF2
scheme. Again we test the L* errors, numerical accuracy orders and CPU times
on successively refined meshes to compare the two approaches for such a nonlinear
reaction-diffusion problem. In the cIIF2 scheme and the KrylovIIF2 scheme, a local
nonlinear equation needed to be solved at every grid point, due to the implicit treat-
ment for the reaction term. Here the local nonlinear equation is solved by fixed-point
iterations as that in [42]. The results are reported in Table and Table 3.8 we
can see that both methods give the second order accuracy and they have comparable
numerical errors, while KrylovIIF2 has smaller numerical errors on refined meshes
640 x 640 and 1280 x 1280. The ratios of corresponding CPU times on an N x N
mesh to that on a % X % mesh show that the KrylovIIF2 scheme has a linear compu-
tational complexity. Similar as the last example, the cIIF2 scheme is more efficient
than the KrylovIIF2 scheme on meshes 40 x 40, 80 x 80, 160 x 160 and 320 x 320.
On more refined meshes 640 x 640 and 1280 x 1280, the KrylovIIF2 scheme is more

efficient than the cIIF2 scheme.
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TABLE 3.7

EXAMPLE 2. CIIF2 SCHEME

N x N L> error  Order  CPU(s) R1  CPUl(s) R2 CPU2(s) R3
40 x 40 2.81 x 1073 0.56 0.49 0.0062
80 x 80 719 x 107 1.97 6.35 11.30 2.73 11.67 0.036 5.78
160 x 160  1.82 x 10™*  1.98 82.36 12.97 76.56 13.35 0.24 6.61
320 x 320 4.56 x 1075 1.99 1,202.63  14.60 1,146.50  14.98 1.80 7.56
640 x 640 1.14x 107> 2.00  18,055.74 15.01 17,598.19 15.35 13.72 7.63
1280 x 1280 2.86 x 1075 2.00  375,400.69 20.79 371,035.11 21.08 142.81  10.41
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TABLE 3.8

EXAMPLE 2. KRYLOVIIF2 SCHEME

N x N L>® error  Order CPU(s) R1 CPUI(s) R2 CPU2(s) R3
40 x 40 2.81 x 1073 3.8 3.85 0.05
80 x 80 719 x 107 1.97 26.50 6.88 26.50 6.88 0.17 3.51
160 x 160  1.81 x 107*  1.99 198.52 7.49 198.52 7.49 0.61 3.63
320 x 320  4.45 x 107°  2.03 1,621.66 8.17 1,621.66 8.17 2.54 4.13
640 x 640  7.65x 107 2.54 12,822.76 791 12,822.76 7.91 9.92 3.91
1280 x 1280 1.90 x 107  2.01  104,679.46 8.16 104,679.46 8.16 40.07  4.04




3.1.2 Diffusion problems with cross-derivatives

Example 3 (A 3D problem with constant diffusion coefficients). We
consider a three-dimensional reaction-diffusion problem with constant diffusion coef-

ficients

U = (0.1 —0.15%4,+0. 11y, ) +(0. 1ty 4020y, +0.2u,, ) +(0. 21y, +0.15u,,,4-0. 1w, , ) +0.8u,

where (z,y,2) € Q ={0 <z < 27,0 <y < 27,0 < z < 27} with periodic boundary
conditions. The initial condition is u(z,y, z,0) = sin(z + y + z). The exact solution
of the problem is

u(z,y, z,t) = e " sin(x +y + 2).

This problem was used in [53] for testing the AcIIF2 scheme. We compute the prob-
lem until the final time 7" = 1 by the KrylovIIF2 scheme with the convection
term F, = 0, and the AclIIF2 scheme , with the convection term F, = 0.
For the AcIIF2 scheme, we implement it in two different ways. One way is to directly
compute the matrix exponentials in . As that shown in the following numerical
results, it is still very expensive in terms of both CPU times and computer mem-
ory to directly calculate such N? x N? matrices’ exponentials. A more efficient way
to implement AcIIF schemes is to apply Krylov subspace approximations of section
2.2.1 in computations of these N? x N2 matrices’ exponentials. We call such method
AclIIF schemes with Krylov subspace approximations. Again we test the L errors,
numerical accuracy orders and CPU times on successively refined meshes to com-
pare the KrylovIIF2 scheme, the direct AcIIF2 scheme, and the AcIIF2 scheme with
Krylov subspace approximations for this problem. The results are reported in Table
3.9, Table 3.10] and Table [3.11] We can see that all of methods give the same nu-
merical errors and the second order accuracy. However, the direct AcIIF2 scheme is

computationally expensive as shown in Table [3.10}, in both CPU times and computer
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memory costs. The significant CPU time and computer memory costs for the direct
AclIIF2 scheme come from the direct computations and stores of several N? x N? ma-
trices’ exponentials. In fact, the computations on the 160 x 160 x 160 mesh can not
be performed due to memory restrictions of our workstation. Direct large N2 x N?
matrix-vector multiplications require a large amount of CPU time for refined meshes
as shown in Table[3.10the one time step CPU times. On the other hand, if we use the
Krylov approach to approximate these N2 x N? matrices’ exponentials in the AcIIF2
scheme, the computational efficiency can be improved dramatically. This is shown
in Table [3.11} An interesting case is that for the coarse meshes such as 10 x 10 x 10
and 20 x 20 x 20, the one time step CPU time for the direct AcIIF2 scheme is less
than that for the AcIIF2 scheme with Krylov subspace approximations due to the
relative small sizes of N? x N? matrix-vector multiplications. However, the total
CPU time for the direct AcIIF2 scheme still costs more due to the expensive direct
evaluations of N? x N? matrices’ exponentials. In Table , we report results for
the KrylovIIF2 scheme. The efficiency of the KrylovIIF2 scheme is impressive. In
fact, the KrylovIIF2 scheme is the most efficient one among all three approaches here
on all meshes. We can also see that both the KrylovIIF2 scheme and the AcIIF2
scheme with Krylov subspace approximations have linear computational complexity

as shown by the CPU time ratios in Table [3.9 and Table [3.11]
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TABLE 3.9

EXAMPLE 3. KRYLOVIIF2 SCHEME

N x N x N L>® error  Order  CPU(s) R1  CPUl(s) R2 CPU2(s) R3

10 x 10 x 10 4.21 x 1072 0.15 0.15 0.03

20 x 20 x 20 1.11 x 1072 1.92 2.09 13.51 2.08 13.52 0.21 6.76

40 x 40 x 40 2.79 x 1073 2.00 33.11 15.88 33.09 15.89 1.65 7.95

80 x 80 x 80 6.97 x 107 2.00 538.81 16.27 538.70 16.28 13.69 8.27
160 x 160 x 160 1.74 x 10~*  2.00 8,413.74  15.62 8,412.93 15.62 109.56  8.00
320 x 320 x 320 4.36 x 107°  2.00 132,359.95 15.73 132,353.57 15.73 866.21  7.91
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TABLE 3.10

EXAMPLE 3. DIRECT ACIIF2 SCHEME

N xNxN L> error  Order CPU(s) R1 CPU1(s) R2  CPU2(s) R3
10 x 10 x 10 4.21 x 1072 2.16 1.08 0.01

20 x 20 x 20 1.11 x 1072 1.92 143.85 66.60 73.36 67.75 0.28 31.73
40 x 40 x 40 2.79 x 1073 2.00 11,831.05 82.24 5,214.92 71.09 8.88 32.26
80 x 80 x 80 6.97 x 107 2.00 1,601,309.44 135.35 753,295.70 144.45 485.98  54.73

160 x 160 x 160
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EXAMPLE 3. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

TABLE 3.11

APPROXIMATIONS

N xNxN L*>® error  Order  CPU(s) R1  CPUI(s) R2 CPU2(s) R3

10 x 10 x 10 4.21 x 1072 1.17 1.17 0.23

20 x 20 x 20 1.11 x 1072 1.92 8.66 7.41 8.66 7.41 0.87 3.70

40 x 40 x 40 2.79 x 1072 2.00 96.87 11.18 96.86 11.18 4.85 5.59

80 x 80 x 80  6.97 x 107*  2.00 1,352.48 1396  1,352.37 1396  34.70  7.15
160 x 160 x 160 1.74 x 107* 2.00  21,221.14 15.69 21,220.33 15.69 275.57 7.94
320 x 320 x 320 4.36 x 107°  2.00 339,245.16 15.99 339,238.81 15.99 2,217.32 8.05




Example 4 (A 4D problem with constant diffusion coefficients). We test
a higher dimensional problem, the four-dimensional reaction-diffusion problem with

constant diffusion coefficients

up =(0.1tg 0, — 0.15Ug 2y + 0. 100, ) + (010U, 0y + 0.205, 05 + 0.2Upy 0, )+
(0. 1ug 0y + 02U 2y + 0.2Us, ) + (0.1%Upgpy + 0.20Upppy + 02Uy, )+ (3.1)

(0. 1tgyy + 0.2ugy0, + 0.2us,0,) + (0.2, + 0.15Ups 0, + 0.1Uy,., ) + 2u,

where (x1, 29, 23,24) € Q = {0 < 21 < 27,0 < 29 < 27,0 < 23 < 27,0 < x4 <
27} with periodic boundary condition. The initial condition is u(xy, zo, x3,x4,0) =

sin(x; + z2 + o3 + x4). The exact solution of the problem is

—-0.5

u(wy, T, T3, 74, 1) = € "sin(zy + 19 + 23 + 14).

We compute the problem until the final time 7" = 1 by the KrylovIIF2 scheme ({2.16]

with the convection term F, = 0, and the AcIIF2 scheme (2.41)), (2.53)), (2.54) with

the convection term F, = 0. For the AcIIF2 scheme, we also implement it in two
different ways, i.e., the direct computations of N2 x N? matrices’ exponentials and the
Krylov subspace approximations of them. The numerical results are reported in Table
Table 3.13] and Table [3.14] We obtain the same conclusion as the 3D problem
(Example 3). All of methods give the same numerical errors and the second order
accuracy. However, the direct AcIIF2 scheme is computationally the most expensive
one among three approaches for relatively refined meshes such as 40 x40 x40 x40. We
count the total numbers of multiplication and division operations at one time step.
The direct AcIIF2 scheme needs 6 N°+2N* operations, where N is the number of grid
points in each spatial direction. The computational complexity is not linear and CPU
time ratio is expected to be around 2° = 64 when the spatial mesh is refined once.

This is verified in Table [3.13] As a result of the significant increase of computation
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time with mesh refinement, CPU time has reached the maximum computation time
restriction of our workstation and the computation on 80 x 80 x 80 x 80 can not be
performed. The computational efficiency is improved dramatically when the Krylov
approach is used to approximate these N? x N? matrices’ exponentials in the AcIIF2
scheme, as shown in Table [3.14l Again, the KrylovIIF2 scheme is the most efficient
one among all three approaches here on all meshes as shown in Table [3.12] In terms
of total numbers of multiplication and division operations at one time step, the
KrylovIIF2 scheme needs (M? + 28M + 4)N* + O(M?) operations, and the AcITF2
scheme with Krylov subspace approximations needs (6M? + 66 M + 14)N* + O(N?)
operations. M is the dimension of the Krylov subspace and M = 25 in this example.

Hence they have linear computational complexity.
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TABLE 3.12

EXAMPLE 4. KRYLOVIIF2 SCHEME

NXNxNxN  L*®error Order CPU(s) R1  CPUl(s) R2 CPU2(s) R3
10x10x 10 x 10 1.16 x 101 1.60 1.59 0.32

20 x 20 x 20 x 20 2.92x 1072  1.99 49.34 30.89 49.30 30.92 4.93 15.49
40 x 40 x 40 x 40 7.24x 1072 2.01 1,596.13 3235 1,595.56 32.37 79.79 16.19
80 x 80 x 80 x 80 1.81 x 1073  2.00  70,569.13 44.21 70,560.68 44.22 1,929.45 24.18
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TABLE 3.13

EXAMPLE 4. DIRECT ACIIF2 SCHEME

N x N x N x N

L error  Order CPU(s) R1  CPUl(s) R2 CPU2(s) R3

10 x 10 x 10 x 10
20 x 20 x 20 x 20
40 x 40 x 40 x 40

80 x 80 x 80 x 80

1.16 x 1071 5.20 3.04 0.19
292x 1072  1.99 30891  76.75  258.66 85.06 11.84  63.91

724 x 1073 2.01  38,341.37 96.12 25777.97 99.66  799.41  67.50
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TABLE 3.14

EXAMPLE 4. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS
NXxNxNxN  L*®error Order CPU(s) R1 CPUI1(s) R2 CPU2(s) R3
10 x 10 x 10 x 10 1.16 x 107! 23.70 23.69 4.73
20 x 20 x 20 x 20 2.92 x 1072 1.99 346.17 14.61 346.13 14.61 34.59 7.31
40 x 40 x 40 x 40 7.24 x 1072 2.01 7,779.73 2247 777917 2247 389.45  11.26
80 x 80 x 80 x 80 1.81 x 1073  2.00 217,356.07 27.94 217,347.68 27.94 5573.58 14.31




Example 5 (A 3D problem with variable diffusion coefficients). In this exam-
ple, we test the three-dimensional reaction-diffusion problem with variable diffusion

coefficients

uy =0.5uy, — 0.58I0(2 + ) Ugy + 0.5uy,

1 1
+ 0.5Uyy — 3 COS YUy, + 5““ (3.2)

1
+ 0.5(1 4 cos )y, — 0.5(1 + cos x)u,, + 3(1 + cosz)u,, + f(x,y, z,u),

where (z,y,2) € Q ={0 <z < 27,0 <y < 27,0 < z < 27} with periodic boundary
conditions. The initial condition is u(z,y, z,0) = sin(z + y + z). The source term
flz,y,z,u) = (1.3+ % —0.5sin(x +y) + %(cesx — Cos y))u The exact solution of this
problem is

u(z,y, z,t) = e " sin(x +y + 2).

This problem was used in [53] for testing the AcIIF2 scheme. We compute the prob-
lem until the final time 7' = 1. The KrylovIIF2 scheme (2.16|) with the convection

term F, = 0, and the AclIIF2 scheme (2.41)), (2.51)), (2.52)) with the convection term

F, = 0 are tested. Two different ways to implement the AcIIF2 scheme, i.e., direct
computations of N2 x N? matrices’ exponentials and Krylov subspace approximations
of them, are performed. The numerical results are reported in Table [3.15] Table 3.16
and Table [3.17, We obtain the same conclusion as Example 3 and Example 4. All
of methods achieve similar numerical errors and the second order accuracy. Again,
the direct AcIIF2 scheme is computationally the most expensive one among three
approaches due to direct computations of quite a few N? x N? matrices’ exponen-
tials. Especially for this problem with variable diffusion coefficients, much more
N? x N? matrices’ exponentials need to be computed than that for constant diffu-
sion coefficient problems because such N? x N2 matrices A%, A% and A5 in (2.51)

and (2.52) are different at different spatial grid points. Since direct implementation
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of the AcIIF2 scheme computes and stores these N? x N? matrices’ exponentials
before the time evolution, much more computer memory is used to store matrices’
exponentials than that by the approach of Krylov subspace approximations, in which
multiplications of exponential matrices and vectors are performed in the time evo-
lution process and no matrix’s exponential is pre-stored. In fact, the computations
on the 80 x 80 x 80 mesh by the direct AcIIF2 scheme can not be performed due to
memory restrictions of our workstation. Table shows that a complete simulation
needs much more CPU times than that of the time evolution part. This verifies that
direct computations of these N? x N? matrices’ exponentials require a large amount
of CPU resources. Again, the computational efficiency can be improved dramatically
by using the Krylov approach to approximate multiplications of N2 x N? matri-
ces’ exponentials with vectors in the AcIIF2 scheme, as shown in Table [3.17, And
computations can be performed on much more refined meshes (Table since we
do not need to pre-store these N? x N? matrices’ exponentials. The most efficient
one is the computations by using the KrylovIIF2 scheme, as shown in Table In
terms of total numbers of multiplication and division operations at one time step, the
KrylovIIF2 scheme needs (M? +19M +T7)N3+ M N?+ M N + O(M?) operations, and
the AcIIF2 scheme needs 5N® + 6 N3 operations. N is the number of grid points in
each spatial direction, while the constant M is the dimension of the Krylov subspace
and M = 25 in this example. Hence the KrylovIIF2 scheme has linear computational

complexity as shown by the CPU time ratios in Table [3.15]
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TABLE 3.15

EXAMPLE 5. KRYLOVIIF2 SCHEME

N x N x N L> error  Order  CPU(s) R1  CPUl(s) R2 CPU2(s) R3

10 x 10 x 10 2.15 x 1071 0.17 0.17 0.03

20 x 20 x 20 5.29 x 1072 2.02 2.20 13.06 2.19 13.10 0.22 6.56

40 x 40 x 40 1.34 x 1072 1.99 35.05 15.94 35.00 15.98 1.75 7.89

80 x 80 x 80 3.34 x 1072 2.00 551.57 15.73 551.17 15.75 14.13 8.07
160 x 160 x 160 8.34 x 10~*  2.00 8,992.13 16.30 8,989,12 16.31 11599 8.21
320 x 320 x 320 2.09 x 107*  2.00 153,195.14 17.04 153,171.55 17.04 958.75  8.27
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EXAMPLE 5. DIRECT ACIIF2 SCHEME

TABLE 3.16

NxNxN  L*®error Order CPU(s) R1 CPUI1(s) R2  CPU2(s) R3
10 x 10 x 10 2.12 x 107! 13.79 6.77 0.02

20 x 20 x 20 5.19 x 1072 2.03 1,723.95  125.01 852.12 125.81 0.54 27.17
40 x 40 x 40 1.31 x 1072 1.99  328,908.44 190.79 145,345.87 170.57 20.18 37.45
80 x 80 x 80 - - - - - - - .




99

EXAMPLE 5. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

TABLE 3.17

APPROXIMATIONS

N xNxN L*>® error  Order  CPU(s) R1  CPUl(s) R2 CPU2(s) R3

10 x 10 x 10 2.12 x 1071 1.99 1.99 0.40

20 x 20 x 20 5.19 x 1072 2.03 14.87 7.45 14.86 7.45 1.49 3.73

40 x 40 x 40 1.31 x 1072 1.99 165.34 11.12 165.28 11.12 8.26 5.56

80 x 80 x 80  3.27 x 107*  2.00 2,299.09 1391 2,298.70 13.91 58.91 7.13
160 x 160 x 160 8.17 x 10~*  2.00  35,181.50 15.30 35,178.49 15.30  456.60  7.75
320 x 320 x 320 2.04 x 107* 2.00 577,577.49 16.42 577,553.96 16.42 3,775.65 8.27




3.1.3 A system with stiff reactions from mathematical biology

Example 6. We consider an example in mathematical modeling of the dorsal-ventral
patterning in Drosophila embryos, a regulatory system involving several zygotic genes
[40]. Among them, decapentaplegic (Dpp) promotes dorsal cell fates such as am-
nioserosa and inhibits development of the ventral central nervous system; and an-
other gene Sog promotes central nervous system development. In this system, Dpp is
produced only in the dorsal region while Sog is produced only in the ventral region.
For the wild-type, the Dpp activity has a sharp peak around the mid-line of the dorsal
with the presence of its “inhibitor” Sog. Intriguingly, mutation of Sog results in a loss
of ventral structure as expected, but, in addition, the amnioserosa is reduced as well.
It appears that the Dpp antagonist, Sog, is required for maximal Dpp signaling [2].
Motivated by experimental study on over-expression of the cell receptors along the
anterior-posterior axis of the embryo [40], a two-dimensional reaction diffusion model
was developed [29] to exam the Dpp activities outside the area of elevated receptors
in a Drosophila embryo. The model has stiff reaction terms due to largely different
biochemical reaction rates in the system [43]. Here we compare the computational
efficiency of compact ITF method and Krylov ITF method for solving this example.
Let [L],[S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp-Sog complex,
and Dpp-receptor complex, respectively. The dynamics of the Dpp-Sog system is

governed by the following reaction diffusion system [29]:

T = (Gt o)~ el (R9) ~ [LR) + s LR)
il ST+ oty + i) 5] + Vi,
DL = L) (R(2,0) — [LR]) ~ (hoy + by (LR

W — Do (T + T2 4 8] = Gy + g I25]

9[5] 0’[S] | 2*[S]
ot Ds ( Oz? 0y?

)—mmm+MMM+w@w (3.3)
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in the domain 0 < z < Xjax, 0 < ¥ < Yax, Where

;

Ry, r < Xp,
Ry, x> Xp.
p
UL, y < %Ymaxy
VL(X,)Y) = (3.5)

1
07 Y Z §Ymax~

0, ¥< Vi
Vs(X,Y) = (3.6)

Vs, Yy Z %Ymax-

\

The boundary conditions for [L], [LS], and [S] are no-flux at x = 0 and x = Xy,
and periodic at y = 0 and y = Yjax. R(z,y) is the concentration of the initially
available receptor in space; x = X}, is the boundary between the two regions with
different level of receptors; V. (x,y) and Vg(x, y) are the production rates for Dpp and
Sog, respectively; Dy, Dyg, Dg are diffusion coefficients; 7 is the cleavage rate for Sog,
and other coefficients are on, off and degradation rate constants for the corresponding
biochemical reactions. The initial concentrations of all morphogen molecules are
zeros. Both X,.« and Y., are taken to be 0.055cm, based on the embryo size of
Drosophila at its certain developmental stage [40]. We study the cell receptor over-
expression experiments in [40] by setting R, = 9uM in the region 0 < = < X, =
0.02cm, and Ry = 3uM in the rest part of the domain. The second order Krylov
IIF (Krylov IIF2) scheme and the second order compact IIF (cIIF2) scheme are
used to simulate the system. The numerical solutions for the concentrations of Dpp,
Dpp-receptor, Dpp-Sog and Sog are presented in Figure and Figure [3.2] Similar
results are obtained for these two methods. Simulations by both methods confirm
that the over-expression of receptor induces a local boost of Dppreceptor activities

near the boundary of two different concentration regions of receptors, similar to the
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experimental observations in [40]. However the computational efficiency of these two
methods are different. It takes 871.26 seconds CPU time for the cIIF2 scheme to
finish the simulation, while it costs 8152.50 seconds CPU time for the Krylov 11F2
scheme. Again, consistent observations with previous examples are obtained. For
this example which has diffusion terms without cross-derivatives, compact approach

is more efficient than the Krylov approach.

3.2 Convection-Diffusion problems

In this section, we test these schemes for dealing with high dimensional convection-

diffusion problems with WENO discretizations for convection terms.

Example 7 (A 4D convection-diffusion equation with anisotropic diffusion
and constant diffusion coefficients). We consider a four-dimensional convection-
diffusion equation with cross-derivative diffusion terms and constant diffusion coeffi-

cients

1 1
Ut + (Euz)m + (Euz)xz + (Eug)xs + (_u2>x4 =

(0.1tg 2y — 015U 2y + 0. 10Ugypy ) + (0.10Ugy 0y + 0.205, 5 + 0.2Upg 0, )+
(0. 1tg 0y + 0-20s, 0, + 0.20u4,0,) + (0.10Upyzy + 0.2Upyry + 0.2Ug 0, )+

(0.1tgpzy + 0.20ppz, + 0.204,0,) + (0.2, + 0.15Upyz, + 0.1Ug,0, ) + S(21, T2, T3, T4, ),
(3.7)

where (21,29, 23,24) € Q@ = {0 < 21 < 27,0 < 29 < 27,0 < 23 < 21,0 < x4 <
27} with periodic boundary condition. The initial condition is u(xy, z2, x5, x4,0) =

sin(zy + x2 + 3 + z4). The exact solution is

0.5

u(zy, o, w3, 74) = € " sin(xy + 19 + T3 + T4).
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Figure 3.1. Numerical solutions of Example 6 using the Krylov ITF2
scheme: concentrations of [L], [LR], [LS],[S] at T = 100 seconds for the
Dpp-Sog system when receptors are over-expressed.
At = hy = h, = 0.001375 in the simulation. Parameters are
Dy = Dyg = Dg = 85um?s—t; vy = InMs™; vg = 80nMs~!
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Figure 3.2. Numerical solutions of Example 6 using the cIIF2 scheme:
concentrations of [L], [LR], [LS],[S] at T'= 100 seconds for the Dpp-Sog
system when receptors are over-expressed. At = h, = h, = 0.001375 in the
simulation. Parameters are D; = Dyg = Dg = 85um?s~'; v, = InMs™1;
vg = 80nMs1; kyy = 0.4uM s kopp =4 x 107651 Kdeg = 5 X 1074571
on = 95uM s gorp =4 x 10707 e, = 0.54s7 Y 7 =1; Ry, = 9uM;
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The source term

S(z1,T9, 13,74, 1) = (4" cos(zy + x93 + 25 + 14) + 2)e " sin(zy + 29 + T3 + 24).

We compute the problem until the final time 7" = 1. The KrylovIIF2-WENO scheme

(2.16) and the AclIF2-WENO scheme (2.41)), (2.53]), (2.54) with Krylov subspace

approximations to matrix exponentials in and are used. Here time
step sizes are determined only by the convection (hyperbolic) part of the equation
with CFL number 0.1. Numerical results are reported in Table [3.18 and Table |3.19]
We can see that both schemes achieve the same numerical errors and second order
accuracy. However, the KrylovIIF2-WENO scheme is much more efficient than the

AclIIF2-WENO scheme with Krylov subspace approximations for this example.
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EXAMPLE 7. KRYLOVIIF2-WENO SCHEME

TABLE 3.18

NXxNxNxN  L*®error Order CPU(s) R1 CPUI1(s) R2 CPU2(s) R3
10 x 10 x 10 x 10 2.27 x 1072 6.55 6.52 0.65

20x 20 x 20 x 20 1.01 x 1072  1.18 242.15 36.97 241.64 37.08 10.51 16.13
40 x 40 x 40 x 40  3.30 x 1072 1.61 8,013.72  33.09 8,005.98 33.13 166.82  15.87
80 x 80 x 80 x 80 9.00 x 10~*  1.87  316,945.98 39.55 316,803.84 39.57 3,084.58 18.49




2

TABLE 3.19

EXAMPLE 7. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS
NxNxNxN  L*®error Order CPU(s) R1 CPUI1(s) R2  CPU2(s) R3
10 x 10 x 10 x 10 2.27 x 1072 110.57 110.54 11.07
20 x 20 x 20 x 20 1.01 x 1072 1.18 2,290.56 20.72 2,290.05 20.72 99.25 8.96
40 x 40 x 40 x 40 3.30 x 1072 1.61 60,778.28  26.53  60,770.28  26.54 1,269.46 12.79
80 x 80 x 80 x 80 9.00 x 1074  1.87 1,812,641.33 29.82 1812,266.39 29.82 17,984.97 14.17




Example 8 (A 3D convection-diffusion equation with anisotropic diffusion
and variable diffusion coefficients). We add convection terms to the example
5 and consider the following three-dimensional convection-diffusion equation with

cross-derivative diffusion terms and variable diffusion coeflicients

1 1 1
Ut + (§UQ)z + (§U2)y + (§u2)z =

1 1
0.5Uzy — 0.58I0(T + Y) sy + 0.5uyy + 05Uz, — 3 cos(Y) Uy + S (3.8)

1
+ 0.5(1 4 cos x)uy, — 0.5(1 + cos x)u,, + §(1 +cosx)u., + S(x,y, 2, 1),

where (z,y,2) € Q ={0 <z < 27,0 <y < 27,0 < z < 27} with periodic boundary
conditions. The initial condition is u(z,y, z,0) = sin(z + y + z). The exact solution
of this equation is

u(z,y,2,t) = e " sin(z +y + 2).

And the source term S(x,y, z,t) is

29 1
S(x,y,z,t) = <3e’0'2t cos(m%—y—l—z)—i-%—O.S sin(:v+y)—|—§(cos(x)—cos(y))) e "2 sin(a+y+-2).

We compute the problem until the final time 7" = 1. The KrylovIIF2-WENO scheme

(2.16]), and the AcIIF2-WENO scheme (2.41)), (2.51)), (2.52) with Krylov subspace

approximations to matrix exponentials in (2.51)) and ([2.52)) are tested. Time step sizes

are determined only by the convection (hyperbolic) part of the equation with CFL
number 0.1. Numerical results are reported in Table [3.20] and Table [3.21] The same
observations as the last example are obtained. Both schemes achieve almost the same
numerical errors and second order accuracy. The KrylovIIF2-WENO scheme is much
more efficient than the AcIIF2-WENO scheme with Krylov subspace approximations
for this convection-diffusion example with anisotropic diffusion and variable diffusion

coeflicients.
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TABLE 3.20

EXAMPLE 8. KRYLOVIIF2-WENO SCHEME

N x N xN L> error  Order CPU(s) Rl CPUl(s) R2 CPU2(s) R3

10 x 10 x 10 1.37 x 1071 1.22 1.22 0.09

20 x 20 x 20 2.99 x 1072 2.19 21.24 17.35 21.21 17.37 0.76 8.11

40 x 40 x 40 5.28 x 1073 2.50 393.16 1851 39295  18.52 6.89 9.10

80 x 80 x 80 1.09 x 1073 2.28  8,463.98 21.53 8,462.12 21.53 61.55 8.93
160 x 160 x 160 2.62 x 10™*  2.05 95,558.44 11.29 9554598 11.29 413.83 6.72




L.

TABLE 3.21

EXAMPLE 8. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N x N xN L™ error

Order  CPU(s) R1  CPUI(s) R2 CPU2(s) R3

10x10x10  1.37 x 107"
20 x 20 x 20 2.99 x 1072
40 x 40 x 40 5.28 x 1077
80 x 80 x 80  1.09 x 1073
160 x 160 x 160 2.61 x 10~

10.05 10.05 0.78
2.19 81.47 8.10 81.44 8.10 291 3.73
2.50 936.26 11.49 936.05 11.49 16.43 5.64
228 11,024.66 11.78 11,022.74 11.78  91.27 5.56
2.06 215,299.80 19.53 215,287.37 19.53  936.02  10.26




Example 9 (A convection-dominated problem). In this example, we test
the performance of the schemes for convection-dominated case. Consider the two-

dimensional nonlinear viscous Burgers’ equation

u? u?

u(z,y,0) = 0.3 + 0.7sin(g(x +)),

with periodic boundary condition. Since the viscous coefficient is much smaller than
the convection coefficient, a sharp gradient (the shock wave) is developed along with
the time evolution. The Krylov IIF2-WENO scheme and the cIIF2-WENO scheme
are used to solve the PDE to 7' = 5/m2. The numerical results are reported in Figure
3.3l We can observe that the WENO scheme plays an important role here to obtain
a sharp, non-oscillatory shock transition region. The time step size is only restricted
by the hyperbolic part of the PDE with CFL number 0.5. We compare the CPU
times of the Krylov ITF2-WENO scheme and the cIIF2-WENO scheme on different
meshes. The results are reported in Table[3.22] Consistent observations with previous
examples are obtained. For this example which has diffusion terms without cross-
derivatives, compact approach is more efficient than the Krylov approach, except the

case with a very refined mesh.
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KrylovlIF2, d=0.01 cllF2, d=0.01

Figure 3.3. Numerical solutions of nonlinear viscous Burgers’ equation on a
80 x 80 mesh by the Krylov IITF2-WENO scheme and the cIIF2-WENO
scheme. Time T = 5/7%. Left picture: result of Krylov IIF2-WENO); right
picture: result of cIIF2-WENO.



TABLE 3.22

CPU TIME COMPARISONS FOR SOLVING THE NONLINEAR
VISCOUS BURGERS’ EQUATION

N x N KrylovIIF2 CPU(s) cIIF2 CPU(s)

40 x 40 0.52 0.10
80 x 80 5.83 1.20
160 x 160 29.81 15.15
320 x 320 378.36 290.28
640 x 640 3,067.96 4,344.81

Example 10 (Fokker-Planck equations). The Fokker-Planck equation (FPE) [44]
describes in a statistical sense how a collection of initial data evolves in time, e.g.,
in describing Brownian motion. It is a /N-dimensional convection-diffusion equation
and has been applied in computing statistical properties in many systems. In [53],
AclIIF schemes with second order central difference spatial discretizations for the
diffusion terms were applied in solving FPEs which describe the time evolution of the

probability density function of stochastic systems [44]. The general form of FPEs is

N

8p(a Z {an (qr z,t) — %an%ﬂz’ﬂ)} , (3.10)

7=1

where p(x, t) is the probability density of the system at the state @ = (x1, zo,...,2N)
and time ¢. In the context of bio-chemical reactions, R denotes the total number of
chemical reactions in the system, N the total number of species involving in the

reaction, and z; denotes the copy number of i-th reactant. n,; is the change of
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x; when the r-th reaction occurs once. g,.(x,t) is defined by ¢,(x,t) = w,(x)p(x, 1),
where w,(z, t) is the reaction propensity function for r-th reaction at state  and time
t. In this section, we study computational efficiency of Krylov IITF-WENO scheme
and AclIF-WENO scheme for solving high dimensional FPE. Since IIF schemes in
this dissertation are multistep methods, numerical values at the first time step are
needed to start computations for solving convection-diffusion equations. We use a
third order Runge-Kutta scheme for the first step time evolution. Then the second

order Krylov ITF scheme and AclIF scheme are used to continue the time evolution.

(1) A three dimensional Fokker-Planck equation.

We first compare the computational efficiency of the KrylovIIF2-WENO scheme

(2.16]) and the AcIIF2-WENO scheme (12.41)), (2.51)), (2.52)) with Krylov subspace ap-

proximations for a three dimensional Fokker-Planck equation [48] which involves two
metabolites A and B and one enzyme F 4. The reactions are described as following

(here () means that there is no reactant or product in the reaction):

kalEAl

pEYT A gt B,

A+ g

A%y gy, o
kp,

0 @ Ea, Ea ‘@Q 0.

In this system, the total number of reactions R is 7, and the total number of
chemical species N is 3. The vectors n, = (n,1,n,2,n,:3) are n; = (1,0,0), ny =
(0,1,0), ng = (—1,-1,0), ngy = (—1,0,0), nsg = (0,—1,0), ng = (0,0,1), ny =

(0,0, —1). We denote the system state by @ = (z1, z2, x3) which is ([4], [B], [Ea])
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in this case. Then the propensity functions w,(x) are

_ kars 2 k
wy = , W2 = KB, W3= RT1T2,
1 K
/K . (3.12)
Wy = YT, Ws uxa, Weg 1+ xl/KRJ wr nrs,

where ky = 0.357 %, kg = 2571, K; = 30, k = 0.001s7 !, u = 0.004s7!, Kr = 30 and

kg, = 1s7! [48]. Then the FPE can be written as
Op(x,t
pgt ) Ly Lot Lyt Lot Lo + Lo+ L), (3.13)

where L, represents the operator for the r-th reaction. Specifically,

_ Oq(=,t) 19°qi(z, 1)

o Oy 2 0x%
() 10
2T Oy 2 0x3
ogs(x,t)  Ogz(xz,t) 1 ,%qs(x,t)  Pgs(x,t Pqs(x,t
Ls=- 8(x1 - (9(x2 )_5( agﬁ Ly 8:152? T axl(ax2)>’
Oqu(z,t)  10%q(x,t
e L 8;% ) (3.14)
I Ogs(x,t)  10Pgs(=, 1)
°T 14 2 0x3
I Ogs(x,t)  10gs(x, 1)
7 Oy 2 0x%
Ig7(x,t)  10%g:(x, 1)
Ly=-— -

O3 2 0x3

The computational domain is Q = [0,100] x [0, 100] x [0,45], which covers nearly
all the possible states of the chemical reactions, since the probability of [A] > 100,
[B] > 100, and [E4] > 45 is sufficiently small. The initial condition in our simulation
is a Gaussian distribution centered at point (30, 40,20) with standard deviation /30.
Zero Dirichlet boundary conditions are used.

For spatial discretizations, we use the third order WENO scheme for the convec-
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tion terms and the second order central difference scheme for the diffusion terms.
And we compare the second order Krylov IIF scheme and the second order AcIIF
scheme with Krylov subspace approximations. For simulation results shown in the
figures here, the time step size At is 0.017 (corresponding to the CFL number 0.4 for
the convection part) and the numbers of spatial grid points are N4 = 120, N = 120,
Ng, = 60. In Table , we list the errors and accuracy orders for both schemes,
and the same numerical errors and second order accuracy are obtained. Since there
is no explicit form for the exact solution in this example, we focus on testing the
schemes’ temporal accuracy. So the spatial resolution is fixed to be 120 x 120 x 60,
and numerical errors for a time step size /At are obtained by calculating the difference
of numerical values for At and At/2. We compare the computational efficiency of
these two schemes and list CPU times of using them to solve the problem until the
final time T' = 10 with At = 0.017, in Table The CPU times in Table show
that the KrylovIIF2-WENO scheme is more efficient than the AcITF2-WENO scheme
with Krylov subspace approximations, for this example. In Figures [3.4] [3.5] and [3.6]
we show contour plots of numerical solutions by the KrylovIIF2-WENO scheme on
two dimensional domain of molecular species A and B, with different values of the
third dimension F 4. Contour plots of numerical solutions by the AcIIF2-WENO
scheme with Krylov subspace approximations are presented in Figures [3.7 [3.8 and

3.9) We see that both methods generate similar numerical solutions.
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TABLE 3.23

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE
KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV
SUBSPACE APPROXIMATIONS FOR THE 3D FOKKER-PLANCK

EQUATION

KrylovIIF2-WENO

time step size L*>error  Order
At 1.56 x 1078

At/2 3.90 x 1072 2.00

At/4 1.00 x 1072 1.96

AcllIF2-WENO with Krylov subspace approx.

time step L*>error Order
At 1.56 x 107®

At/2 3.90 x 107 2.00

At/4 1.00 x 1072 1.96
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TABLE 3.24

CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME
WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 3D
FOKKER-PLANCK EQUATION

CPU CpPU1  CPU2

KrylovITF2-WENO 44,568.7  44,562.3  75.24
AcITF2-WENO with Krylov 183,126.0 183,120.0 309.38

(2) A four dimensional Fokker-Planck equation.

We further test the methods for a higher dimensional problem, i.e., a four dimen-
sional FPE which involves two metabolites A and B and two enzymes E, and Ep.
The reactions are described as following (here () means that there is no reactant or

product in the reaction):

kAlE 4] kplER]
LT A g LY B
A+ By
A A 0, B M5 0, (3.15)
kEA 5
0 g, gy
kEB .
p "SR g, gyl

In this system, the total number of reactions R is 9, and the total number of
chemical species N is 4. The vectors n, = (n,1, ny2,ny3,n.4) are ny = (1,0,0,0),
na = (0,1,0,0), ng = (—1,-1,0,0), ng = (—1,0,0,0), ns = (0,—-1,0,0), ng =
(0,0,1,0), ny = (0,0,—1,0), ng = (0,0,0,1), ng = (0,0,0,—1). We denote the
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Figure 3.4. Distribution of A and B with F4 = 12.75,21.75,30.75, 39.75.
Numerical solutions of using the KrylovIIF2-WENO scheme. Final
time T = 10. At = 0.017. The numbers of spatial grid points are
N4 =120, Ng =120, Ng, = 60.
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Figure 3.5. Distribution of A and B with E, = 12.75,21.75, 30.75, 39.75.

Numerical solutions of (4.5)) using the KrylovIIF2-WENO scheme. Final
time T = 50. At = 0.017. The numbers of spatial grid points are
N4 =120, Np =120, Ng, = 60.
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Figure 3.6. Distribution of A and B with different F4 values, at time
T = 0,20, 35,50. Numerical solutions of using the KrylovIIF2-WENO
scheme. At = 0.017. The numbers of spatial grid points are N, = 120,
NB - 120, NEA = 60
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Figure 3.7. Distribution of A and B with E, = 12.75,21.75, 30.75, 39.75.
Numerical solutions of using the AclIF2-WENO scheme with Krylov
subspace approximations. Final time 7" = 10. At = 0.017. The numbers of

spatial grid points are Ny = 120, Np = 120, Ng, = 60.
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Figure 3.8. Distribution of A and B with F, = 12.75,21.75,30.75, 39.75.
Numerical solutions of using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T'= 50. At = 0.017. The numbers of

spatial grid points are Ny = 120, Np = 120, Ng, = 60.
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Figure 3.9. Distribution of A and B with different F4 values, at time
T = 0,20, 35,50. Numerical solutions of using the AcIIF2-WENO
scheme with Krylov subspace approximations. At = 0.017. The numbers of
spatial grid points are Ny = 120, Np = 120, Ng, = 60.
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system state @ by @ = (x1, X, 23, x4) which is ([4], [B], [E4], [Ep]) in this case. Then

the propensity functions w,(x) are

_ kaws _ kpxy
142 /Kf w2 = 14+ 29/K;’
_ ke, _ kg
1+ 2 /Kg' = A, w8_1+x2/KR’

w1 w3 = kx1T2, W4 = T,
(3.16)

Ws = U2, We Wy = [Ty,

where ky = 0.357%, kg = 0.3s7!, K; = 60, k = 0.001s7%, u = 0.002s7 !, K = 30,
kg, =0.02s7" and kg, = 0.02s7'[48]. Then the FPE can be written as

op(x,t)

o = (it Lot Lyt Lat Lo+ Lo+ L+ Ls + Lo),  (3.17)

where L, represents the operator for the r-th reaction. Specifically,

_ dq1(z,t) B 182q1(m,t)

o 0ry 2 Ox?
Oga(x,t)  102qa(,t)
Ly, = -5 5
0o 2 Oxs
ogs(x,t)  Ogz(z,t)  1,Pq(x,t) Pz, t g3z, t
Ly =~ 3(1‘1 - a(@ )_§< 8;% E 05522 E 8x1(8x2))’
L= Oqu(x,t)  10Pqu(=, 1)
T 014 2 0z
Ogs(x,t)  10%gs(x,t
L=l 2 855% ) (3.18)
I Ogs(x,t)  10%gs(x, 1)
7 Duy 2 0xF
I Ogr(=,t) 182q7(w,t)
T x3 2 0x3
I Ogs(x,t)  10°gs(x, 1)
*T 0 Ouy 2 0x%
dgo(x,t)  10%qe(x,1)
Lo=— -

0xy 2 02

The computational domain is © = [0,80] x [0,80] x [0,30] x [0,30]. The initial
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condition in our simulation is a Gaussian distribution centered at point (30, 40, 15, 12)
with standard deviation v/40. Zero Dirichlet boundary conditions are used.

Same as that for the three dimensional problem, for spatial discretizations we use
the third order WENO scheme for the convection terms and the second order central
difference scheme for the diffusion terms. We compare the computational efficiency of
the second order Krylov IIF scheme and the second order AclIIF scheme ,
— with Krylov subspace approximations. For simulation results shown in
the figures here, the time step size At is 0.1 (corresponding to the CFL number 0.6 for
the convection part) and the numbers of spatial grid points are Ny = 40, N = 40,
Ng, =20, Ng, = 20. In Table [3.25 we list the errors and accuracy orders for both
schemes, and the same numerical errors and second order accuracy are obtained. We
compare the computational efficiency of these two schemes and list CPU times of
using them to solve the problem until the final time T" = 10 with At = 0.1, in Table
We obtain the same conclusion as that for the three dimensional problem. The
CPU times in Table [3.26| show that the KrylovIIF2-WENO scheme is more efficient
than the AclTF2-WENO scheme with Krylov subspace approximations, for this four
dimensional example. In Figures [3.10] and [3.12] we show contour plots of
numerical solutions by the KrylovIIF2-WENO scheme on two dimensional domain of
molecular species A and B, with different values of the third and the fourth dimension
E 4 and Eg. Contour plots of numerical solutions by the AcITF2-WENO scheme with

Krylov subspace approximations are presented in Figures [3.13] [3.14] and [3.15, We

see that both methods generate similar numerical solutions.
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TABLE 3.25

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE
KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV
SUBSPACE APPROXIMATIONS FOR THE 4D FOKKER-PLANCK

EQUATION (3.17)

KrylovIIF2-WENO

time step size L error  Order
At 1.03 x 1078
At/2 258 x 107 2.00
At/4 6.47 x 10719 2.00

AclTF2-WENO with Krylov subspace approx.

time step L error Order
At 1.03 x 107®
At/2 258 x 107 2.00
Nt /4 6.47 x 1071 2.00
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TABLE 3.26

CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME
WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 4D
FOKKER-PLANCK EQUATION (3.17)

CPU CPU1 CPU2

KrylovIIF2-WENO 3831.98 3826.48 38.09
AclTF2-WENO with Krylov 93320.7 93315.6 924.16
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Figure 3.10. Distribution of A and B with E4 = 4.5,12,19.5,27 and
Ep = 15. Numerical solutions of (3.17)) using the KrylovIIF2-WENO

scheme. Final time T'= 10. At = 0.1. The numbers of spatial grid points
are NA = 40, NB = 40, NEA = 20, NEB = 20.
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Figure 3.11. Distribution of A and B with E4 = 4.5,12,19.5,27 and
Ep = 15. Numerical solutions of using the KrylovIIF2-WENO
scheme. Final time T'= 50. At = 0.1. The numbers of spatial grid points
are NA = 40, NB = 40, NEA = 20, NEB = 20.
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Figure 3.12. Distribution of A and B with £, = 15 and Eg = 15, at time
T = 0,10, 30,50. Numerical solutions of using the
KrylovIIF2-WENO scheme. At = 0.1. The numbers of spatial grid points
are Ny =40, Ng =40, Ng, = 20, Ng, = 20.
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Figure 3.13. Distribution of A and B with E4 = 4.5,12,19.5,27 and
Ep = 15. Numerical solutions of using the AcIIF2-WENO scheme
with Krylov subspace approximations. Final time T'= 10. At = 0.1. The

numbers of spatial grid points are Ny = 40, Np = 40, N, = 20, Ng, = 20.
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Figure 3.14. Distribution of A and B with E4 = 4.5,12,19.5,27 and
Ep = 15. Numerical solutions of using the AcITF2-WENO scheme
with Krylov subspace approximations. Final time T = 50. At = 0.1. The

numbers of spatial grid points are Ny = 40, Np = 40, N, = 20, Ng, = 20.
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Figure 3.15. Distribution of A and B with £4 = 15 and Eg = 15, at time

T =0,10,30,50. Numerical solutions of using the AclIF2-WENO

scheme with Krylov subspace approximations. At = 0.1. The numbers of
spatial grid points are Ny = 40, Ng = 40, Ng, = 20, Ng, = 20.
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CHAPTER 4

NUMERICAL EXAMPLES FOR KRYLOV INTEGRATION METHODS ON
SPARSE GRIDS

In this section, we use various numerical examples to show the computational
efficiency of Krylov IIF schemes with sparse-grid combination technique on sparse
grids, by comparing to the same schemes on regular grids. Examples include reaction-
diffusion equations without convection, and convection-diffusion problems. Equations
with different types of diffusions are tested, namely, equations with constant diffusion
coefficients, with variable diffusion coefficients, and with / without cross derivatives.
We test examples with an exact solution and a three dimensional Fokker-Planck
equation which has broad applications. For each example, we compute numerical
accuracy errors and convergence orders of the schemes, and record CPU times. We
also list the ratios of corresponding CPU times on an N, x N, mesh to that on a
% X % mesh, to study the computational complexity of the schemes on sparse grids
and on regular single grids. Here in the data Tables and texts of this section, N;, x N},
(or a coarser one % X % in the text description) denotes the most refined mesh in
sparse grids or a regular mesh in single grid computations. Since Krylov IIF schemes
remove time step size constraint of stiff diffusion and reaction terms, the time step
sizes can be taken as that for a pure hyperbolic problem, i.e., proportional to the
spatial grid sizes. For computations on sparse grids, PDEs are evolved on different
semi-coarsened sparse grids. How to choose time step sizes for each individual time
evolution is an interesting question. Via numerical experiments, we found that for

the example 1, which is a relatively simple constant diffusion problem without cross
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derivatives and convection terms, if the grids are uniform, the time step sizes are
taken to be proportional to the minimum spatial grid size of each spatial direction
on each individual semi-coarsened sparse grid Q2 ie. At = ¢ x min(hy,, h,). c is
a constant. Hence time step sizes may take different values for solving the PDE on
different semi-coarsened sparse grid, although each individual time evolution reaches
the same final time. The resulting numerical accuracy orders keep the desired values.
However for more complicated problems such as Example 2, Example 3, Example 4
and Example 5, time step sizes on all semi-coarsened sparse grids need to take the
same value. It is determined by the spatial grid size h of the most refined grid QNe-Ne |
namely, it is proportional to h with At = ¢ x h. Numerical experiments show that
the desired numerical accuracy orders are reached with time step sizes taken this way.
Hence for a general problem, the numerical experiments in this dissertation suggest
that time step sizes on all semi-coarsened sparse grids should be determined by the
spatial grid size h of the most refined grid QVz-Vr All of the numerical simulations

in this chapter are performed on a 2.3 GHz, 16GB RAM Linux workstation.

4.1 TIsotropic diffusion problems

Example 1 (Isotropic diffusion problems). We consider a reaction-diffusion

problem with isotropic diffusion

ou
=02V - du.
5 0.2V - (Vu) 4+ 0.1u

First we test the two dimensional case defined on the domain Q = {0 < z < 27,0 <

y < 27}, subject to periodic boundary conditions, i.e.,

w(0,y,t) =u(2m,y,t); u(x,0,t) =u(zx,2m,t).
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The initial condition is u(z, y,0) = cos(z)+sin(y). The exact solution of the problem
is u(x,y,t) = e %(cos(x) + sin(y)). We compute the problem till final time 7' = 1
by the second order Krylov ITF scheme (KrylovIIF2) on both single grids and
sparse grids, and compare their computational efficiency. We present the L* errors,
L? errors, the corresponding numerical accuracy orders, and CPU times on succes-
sively refined meshes to show the efficiency of computations on sparse grids. There
are two different ways to refine meshes for computations on sparse grids. One way is
to refine the root grid Q%°, and keep the number of semi-coarsened sparse-grid levels
(total Nz + 1 levels) unchanged. For example, sparse-grid with a 10 x 10 root grid
and Ny = 3 has the finest mesh 80 x 80. If the root grid is refined once to be 20 x 20,
with N; = 3 unchanged we can obtain the finest mesh 160 x 160. The other way is
to increase the number of levels (refine level), and keep the root grid Q%° unchanged.
For example, if we increase N = 3 to N, = 4 with a 10 x 10 root grid, the finest
mesh which is 80 x 80 for the Ny, = 3 case is refined to be 160 x 160 for the Ny, =4
case. The numerical errors, accuracy orders, and CPU times are listed in Table for
computations by the KrylovIIF2 scheme on single-grid and sparse-grid. The compu-
tations on single-grid, and sparse grids with two different mesh refinement methods
achieve the similar numerical errors and the second order accuracy. However, compu-
tations on sparse-grid are much more efficient than those on single-grid. Comparing
the CPU times in Table 4.1, we can see that for computations on sparse grids with
the first mesh refinement method (i.e., refine root grids), more than 50% computa-
tion time can be saved, especially on more refined meshes. Moreover, the CPU time
savings are even more significant for computations on sparse grids with the second
mesh refinement method (i.e., refine level). As that shown in Table [£.1, 92% CPU
time can be saved for the computation on a 640 x 640 mesh. We also list the ratios
of corresponding CPU times on an N, x N, mesh to that on a % X %, to study the

computational complexity of the methods. For this two dimensional time dependent
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parabolic problem, we achieve large time step size computation At = O(h) by using
the Krylov ITF method. A linear computational complexity method should have the
CPU time ratio be 8 for a complete time evolution. The CPU time ratios shown in
Table for computations on single-grid verify its linear computational complexity.
For computations on sparse grids, the CPU time ratio is around 8 for the refining
root grid case, and around 4 for the refining level case. Hence the computational
complexity on sparse-grid is also linear for the first mesh refinement method, and
much better than linear for the second mesh refinement method.

We perform the same test for the third order scheme. The third order Krylov
ITF scheme (KrylovIIF3) on single-grid and the same scheme with sparse-grid
combination technique are used to compute this two-dimensional problem till final
time T'= 1. Again we use two different ways to refine meshes on sparse grids. The
numerical results are reported in Table [4.2] Comparable numerical errors and fourth
order accuracy order are obtained for all three different approaches. The fourth order
accuracy order here is due to the fourth order central difference scheme to discretize
the diffusion terms. It is obvious here that the spatial errors dominate and are larger
than the temporal errors. Again, computations on sparse-grid are more efficient than
those on single-grid as that shown in Table 4.2} Especially for the the second mesh
refinement method (i.e., refine level), 82% CPU time can be saved for the computation
on a 640 x 640 mesh. In terms of computational complexity, the KrylovIIF3 scheme
shows a linear computational complexity on single-grid as that for the second order
scheme. The computational complexity of the KrylovIIF3 scheme on sparse-grid is
also linear for the first mesh refinement method, and much better than linear for the
second mesh refinement method.

Then we test the three dimensional case defined on the domain Q = {0 <
r <m0 <y <m0 <z < 7}, subject to no-flux boundary conditions. The

initial condition is u(x,y,z,0) = cos(z) + cos(y) + cos(z). The exact solution is
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u(x,y, z,t) = e "(cos(x) + cos(y) + cos(z)). We compute the problem till final time
T = 1. The numerical errors, accuracy orders, CPU times for a complete simulation
and the ratios of CPU times on an N; x N;, mesh to that on a % X % mesh are
listed in Table for the KrylovIIF2 scheme on single-grid and on sparse-grid with
two different mesh refinement approaches. The computation on the 640 x 640 x 640
single-grid can not be performed due to the computer memory restriction. Computer
memory is saved significantly by using sparse-grid and computations can be success-
fully done for the 640 x 640 x 640 mesh case. We observe that all computations give
comparable numerical errors and the second order accuracy. For a three dimensional
time dependent problem with At = h/3, a linear computational complexity method
should have the CPU time ratio be 16. For single-grid computation, the KrylovIIF2
scheme’s CPU time ratios shown in Table [4.3] verify its linear computational com-
plexity. We also observe that the KrylovIIF2 scheme on sparse-grid with the first
mesh refinement method ( refining root grid) has CPU time ratio be around 16, so it
also has linear computational complexity. And computations on sparse-grid with the
second mesh refinement method (i.e., refining level) has CPU time ratio be around 5
as that shown in Table [£.3] hence its computational complexity is much better than
linear. In terms of computational efficiency, the savings of CPU times and improve-
ment of the efficiency for solving this three dimensional problem on sparse-grid are
more significant than that for two dimensional problems, as that shown in Table 4.3|
For example, we compare the CPU times for computations on a 320 x 320 x 320 mesh.
With the number of cells in each spatial direction of a root grid N, = 40 and the
finest level N, = 3, the CPU time for the computation on sparse-grid (25, 244.30 sec-
onds) is about 1/10 of that on a single-grid (225, 543.28 seconds). And with a coarser
root grid N, = 10 and the finest level N;, = 5, the CPU time for the computation
on sparse-grid (2321.95 seconds) is about 1/100 of that on a single-grid (225, 543.28

seconds), so 99% CPU time is saved. Since higher dimensional problems generally
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demand much more computational time than low dimensional ones, the efficiency
achieved here verifies advantages of Krylov IIF schemes designed on sparse-grid for
solving higher dimensional problems.

We use the KrylovIIF2 scheme here as an example to further analyze the com-
putational complexity on singe-grid and sparse-grid. We estimate the number of
multiplication and division operations in one time step for computations on single-
grid and sparse-grid for the 2D case. The number of operations is (M? + 14M +
9)[(1+1.5NL)2Ve N2 + (6 - 2M2 — 4) N, + 2Ny, + 1] for the computation on sparse-grid
with an N, x N, root grid and Ny, fine levels. For the computation on an N, x N}
single-grid, the number of operations is (M? + 14M + 9)N?. M is the dimension of
Krylov subspace, and M = 25 here. In Table [£.4] we list the number of operations
for these grids used in this example. It shows that computations on sparse-grid need
fewer operations than that on single-grid, especially the savings of operations are very
significant for computations on sparse-grid with the second mesh refinement method
(i.e., refining level).

It is interesting to compare the computational efficiency of Krylov ITF method
on singe-grid and sparse-grid studied in this dissertation with a fully implicit scheme
with an advanced linear system solver such as a multigrid method. As an example,
we apply the Crank-Nicolson scheme [10] in discretizing the 2D case here. A multi-
grid solver (the Two-Grid correction scheme) [5] is implemented to solve the linear
system at every time step. We take the number of relaxation times to be 3 in the
Two-Grid correction scheme [5]. The results including numerical errors, accuracy or-
ders and CPU times are reported in Table [4.5] The Crank-Nicolson scheme with the
Two-Grid correction multigrid solver for solving this problem has similar numerical
errors and the second order accuracy order as the KrylovIIF2 scheme on singe-grid
and sparse-grid (Table . In terms of computational efficiency, the Crank-Nicolson

scheme with the Two-Grid correction multigrid solver is more efficient on relatively
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coarse mesh (e.g. the 80 x 80 mesh) than the KrylovIIF2 scheme. However, on more
refined meshes the KrylovIIF2 scheme is more efficient. Especially, the improvement
of efficiency is very obvious for computations on sparse-grid. More systematic com-
parisons of Krylov IIF schemes and fully implicit schemes with efficient multigrid

solvers will be carried out in our future research.

Remark. The numerical methods with sparse grid combination technique are pre-
sented using uniform rectangular meshes in this dissertation. The approach can be
straightforwardly implemented on non-uniform rectangular meshes. Here we test the
KrylovIIF2 scheme with sparse grid combination technique on non-uniform rectan-
gular meshes by applying it in solving the 2D case of this example. The non-uniform
meshes are obtained by randomly perturbing x-coordinates and y-coordinates of a
uniform mesh in the range of (—0.3h, 0.3h). We use five points in one spatial direction
to approximate the diffusion terms on non-uniform meshes. Hence the approxima-
tions to the diffusion terms are on a centered stencil and the accuracy order for the
diffusion terms is 3. The numerical errors, accuracy orders, and CPU times are listed
in Table for computations by the KrylovIIF2 scheme on single-grid and sparse-
grid. We draw consistent conclusion with computations on uniform meshes. Namely,
the computations on single-grid, and sparse grids with two different mesh refinement
methods achieve the similar numerical errors, while computations on sparse-grid are

much more efficient than those on single-grid.
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TABLE 4.1

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

N, x N, L®error  Order  L?error  Order CPU(s) Ratio
80 x 80  1.86 x 10~* 8.74 x 107 3.56
160 x 160 4.66 x 107>  2.00 2.25x107° 1.96 27.34 7.68
320 x 320 1.16 x 1075 2.00 5.71 x107% 1.98 219.15 8.02
640 x 640 2.91 x 107 2.00 1.44x10% 1.99 1,828.21 8.34
Sparse-grid, refine root grids
N, N N,xN, L®error Order L?eror Order CPU(s) Ratio
10 3 80x8) 1.83x107* 9.15 x 1077 2.50
200 3 160 x 160 4.57x107° 2.00 229 x107° 2.00 14.74 5.91
40 3 320x320 1.14x107° 200 5.71x107% 2.00 104.47 7.09
80 3 640 x640 2.86x 1075 2.00 1.43x107% 200 817.09 7.82
Sparse-grid, refine level
N, N;p N, x N, L error  Order  L? error  Order CPU(s) Ratio
10 3 80x80 1.83x107* 9.15 x 107 2.50
10 4 160x160 4.57x107° 2.00 2.29x107° 2.00 9.33 3.74
10 5 320x320 1.08x107° 209 5.38x107% 2.09 36.03 3.86
10 6 640x640 2.68x10°% 200 1.34x10°¢ 2.00 142.53 3.96
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EXAMPLE 1, 2D CASE, KRYLOVIIF3 SCHEME, COMPARISON OF

TABLE 4.2

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Ny, x Np, L* error  Order L? error  Order CPU(s) Ratio
80 x 80 8.82x 1077 4.41 x 1077 7.45
160 x 160 5.63 x 107®  4.00 2.82x107%  3.97 62.08 8.33
320 x 320 3.56 x 107 4.00 1.78 x 107°  3.98  504.81  8.13
640 x 640 2.33x 10710 394 1.17x 10710 393 374359 7.42
Sparse-grid, refine root grids
N, N; N, x N, L> error  Order L? error Order CPU(s) Ratio
10 3 80 x 80  8.82x 1077 4.41 x 1077 7.85
20 3 160 x 160 5.63x107% 397 282x107® 397 48.09 6.13
40 3 320%x320 356x 1072 398 1.78x107° 398  356.76  7.42
80 3 640x640 2.26x 10710 398 1.13x 107 398 285046 7.99
Sparse-grid, refine level
N, Np Npx Ny L*> error  Order L? error Order CPU(s) Ratio
10 3 80 x 80 882x 1077 4.41 x 1077 7.85
10 4 160x160 563x107® 397 282x10"% 3.97 34.26 4.36
10 5 320x320 356x 1077 398 1.78x107% 3.98  152.83  4.46
10 6 640x640 2.26x 1071 398 1.13x 1071 3.98 688.69  4.51
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TABLE 4.3

EXAMPLE 1, 3D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

N, x Nj, x Ny, L>® error  Order  L?error Order CPU(s) Ratio
80 x 80 x 80 5.50 x 107° 2.43 x 107° 850.24
160 x 160 x 160 1.53 x 10™° 1.85 6.58 x 1075 1.88 13,637.13 16.04
320 x 320 x 320 4.06 x 107¢ 191 1.71 x 1076 1.94 22554328 16.54
Sparse-grid, refine root grids
N, N; Np,x Ny x N, L> error  Order  L? error  Order CPU(s) Ratio
10 3 80 x 80 x 80 5.40 x 107° 2.39 x 107° 89.35
20 3 160 x 160 x 160 1.50 x 10™® 1.85 6.49x 107 1.88 1,494.67  16.73
40 3 320x320%x320 3.99x10% 191 1.69x10% 1.94 25,244.30  16.89
80 3 640 x640 x 640 1.03 x107% 1.95 4.30x 1077 1.97 422,502.00 16.74

Sparse-grid, refine level
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TABLE 4.3

Continued

N, N;p Np,x N, x N, L> error  Order  L? error  Order CPU(s) Ratio
10 3 80 x 80 x 80 5.40 x 107° 2.39 x 107° 89.35

10 4 160x160x 160 1.54x107° 181 6.68x 1076 1.84 453.00 5.07
10 5 320x320x320 4.21x107% 187 1.78x107% 1.91 2,321.95 5.13
10 6 640 x 640 x 640 1.09x 107¢ 195 453 x1077 197 12,730.90 5.48




TABLE 4.4

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF
THE NUMBER OF MULTIPLICATION AND DIVISION OPERATIONS
IN ONE TIME STEP.

Ny x Ny single-grid  sparse-grid(refine root grid) sparse-grid(refine level)

80 x 80 6,297,600 4,769,448 4,769,448
160 x 160 25,190,400 18,191,208 11,934,936
320 x 320 100,761,600 71,012,328 28,625,544
640 x 640 403,046,400 280,564,968 66,727,992

TABLE 4.5

EXAMPLE 1, 2D CASE, CRANK-NICOLSON SCHEME WITH A
MULTIGRID SOLVER (THE TWO-GRID CORRECTION SCHEME)
FOR THE LINEAR SYSTEMS.

N, x N, L*®error  Order L?error  Order CPU(s)

80 x 80 1.86 x 10~* 9.29 x 107° 1.81
160 x 160 4.65 x 107> 2.00 2.32x 107> 200  24.76
320 x 320 1.16 x 107°  2.00 5.81x107% 2.00  352.57
640 x 640 2.90 x 107 2.00 1.45x107% 2.00 5,125.76
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TABLE 4.6

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, NON-UNIFORM

GRIDS. COMPARISON OF NUMERICAL ERRORS AND CPU TIMES

FOR COMPUTATIONS ON SINGLE-GRID AND SPARSE-GRID.

Single-grid

Np x N, L*® error  Order L? error Order CPU(s) Ratio
80 x 80 1.17x10°° 3.44 x 1077 16.86
160 x 160 8.21 x 107®  3.83 258 x 107%  3.73  190.58 11.30
320 x 320 6.75 x 1072  3.60 296 x 107  3.12 1,045.65 5.49
640 x 640 1.10 x 107 2.61 566 x 1071 239 8,495.37 8.12
Sparse-grid, refine root grids
N, N; N,xN,  L*®error Order L? error Order CPU(s) Ratio
10 3 80 x 80 1.17x107° 3.44 x 1077 9.72
20 3 160 x 160 821 x107® 383 258x107% 3.73 65.78 6.77
40 3 320x320 6.75x107% 3.60 296x107° 312  491.27 747
80 3 640 x640 1.12x 107 260 572x 1071 237 3,852.75 7.84
Sparse-grid, refine level
N, N; N, x N, L*> error  Order L? error Order CPU(s) Ratio
10 3 80x80 1.17x10°°¢ 3.44 x 1077 9.72
10 4 160x160 8.21x10™® 3.83 258x107% 3.73 45.06 4.64
10 5 320x320 6.75x107 3.60 2.96x 107 3.12  206.02  4.57
10 6 640 x640 1.10x107° 2,61 5.66x 1071 239  936.73  4.55
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4.2 A 3D problem with anisotropic diffusion and constant diffusion coefficients

Example 2 (A 3D problem with anisotropic diffusion and constant dif-
fusion coefficients). We consider a three-dimensional reaction-diffusion problem

with cross-derivative diffusion terms and constant diffusion coefficients

up = (0.1, —0.15u,y4+0. 11y, ) +(0. 11,4020, +0. 2w, ) +(0. 22y, +0.15u,,,4+0.1u,, )+0.8u,

where (z,y,2) € Q ={0 <z < 27,0 <y < 27,0 < z < 27} with periodic boundary
conditions. The initial condition is u(z,y, z,0) = sin(z + y + z). The exact solution
of the problem is

u(z,y, z,t) = e " sin(x +y + 2).

In [36], we show that for high dimensional problems with anisotropic diffusion terms,
Krylov IIF schemes are more efficient than compact IIF methods [43]. It is inter-
esting to test Krylov IIF scheme on sparse-grid for such problems with anisotropic
diffusion terms. We compute the problem till final time 7" = 1 by the KrylovIIF2
scheme on both single-grid and sparse-grid. The L errors, L? errors, the cor-
responding numerical accuracy orders, and CPU times on successively refined meshes
are reported in Table [1.7]

As that in the last example, the computation on the 640 x 640 x 640 single-grid
can not be performed due to the computer memory restriction. Computer memory
is saved significantly by using sparse-grid and computations can be successfully done
for the 640 x 640 x 640 mesh case. We observe that computations on both single-grid
and sparse-grid give similar numerical errors and the second order accuracy. Again, it
is shown in Table that by preforming computations on sparse grids, a significant
amount of CPU time can be saved, especially if we use a relatively large finest level
Ny and a small number of cells NV, in each spatial direction of the root grid. For

example, we compare the CPU times for computations on a 320 x 320 x 320 mesh.
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With the number of cells in each spatial direction of a root grid N, = 40 and the
finest level N, = 3, the CPU time for the computation on sparse-grid (29,573.60
seconds) is about 22% of that on a single-grid (132,359.95 seconds), and 78% CPU
time is saved. Furthermore, with a coarser root grid N, = 10 and the finest level
Ny, =5, the CPU time for the computation on sparse-grid (4371.18 seconds) is only
3.3% of that on a single-grid (132,359.95 seconds), and 96.7% CPU time is saved.
We can also observe that if the mesh refinement is done by refining root grids, the
KrylovIIF2 scheme on sparse grids has the linear computational complexity as that
for the KrylovIIF2 scheme on single-grid, with CPU time ratios around 16. If the
mesh refinement is done by refining level, the CPU time ratios are around 6, and the

computations on sparse grids have much better than linear computational complexity.
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TABLE 4.7

EXAMPLE 2. KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

N, x Nj, x Ny, L>® error  Order  L?error Order CPU(s) Ratio
80 x 80 x 80  6.97 x 1074 4.93 x 1074 538.81
160 x 160 x 160 1.74 x 107* 2.00 1.23x107* 2.00  8,413.74 15.62
320 x 320 x 320 4.36 x 107° 2.00 3.08 x107° 2.00 132,359.95 15.73
Sparse-grid, refine root grids
N, N; Np,x Ny x N, L> error  Order  L? error  Order CPU(s) Ratio
10 3 80 x 80 x 80  7.49 x 1074 5.13 x 1074 118.58
20 3 160 x 160 x 160 1.76 x 10~* 2.09 1.24x10~* 2.05 1,817.95 15.33
40 3 320x 320 x 320 4.36 x 1075 2.10  3.09 x 107°  2.01  29,573.60 16.27
80 3 640 x 640 x 640 1.09 x 107° 2.00 7.71x107% 2.00 465,538.00 15.74
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TABLE 4.7

Continued

Sparse-grid, refine level

N, N; N, x Ny x N, L>® error  Order  L?error Order CPU(s) Ratio
10 3 80 x 80 x 80  7.49 x 107* 5.13 x 1074 118.58

10 4 160 x 160 x 160 1.87 x 107* 2.00 1.30 x 107*  1.98 728.21 6.14
10 5 320x320x320 4.73x10™° 198 3.28x10™° 198  4,371.18  6.00
10 6 640 x 640 x 640 1.20 x 10™ 1.98 830x 107 198 25736.20 5.89




4.3 A 3D problem with anisotropic diffusion and variable diffusion coefficients

Example 3 (A 3D problem with anisotropic diffusion and variable dif-
fusion coefficients). In this example, we consider a three-dimensional reaction-
diffusion problem with cross-derivative diffusion terms and variable diffusion coeffi-

cients

up =0.5Uy, — 0.58In(z + y)ugy + 0.5uy,

1 1
+ 0.5Uyy — 3 COS YUy, + guzz (4.1)

1
+ 0.5(1 + cos x)uy, — 0.5(1 + cos x)u,, + 5(1 + cosz)u,, + f(z,y, 2, u),

where (z,y,2) € Q ={0 <z < 27,0 <y < 27,0 < z < 27w} with periodic boundary
conditions. The initial condition is u(z,y, z,0) = sin(x + y + z). The source term
flz,y,z,u) = (1.3 + % —0.5sin(x +y) + %(cosa: — Cos y))u The exact solution of this
problem is

u(z,y, z,t) = e " sin(x +y + 2).

As the last example, in [36] we show that for this problem with anisotropic diffusion
terms, Krylov IIF schemes are more efficient than compact IIF methods [43]. Here
we use this example to show the significant improvement of computational efficiency
of Krylov IIF scheme on sparse grids. We compute the problem till final time T =1
by the KrylovIIF2 scheme on both single-grid and sparse-grid. Again we use
two different ways to refine meshes for computations on sparse grids. The numerical
results are reported in Table 1.8 We obtain the similar observations and draw the
same conclusion as the last example which has constant diffusion coefficients. Com-
puter memory is saved significantly by using sparse-grid and computations can be
successfully done for the 640 x 640 x 640 mesh case, for which the computation on
single-grid can not be performed due to computer memory restriction. Again, ap-

plying sparse-grid combination technique in the Krylov ITF scheme brings in a huge
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benefit in terms of CPU time savings while the similar numerical errors and accuracy
orders are kept as that for the single-grid computations. For example, we compare
the CPU times for computations on a 320 x 320 x 320 mesh. With the number of cells
in each spatial direction of a root grid N, = 40 and the finest level N;, = 3, the CPU
time for the computation on sparse-grid (55,060.30 seconds) is about 36% of that
on a single-grid (153,195.14 seconds), and 64% CPU time is saved. Furthermore,
with a coarser root grid NV, = 10 and the finest level N;, = 5, the CPU time for the
computation on sparse-grid (8139.66 seconds) is only 5.3% of that on a single-grid
(153,195.14 seconds), and 94.7% CPU time is saved. We can also observe that if
the mesh refinement is done by refining root grids, the KrylovIIF2 scheme on sparse
grids has the linear computational complexity as that for the KrylovIIF2 scheme on
single-grid, with CPU time ratios around 16. If the mesh refinement is done by re-
fining level, the CPU time ratios are around 6, and the computations on sparse grids

have much better than linear computational complexity.

114



a1t

TABLE 4.8

EXAMPLE 3. KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

N, x Nj, x Ny, L>® error  Order  L?error Order CPU(s) Ratio
80 x 80 x 80 3.34 x 1073 1.09 x 1073 551.57
160 x 160 x 160 8.34 x 107* 2.00 2.71x107* 2.01  8992.13 16.30
320 x 320 x 320 2.09 x 107* 2.00 6.79 x 1075 2.00 153,195.14 17.04
Sparse-grid, refine root grids
N, N; Np,x Ny x N, L> error  Order  L? error  Order CPU(s) Ratio
10 3 80 x 80 x 80 3.19 x 1073 1.10 x 1073 229.37
20 3 160 x 160 x 160 8.13 x 10~* 1.97 2.70x10~* 2.03 3,618.00  15.77
40 3 320x320x 320 2.07x107* 197 6.77x10"° 1.99 55,060.30 15.22
80 3 640 x640 x 640 521 x 1075 1.99 1.70 x 107 2.00 865,203.00 15.71
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TABLE 4.8

Continued

Sparse-grid, refine level

N, N; N, x Ny x N, L>® error  Order  L?error Order CPU(s) Ratio
10 3 80 x 80 x 80 3.19 x 1073 1.10 x 1073 229.37

10 4 160 x 160 x 160 7.85x107* 2.02 282x107* 1.97 1,414.63 6.17
10 5 320x320x320 1.94x107* 202 730x107° 1.95 8,139.66 5.75
10 6 640 x 640 x 640 4.83x 107° 2.01 1.90x 107> 1.94  46,392.90 5.70




4.4 A convection-diffusion problem

Example 4 (A convection-diffusion problem). In this example, we test the
method for solving problems with convection terms. Consider a two-dimensional

convection-diffusion problem

ou 1, 1, Pu 0%
E + (5“ )m + (5” )y - O2(ax2 + ayZ) + f(x,y,t),

where (z,y) € Q@ = {0 < x < 27,0 < y < 27} with periodic boundary conditions.

The initial condition is u(x,y,0) = cos(x) 4 sin(y). The exact solution is
u(z,y,t) = e " (cos(x) + sin(y)).
The source term f(z,y,t) is

flz,y,t) = (0.1 + e % (—sin(z) + cos(y)))e_o'”(cos(x) + sin(y)).

The KrylovIIF2 scheme with the third order WENO approximation for the
convection terms is used here. We compute the problem till final time 7" = 1 on
both single-grid and sparse-grid. Here the time step sizes are determined only by the
convection (hyperbolic) part of the equation since the IIF schemes remove stability
constraint of diffusion and reaction terms [24]. The CFL number for the convection
terms is taken to be 0.5 in the computations. Numerical errors, numerical accuracy
orders, CPU times for a complete simulation, and the ratios of CPU times on an
Ny, x Nj, mesh to that on a % X % mesh are reported. Again, two approaches to
perform mesh refinement in sparse-grid computations are used, i.e., the refining root
grid approach and the refining level approach. In this example, for mesh refinement

in sparse-grid computations by the refining root grid approach, we test performance

of the method with two different finest levels N; = 3 and N; = 4. Numerical
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results are reported in Table [£.9, We observe that the desired second order accuracy
due to the second order Krylov IIF scheme is achieved for all methods. About
computational efficiency, we observe that in general a big amount of CPU time is
saved if computations are performed on sparse grids. Specifically, for example for
the 640 x 640 mesh case, computations on sparse grids can save 57% CPU time (the
N, = 40, N, = 4 case), and even 83% CPU time (the N, = 10, N, = 6 case)
comparing with the single-grid computation, and keep comparable numerical errors.
See Table 4.9

Again we can also observe that if the mesh refinement is done by refining root
grids, KrylovIIF2 scheme on sparse grids has the linear computation complexity as
that for the KrylovIIF2 scheme on single-grid, with CPU time ratios around 8. If the
mesh refinement is done by refining level, the CPU time ratios are around 5, and the

computations on sparse grids have better than linear computational complexity.

TABLE 4.9

EXAMPLE 4. KRYLOVIIF2 SCHEME, COMPARISON OF
NUMERICAL ERRORS AND CPU TIMES

Single-grid

N, x N, L*®error Order L?error Order CPU(s) Ratio

80 x 80 1.67x1074 6.91x107° 13.77
160 x 160 2.23x1075 291 1.27x107° 244 104.16 7.56
320 x 320  9.54x107% 1.22 4.61x107% 1.47 851.93 8.18
640 x 640 2.80x107% 1.77 1.30x107% 1.82 6,958.20 8.17
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TABLE 4.9

Continued

Sparse-grid, refine root grids, N, = 3

N, N; N, x N, L> error  Order L?error Order CPU(s) Ratio

10 80 x 80  3.52x1073 8.24x107* 13.24

320 x 320  9.44x107% 1.82 4.60x107% 1.56 601.76 7.38

3

20 3 160 x 160 3.32x107° 6.72 1.36x10™° 5.92  81.58 6.16
40 3
3

80 640 x 640 2.80x107% 1.76 1.30x107°% 1.82 4,712.98 7.83

Sparse-grid, refine root grids, N;, =4

N, N, Np,x N,  L*®error Order L?error Order CPU(s) Ratio

10 4 160 x 160 4.97x107* 1.07x1074 58.22

20 4 320x320 8.70x107% 584 4.48x10°% 4.58 39554  6.79
40 4 640 x 640 2.78x107% 1.65 1.30x107® 1.78 3,001.72 7.59
80 4 1280x1280 7.46x10°7 1.90 3.43x1077 1.93 24,183.80 8.06

Sparse-grid, refine level

N, N; N, x N, L> error  Order L?error Order CPU(s) Ratio

10 3 80 x 80 3.52x1073 8.24x 1074 13.24

10 4 160 x 160 4.97x107%* 2.82 1.07x107* 294  58.22 4.40
10 5 320x320 3.88x107° 3.68 8.63x107% 3.63 260.20 4.47
10 6 640 x 640 5.69x107% 2.77 1.59x107% 244 1,170.34 4.50

4.5 Three dimensional Fokker-Planck equations

Example 5 (Three dimensional Fokker-Planck equations).
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The Fokker-Planck equation (FPE) [44] describes in a statistical sense how a
collection of initial data evolves in time, e.g., in describing Brownian motion. It is
a N-dimensional convection-diffusion equation and has been applied in computing
statistical properties in many systems. In [53], Array-representation integration fac-
tor scheme was applied in solving FPEs which describe the time evolution of the

probability density function of stochastic systems [44]. The general form of FPEs is

Op(x, t U (R 1<n g (=t
—p%t ):—Z{ZTM@'%(QT(CB,Q_52”7“]’%)}’ (42)

r=1 Li=1 j=1

where p(x, t) is the probability density of the system at the state @ = (x1, z9,...,2N)
and time ¢. In the context of bio-chemical reactions, R denotes the total number of
chemical reactions in the system, N the total number of species involving in the reac-
tion, and x; denotes the copy number of ¢-th reactant. n,; is the change of x; when the
r-th reaction occurs once. ¢,(x,t) is defined by ¢,(x,t) = w,.(x)p(x,t), where w,(x, t)
is the reaction propensity function for r-th reaction at state & and time ¢t. Here we
apply the second order Krylov IIF scheme KrylovIIF2 on both single-grid and
sparse-grid in solving a three dimensional Fokker-Planck equation [48] which involves
two metabolites A and B and one enzyme E, and show computational efficiency of
the scheme on sparse-grid. Since KrylovIIF2 scheme for solving convection-diffusion
equations is a multistep method, numerical values at the first time step are needed to
start the computation. We use a third order Runge-Kutta scheme for the first step
time evolution. Then the KrylovIIF2 scheme is used to continue the time evolution.

The reactions are described as following (here () means that there is no reactant or
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product in the reaction):

kalEAl

(A T N 23
A+ "y
plA u(B (4.3)
Ay pHBLy
IcEA 5
0 S g, B,

In this system, the total number of reactions R is 7, and the total number of
chemical species N is 3. The vectors n, = (1,1, 7.9, n.3) are n; = (1,0,0), ny =
(0,1,0), ng = (=1, -1,0), ny = (—1,0,0), ns = (0,-1,0), ng = (0,0,1), ny =
(0,0, —1). We denote the system state by @ = (x1, z2, x3) which is ([4], [B], [Ea4])

in this case. Then the propensity functions w,(x) are

/{JA$3 L L
m = - Wo = Wa = T1r
1 1 + l’l/K]’ 2 B> 3 142,
) (4.4)
Wy = P, Ws HT2, We 1 + xl/KRa wry HT3,

where ky = 0.357 %, kg = 2571, K; = 30, k = 0.001s7 !, u = 0.004s7!, Kr = 30 and

kg, = 1s7! [48]. Then the FPE can be written as
Op(z, 1)
ot = —(L1+ Lo+ Ly + Ly + Ls + Le + L7), (4.5)
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where L, represents the operator for the r-th reaction. Specifically,

_Oq(=,t)  10°qi(x,1)

o 011 2 Or?

aQ2(m7 t) 1 82q2<337 t)
L2 = 5 2 )

0o 2 Oxs
. 8Q3($, t) 8q3(:c, t) 1 82(]3 (CL‘, t) 82(]3(13, t) 82613 (ZL‘, t)
Ly = 0rq 0xy 2( 0r? + 0192 +2 011019 >’
2

L — Oqu(=,t) 10 q4(:fv,t)7 (4.6)

014 2 Oz}
_8QS<w7t) _ 1(92(]5(%,15)

Ls = Oy 2 0x3
I Igs(x,t)  19°gs(x,1)
7 Ouy 2 0z3
Ogr(z,t)  10%q:(,t)
Li=— 1

Oxs 2 0x}

The computational domain is Q = [0,100] x [0, 100] x [0,45], which covers nearly
all the possible states of the chemical reactions, since the probability of [A] > 100,
[B] > 100, and [E4] > 45 is sufficiently small. The initial condition in our simulation
is a Gaussian distribution centered at point (30,40, 20) with standard deviation V/30.
Zero Dirichlet boundary conditions are used. For spatial discretizations, we use
the upwind scheme for the convection terms and the second order central difference
scheme for the diffusion terms. For simulations here, the time step size At is 0.015
(corresponding to the CFL number 0.4 for the convection part) and the numbers
of cells in spatial directions are Ny = 128, Np = 128, Ng, = 64. For the sparse-
grid computations, the root grid is 16 x 16 x 8, and the finest level is N, = 3. In
Table [£.10, we list the errors and accuracy orders for both single-grid and sparse-
grid computations, and the similar numerical errors and second order accuracy are
obtained. Since there is no explicit form for the exact solution in this example, we
focus on testing the schemes’ temporal accuracy. So the spatial resolution is fixed

to be 128 x 128 x 64, and numerical errors for a time step size /At are obtained by
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T=10, z=12.66 T=10, z=21.09

x10™
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T=10, z=29.53
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T=10, 2=37.97 x107

20 40 60 80 100 20 40 60 80 100
X X

Figure 4.1. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Final time 7" = 10. At = 0.015.
Distribution of molecular species A and B with
E, =12.66,21.09,29.53,37.97.

calculating the difference of numerical values for At and At/2. We compare the
computational efficiency of the scheme on single and sparse grids and list CPU times
of using them to solve the problem till the final time 7" = 10 with At = 0.015,
in Table The CPU times in Table show that a significant amount of
CPU time (82% CPU time) is saved by using the sparse-grid combination technique.
In Figures [4.2] [£.4] and [4.6] we show contour plots of the numerical solutions by
the KrylovlIF2 scheme with sparse-grid combination technique on two dimensional
domain of molecular species A and B, with different values of the third dimension
E 4. Contour plots of the numerical solutions by the same scheme on single-grid are
presented in Figures [4.1] 4.3 and [1.5] We see that both approaches generate similar

numerical solutions.
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TABLE 4.10

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE
KRYLOVIIF2 SCHEME TO SOLVE THE 3D FOKKER-PLANCK
EQUATION ON SINGLE AND SPARSE GRIDS.

On single-grid

time step L™ error accuracy
At 1.20 x 10~
At/2 3.04 x 10712 1.99
At/4 7.61 x 10713 2.00

On sparse-grid

time step L> error accuracy
At 1.32 x 1071
At/2 3.40 x 10712 1.96
At/4 8.41 x 10713 2.01
TABLE 4.11

CPU TIME FOR THE KRYLOVIIF2 SCHEME TO SOLVE THE 3D
FOKKER-PLANCK EQUATION ON SINGLE AND SPARSE GRIDS

CPU

On single-grid 78,745

On sparse-grid 14,218
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T=10, z=12.66 T=10, z=21.09

20 40 60 80 100 20 40 60 80 100
X X

T=10, z=29.53 x107° T=10, z=37.97

0
20 40 60 80 100 20 40 60 80 100
X X

Figure 4.2. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Final time T = 10. At = 0.015.
Distribution of molecular species A and B with
E4 = 12.66,21.09,29.53,37.97.

T=50, z=12.66 T=50, z=21.09

0
20 40 60 80 100 20 40 60 80 100
X X
T=50, z=29.53 - T=50, z=37.97

20 40 60 80 100 20 40 60 80 100
X X

Figure 4.3. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Final time T = 50. At = 0.015.
Distribution of molecular species A and B with
E4 =12.66,21.09,29.53,37.97.
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T=50, z=12.66 T=50, z=21.09 x107°

20 40 60 80 100 20 40 60 80 100
X X

T=50, z=29.53 - T=50, z=37.97

0
20 40 60 80 100 20 40 60 80 100
X X

Figure 4.4. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Final time T' = 50. At = 0.015.
Distribution of molecular species A and B with
E, =12.66,21.09,29.53, 37.97.
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Figure 4.5. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Distribution of molecular species A and
B with different E4 values, at time T" = 0, 20, 35, 50. At = 0.015.
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Figure 4.6. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Distribution of molecular species A and
B with different E4 values, at time 1" = 0, 20, 35, 50. At = 0.015.
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CHAPTER 5

CONCLUSION

In the first part of this dissertation, we systematically perform numerical com-
parison and computational complexity analysis to study two different approaches in
dealing with solving high spatial dimension diffusion and convection-diffusion PDE
problems by integration factor WENO methods. Specifically, one approach is the cITF
/ AcIIF method, and the other one is the Krylov IIF method, i.e., direct application
of Krylov subspace approximations in efficiently calculating large matrix exponentials
in integration factor methods. Via extensive numerical experiments and analysis of
the results for various high spatial dimension problems, we find that both the cIIF
/ AclIIF method and the Krylov ITF method have their own advantages for different
type of problems. The Krylov IIF method has linear computational complexity. For
the numerical examples tested in this dissertation, it is shown that on not very refined
meshes, the cIIF / AclIF method is more efficient than the Krylov IIF method for
problems whose diffusion terms do not have cross-derivatives. The Krylov ITF method
is more efficient on such problems for very refined meshes due to its linear compu-
tational complexity property. For high dimensional problems whose diffusion terms
have no cross-derivatives, the cIIF / AcIIF method only needs to compute matrix ex-
ponentials with sizes as that for one spatial dimension problems (i.e., N x N matrices
and N is the number of spatial grid points in one spatial direction). Hence it is very
efficient. For high dimensional problems whose diffusion terms have cross-derivatives,
the AcIIF method can reduce N¢ x N matrices’ exponentials to a series of N? x N?

matrices’ exponentials. However, computations of these N? x N2 matrices’ exponen-
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tials are still costly in CPU time and computer memory, especially for a not very
coarse mesh. Applications of Krylov subspace approximations to these N? x N2 ma-
trices’ exponentials in the AcIIF method can significantly improve its computational
efficiency. We compare three approaches including the AcIIF method, the AcIIF
method with Krylov subspace approximation, and the direct Krylov IIF method for
problems whose diffusion terms have cross-derivatives, and find that the most effi-
cient method for such problems is the direct Krylov ITF method, as that shown in the
numerical experiments. Certainly the efficiency of the Krylov IIF method depends on
the dimension size M of Krylov subspace used in computation. In the development of
Krylov IIF schemes for solving high spatial dimension convection-diffusion-reaction
PDEs [7, 24, 25], M is taken to be 25 and Krylov subspace approximation errors
are much smaller than truncation errors of the numerical schemes which discretize
the PDEs, for different problems and matrices’ sizes. Following the literature, for all
examples in this dissertation, we choose M = 25 and obtain correct accuracy orders
of the numerical schemes, even for very large N* x N* matrices from the four spatial
dimension PDEs. It will be interesting to study possible dependence of the parameter
M on different types of PDEs (different differential operators) and problems, which
is one of our future work.

In the second part of this dissertation, we design the Krylov IIF scheme on sparse
grids for solving high spatial dimension problems. With the Krylov ITF scheme on
sparse-grid, more efficient algorithm than our previous work is achieved. Numerical
experiments are performed for the sparse-grid Krylov IIF method to show significant
savings in computational costs by comparisons with single-grid computations. It
will be interesting to theoretically analyze the errors for the sparse-grid Krylov ITF
method in solving both linear and nonlinear problems, and design the sparse-grid
combination technique on unstructured triangular meshes. These will be our future

work.
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Another recent interesting work on the ITF method is to apply it in solving stochas-
tic reaction-diffusion equations in [50]. Stochastic reaction-diffusion equations have
broad applications in modeling biological or physical systems which are subjected
to noises and environmental perturbations. Stiffness in stochastic reaction-diffusion
equations may occur in the deterministic and/or the stochastic terms. In [50], the
stiff deterministic diffusion and reaction terms were treated by the IIF approach, and
the stochastic term was dealt with explicitly. Nice stability properties and efficiency
of the original ITF method were preserved well. It provides an efficient new approach
for solving stochastic reaction-diffusion equations with stiff deterministic terms. For
such problems with high spatial dimensions, both Krylov IIF and AcIIF methods
discussed in this dissertation can be straightforwardly applied in dealing with the
large matrix exponential challenge arising from the stiff deterministic diffusion. We
expect to see the effectiveness of the Krylov IIF and AclIIF methods in solving high
spatial dimension stochastic problems, as that discussed in this dissertation. This is

one of our future research.
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