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Abstract

Integration factor (IF) methods are a class of efficient time discretization methods
for solving stiff problems via evaluation of an exponential function of the corresponding
matrix for the stiff operator. The computational challenge in applying the methods
for partial differential equations (PDEs) on high spatial dimensions (multidimensional
PDEs) is how to deal with the matrix exponential for very large matrices. Compact
integration factor methods developed in [Nie et al., Journal of Computational Physics,
227 (2008) 5238-5255] provide an approach to reduce the cost prohibitive large ma-
trix exponentials for linear diffusion operators with constant diffusion coefficients in
high spatial dimensions to a series of much smaller one dimensional computations.
This approach is further developed in [Wang et al., Journal of Computational Physics,
258 (2014) 585-600] to deal with more complicated high dimensional reaction-diffusion
equations with cross-derivatives in diffusion operators. Another approach is to use
Krylov subspace approximations to efficiently calculate large matrix exponentials. In
[Chen and Zhang, Journal of Computational Physics, 230 (2011) 4336-4352], Krylov
subspace approximation is directly applied to the implicit integration factor (IIF) meth-
ods for solving high dimensional reaction-diffusion problems. Recently the method
is combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and
Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve semi-
linear and fully nonlinear convection-reaction-diffusion equations. A natural question
that arises is how these two approaches may perform differently for various types of
problems. In this paper, we study the computational power of Krylov IF-WENO meth-
ods for solving high spatial dimension convection-diffusion PDE problems (up to four
spatial dimensions). Systematical numerical comparison and complexity analysis are
carried out for the computational efficiency of the two different approaches. We show
that although the Krylov IF-WENO methods have linear computational complexity,
both the compact IF method and the Krylov IF method have their own advantages for
different type of problems. This study provides certain guidance for using IF-WENO
methods to solve general high spatial dimension convection-diffusion problems.
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1 Introduction

Efficient and accurate temporal numerical schemes are important for the performance
of high order accuracy numerical simulations. A number of state-of-the-art high order
time-stepping methods were developed in the literature. Here we just give a few exam-
ples and do not provide a complete list. For example, the total variation diminishing
(TVD) Runge-Kutta (RK) schemes [39, 40, 11, 12]; spectral deferred correction (SDC)
methods [4, 8, 16, 25, 32]; high order implicit-explicit (IMEX) multistep / RK methods
[1, 22, 24, 45, 49]; hybrid methods of SDC and high order RK schemes [6]; etc.

Integration factor (IF) methods are a class of “exactly linear part” time discretiza-
tion methods for the solution of nonlinear partial differential equations (PDEs) with
the linear highest spatial derivatives. This class of methods performs the time evolution
of the stiff linear operator via evaluation of an exponential function of the correspond-
ing matrix. Hence the integration factor type time discretization can remove both the
stability constrain and time direction numerical errors from the high order derivatives
[3, 7, 31, 23, 21]. Here time direction numerical errors are numerical errors for solving
the semi-discretized ODE system resulting from spatial discretizations of the PDE. In
[35], a class of efficient implicit integration factor (IIF) methods were developed for
solving systems with both stiff linear and nonlinear terms. A novel property of the
methods is that the implicit terms are free of the exponential operation of the linear
terms. Hence the exact evaluation of the linear part is decoupled from the implicit
treatment of the nonlinear terms. As a result, if the nonlinear terms do not involve
spatial derivatives, the size of the nonlinear system arising from the implicit treatment
is independent of the number of spatial grid points; it only depends on the number of
the original PDEs. This distinguishes IIF methods [35] from implicit exponential time
differencing (ETD) methods in [3].

Nonlinear convection-diffusion-reaction (CDR) systems of equations [17] are com-
mon mathematical models in applications from biology, chemistry and physics. A CDR
system defined on a multidimensional spatial domain has the following general form

~ut +

d
∑

i=1

~fi(~u)xi
= ∇ · (D(~u)∇~u) + ~r(~u), (1)

where ~u is the unknown vector function, ~fi, i = 1, · · · , d are flux vector functions
in d spatial dimensions, D(~u) is the diffusion matrix and it could be nonlinear, and
~r is the reaction term. Often the CDR models in applications have nonlinear con-
vection and reaction terms, but a linear diffusion term ∇ · (D∇~u), where D is the
diffusion matrix that is independent of ~u. In such case, the system is semilinear. To
numerically solve this time-dependent problem (1), a nonlinear stable discretization
suitable for hyperbolic PDEs is needed for the nonlinear convection terms, to deal
with the convection-dominated cases or a spatial mixture of convection-dominated and
diffusion-dominated cases. Weighted essentially non-oscillatory (WENO) schemes are
such kind of nonlinear stable discretizations. They are a class of popular high order
numerical methods for solving hyperbolic PDEs whose solutions have complex solution
structures. It is robust to apply WENO schemes in discretizing the convection terms in
a general convection-diffusion problem, as that shown in [30]. We use WENO schemes

2



to solve convection-diffusion equations so that various situations in a general problem
can be dealt with directly.

WENO schemes have the advantage of attaining uniform high order accuracy in
smooth regions while maintaining sharp and essentially monotone transitions in large
gradient regions of the solution. WENO schemes are designed based on the success-
ful ENO schemes in [13, 40]. The first WENO scheme was constructed in [27] for a
third order finite volume version. In [18], third and fifth order finite difference WENO
schemes in multi-space dimensions were constructed, with a general framework for
the design of the smoothness indicators and non-linear weights. The main idea of
the WENO scheme is to form a weighted combination of several local reconstructions
based on different stencils (usually referred to as small stencils) and use it as the final
WENO reconstruction. The combination coefficients (also called non-linear weights)
depend on the linear weights, often chosen to increase the order of accuracy over that
on each small stencil, and on the smoothness indicators which measure the smooth-
ness of the reconstructed function in the relevant small stencils. Hence an adaptive
interpolation or reconstruction procedure is actually the essential part of the WENO
schemes. Later, WENO schemes on unstructured meshes (e.g. arbitrary triangular or
tetrahedral meshes) were developed to deal with complex domain geometries, see e.g.
[15, 47, 48, 29].

Recently, we developed IIF-WENO methods for solving nonlinear CDR systems
in [19]. The methods can be designed for arbitrary order of accuracy. The stiffness
of the system is resolved well and the methods are stable by using time step sizes
which are just determined by the non-stiff hyperbolic part of the system. Large time
step size computations are obtained. For CDR systems (1) defined on high dimen-
sional spatial domains, the computational challenge in applying the methods is how
to deal with the matrix exponential for very large matrices. Currently there are two
approaches to deal with the large matrix exponential problem in IIF methods. One
is the class of compact implicit integration factor (cIIF) methods in [36, 28]. cIIF
methods reduce the cost prohibitive large matrix exponentials for linear diffusion op-
erators with constant diffusion coefficients in high spatial dimensions to a series of
much smaller one dimensional computations. This approach is further extended in [46]
as an array-representation technique to deal with more complicated high dimensional
reaction-diffusion equations with cross-derivatives in diffusion operators. The method
is termed as array-representation compact implicit integration factor (AcIIF) method.
Another approach is to use Krylov subspace approximations to efficiently calculate
large matrix exponentials. In [5], Krylov subspace approximation is directly applied to
the IIF methods for solving high dimensional reaction-diffusion problems. A natural
question that arises is how these two approaches may perform differently for various
types of problems when they are applied to solve more complicated CDR equations.
In this paper, we study the computational power of Krylov IIF-WENO methods for
solving high spatial dimension convection-diffusion PDE problems (up to four spatial
dimensions) by direct numerical simulations. Systematical numerical comparison and
complexity analysis are carried out for the computational efficiency of the two differ-
ent approaches. We show that although the Krylov IIF-WENO methods have linear
computational complexity, both the compact IIF method and the Krylov IIF method
have their own advantages for different type of problems. This study provides certain
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guidance for using IIF-WENO methods to solve high spatial dimension problems.
The rest of the paper is organized as following. In Section 2, we first review the

IIF-WENO methods for solving CDR equations developed in [19]. Then we present
two different approach to deal with the high dimensional problems, i.e., the direct
Krylov approach and the AcIIF approach. The AcIIF method was developed to solve
reaction-diffusion equations in [46]. In order to compare it with the Krylov approach,
we combine the AcIIF method with WENO method for solving CDR equations. In
Section 3, we perform systematical numerical comparison and complexity analysis for
applying these two approaches to various high dimensional problems including three
and four dimensional Fokker-Planck equations. Discussions and conclusions are given
in Section 4.

2 Numerical methods

In this section, we first briefly review the IIF-WENO methods for solving CDR equa-
tions developed in [19]. Then we present two approaches for dealing with high dimen-
sional problems. For the AcIIF method designed in [46], we combine it with WENO
method and derive the corresponding schemes for solving CDR equations.

2.1 IIF-WENO methods

The method of lines (MOL) approach is applied to the equation (1). For the simplic-
ity of presentation, we consider the scalar equation case. The system case is solved
component by component following the same procedure as the scalar case. For non-
linear convection terms

∑d
i=1 fi(u)xi

, the third order finite difference WENO scheme
with Lax-Friedrichs flux splitting [41] is used. The second or fourth order central finite
difference scheme (depending on the order of accuracy of IIF time discretizations) is
used to discretize the diffusion terms.

For the convection terms, the conservative finite-difference schemes we use approxi-
mate the point values at a uniform (or smoothly varying) grid in a conservative fashion.
The finite difference WENO schemes approximate derivatives of multi-dimension in a
dimension by dimension way. For example, the x-direction derivative f(u)x at a grid
point is approximated by a conservative flux difference

f(u)x|x=xi
≈ 1

∆x
(f̂i+1/2 − f̂i−1/2), (2)

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on the
three-point values f(ul) (here for the simplicity of notations, we use ul to denote the
value of the numerical solution u at the point xl along the line y = yj , z = zk with
the understanding that the value could be different for different y and z coordinates),
l = i − 1, i, i + 1, when the wind is positive (i.e., when f ′(u) ≥ 0 for the scalar
case, or when the corresponding eigenvalue is positive for the system case with a
local characteristic decomposition). This numerical flux f̂i+1/2 is written as a convex
combination of two second order numerical fluxes based on two different substencils of
two points each, and the combination coefficients depend on a “smoothness indicator”
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measuring the smoothness of the solution in each substencil. The detailed formulae is

f̂i+1/2 = w0

[

1

2
f(ui) +

1

2
f(ui+1)

]

+ w1

[

−1

2
f(ui−1) +

3

2
f(ui)

]

, (3)

where

wr =
αr

α1 + α2
, αr =

dr

(ǫ + βr)2
, r = 0, 1. (4)

d0 = 2/3, d1 = 1/3 are called the “linear weights”, and β0 = (f(ui+1) − f(ui))
2, β1 =

(f(ui)−f(ui−1))
2 are called the “smoothness indicators”. ǫ is a small positive number

chosen to avoid the denominator becoming 0. We take ǫ = 10−3 in this paper.
When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with nu-

merical values f(ui), f(ui+1) and f(ui+2) are used to construct a third order WENO

approximation to the numerical flux f̂i+1/2. The formulae for negative and positive
wind cases are symmetric with respect to the point xi+1/2. For the general case of
f(u), we perform the ”Lax-Friedrichs flux splitting”

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u) − αu), (5)

where α = maxu |f ′(u)|. f+(u) is the positive wind part, and f−(u) is the negative
wind part. Corresponding WENO approximations are applied to find numerical fluxes
f̂+

i+1/2 and f̂−
i+1/2 respectively. Similar procedures are applied to the other directions for

g(u)y and h(u)z. See [18, 41] for more details. For diffusion terms, central differences
are used. After spatial discretizations, a semi-discretized ODE system

d~U

dt
= ~Fd(~U) + ~Fa(~U) + ~R(~U) (6)

is obtained. Here ~U = (ui)1≤i≤N , ~Fd(~U) = (F̂di(~U))1≤i≤N , ~Fa(~U) = (F̂ai(~U))1≤i≤N , ~R =

(r(ui))1≤i≤N . N is the total number of grid points, ~Fd(~U) is the approximation for

the diffusion terms by the second or fourth order finite difference schemes, and F̂di

is a linear or nonlinear function of numerical values on the approximation stencil. If
the diffusion term is linear, ~Fd(~U) = C ~U where C is the approximation matrix for the

linear diffusion operator by the central finite difference scheme. ~Fa(~U) is the approx-
imation for the nonlinear advection terms by the third order finite difference WENO
scheme, and F̂ai is a nonlinear function of several numerical values on the WENO
approximation stencil. ~R(~U) is the nonlinear reaction term, and r(ui) is a nonlinear
function which only depends on numerical values at one grid point. In [19], we devel-
oped a method to deal with the nonlinear diffusion terms by factoring out the linear
part which mainly contributes to the stiffness of the nonlinear diffusion terms, then
applying the integration factor approach to remove this stiffness. In this paper, our
main focus is on studying the computational complexity of Krylov and compact IIF
methods for high dimensional problems. Hence we simplify our discussions to problems
with linear diffusion, i.e., ~Fd(~U) = C ~U . IIF methods for (6) are constructed by exactly
integrating the linear part of the system. Directly multiply (6) by the integration factor
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e−Ct and integrate over one time step from tn to tn+1 ≡ tn + ∆tn to obtain

~U(tn+1) = eC∆tn ~U(tn)+eC∆tn

∫ ∆tn

0

e−Cτ ~Fa(~U(tn+τ))dτ+eC∆tn

∫ ∆tn

0

e−Cτ ~R(~U(tn+τ))dτ.

(7)
Two of the nonlinear terms in (7) have different properties. The nonlinear reaction

term ~R(~U) is usually stiff but local, while the nonlinear term ~Fa(~U) derived from
WENO approximations to the convection term is nonstiff but couples numerical values
at grid points of the stencil. Hence we use different methods to treat them and avoid
solving a large coupled nonlinear system. For the stiff reaction term e−Cτ ~R(~U(tn +
τ)), we approximate it implicitly by an (r − 1)-th order Lagrange polynomial with
interpolation points at tn+1, tn, . . . , tn+2−r. The nonstiff convection term is highly
nonlinear due to the WENO approximations. Different from the nonlinear reaction
term, we approximate the nonlinear convection term e−Cτ ~Fa(~U(tn+τ)) explicitly by an
(r− 1)-th order Lagrange polynomial with interpolation points at tn, tn−1, . . . , tn+1−r.
The r-th order IIF scheme for CDR equations is obtained as

~Un+1 = eC∆tn ~Un + ∆tn{αn+1
~R(~Un+1) +

0
∑

i=2−r

αn+ie
C(∆tn−τi) ~R(~Un+i)

+

0
∑

i=1−r

βn+ie
C(∆tn−τi) ~Fa(~Un+i)}, (8)

where the coefficients

αn+i =
1

∆tn

∫ ∆tn

0

1
∏

j=2−r,j 6=i

τ − τj

τi − τj
dτ, i = 1, 0,−1, · · · , 2 − r; (9)

βn+i =
1

∆tn

∫ ∆tn

0

0
∏

j=1−r,j 6=i

τ − τj

τi − τj
dτ, i = 0,−1,−2, · · · , 1 − r. (10)

τ1 = ∆tn, τ0 = 0, τi = −∑−1
k=i ∆tn+k for i = −1,−2,−3, · · · , 1 − r. ~Un+i is the

numerical solution for ~U(tn+i). Specifically, the second order scheme (IIF2) is of the
following form

~Un+1 = eC∆tn ~Un + ∆tn

{

αn+1
~R(~Un+1) + αneC∆tn ~R(~Un)

+βn−1e
C(∆tn+∆tn−1) ~Fa(~Un−1) + βneC∆tn ~Fa(~Un)

}

, (11)

where

αn =
1

2
, αn+1 =

1

2
, βn−1 = − ∆tn

2∆tn−1
, βn =

1

∆tn−1
(
∆tn
2

+ ∆tn−1).

And the third order scheme (IIF3) is

~Un+1 = eC∆tn ~Un + ∆tn

{

αn+1
~R(~Un+1) + αneC∆tn ~R(~Un) + αn−1e

C(∆tn+∆tn−1) ~R(~Un−1)

+βn−2e
C(∆tn+∆tn−1+∆tn−2) ~Fa(~Un−2) + βn−1e

C(∆tn+∆tn−1) ~Fa(~Un−1) + βneC∆tn ~Fa(~Un)
}

,

(12)

6



where

αn+1 =
1

(∆tn + ∆tn−1)
(
∆tn
3

+
∆tn−1

2
),

αn =
1

∆tn−1
(
∆tn
6

+
∆tn−1

2
),

αn−1 = − ∆t2n
6∆tn−1(∆tn−1 + ∆tn)

,

βn = 1 +
1

∆tn−1(∆tn−1 + ∆tn−2)
[
∆t2n
3

+
∆tn
2

(2∆tn−1 + ∆tn−2)],

βn−1 = − 1

∆tn−1∆tn−2
[
∆t2n
3

+
∆tn
2

(∆tn−1 + ∆tn−2)],

βn−2 =
1

∆tn−2(∆tn−1 + ∆tn−2)
(
∆t2n
3

+
∆tn∆tn−1

2
).

Remark: Theoretical analysis including stability and error analysis of the IIF schemes
for convection-diffusion-reaction equations is given in [19, 20]. Due to the nonlinearity
of WENO schemes [41] and the global property of the exponential integrator in the
IIF schemes, theoretical analysis of the complete IIF-WENO schemes is still an open
problem and it will be one of our future work.

2.2 Two approaches for high dimensional problems

The efficiency of IIF schemes for high dimensional problems largely depends on the
methods to evaluate the product of the matrix exponential and a vector, for example
eC∆tv. For PDEs defined on high spatial dimensions (2D and above), a large and sparse
matrix C is generated in the schemes (8). But the exponential matrix eC∆t is dense. For
high dimensional problems, direct computation and storage of such exponential matrix
are prohibitive in terms of both CPU cost and computer memory. Two approaches have
been developed to solve this problem. Here we discuss and compare the computational
efficiency of these two approaches when they are applied to IIF-WENO methods for
solving high dimensional problems. We first review the Krylov approximation method.
The Krylov approximation method was applied to IIF schemes in [5]. It has been
applied for solving CDR equations in [19].

2.2.1 Krylov approximation method

Notice that we do not need the full exponential matrices such as eC∆t itself, but only
the products of the exponential matrices and some vectors in the schemes (8). The
Krylov subspace approximations to the matrix exponential operator is an excellent
choice in terms of both accuracy and efficiency. Follow the literature (e.g. [10, 34]),
we describe the Krylov subspace methods to approximate eC∆tv as following.

The large sparse matrix C is projected to the Krylov subspace

KM = span{v, Cv,C2v, · · · , CM−1v}. (13)

The dimension M of the Krylov subspace is much smaller than the dimension N of the
large sparse matrix C. In all numerical computations of this paper, we take M = 25
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for different N , and accurate results are obtained in the numerical experiments. An
orthonormal basis VM = [v1, v2, v3, · · · , vM ] of the Krylov subspace KM is generated
by the well-known Arnoldi algorithm [44]:

1. Compute the initial vector: v1 = v/‖v‖2.
2. Perform iterations: Do j = 1, 2, · · · ,M :

1) Compute the vector w = Cvj .
2) Do i = 1, 2, · · · , j:

(a) Compute the inner product hi,j = (w, vi).
(b) Compute the vector w = w − hi,jvi.

3) Compute hj+1,j = ‖w‖2.
4) If hj+1,j ≡ 0, then

stop the iteration;
else

compute the next basis vector vj+1 = w/hj+1,j .

In the Arnoldi algorithm, if hj+1,j ≡ 0 for some j < M , it means that the convergence
has occurred and the Krylov subspace is KM = span{v1, v2, · · · , vj}, so the iteration
can be stopped at this step j, and we assign the value of this j to M . This algorithm
will produce an orthonormal basis VM of the Krylov subspace KM . Denote the M ×M
upper Hessenberg matrix consisting of the coefficients hi,j by HM . Since the columns
of VM are orthogonal, we have

HM = V T
MCVM . (14)

This means that the very small Hessenberg matrix HM represents the projection of
the large sparse matrix C to the Krylov subspace KM , with respect to the basis VM .
Also since VM is orthonormal, the vector VMV T

MeC∆tv is the orthogonal projection of
eC∆tv on the Krylov subspace KM , namely, it is the best approximation to eC∆tv in
KM . Therefore

eC∆tv ≃ VMV T
MeC∆tv = βVMV T

MeC∆tv1 = βVMV T
MeC∆tVMe1,

where β = ‖v‖2, and e1 denotes the first column of the M × M identity matrix IM .
Using (14) we obtain the approximation

eC∆tv ≃ βVMeHM∆te1. (15)

Thus the large eC∆t matrix exponential problem is replaced with the much smaller
problem eHM∆t. The small matrix exponential eHM∆t will be computed using a scaling
and squaring algorithm with a Padé approximation, see [14, 34, 10]. Then the Krylov
approximations are directly applied in schemes (8), (11) or (12) to obtain Krylov IIF
schemes for CDR equations [19]. The r-th order Krylov IIF scheme for CDR equations
has the following form

~Un+1 = ∆tnαn+1
~R(~Un+1) + γ0,nVM,0,neHM,0,n∆tne1

+∆tn

(

βn+1−rγ1−r,nVM,1−r,neHM,1−r,n(∆tn−τ1−r)e1 +

−1
∑

i=2−r

γi,nVM,i,neHM,i,n(∆tn−τi)e1

)

,

(16)
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where γ0,n = ‖Un + ∆tn(αn
~R(~Un) + βn

~Fa(~Un))‖2, VM,0,n and HM,0,n are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the ini-
tial vector Un + ∆tn(αn

~R(~Un) + βn
~Fa(~Un)). γ1−r,n = ‖ ~Fa(~Un+1−r)‖2, VM,1−r,n and

HM,1−r,n are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi

algorithm with the initial vector ~Fa(~Un+1−r). γi,n = ‖αn+i
~R(~Un+i)+βn+i

~Fa(~Un+i)‖2,
VM,i,n and HM,i,n are orthonormal basis and upper Hessenberg matrix generated

by the Arnoldi algorithm with the initial vectors αn+i
~R(~Un+i) + βn+i

~Fa(~Un+i), for
i = 2−r, 3−r, · · · ,−1. Notice that VM,0,n, VM,1−r,n and VM,i,n, i = 2−r, 3−r, · · · ,−1
are orthonormal bases of different Krylov subspaces for the same matrix C, which are
generated with different initial vectors in the Arnoldi algorithm. Specifically, the sec-
ond order Krylov IIF (KrylovIIF2) scheme has the following form

~Un+1 =
1

2
∆tn ~R(~Un+1) + γ0,nVM,0,neHM,0,n∆tne1

− (∆tn)2

2∆tn−1

(

γ−1,nVM,−1,neHM,−1,n(∆tn+∆tn−1)e1

)

, (17)

where γ0,n =
∥

∥

∥Un + ∆tn

(

1
2
~R(~Un) + 1

∆tn−1
(∆tn

2 + ∆tn−1) ~Fa(~Un)
)∥

∥

∥

2
, VM,0,n and HM,0,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi al-

gorithm with the initial vector Un + ∆tn

(

1
2
~R(~Un) + 1

∆tn−1
(∆tn

2 + ∆tn−1) ~Fa(~Un)
)

.

γ−1,n = ‖ ~Fa(~Un−1)‖2, VM,−1,n and HM,−1,n are orthonormal basis and upper Hes-

senberg matrix generated by the Arnoldi algorithm with the initial vector ~Fa(~Un−1).
And the third order Krylov IIF (KrylovIIF3) scheme has the form

~Un+1 =
2∆tn + 3∆tn−1

6(∆tn + ∆tn−1)
∆tn ~R(~Un+1) + γ0,nVM,0,neHM,0,n∆tne1

+∆tn

(

2(∆tn)2 + 3∆tn∆tn−1

6∆tn−2(∆tn−1 + ∆tn−2)
γ−2,nVM,−2,neHM,−2,n(∆tn+∆tn−1+∆tn−2)e1

+γ−1,nVM,−1,neHM,−1,n(∆tn+∆tn−1)e1

)

, (18)

where γ0,n = ‖Un + ∆tn(αn
~R(~Un) + βn

~Fa(~Un))‖2, VM,0,n and HM,0,n are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the initial
vector Un + ∆tn(αn

~R(~Un) + βn
~Fa(~Un)). γ−2,n = ‖ ~Fa(~Un−2)‖2, VM,−2,n and HM,−2,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm
with the initial vector ~Fa(~Un−2). γ−1,n = ‖αn−1

~R(~Un−1) + βn−1
~Fa(~Un−1)‖2, VM,−1,n

and HM,−1,n are orthonormal basis and upper Hessenberg matrix generated by the

Arnoldi algorithm with the initial vectors αn−1
~R(~Un−1) + βn−1

~Fa(~Un−1). See the
equation (12) for values of αn, βn, αn−1, βn−1.

As that pointed out in [19], in the implementation of the Krylov approximation
methods we do not store matrices C, because only multiplications of matrices C with
a vector are needed in the methods, and they correspond to certain finite difference
operations.
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2.2.2 compact / array-representation method

We first review the compact IIF (cIIF) method and the array-representation compact
IIF (AcIIF) method for solving high dimensional reaction-diffusion equations, devel-
oped in [36] and [46]. Then we discuss how to apply the cIIF / AcIIF method in the
IIF-WENO schemes for solving high dimensional CDR equations.

(1) cIIF/AcIIF for reaction-diffusion equations

We illustrate the cIIF method by solving a two-dimensional reaction-diffusion equa-
tion with constant diffusion coefficient

∂u

∂t
= D(

∂2u

∂x2
+

∂2u

∂y2
) + R(u), (x, y) ∈ Ω = {a < x < b, c < y < d}, (19)

with periodic boundary conditions in the y−direction and no-flux boundary conditions
in the x−direction. The spatial domain is partitioned by a rectangular mesh with
Nx + 2 and Ny + 2 grid points in each direction. The grid sizes are hx = b−a

Nx+1 , and

hy = d−c
Ny+1 . Using the second order central difference discretization on the diffusion

terms, a system of ODEs

dui,j

dt
= D(

ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

) + R(ui,j) (20)

is obtained. The idea of cIIF method [36] is that in stead of representing numerical
values ui,j in a large vector, numerical values are organized and stored in a matrix (see
(22)). The semi-discretized ODE system is written in a compact form

dU

dt
= AU + UB + R(U), (21)

where the three matrices U , A and B are

UNx×(Ny+1) =











u1,1 u1,2 · · · u1,Ny
u1,Ny+1

u2,1 u2,2 · · · u2,Ny
u2,Ny+1

...
...

...
...

...
uNx,1 uNx,2 · · · uNx,Ny

uNx,Ny+1











, (22)

ANx×Nx
=

D

h2
x



















− 2
3

2
3

1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
2
3 − 2

3



















, (23)

B(Ny+1)×(Ny+1) =
D

h2
y



















−2 1 0 0 · · · 1
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .
. . .

. . .

0 0 · · · 1 −2 1
1 0 · · · 0 1 −2



















. (24)

10



Then following the similar procedure for deriving IIF methods [35], we multiply (21)
by the integration factors e−At from the left and e−Bt from the right, and integrate
over one time step from tn to tn+1 ≡ tn + △t to obtain

Un+1 = eA△t
UneB△t + eA△t

(

∫ △t

0

e−AτR(U(tn + τ))e−Bτdτ
)

eB△t. (25)

We approximate the integrand in (25) by an (r − 1)th order lagrange interpolation
polynomial with interpolation points at tn+1, tn, . . . , tn+2−r, and obtain the rth order
cIIF scheme for two-dimensional reaction-diffusion equations

Un+1 = eA△t
UneB△t +△t

(

α1R(Un+1) +

r−2
∑

i=0

α−ie
(i+1)A△tR(Un−i)e

(i+1)B△t
)

, (26)

where

α−i =
1

△t

∫ △t

0

r−2
∏

k=−1
k 6=i

τ + k△t

(k − i)△t
dτ, −1 ≤ i ≤ r − 2. (27)

In particular, the second order cIIF scheme (cIIF2) is

Un+1 = eA△t
(

Un +
△t

2
R(Un)

)

eB△t +
△t

2
R(Un+1). (28)

Note that the matrices A and B have sizes of a one-dimensional problem. Hence in
cIIF schemes (26), (28) for a two-dimensional problem, we only need to compute matrix
exponentials for matrices with sizes of one-dimensional problems. This fact also holds
for cIIF schemes of three-dimensional reaction-diffusion equations, as shown in [36].

In order to solve reaction-diffusion problems with cross-derivatives and non-constant
diffusion coefficients on higher spatial dimensions, cIIF method has been extended to
the array-representation compact IIF (AcIIF) method in [46]. We review the AcIIF
method [46] in the following and then describe the procedure to apply this approach
to our IIF schemes for CDR equations in the next subsection. The numerical solutions
are stored in multi-dimensional arrays, for example, a two-dimensional array U =
(Uk1,k2

), k1 = 1, · · · , Nx; k2 = 1, · · · , Ny +1 for the two-dimensional problem (20)-(24).
If we fix the second index k2, the two-dimensional array U defines a vector

U(:, k2) = (U1,k2
, U2,k2

, · · · , UNx,k2
)T . (29)

Then the array U can be considered as the collection of these vectors on a one-
dimensional array, with k2 going through from 1 to Ny +1. This collection is presented
using symbol

⊗

in [46], so we can write

U =
⊗

1≤k2≤Ny+1

U(:, k2). (30)

The finite difference operators are linear operators in (20) since the diffusion terms
here are linear. Define finite difference operators Lx and Ly as

(LxU)k1,k2
= D(

Uk1+1,k2
− 2Uk1,k2

+ Uk1−1,k2

h2
x

), (31)

11



and

(LyU)k1,k2
= D(

Uk1,k2+1 − 2Uk1,k2
+ Uk1,k2−1

h2
y

), (32)

then the semi-discretized scheme (20) with the array U can be written as

dU

dt
= (Lx + Ly)U + R(U). (33)

Apply IIF schemes, e.g., the second order IIF scheme (IIF2) [35] in (33) to obtain

Un+1 = e(Lx+Ly)△t
(

Un +
△t

2
R(Un)

)

+
△t

2
R(Un+1). (34)

To implement the scheme (34) using array-representation technique, we first represent

LxU =
⊗

1≤k2≤Ny+1

AU(:, k2), (35)

where A is given in (23). So the exponential of Lx can have the array-representation

eLx△tU =
⊗

1≤k2≤Ny+1

eA△tU(:, k2). (36)

Similarly,

eLy△tU =
⊗

1≤k1≤Nx

eB△tU(k1, :), (37)

where B is given in (24). Since Lx and Ly commute with each other for this constant
diffusion coefficient equation case, e(Lx+Ly)△t = eLx△teLy△t. The array-representation
form of the IIF2 scheme [35], i.e., the AcIIF2 scheme for the 2D reaction-diffusion
equation (19), is

Un+1 −
△t

2
R(Un+1) =

⊗

1≤k2≤Ny+1

eA△t

(

⊗

1≤k1≤Nx

eB△tV (k1, :)

)

(:, k2), (38)

where V = Un + △t
2 R(Un). Similarly the AcIIF2 scheme for a 3D reaction-diffusion

equation with constant diffusion coefficient and without cross-derivatives is

Un+1−
△t

2
R(Un+1) =

⊗

1≤k2≤Ny
1≤k3≤Nz

eA11△t

(

⊗

1≤k1≤Nx
1≤k3≤Nz

eA22△t

(

⊗

1≤k1≤Nx
1≤k2≤Ny

eA33△tV (k1, k2, :)

)

(k1, :, k3)

)

(:, k2, k3),

(39)
where V = Un + △t

2 R(Un), U is a three-dimensional array to store the numerical values
of u, Nx, Ny, Nz are number of spatial grid points in x, y, z directions respectively.
A11,A22,A33 are differential matrices for approximating diffusion operators in x, y, z
directions respectively, and they have sizes of a one-dimensional problem, i.e., Nx×Nx,
Ny × Ny and Nz × Nz.

It is easy to see that the AcIIF2 scheme (38) is equivalent to the cIIF2 scheme (28).
As that pointed out in [46], AcIIF schemes are actually equivalent to cIIF schemes for
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reaction-diffusion equations without cross-derivatives. However, AcIIF schemes can
be easily applied to more general high dimensional reaction-diffusion equations with
cross-derivatives as shown in [46].

(2) AcIIF-WENO schemes for CDR equations

Since AcIIF method is an efficient approach for solving high dimensional reaction-
diffusion equations, we apply it in the IIF-WENO schemes for solving high dimensional
CDR equations. We present the schemes for the general three and four spatial dimen-
sion cases that CDR equations have cross-derivatives and the diffusion coefficients can
be non-constant, such as the Fokker-Planck equations in the following section 3. For
such cases with non-constant diffusion coefficients, differential matrices can not com-
mute and an operator splitting is needed to achieve the second order accuracy in AcIIF
approach. Hence we use the second order AcIIF scheme here.

Consider the three dimensional case of CDR equation (1), d = 3, with cross-
derivatives for the linear diffusion terms and periodic boundary conditions. For the
simplicity of presentation, we consider the scalar equation case. The system case is
solved component by component following the same procedure as the scalar case. The
diffusion matrix D is

D =





a1 + a2 b1 b2

b1 a3 + c1 b3

b2 b3 c2 + c3



 , (40)

where ai, bi and ci, i = 1, 2, 3 are constant or non-constant coefficients of the diffusion
terms. The diffusion terms can be grouped into three classes for the convenience of

applying the AcIIF method, i.e., (a1
∂2

∂x1
2 +2b1

∂2

∂x1∂x2
+c1

∂2

∂x2
2 )u, (a2

∂2

∂x1
2 +2b2

∂2

∂x1∂x3
+

c2
∂2

∂x3
2 )u, and (a3

∂2

∂x2
2 + 2b3

∂2

∂x2∂x3
+ c3

∂2

∂x3
2 )u. Applying the second order IIF-WENO

scheme (11) to the equation and re-grouping the exponential terms, we obtain

~Un+1 = eC△tn

(

~Un + △tnαn
~R(~Un) + △tnβn

~Fa(~Un)
)

+ eC(△tn+△tn−1)
(

△tnβn−1
~Fa(~Un−1)

)

+ △tnαn+1
~R(~Un+1)

= Θ1 + Θ2 + △tnαn+1
~R(~Un+1),

(41)

where
Θ1 = eC△tn ~V1, ~V1 , ~Un + △tnαn

~R(~Un) + △tnβn
~Fa(~Un), (42)

Θ2 = eC(△tn+△tn−1)~V2, ~V2 , △tnβn−1
~Fa(~Un−1). (43)

αn, αn+1, βn−1, βn are given in (11). Then we can apply the array representation
approach in computations of the matrix exponentials. Numerical solutions for u are
stored in a three-dimensional array U with size N1 × N2 × N3, where N1, N2 and N3

are numbers of grid points of three spatial directions respectively. First we use L12 to

denote the second order central finite difference approximation of (a1
∂2

∂x1
2 +2b1

∂2

∂x1∂x2
+
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c1
∂2

∂x2
2 ) as

(L12U)k1,k2,k3
=

a1

h2
1

(Uk1+1,k2,k3
− 2Uk1,k2,k3

+ Uk1−1,k2,k3
)

+
2b1

4h1h2
(Uk1+1,k2+1,k3

+ Uk1−1,k2−1,k3
− Uk1+1,k2−1,k3

− Uk1−1,k2+1,k3
)

+
c1

h2
2

(Uk1,k2+1,k3
− 2Uk1,k2,k3

+ Uk1,k2−1,k3
).

(44)
where h1, h2 and h3 (not used in the above equation) are the grid sizes of the three
spatial directions respectively. Similarly we can define finite difference operators L13

and L23. The diffusion terms in the equation are approximated by Fd(~U) = C ~U =
(L12 + L13 + L23)U . To derive the array representation of the operator L12, we fix
k3 in the three-dimensional array U(:, :, k3) which represents a N1 × N2 matrix, and
collect all these two-dimensional matrices along a vector. This leads to

U =
⊗

1≤k3≤N3

U(:, :, k3).

For constant diffusion coefficient cases, we can define a linear mapping A12, from a
matrix space consisting of all N1 × N2 matrices to itself as following

(A12M)i,j =
2b1

4h1h2
(Mi+1,j+1 + Mi−1,j−1 − Mi−1,j+1 − Mi+1,j−1)

+
a1

h2
1

(Mi+1,j − 2Mi,j + Mi−1,j) +
c1

h2
2

(Mi,j+1 − 2Mi,j + Mi,j−1).
(45)

Then, the array representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3

A12U(:, :, k3),

eL12△tU =
⊗

1≤k3≤N3

eA12△tU(:, :, k3).

Similarly, the array representations for L13 and L23 can be written in terms of A13

and A23 respectively. Note that here A12, A13, A23 and their exponentials are actually
(N1 ·N2)×(N1 ·N2), (N1 ·N3)×(N1 ·N3) and (N2 ·N3)×(N2 ·N3) matrices respectively.

For schemes (41) - (43), vectors ~V1 and ~V2 are stored in three-dimensional arrays
V1 and V2 as that for U . If L12, L13 and L23 commute with each other as the case that
the diffusion coefficients are constants, application of array representations to (42) and
(43) leads to direct decomposition of large matrix exponentials for C to much smaller
ones. For detailed formulas in implementation the method, see the equations in (68)
in Appendix.

If L12, L13 and L23 do not commute with each other as the case that the diffusion
coefficients are not constants, two modifications to the method are needed. One is that
the finite difference operators L12, L13 and L23 may depend on other spatial dimensions
since the diffusion coefficients can be functions of all spatial variables. For example,
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different index k3 results in different finite difference operators L12 and different linear
mappings A12. Hence the linear mappings are represented by Ak3

12, Ak2
13 and Ak1

23 in
such cases. The other is that the Strang operator splitting [43] is needed to obtain a
second order accuracy. By the Strang symmetric operator splitting, we have

eC△tn = e(L12+L13+L23)△tn = e
△tn

2 L12e
△tn

2 L13e△tnL23e
△tn

2 L13e
△tn

2 L12 + O(△tn
3).
(46)

Then array representations are applied in (42) and (43) for decomposition of large
matrix exponentials of C. See the equations in (69) and (70) in Appendix for detailed
implementation formulas.

Similarly, for a four dimensional CDR equation (1), d = 4, with cross-derivatives
for the linear diffusion terms and periodic boundary conditions, the diffusion matrix
D is

D =









a1 + a2 + a3 b1 b2 b3

b1 a4 + a5 + c1 b4 b5

b2 b4 a6 + c2 + c4 b6

b3 b5 b6 c3 + c5 + c6









, (47)

where ai, bi and ci, i = 1, 2, 3, 4, 5, 6 are constant or non-constant coefficients of the
diffusion terms. The diffusion terms can be grouped into six classes for the conve-

nience of applying the AcIIF method, i.e., (a1
∂2

∂x1
2 + 2b1

∂2

∂x1∂x2
+ c1

∂2

∂x2
2 )u, (a2

∂2

∂x1
2 +

2b2
∂2

∂x1∂x3
+ c2

∂2

∂x3
2 )u, (a3

∂2

∂x1
2 +2b3

∂2

∂x1∂x4
+ c3

∂2

∂x4
2 )u, (a4

∂2

∂x2
2 +2b4

∂2

∂x2∂x3
+ c4

∂2

∂x3
2 )u,

(a5
∂2

∂x2
2 + 2b5

∂2

∂x2∂x4
+ c5

∂2

∂x4
2 )u, (a6

∂2

∂x3
2 + 2b6

∂2

∂x3∂x4
+ c6

∂2

∂x4
2 )u. We apply the second

order IIF-WENO scheme (11) and obtain the same form schemes (41)-(43), but with
a much larger system size. Again we can apply the array representation approach in
computations of the matrix exponentials. Numerical solutions for u are stored in a
four-dimensional array U with size N1 ×N2 ×N3 ×N4, where N1, N2, N3 and N4 are
numbers of grid points of four spatial directions respectively. We use L12 to denote the

second order central finite difference approximation of (a1
∂2

∂x1
2 + 2b1

∂2

∂x1∂x2
+ c1

∂2

∂x2
2 )

as

(L12U)k1,k2,k3,k4
=

a1

h2
1

(Uk1+1,k2,k3,k4
− 2Uk1,k2,k3,k4

+ Uk1−1,k2,k3,k4
)

+
2b1

4h1h2
(Uk1+1,k2+1,k3,k4

+ Uk1−1,k2−1,k3,k4
− Uk1+1,k2−1,k3,k4

− Uk1−1,k2+1,k3,k4
)

+
c1

h2
2

(Uk1,k2+1,k3,k4
− 2Uk1,k2,k3,k4

+ Uk1,k2−1,k3,k4
).

(48)
Similarly L13, L14, L23, L24 and L34 are defined. Then the diffusion terms in the
equation are approximated by Fd(~U) = C ~U = (L12 + L13 + L14 + L23 + L24 + L34)U .
To derive the array representation of the operator L12, we fix k3 and k4 in the four-
dimensional array U(:, :, k3, k4) which represents a N1×N2 matrix, and collect all these
two-dimensional matrices along a vector to obtain

U =
⊗

1≤k3≤N3
1≤k4≤N4

U(:, :, k3, k4).
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The same linear mapping A12 is defined as (45) for three dimensional cases. The array
representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3
1≤k4≤N4

A12U(:, :, k3, k4),

eL12△tU =
⊗

1≤k3≤N3
1≤k4≤N4

eA12△tU(:, :, k3, k4).

Similarly, the array representation for L13, L14, L23, L24 and L34 can be written in
terms of A13, A14, A23, A24 and A34 respectively.

For schemes (41) - (43), vectors ~V1 and ~V2 are stored in four-dimensional arrays
V1 and V2 as that for U . If L12, L13, L14, L23, L24 and L34 commute with each
other, array representation is applied in schemes (41) - (43) to decompose large matrix
exponentials for C to much smaller ones. For detailed formulas in implementation of
the method, see the equations (71) and (72) in Appendix.

If L12, L13, L14, L23, L24 and L34 do not commute with each other(e.g., the case
that the diffusion coefficients are not constants), again two modifications are needed in
the method. One is that the linear mappings may depend on other spatial dimensions
since the diffusion coefficients can be functions of all spatial variables. For example,
different indexes k3, k4 result in different finite difference operators L12 and different
linear mappings A12. Hence the linear mappings are represented by Ak3,k4

12 , Ak2,k4

13 ,

Ak2,k3

14 , Ak1,k4

23 , Ak1,k3

24 and Ak1,k2

34 in such cases. The other is that again the Strang
symmetric operator splitting is needed to achieve a second order accuracy. Namely, we
have

eC△tn = e(L12+L13+L14+L23+L24+L34)△tn =e
△tn

2 L34e
△tn

2 L24e
△tn

2 L23e
△tn

2 L14e
△tn

2 L13e△tnL12

e
△tn

2 L13e
△tn

2 L14e
△tn

2 L23e
△tn

2 L24e
△tn

2 L34 + O(△t3n).
(49)

Then application of array representation in (42) and (43) leads to decomposition of
large matrix exponentials of C into much smaller ones. See the equations (73) - (76)
in Appendix for detailed implementation formulas.

Remark: All linear mappings (i.e., A12,A13, etc) here are actually N2 ×N2 matrices
if all spatial directions have the same number of grid points N . Although matrix
exponentials in any higher dimensional problems can be reduced to computations of
such N2 × N2 matrices’ exponentials, it is still expensive to directly calculate them
as shown in the following numerical experiments. Applications of Krylov subspace
approximations of section 2.2.1 in computations of these N2×N2 matrices’ exponentials
are still necessary for the efficiency of the AcIIF-WENO method for high dimensional
CDR problems.

Remark: An advantage of cIIF / AcIIF schemes is that they have simpler formulations
than the Krylov IIF schemes, hence easier to code the algorithms. For multidimensional
CDR or reaction-diffusion problems whose diffusion terms do not have cross-derivatives,
cIIF / AcIIF schemes can be directly applied because we only need to compute matrix
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exponentials for matrices with sizes of one-dimensional problems, i.e. N ×N matrices
with N the number of grid points in one spatial direction. Such matrix exponentials are
computed using a scaling and squaring algorithm with a Padé approximation. They
are computed and stored before the time evolution, and directly used at every time
step [36]. As that shown in the numerical experiments of the section 3, the cIIF /
AcIIF schemes implemented this way are more efficient than the Krylov IIF schemes
for problems which do not have cross-derivative diffusion terms, on not very refined
meshes.

3 Numerical experiments

In this section, we use different types of numerical examples to systematically compare
the computational efficiency of two different approaches in using integration factor
methods for solving high dimensional problems. Examples include equations with ana-
lytical solutions, convection-dominated equation, a stiff reaction problem from mathe-
matical modeling of the dorsal-ventral patterning in Drosophila embryos, and three di-
mensional and four dimensional Fokker-Planck equations. We test the convergence and
CPU times, and analyze computational complexity of numerical schemes via mesh re-
finement studies. We perform simulations on different meshes including very fine ones.
Computations on fine meshes are needed to resolve small structures in complicated
solutions which often arise in application problems. Comparisons of computational
efficiency by different methods on very fine meshes in this paper can provide certain
guidance in choosing the suitable numerical methods. All of the numerical simulations
in this paper are performed on a 2.3 GHz, 16GB RAM Linux workstation.

3.1 Diffusion problems

We first test problems without convection, i.e., study computational complexity of
both approaches without considering the cost of WENO scheme. Then the complete
convection-diffusion problems are tested in the next subsection.

3.1.1 Diffusion problems without cross-derivatives

Example 1 (A problem with linear reaction). We consider a reaction-diffusion
problem with linear reaction

∂u

∂t
= 0.2∇ · (∇u) + 0.1u.

First we test the two dimensional case defined on the domain Ω = {0 < x < 2π, 0 < y <
2π}, subject to no-flux boundary conditions at x = 0, x = 2π and periodic boundary
conditions in the y-direction, i.e.,

∂u

∂x
(0, y, t) =

∂u

∂x
(2π, y, t) = 0; u(x, 0, t) = u(x, 2π, t).

The initial condition is u(x, y, 0) = cos(x) + sin(y). The exact solution of the problem
is u(x, y, t) = e−0.1t(cos(x) + sin(y)). We compute the problem until the final time
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T = 1 by the second order cIIF/AcIIF scheme (28) or (38) (they are equivalent), and
the second order Krylov IIF scheme (17) with the convection term Fa = 0. Since the
problem has a linear reaction term, the local implicit equation is just a linear equation
and can be solved directly. We test the L∞ errors, numerical accuracy orders and CPU
times on successively refined meshes to compare the two approaches. The total numbers
of multiplication and division operations at one time step are counted. The cIIF2
method needs 2N3+8N2+6N operations, where N is the number of grid points in each
spatial direction. The KrylovIIF2 method for this problem needs (M2 +12M +7)N2 +
(M2+20M+7)N+O(M3) operations at every time step. M is the dimension of Krylov
subspace. M = 25 for all examples in this paper, and M does not need to be increased
when the spatial-temporal resolution is refined. Here O(M3) term is the number of
operations for computing matrix exponential of a small M ×M matrix such as eHM△t.
Since it is a small constant which is independent of N , we omit it. Hence for M = 25,
the number of operations at one time step for the KrylovIIF2 scheme is estimated to
be 932N2 + 1132N . This is a two dimensional problem with N2 grid points. So the
KrylovIIF2 scheme has a linear computational complexity, while the computational
complexity of the cIIF2 scheme is not linear. However, their computational efficiency
depends on the size of the problem. The numerical errors, accuracy orders, CPU times
(time unit: second) for a complete simulation, for time evolution part and for one
time step are listed in Table 1 and Table 2 for the cIIF2 scheme and the KrylovIIF2
scheme. We also list the ratios of corresponding CPU times on an N ×N mesh to that
on a N

2 × N
2 mesh, to study the computational complexity of these two approaches.

Both methods give the same numerical errors and the second order accuracy. For this
two dimensional time dependent parabolic problem, we achieve large time step size
computation ∆t = 0.5h by using the IIF method. A linear computational complexity
method should have the CPU time ratio be 8 for a complete time evolution and the
ratio 4 for one time step. The KrylovIIF2 scheme’s CPU time ratios shown in Table
2 verify its linear computational complexity. On the other hand, although the cIIF2
scheme’s CPU time ratios shown in Table 1 are not linear, the cIIF2 scheme is more
efficient than the KrylovIIF2 scheme on 40×40, 80×80 and 160×160 meshes, because
the cIIF2 scheme has a much smaller coefficient 2 in its leading operation amount than
the KrylovIIF2 whose leading operation amount coefficient is 932. On more refined
meshes 640 × 640 and 1280 × 1280, the KrylovIIF2 scheme is more efficient than the
cIIF2. On 320 × 320 mesh, the cIIF2 scheme is more efficient than the KrylovIIF2
scheme for one time step, but KrylovIIF2 is more efficient for the complete simulation
and for the whole time evolution. This is because that cIIF schemes compute matrix
exponentials (e.g., matrix exponentials for N × N matrices A∆t and B∆t) before the
time evolution and at the last time step when ∆t changes to reach the final time T . So
additional CPU times are needed. Other strategies to improve computational efficiency
can be explored further here, for example, interpolation in time for the last time step
rather than recomputing matrix exponentials. This will be one of our future work.

We perform the same test for third order schemes. The third order cIIF scheme
cIIF3 (the scheme (26) with r = 3) and the third order KrylovIIF scheme KrylovIIF3
(18) are used to compute the same two-dimensional problem until the final time T = 1.
The comparison results are presented in Table 3 and Table 4. Both methods have
comparable numerical errors and accuracy orders. We observe higher than third order
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(around fourth order) numerical accuracy orders because we used a fourth order central
difference scheme to discretize the diffusion terms. This is for the purpose of having
comparable spatial and temporal numerical errors. Again as that in the second order
schemes, the Krylov IIF scheme KrylovIIF3 shows a linear computational complexity,
while the cIIF scheme cIIF3 does not. However, cIIF3 is more efficient than KrylovIIF3
on not very refined meshes such as 40× 40, 80× 80, 160× 160 and 320× 320. On very
refined meshes 640 × 640 and 1280 × 1280, KrylovIIF3 is more efficient.

Then we test the three dimensional case defined on the domain Ω = {0 ≤ x ≤
π, 0 ≤ y ≤ π, 0 ≤ z ≤ π}, subject to no-flux boundary conditions. The initial con-
dition is u(x, y, z, 0) = cos(x) + cos(y) + cos(z). The exact solution is u(x, y, z, t) =
e−0.1t(cos(x)+cos(y)+cos(z)). We count the total numbers of multiplication and divi-
sion operations at one time step. The cIIF2 scheme needs 3N4 +4N3 operations, while
the KrylovIIF2 scheme requires (M2 + 8M + 6)N3 + 12MN2 + O(M3) operations. N
is the number of grid points in each spatial direction. Again M is the dimension of the
Krylov subspace and M = 25. O(M3) term is the number of operations for computing
matrix exponential of a small M×M matrix such as eHM△t. Since it is a small constant
which is independent of N , we omit it. Hence for M = 25, the number of operations
at one time step for the KrylovIIF2 scheme is estimated to be 831N3 + 300N2. Since
three dimensional problem has N3 grid points, the computational complexity of the
KrylovIIF2 scheme is linear, while the computational complexity of the cIIF2 scheme
is not linear. Again as that for the two dimensional problem, their computational effi-
ciency depends on the size of the problem. We compute the problem until the final time
T = 1. The numerical errors, accuracy orders, CPU times for a complete simulation,
for time evolution part and for one time step, and the ratios of corresponding CPU
times on an N ×N mesh to that on a N

2 × N
2 mesh are listed in Table 5 and Table 6 for

the cIIF2 scheme and the KrylovIIF2 scheme. Both methods give the same numerical
errors and the second order accuracy. For a three dimensional time dependent prob-
lem with ∆t = h/3, a linear computational complexity method should have the CPU
time ratio be 16 for a complete time evolution and the ratio 8 for one time step. The
KrylovIIF2 scheme’s CPU time ratios shown in Table 6 verify its linear computational
complexity. However, the cIIF2 scheme is more efficient than KrylovIIF2 scheme on
10×10×10, 20×20×20, 40×40×40, 80×80×80, and 160×160×160 meshes, because
the cIIF2 scheme has a much smaller coefficient 3 in its leading operation amount than
the KrylovIIF2 whose leading operation amount coefficient is 831. On the most refined
mesh 320× 320× 320, the KrylovIIF2 scheme is more efficient than the cIIF2. We can
also see that the cIIF2 scheme needs slightly additional CPU times to compute a few
N × N matrix exponentials before the time evolution and at the last time step.

Example 2 (A problem with nonlinear reaction). We consider a reaction-
diffusion problem with nonlinear reaction

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− u2 + e−2t cos2(πx) cos2(πy) + (2π2 − 1)e−t cos(πx) cos(πy).

The PDE is defined on the two dimensional domain (x, y) ∈ (0, 1) × (0, 1), subject
to no-flux boundary conditions. The initial condition is u(x, y, 0) = cos(πx) cos(πy).
The exact solution of the problem is u(x, y, t) = e−t cos(πx) cos(πy). We compute the
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N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 7.45 × 10−4 0.13 0.09 0.0031
80 × 80 1.86 × 10−4 2.00 1.43 11.06 1.04 12.21 0.025 7.92

160 × 160 4.66 × 10−5 2.00 18.26 12.73 14.21 13.66 0.20 8.02
320 × 320 1.16 × 10−5 2.00 269.66 14.77 225.03 15.84 1.77 8.88
640 × 640 2.91 × 10−6 2.00 4,667.67 17.31 4,328.65 19.24 19.58 11.07

1280 × 1280 7.28 × 10−7 2.00 79,855.09 17.11 76,837.65 17.75 180.42 9.22

Table 1: Example 1. 2D case, cIIF2 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that
on a N

2
×

N

2
mesh.

N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 7.45 × 10−4 0.50 0.50 0.04
80 × 80 1.86 × 10−4 2.00 3.56 7.16 3.56 7.16 0.14 3.58

160 × 160 4.66 × 10−5 2.00 27.34 7.68 27.34 7.68 0.54 3.92
320 × 320 1.16 × 10−5 2.00 219.15 8.02 219.15 8.02 2.15 4.01
640 × 640 2.91 × 10−6 2.00 1,828.21 8.34 1,828.21 8.34 8.91 4.15

1280 × 1280 7.28 × 10−7 2.00 14,174.02 7.75 14,174.02 7.75 34.66 3.89

Table 2: Example 1. 2D case, KrylovIIF2 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that
on a N

2
×

N

2
mesh.

N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 1.47 × 10−5 0.21 0.16 0.01
80 × 80 9.18 × 10−7 4.00 2.43 11.37 1.96 12.31 0.05 7.82

160 × 160 5.74 × 10−8 4.00 34.41 14.18 30.38 15.49 0.49 9.44
320 × 320 3.59 × 10−9 4.00 433.57 12.60 397.46 13.08 3.41 7.01
640 × 640 2.29 × 10−10 3.97 7,782.29 17.95 7,385.89 18.58 33.51 9.83

1280 × 1280 2.89 × 10−11 2.99 145,987.45 18.76 141,798.99 19.20 332.66 9.93

Table 3: Example 1. 2D case, cIIF3 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that
on a N

2
×

N

2
mesh.
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N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 1.47 × 10−5 1.13 1.12 0.09
80 × 80 9.18 × 10−7 4.00 7.45 6.60 7.39 6.59 0.28 3.22

160 × 160 5.74 × 10−8 4.00 62.08 8.33 61.58 8.34 1.21 4.37
320 × 320 3.59 × 10−9 4.00 504.81 8.13 500.40 8.13 4.90 4.06
640 × 640 2.35 × 10−10 3.94 3,743.59 7.42 3,696.45 7.39 17.63 3.60

1280 × 1280 1.25 × 10−11 4.23 33,080.77 8.84 32,580.07 8.81 80.09 4.54

Table 4: Example 1. 2D case, KrylovIIF3 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that
on a N

2
×

N

2
mesh.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 2.24 × 10−3 0.0061 0.0057 0.00054
20 × 20 × 20 5.79 × 10−4 1.95 0.21 34.99 0.21 36.76 0.010 19.12
40 × 40 × 40 1.87 × 10−4 1.63 6.93 32.67 6.90 32.96 0.18 17.05
80 × 80 × 80 5.50 × 10−5 1.77 230.83 33.33 230.60 33.42 2.99 16.94

160 × 160 × 160 1.53 × 10−5 1.85 8,792.19 38.09 8,790.15 38.12 55.13 18.42
320 × 320 × 320 4.06 × 10−6 1.91 367,739.27 41.83 367,712.22 41.83 1242.62 22.54

Table 5: Example 1. 3D case, cIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to that
on a N

2
×

N

2
×

N

2
mesh.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 2.24 × 10−3 0.22 0.22 0.02
20 × 20 × 20 5.79 × 10−4 1.95 3.06 14.15 3.06 14.15 0.15 7.02
40 × 40 × 40 1.87 × 10−4 1.63 50.54 16.49 50.54 16.49 1.30 8.51
80 × 80 × 80 5.50 × 10−5 1.77 850.24 16.82 850.24 16.82 11.06 8.53

160 × 160 × 160 1.53 × 10−5 1.85 13,637.13 16.04 13,637.13 16.04 89.28 8.07
320 × 320 × 320 4.06 × 10−6 1.91 225,543.28 16.54 225,543.28 16.54 735.62 8.24

Table 6: Example 1. 3D case, KrylovIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to
that on a N

2
×

N

2
×

N

2
mesh.
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problem until the final time T = 1 by the cIIF2 scheme and the KrylovIIF2 scheme.
Again we test the L∞ errors, numerical accuracy orders and CPU times on successively
refined meshes to compare the two approaches for such a nonlinear reaction-diffusion
problem. In the cIIF2 scheme and the KrylovIIF2 scheme, a local nonlinear equation
needed to be solved at every grid point, due to the implicit treatment for the reaction
term. Here the local nonlinear equation is solved by fixed-point iterations as that in [35].
The results are reported in Table 7 and Table 8. we can see that both methods give the
second order accuracy and they have comparable numerical errors, while KrylovIIF2
has smaller numerical errors on refined meshes 640× 640 and 1280× 1280. The ratios
of corresponding CPU times on an N × N mesh to that on a N

2 × N
2 mesh show

that the KrylovIIF2 scheme has a linear computational complexity. Similar as the last
example, the cIIF2 scheme is more efficient than the KrylovIIF2 scheme on meshes
40 × 40, 80 × 80, 160 × 160 and 320 × 320. On more refined meshes 640 × 640 and
1280 × 1280, the KrylovIIF2 scheme is more efficient than the cIIF2 scheme.

N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 2.81 × 10−3 0.56 0.49 0.0062
80 × 80 7.19 × 10−4 1.97 6.35 11.30 5.73 11.67 0.036 5.78

160 × 160 1.82 × 10−4 1.98 82.36 12.97 76.56 13.35 0.24 6.61
320 × 320 4.56 × 10−5 1.99 1,202.63 14.60 1,146.50 14.98 1.80 7.56
640 × 640 1.14 × 10−5 2.00 18,055.74 15.01 17,598.19 15.35 13.72 7.63

1280 × 1280 2.86 × 10−6 2.00 375,400.69 20.79 371,035.11 21.08 142.81 10.41

Table 7: Example 2. cIIF2 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that on a
N

2
×

N

2
mesh.

N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40 × 40 2.81 × 10−3 3.85 3.85 0.05
80 × 80 7.19 × 10−4 1.97 26.50 6.88 26.50 6.88 0.17 3.51

160 × 160 1.81 × 10−4 1.99 198.52 7.49 198.52 7.49 0.61 3.63
320 × 320 4.45 × 10−5 2.03 1,621.66 8.17 1,621.66 8.17 2.54 4.13
640 × 640 7.65 × 10−6 2.54 12,822.76 7.91 12,822.76 7.91 9.92 3.91

1280 × 1280 1.90 × 10−6 2.01 104,679.46 8.16 104,679.46 8.16 40.07 4.04

Table 8: Example 2. KrylovIIF2 scheme, ∆t = 0.5h, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N mesh to that on a
N

2
×

N

2
mesh.

3.1.2 Diffusion problems with cross-derivatives

Example 3 (A 3D problem with constant diffusion coefficients). We consider
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a three-dimensional reaction-diffusion problem with constant diffusion coefficients

ut = (0.1uxx−0.15uxy+0.1uyy)+(0.1uxx+0.2uxz+0.2uzz)+(0.2uyy+0.15uyz+0.1uzz)+0.8u,

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution of
the problem is

u(x, y, z, t) = e−0.2t sin(x + y + z).

This problem was used in [46] for testing the AcIIF2 scheme. We compute the problem
until the final time T = 1 by the KrylovIIF2 scheme (17) with the convection term
Fa = 0, and the AcIIF2 scheme (41), (68) with the convection term Fa = 0. For the
AcIIF2 scheme, we implement it in two different ways. One way is to directly compute
the matrix exponentials in (68). As that shown in the following numerical results, it is
still very expensive in terms of both CPU times and computer memory to directly cal-
culate such N2 ×N2 matrices’ exponentials. A more efficient way to implement AcIIF
schemes is to apply Krylov subspace approximations of section 2.2.1 in computations of
these N2×N2 matrices’ exponentials. We call such method AcIIF schemes with Krylov
subspace approximations. Again we test the L∞ errors, numerical accuracy orders and
CPU times on successively refined meshes to compare the KrylovIIF2 scheme, the di-
rect AcIIF2 scheme, and the AcIIF2 scheme with Krylov subspace approximations for
this problem. The results are reported in Table 9, Table 10, and Table 11. We can
see that all of methods give the same numerical errors and the second order accuracy.
However, the direct AcIIF2 scheme is computationally expensive as shown in Table 10,
in both CPU times and computer memory costs. The significant CPU time and com-
puter memory costs for the direct AcIIF2 scheme come from the direct computations
and stores of several N2×N2 matrices’ exponentials. In fact, the computations on the
160 × 160 × 160 mesh can not be performed due to memory restrictions of our work-
station. Direct large N2 ×N2 matrix-vector multiplications require a large amount of
CPU time for refined meshes as shown in Table 10 the one time step CPU times. On
the other hand, if we use the Krylov approach to approximate these N2×N2 matrices’
exponentials in the AcIIF2 scheme, the computational efficiency can be improved dra-
matically. This is shown in Table 11. An interesting case is that for the coarse meshes
such as 10×10×10 and 20×20×20, the one time step CPU time for the direct AcIIF2
scheme is less than that for the AcIIF2 scheme with Krylov subspace approximations
due to the relative small sizes of N2 × N2 matrix-vector multiplications. However,
the total CPU time for the direct AcIIF2 scheme still costs more due to the expensive
direct evaluations of N2 ×N2 matrices’ exponentials. In Table 9, we report results for
the KrylovIIF2 scheme. The efficiency of the KrylovIIF2 scheme is impressive. In fact,
the KrylovIIF2 scheme is the most efficient one among all three approaches here on
all meshes. We can also see that both the KrylovIIF2 scheme and the AcIIF2 scheme
with Krylov subspace approximations have linear computational complexity as shown
by the CPU time ratios in Table 9 and Table 11.

Example 4 (A 4D problem with constant diffusion coefficients). We test
a higher dimensional problem, the four-dimensional reaction-diffusion problem with
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N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 4.21 × 10−2 0.15 0.15 0.03
20 × 20 × 20 1.11 × 10−2 1.92 2.09 13.51 2.08 13.52 0.21 6.76
40 × 40 × 40 2.79 × 10−3 2.00 33.11 15.88 33.09 15.89 1.65 7.95
80 × 80 × 80 6.97 × 10−4 2.00 538.81 16.27 538.70 16.28 13.69 8.27

160 × 160 × 160 1.74 × 10−4 2.00 8,413.74 15.62 8,412.93 15.62 109.56 8.00
320 × 320 × 320 4.36 × 10−5 2.00 132,359.95 15.73 132,353.57 15.73 866.21 7.91

Table 9: Example 3. KrylovIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to that
on a N

2
×

N

2
×

N

2
mesh.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 4.21 × 10−2 2.16 1.08 0.01
20 × 20 × 20 1.11 × 10−2 1.92 143.85 66.60 73.36 67.75 0.28 31.73
40 × 40 × 40 2.79 × 10−3 2.00 11,831.05 82.24 5,214.92 71.09 8.88 32.26
80 × 80 × 80 6.97 × 10−4 2.00 1,601,309.44 135.35 753,295.70 144.45 485.98 54.73

160 × 160 × 160 - - - - - - - -

Table 10: Example 3. Direct AcIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to
that on a N

2
×

N

2
×

N

2
mesh. The symbol ”-” means no enough memory for computation.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 4.21 × 10−2 1.17 1.17 0.23
20 × 20 × 20 1.11 × 10−2 1.92 8.66 7.41 8.66 7.41 0.87 3.70
40 × 40 × 40 2.79 × 10−3 2.00 96.87 11.18 96.86 11.18 4.85 5.59
80 × 80 × 80 6.97 × 10−4 2.00 1,352.48 13.96 1,352.37 13.96 34.70 7.15

160 × 160 × 160 1.74 × 10−4 2.00 21,221.14 15.69 21,220.33 15.69 275.57 7.94
320 × 320 × 320 4.36 × 10−5 2.00 339,245.16 15.99 339,238.81 15.99 2,217.32 8.05

Table 11: Example 3. AcIIF2 scheme with Krylov subspace approximations, ∆t = h/3, final time T = 1.0.
CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time
for one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on
an N × N × N mesh to that on a N

2
×

N

2
×

N

2
mesh.
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constant diffusion coefficients

ut =(0.1ux1x1
− 0.15ux1x2

+ 0.1ux2x2
) + (0.1ux1x1

+ 0.2ux1x3
+ 0.2ux3x3

)+

(0.1ux1x1
+ 0.2ux1x4

+ 0.2ux4x4
) + (0.1ux2x2

+ 0.2ux2x3
+ 0.2ux3x3

)+

(0.1ux2x2
+ 0.2ux2x4

+ 0.2ux4x4
) + (0.2ux3x3

+ 0.15ux3x4
+ 0.1ux4x4

) + 2u,

(50)

where (x1, x2, x3, x4) ∈ Ω = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 < 2π}
with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) = sin(x1+
x2 + x3 + x4). The exact solution of the problem is

u(x1, x2, x3, x4, t) = e−0.5t sin(x1 + x2 + x3 + x4).

We compute the problem until the final time T = 1 by the KrylovIIF2 scheme (17)
with the convection term Fa = 0, and the AcIIF2 scheme (41), (71), (72) with the
convection term Fa = 0. For the AcIIF2 scheme, we also implement it in two different
ways, i.e., the direct computations of N2 × N2 matrices’ exponentials and the Krylov
subspace approximations of them. The numerical results are reported in Table 12,
Table 13 and Table 14. We obtain the same conclusion as the 3D problem (Example
3). All of methods give the same numerical errors and the second order accuracy.
However, the direct AcIIF2 scheme is computationally the most expensive one among
three approaches for relatively refined meshes such as 40 × 40 × 40 × 40. We count
the total numbers of multiplication and division operations at one time step. The
direct AcIIF2 scheme needs 6N6 + 2N4 operations, where N is the number of grid
points in each spatial direction. The computational complexity is not linear and CPU
time ratio is expected to be around 26 = 64 when the spatial mesh is refined once.
This is verified in Table 13. As a result of the significant increase of computation
time with mesh refinement, CPU time has reached the maximum computation time
restriction of our workstation and the computation on 80 × 80 × 80 × 80 can not be
performed. The computational efficiency is improved dramatically when the Krylov
approach is used to approximate these N2 × N2 matrices’ exponentials in the AcIIF2
scheme, as shown in Table 14. Again, the KrylovIIF2 scheme is the most efficient one
among all three approaches here on all meshes as shown in Table 12. In terms of total
numbers of multiplication and division operations at one time step, the KrylovIIF2
scheme needs (M2 + 28M + 4)N4 + O(M3) operations, and the AcIIF2 scheme with
Krylov subspace approximations needs (6M2 + 66M + 14)N4 + O(N2) operations. M
is the dimension of the Krylov subspace and M = 25 in this example. Hence they have
linear computational complexity.

Example 5 (A 3D problem with variable diffusion coefficients). In this ex-
ample, we test the three-dimensional reaction-diffusion problem with variable diffusion
coefficients

ut =0.5uxx − 0.5 sin(x + y)uxy + 0.5uyy

+ 0.5uxx − 1

3
cos yuxz +

1

3
uzz

+ 0.5(1 + cos x)uyy − 0.5(1 + cos x)uyz +
1

3
(1 + cos x)uzz + f(x, y, z, u),

(51)
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N × N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 × 10 1.16 × 10−1 1.60 1.59 0.32
20 × 20 × 20 × 20 2.92 × 10−2 1.99 49.34 30.89 49.30 30.92 4.93 15.49
40 × 40 × 40 × 40 7.24 × 10−3 2.01 1,596.13 32.35 1,595.56 32.37 79.79 16.19
80 × 80 × 80 × 80 1.81 × 10−3 2.00 70,569.13 44.21 70,560.68 44.22 1,929.45 24.18

Table 12: Example 4. KrylovIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N × N mesh to
that on a N

2
×

N

2
×

N

2
×

N

2
mesh.

N × N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 × 10 1.16 × 10−1 5.20 3.04 0.19
20 × 20 × 20 × 20 2.92 × 10−2 1.99 398.91 76.75 258.66 85.06 11.84 63.91
40 × 40 × 40 × 40 7.24 × 10−3 2.01 38,341.37 96.12 25,777.97 99.66 799.41 67.50
80 × 80 × 80 × 80 - - - - - - - -

Table 13: Example 4. Direct AcIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N ×N mesh
to that on a N

2
×

N

2
×

N

2
×

N

2
mesh. On the 80×80×80×80 mesh, the computations can not be performed

due to computation time restrictions of our workstation.

N × N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 × 10 1.16 × 10−1 23.70 23.69 4.73
20 × 20 × 20 × 20 2.92 × 10−2 1.99 346.17 14.61 346.13 14.61 34.59 7.31
40 × 40 × 40 × 40 7.24 × 10−3 2.01 7,779.73 22.47 7,779.17 22.47 389.45 11.26
80 × 80 × 80 × 80 1.81 × 10−3 2.00 217,356.07 27.94 217,347.68 27.94 5,573.58 14.31

Table 14: Example 4. AcIIF2 scheme with Krylov subspace approximations, ∆t = h/3, final time T = 1.0.
CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time
for one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on
an N × N × N × N mesh to that on a N

2
×

N

2
×

N

2
×

N

2
mesh.
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where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The source term
f(x, y, z, u) =

(

1.3 + 2
3 − 0.5 sin(x + y) + 1

3 (cos x − cos y)
)

u. The exact solution of this
problem is

u(x, y, z, t) = e−0.2t sin(x + y + z).

This problem was used in [46] for testing the AcIIF2 scheme. We compute the problem
until the final time T = 1. The KrylovIIF2 scheme (17) with the convection term
Fa = 0, and the AcIIF2 scheme (41), (69), (70) with the convection term Fa = 0 are
tested. Two different ways to implement the AcIIF2 scheme, i.e., direct computations
of N2 × N2 matrices’ exponentials and Krylov subspace approximations of them, are
performed. The numerical results are reported in Table 15, Table 16 and Table 17.
We obtain the same conclusion as Example 3 and Example 4. All of methods achieve
similar numerical errors and the second order accuracy. Again, the direct AcIIF2
scheme is computationally the most expensive one among three approaches due to
direct computations of quite a few N2 ×N2 matrices’ exponentials. Especially for this
problem with variable diffusion coefficients, much more N2×N2 matrices’ exponentials
need to be computed than that for constant diffusion coefficient problems because such
N2 × N2 matrices Ak3

12, Ak2
13 and Ak1

23 in (69) and (70) are different at different spatial
grid points. Since direct implementation of the AcIIF2 scheme computes and stores
these N2 ×N2 matrices’ exponentials before the time evolution, much more computer
memory is used to store matrices’ exponentials than that by the approach of Krylov
subspace approximations, in which multiplications of exponential matrices and vectors
are performed in the time evolution process and no matrix’s exponential is pre-stored.
In fact, the computations on the 80 × 80 × 80 mesh by the direct AcIIF2 scheme can
not be performed due to memory restrictions of our workstation. Table 16 shows that
a complete simulation needs much more CPU times than that of the time evolution
part. This verifies that direct computations of these N2 × N2 matrices’ exponentials
require a large amount of CPU resources. Again, the computational efficiency can be
improved dramatically by using the Krylov approach to approximate multiplications of
N2 ×N2 matrices’ exponentials with vectors in the AcIIF2 scheme, as shown in Table
17. And computations can be performed on much more refined meshes (Table 17) since
we do not need to pre-store these N2 × N2 matrices’ exponentials. The most efficient
one is the computations by using the KrylovIIF2 scheme, as shown in Table 15. In
terms of total numbers of multiplication and division operations at one time step, the
KrylovIIF2 scheme needs (M2 +19M +7)N3 +MN2 +MN +O(M3) operations, and
the AcIIF2 scheme needs 5N5 + 6N3 operations. N is the number of grid points in
each spatial direction, while the constant M is the dimension of the Krylov subspace
and M = 25 in this example. Hence the KrylovIIF2 scheme has linear computational
complexity as shown by the CPU time ratios in Table 15.

3.1.3 A system with stiff reactions from mathematical biology

Example 6. We consider an example in mathematical modeling of the dorsal-ventral
patterning in Drosophila embryos, a regulatory system involving several zygotic genes
[33]. Among them, decapentaplegic (Dpp) promotes dorsal cell fates such as am-
nioserosa and inhibits development of the ventral central nervous system; and another
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N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 2.15 × 10−1 0.17 0.17 0.03
20 × 20 × 20 5.29 × 10−2 2.02 2.20 13.06 2.19 13.10 0.22 6.56
40 × 40 × 40 1.34 × 10−2 1.99 35.05 15.94 35.00 15.98 1.75 7.89
80 × 80 × 80 3.34 × 10−3 2.00 551.57 15.73 551.17 15.75 14.13 8.07

160 × 160 × 160 8.34 × 10−4 2.00 8,992.13 16.30 8,989,12 16.31 115.99 8.21
320 × 320 × 320 2.09 × 10−4 2.00 153,195.14 17.04 153,171.55 17.04 958.75 8.27

Table 15: Example 5. KrylovIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to that
on a N

2
×

N

2
×

N

2
mesh.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 2.12 × 10−1 13.79 6.77 0.02
20 × 20 × 20 5.19 × 10−2 2.03 1,723.95 125.01 852.12 125.81 0.54 27.17
40 × 40 × 40 1.31 × 10−2 1.99 328,908.44 190.79 145,345.87 170.57 20.18 37.45l
80 × 80 × 80 - - - - - - - -

Table 16: Example 5. Direct AcIIF2 scheme, ∆t = h/3, final time T = 1.0. CPU: CPU time for a
complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU
time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to
that on a N

2
×

N

2
×

N

2
mesh. The symbol ”-” means no enough memory for computation.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 2.12 × 10−1 1.99 1.99 0.40
20 × 20 × 20 5.19 × 10−2 2.03 14.87 7.45 14.86 7.45 1.49 3.73
40 × 40 × 40 1.31 × 10−2 1.99 165.34 11.12 165.28 11.12 8.26 5.56
80 × 80 × 80 3.27 × 10−3 2.00 2,299.09 13.91 2,298.70 13.91 58.91 7.13

160 × 160 × 160 8.17 × 10−4 2.00 35,181.50 15.30 35,178.49 15.30 456.60 7.75
320 × 320 × 320 2.04 × 10−4 2.00 577,577.49 16.42 577,553.96 16.42 3,775.65 8.27

Table 17: Example 5. AcIIF2 scheme with Krylov subspace approximations, ∆t = h/3, final time T = 1.0.
CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time
for one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on
an N × N × N mesh to that on a N

2
×

N

2
×

N

2
mesh.
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gene Sog promotes central nervous system development. In this system, Dpp is pro-
duced only in the dorsal region while Sog is produced only in the ventral region. For
the wild-type, the Dpp activity has a sharp peak around the mid-line of the dorsal
with the presence of its “inhibitor” Sog. Intriguingly, mutation of Sog results in a
loss of ventral structure as expected, but, in addition, the amnioserosa is reduced as
well. It appears that the Dpp antagonist, Sog, is required for maximal Dpp signaling
[2]. Motivated by experimental study on over-expression of the cell receptors along the
anterior-posterior axis of the embryo [33], a two-dimensional reaction diffusion model
was developed [26] to exam the Dpp activities outside the area of elevated receptors
in a Drosophila embryo. The model has stiff reaction terms due to largely different
biochemical reaction rates in the system [36]. Here we compare the computational
efficiency of compact IIF method and Krylov IIF method for solving this example.

Let [L], [S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp-Sog complex, and
Dpp-receptor complex, respectively. The dynamics of the Dpp-Sog system is governed
by the following reaction diffusion system [26]:

∂[L]

∂t
= DL

(

∂2[L]

∂x2
+

∂2[L]

∂y2

)

− kon[L] (R(x, y) − [LR]) + koff [LR]

−jon[L][S] + (joff + τjdeg)[LS] + VL(x, y)

∂[LR]

∂t
= kon[L] (R(x, y) − [LR]) − (koff + kdeg)[LR]

∂[LS]

∂t
= DLS

(

∂2[LS]

∂x2
+

∂2[LS]

∂y2

)

+ jon[L][S] − (joff + jdeg)[LS]

∂[S]

∂t
= DS

(

∂2[S]

∂x2
+

∂2[S]

∂y2

)

− jon[L][S] + joff [LS] + VS(x, y) (52)

in the domain 0 < x < Xmax, 0 < y < Ymax, where

R(x, y) =

{

Rh, x ≤ Xh,

R0, x > Xh.
(53)

VL(X,Y ) =

{

vL, y < 1
2Ymax,

0, y ≥ 1
2Ymax.

(54)

VS(X,Y ) =

{

0, y < 1
2Ymax,

vS , y ≥ 1
2Ymax.

(55)

The boundary conditions for [L], [LS], and [S] are no-flux at x = 0 and x = Xmax,
and periodic at y = 0 and y = Ymax. R(x, y) is the concentration of the initially
available receptor in space; x = Xh is the boundary between the two regions with
different level of receptors; VL(x, y) and VS(x, y) are the production rates for Dpp and
Sog, respectively; DL,DLS ,DS are diffusion coefficients; τ is the cleavage rate for Sog,
and other coefficients are on, off and degradation rate constants for the corresponding
biochemical reactions. The initial concentrations of all morphogen molecules are zeros.
Both Xmax and Ymax are taken to be 0.055cm, based on the embryo size of Drosophila

at its certain developmental stage [33]. We study the cell receptor over-expression
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experiments in [33] by setting Rh = 9µM in the region 0 < x ≤ Xh = 0.02cm, and
R0 = 3µM in the rest part of the domain. The second order Krylov IIF (Krylov IIF2)
scheme and the second order compact IIF (cIIF2) scheme are used to simulate the
system. The numerical solutions for the concentrations of Dpp, Dpp-receptor, Dpp-
Sog and Sog are presented in Figure 1 and Figure 2. Similar results are obtained for
these two methods. Simulations by both methods confirm that the over-expression
of receptor induces a local boost of Dppreceptor activities near the boundary of two
different concentration regions of receptors, similar to the experimental observations
in [33]. However the computational efficiency of these two methods are different. It
takes 871.26 seconds CPU time for the cIIF2 scheme to finish the simulation, while
it costs 8152.50 seconds CPU time for the Krylov IIF2 scheme. Again, consistent
observations with previous examples are obtained. For this example which has diffusion
terms without cross-derivatives, compact approach is more efficient than the Krylov
approach.

3.2 Convection-Diffusion problems

In this section, we test these schemes for dealing with high dimensional convection-
diffusion problems with WENO discretizations for convection terms.

Example 7 (A 4D convection-diffusion equation with anisotropic diffusion
and constant diffusion coefficients). We consider a four-dimensional convection-
diffusion equation with cross-derivative diffusion terms and constant diffusion coeffi-
cients

ut + (
1

2
u2)x1

+ (
1

2
u2)x2

+ (
1

2
u2)x3

+ (
1

2
u2)x4

=

(0.1ux1x1
− 0.15ux1x2

+ 0.1ux2x2
) + (0.1ux1x1

+ 0.2ux1x3
+ 0.2ux3x3

)+

(0.1ux1x1
+ 0.2ux1x4

+ 0.2ux4x4
) + (0.1ux2x2

+ 0.2ux2x3
+ 0.2ux3x3

)+

(0.1ux2x2
+ 0.2ux2x4

+ 0.2ux4x4
) + (0.2ux3x3

+ 0.15ux3x4
+ 0.1ux4x4

) + S(x1, x2, x3, x4, t),
(56)

where (x1, x2, x3, x4) ∈ Ω = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 < 2π}
with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) = sin(x1+
x2 + x3 + x4). The exact solution is

u(x1, x2, x3, x4) = e−0.5t sin(x1 + x2 + x3 + x4).

The source term

S(x1, x2, x3, x4, t) = (4e−0.5t cos(x1 + x2 + x3 + x4) + 2)e−0.5t sin(x1 + x2 + x3 + x4).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme
(17) and the AcIIF2-WENO scheme (41), (71), (72) with Krylov subspace approxi-
mations to matrix exponentials in (71) and (72) are used. Here time step sizes are
determined only by the convection (hyperbolic) part of the equation with CFL num-
ber 0.1. Numerical results are reported in Table 18 and Table 19. We can see that
both schemes achieve the same numerical errors and second order accuracy. However,
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Figure 1: Numerical solutions of Example 6 using the Krylov IIF2 scheme: concentrations
of [L], [LR], [LS], [S] at T = 100 seconds for the Dpp-Sog system when receptors are over-
expressed. ∆t = hx = hy = 0.001375 in the simulation. Parameters are DL = DLS =
DS = 85µm2s−1; vL = 1nMs−1; vS = 80nMs−1; kon = 0.4µM−1s−1; koff = 4 × 10−6s−1;
kdeg = 5 × 10−4s−1; jon = 95µM−1s−1; joff = 4 × 10−6s−1; jdeg = 0.54s−1; τ = 1;
Rh = 9µM ; R0 = 3µM .

N × N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 × 10 2.27 × 10−2 6.55 6.52 0.65
20 × 20 × 20 × 20 1.01 × 10−2 1.18 242.15 36.97 241.64 37.08 10.51 16.13
40 × 40 × 40 × 40 3.30 × 10−3 1.61 8,013.72 33.09 8,005.98 33.13 166.82 15.87
80 × 80 × 80 × 80 9.00 × 10−4 1.87 316,945.98 39.55 316,803.84 39.57 3,084.58 18.49

Table 18: Example 7. KrylovIIF2-WENO scheme, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N × N mesh to
that on a N

2
×

N

2
×

N

2
×

N

2
mesh.
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Figure 2: Numerical solutions of Example 6 using the cIIF2 scheme: concentrations of
[L], [LR], [LS], [S] at T = 100 seconds for the Dpp-Sog system when receptors are over-
expressed. ∆t = hx = hy = 0.001375 in the simulation. Parameters are DL = DLS =
DS = 85µm2s−1; vL = 1nMs−1; vS = 80nMs−1; kon = 0.4µM−1s−1; koff = 4 × 10−6s−1;
kdeg = 5 × 10−4s−1; jon = 95µM−1s−1; joff = 4 × 10−6s−1; jdeg = 0.54s−1; τ = 1;
Rh = 9µM ; R0 = 3µM .

N × N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3
10 × 10 × 10 × 10 2.27 × 10−2 110.57 110.54 11.07
20 × 20 × 20 × 20 1.01 × 10−2 1.18 2,290.56 20.72 2,290.05 20.72 99.25 8.96
40 × 40 × 40 × 40 3.30 × 10−3 1.61 60,778.28 26.53 60,770.28 26.54 1,269.46 12.79
80 × 80 × 80 × 80 9.00 × 10−4 1.87 1,812,641.33 29.82 1,812,266.39 29.82 17,984.97 14.17

Table 19: Example 7. AcIIF2-WENO scheme with Krylov subspace approximations, final time T = 1.0.
CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time
for one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on
an N × N × N × N mesh to that on a N

2
×

N

2
×

N

2
×

N

2
mesh.
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the KrylovIIF2-WENO scheme is much more efficient than the AcIIF2-WENO scheme
with Krylov subspace approximations for this example.

Example 8 (A 3D convection-diffusion equation with anisotropic diffusion
and variable diffusion coefficients). We add convection terms to the example 5
and consider the following three-dimensional convection-diffusion equation with cross-
derivative diffusion terms and variable diffusion coefficients

ut + (
1

2
u2)x + (

1

2
u2)y + (

1

2
u2)z =

0.5uxx − 0.5 sin(x + y)uxy + 0.5uyy + 0.5uxx − 1

3
cos(y)uxz +

1

3
uzz

+ 0.5(1 + cos x)uyy − 0.5(1 + cos x)uyz +
1

3
(1 + cos x)uzz + S(x, y, z, t),

(57)

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution of
this equation is

u(x, y, z, t) = e−0.2t sin(x + y + z).

And the source term S(x, y, z, t) is

S(x, y, z, t) =
(

3e−0.2t cos(x+y+z)+
59

30
−0.5 sin(x+y)+

1

3
(cos(x)−cos(y))

)

e−0.2t sin(x+y+z).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme
(17), and the AcIIF2-WENO scheme (41), (69), (70) with Krylov subspace approxima-
tions to matrix exponentials in (69) and (70) are tested. Time step sizes are determined
only by the convection (hyperbolic) part of the equation with CFL number 0.1. Numer-
ical results are reported in Table 20 and Table 21. The same observations as the last
example are obtained. Both schemes achieve almost the same numerical errors and
second order accuracy. The KrylovIIF2-WENO scheme is much more efficient than
the AcIIF2-WENO scheme with Krylov subspace approximations for this convection-
diffusion example with anisotropic diffusion and variable diffusion coefficients.

N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 1.37 × 10−1 1.22 1.22 0.09
20 × 20 × 20 2.99 × 10−2 2.19 21.24 17.35 21.21 17.37 0.76 8.11
40 × 40 × 40 5.28 × 10−3 2.50 393.16 18.51 392.95 18.52 6.89 9.10
80 × 80 × 80 1.09 × 10−3 2.28 8,463.98 21.53 8,462.12 21.53 61.55 8.93

160 × 160 × 160 2.62 × 10−4 2.05 95,558.44 11.29 95,545.98 11.29 413.83 6.72

Table 20: Example 8. KrylovIIF2-WENO scheme, final time T = 1.0. CPU: CPU time for a complete
simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step. CPU time
unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N × N mesh to that
on a N

2
×

N

2
×

N

2
mesh.
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N × N × N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10 × 10 × 10 1.37 × 10−1 10.05 10.05 0.78
20 × 20 × 20 2.99 × 10−2 2.19 81.47 8.10 81.44 8.10 2.91 3.73
40 × 40 × 40 5.28 × 10−3 2.50 936.26 11.49 936.05 11.49 16.43 5.64
80 × 80 × 80 1.09 × 10−3 2.28 11,024.66 11.78 11,022.74 11.78 91.27 5.56

160 × 160 × 160 2.61 × 10−4 2.06 215,299.80 19.53 215,287.37 19.53 936.02 10.26

Table 21: Example 8. AcIIF2-WENO scheme with Krylov subspace approximations, final time T = 1.0.
CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time
for one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on
an N × N × N mesh to that on a N

2
×

N

2
×

N

2
mesh.

Example 9 (A convection-dominated problem). In this example, we test the per-
formance of the schemes for convection-dominated case. Consider the two-dimensional
nonlinear viscous Burgers’ equation







ut + (
u2

2
)x + (

u2

2
)y = 0.01∆u, −2 ≤ x ≤ 2, − 2 ≤ y ≤ 2,

u(x, y, 0) = 0.3 + 0.7 sin(
π

2
(x + y)),

(58)

with periodic boundary condition. Since the viscous coefficient is much smaller than
the convection coefficient, a sharp gradient (the shock wave) is developed along with
the time evolution. The Krylov IIF2-WENO scheme and the cIIF2-WENO scheme
are used to solve the PDE to T = 5/π2. The numerical results are reported in Figure
3. We can observe that the WENO scheme plays an important role here to obtain a
sharp, non-oscillatory shock transition region. The time step size is only restricted by
the hyperbolic part of the PDE with CFL number 0.5. We compare the CPU times
of the Krylov IIF2-WENO scheme and the cIIF2-WENO scheme on different meshes.
The results are reported in Table 22. Consistent observations with previous examples
are obtained. For this example which has diffusion terms without cross-derivatives,
compact approach is more efficient than the Krylov approach, except the case with a
very refined mesh.

N × N KrylovIIF2 CPU(s) cIIF2 CPU(s)

40 × 40 0.52 0.10
80 × 80 5.83 1.20

160 × 160 29.81 15.15
320 × 320 378.36 290.28
640 × 640 3,067.96 4,344.81

Table 22: CPU time comparisons for solving the nonlinear viscous Burgers’ equation. The
PDE is solved until the final time T = 5/π2. KrylovIIF2 CPU: CPU time of the Krylov
IIF2-WENO scheme; cIIF2 CPU: CPU time of the cIIF2-WENO scheme.

Example 10 (Fokker-Planck equations). The Fokker-Planck equation (FPE) [9,
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Figure 3: Numerical solutions of nonlinear viscous Burgers’ equation on a 80 × 80 mesh
by the Krylov IIF2-WENO scheme and the cIIF2-WENO scheme. Time T = 5/π2. Left
picture: result of Krylov IIF2-WENO; right picture: result of cIIF2-WENO.

37] describes in a statistical sense how a collection of initial data evolves in time, e.g., in
describing Brownian motion. It is a N -dimensional convection-diffusion equation and
has been applied in computing statistical properties in many systems. In [46], AcIIF
schemes with second order central difference spatial discretizations for the diffusion
terms were applied in solving FPEs which describe the time evolution of the probability
density function of stochastic systems [38]. The general form of FPEs is

∂p(x, t)

∂t
= −

R
∑

r=1







N
∑

i=1

nri
∂

∂xi

(

qr(x, t) − 1

2

N
∑

j=1

nrj
∂qr(x, t)

∂xj

)







, (59)

where p(x, t) is the probability density of the system at the state x = (x1, x2, . . . , xN )
and time t. In the context of bio-chemical reactions, R denotes the total number
of chemical reactions in the system, N the total number of species involving in the
reaction, and xi denotes the copy number of i-th reactant. nri is the change of xi when
the r-th reaction occurs once. qr(x, t) is defined by qr(x, t) = wr(x)p(x, t), where
wr(x, t) is the reaction propensity function for r-th reaction at state x and time t.
In this section, we study computational efficiency of Krylov IIF-WENO scheme and
AcIIF-WENO scheme for solving high dimensional FPE. Since IIF schemes in this
paper are multistep methods, numerical values at the first time step are needed to
start computations for solving convection-diffusion equations. We use a third order
Runge-Kutta scheme for the first step time evolution. Then the second order Krylov
IIF scheme and AcIIF scheme are used to continue the time evolution.

(1) A three dimensional Fokker-Planck equation.
We first compare the computational efficiency of the KrylovIIF2-WENO scheme

(17) and the AcIIF2-WENO scheme (41), (69), (70) with Krylov subspace approxima-
tions for a three dimensional Fokker-Planck equation [42] which involves two metabo-
lites A and B and one enzyme EA. The reactions are described as following (here ∅
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means that there is no reactant or product in the reaction):

∅
kA[EA]

1+[A]/KI−→ A, ∅ kB−→ B,

A + B
k[A][B]−→ ∅,

A
µ[A]−→ ∅, B

µ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
µ[EA]−→ ∅.

(60)

In this system, the total number of reactions R is 7, and the total number of chemical
species N is 3. The vectors nr = (nr1, nr2, nr3) are n1 = (1, 0, 0), n2 = (0, 1, 0),
n3 = (−1,−1, 0), n4 = (−1, 0, 0), n5 = (0,−1, 0), n6 = (0, 0, 1), n7 = (0, 0,−1).
We denote the system state x by x = (x1, x2, x3) which is ([A], [B], [EA]) in this case.
Then the propensity functions wr(x) are

w1 =
kAx3

1 + x1/KI
, w2 = kB , w3 = kx1x2,

w4 = µx1, w5 = µx2, w6 =
kEA

1 + x1/KR
, w7 = µx3,

(61)

where kA = 0.3s−1, kB = 2s−1, KI = 30, k = 0.001s−1, µ = 0.004s−1, KR = 30 and
kEA

= 1s−1 [42]. Then the FPE can be written as

∂p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7), (62)

where Lr represents the operator for the r-th reaction. Specifically,

L1 =
∂q1(x, t)

∂x1
− 1

2

∂2q1(x, t)

∂x2
1

,

L2 =
∂q2(x, t)

∂x2
− 1

2

∂2q2(x, t)

∂x2
2

,

L3 = −∂q3(x, t)

∂x1
− ∂q3(x, t)

∂x2
− 1

2

(∂2q3(x, t)

∂x2
1

+
∂2q3(x, t)

∂x2
2

+ 2
∂2q3(x, t)

∂x1∂x2

)

,

L4 = −∂q4(x, t)

∂x1
− 1

2

∂2q4(x, t)

∂x2
1

,

L5 = −∂q5(x, t)

∂x2
− 1

2

∂2q5(x, t)

∂x2
2

,

L6 =
∂q6(x, t)

∂x3
− 1

2

∂2q6(x, t)

∂x2
3

,

L7 = −∂q7(x, t)

∂x3
− 1

2

∂2q7(x, t)

∂x2
3

.

(63)

The computational domain is Ω = [0, 100]× [0, 100]× [0, 45], which covers nearly all the
possible states of the chemical reactions, since the probability of [A] > 100, [B] > 100,
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and [EA] > 45 is sufficiently small. The initial condition in our simulation is a Gaussian
distribution centered at point (30, 40, 20) with standard deviation

√
30. Zero Dirichlet

boundary conditions are used.
For spatial discretizations, we use the third order WENO scheme for the convection

terms and the second order central difference scheme for the diffusion terms. And we
compare the second order Krylov IIF scheme and the second order AcIIF scheme with
Krylov subspace approximations. For simulation results shown in the figures here, the
time step size △t is 0.017 (corresponding to the CFL number 0.4 for the convection
part) and the numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60.
In Table 23, we list the errors and accuracy orders for both schemes, and the same
numerical errors and second order accuracy are obtained. Since there is no explicit
form for the exact solution in this example, we focus on testing the schemes’ temporal
accuracy. So the spatial resolution is fixed to be 120×120×60, and numerical errors for
a time step size △t are obtained by calculating the difference of numerical values for △t
and △t/2. We compare the computational efficiency of these two schemes and list CPU
times of using them to solve the problem until the final time T = 10 with △t = 0.017,
in Table 24. The CPU times in Table 24 show that the KrylovIIF2-WENO scheme is
more efficient than the AcIIF2-WENO scheme with Krylov subspace approximations,
for this example. In Figures 4, 5, and 6, we show contour plots of numerical solutions by
the KrylovIIF2-WENO scheme on two dimensional domain of molecular species A and
B, with different values of the third dimension EA. Contour plots of numerical solutions
by the AcIIF2-WENO scheme with Krylov subspace approximations are presented in
Figures 7, 8, and 9. We see that both methods generate similar numerical solutions.

KrylovIIF2-WENO

time step size L∞error Order
△t 1.56 × 10−8

△t/2 3.90 × 10−9 2.00
△t/4 1.00 × 10−9 1.96

AcIIF2-WENO with Krylov subspace approx.

time step L∞error Order
△t 1.56 × 10−8

△t/2 3.90 × 10−9 2.00
△t/4 1.00 × 10−9 1.96

Table 23: Numerical errors and accuracy orders for the KrylovIIF2 scheme and the AcIIF2 scheme with
Krylov subspace approximations for the 3D Fokker-Planck equation (62). The third order WENO scheme
is used for the convection terms. Final time T = 5. △t = 0.017.

(2) A four dimensional Fokker-Planck equation.
We further test the methods for a higher dimensional problem, i.e., a four dimen-

sional FPE which involves two metabolites A and B and two enzymes EA and EB .
The reactions are described as following (here ∅ means that there is no reactant or
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CPU CPU1 CPU2

KrylovIIF2-WENO 44,568.7 44,562.3 75.24
AcIIF2-WENO with Krylov 183,126.0 183,120.0 309.38

Table 24: CPU time for KrylovIIF2 scheme and the AcIIF2 scheme with Krylov subspace approximations
for the 3D Fokker-Planck equation (62). The third order WENO scheme is used for the convection terms.
Final time T = 10. △t = 0.017. CPU: CPU time for a complete simulation. CPU1: CPU time for time
evolution part. CPU2: CPU time for one time step. CPU time unit: seconds.
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Figure 4: Distribution of molecular species A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (62) using the KrylovIIF2-WENO scheme. Final time T = 10.
△t = 0.017. The numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60.
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Figure 5: Distribution of molecular species A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (62) using the KrylovIIF2-WENO scheme. Final time T = 50.
△t = 0.017. The numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60.
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Figure 6: Distribution of molecular species A and B with different EA values, at time T =
0, 20, 35, 50. Numerical solutions of (62) using the KrylovIIF2-WENO scheme. △t = 0.017.
The numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60.
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Figure 7: Distribution of molecular species A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (62) using the AcIIF2-WENO scheme with Krylov subspace ap-
proximations. Final time T = 10. △t = 0.017. The numbers of spatial grid points are
NA = 120, NB = 120, NEA

= 60.
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Figure 8: Distribution of molecular species A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (62) using the AcIIF2-WENO scheme with Krylov subspace ap-
proximations. Final time T = 50. △t = 0.017. The numbers of spatial grid points are
NA = 120, NB = 120, NEA

= 60.
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Figure 9: Distribution of molecular species A and B with different EA values, at time
T = 0, 20, 35, 50. Numerical solutions of (62) using the AcIIF2-WENO scheme with Krylov
subspace approximations. △t = 0.017. The numbers of spatial grid points are NA = 120,
NB = 120, NEA

= 60.

product in the reaction):

∅
kA[EA]

1+[A]/KI−→ A, ∅
kB [EB ]

1+[B]/KI−→ B,

A + B
k[A][B]−→ ∅,

A
µ[A]−→ ∅, B

µ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
µ[EA]−→ ∅,

∅
kEB

1+[B]/KR−→ EB , EB
µ[EB ]−→ ∅.

(64)

In this system, the total number of reactions R is 9, and the total number of
chemical species N is 4. The vectors nr = (nr1, nr2, nr3, nr4) are n1 = (1, 0, 0, 0), n2 =
(0, 1, 0, 0), n3 = (−1,−1, 0, 0), n4 = (−1, 0, 0, 0), n5 = (0,−1, 0, 0), n6 = (0, 0, 1, 0),
n7 = (0, 0,−1, 0), n8 = (0, 0, 0, 1), n9 = (0, 0, 0,−1). We denote the system state x

by x = (x1, x2, x3, x4) which is ([A], [B], [EA], [EB ]) in this case. Then the propensity
functions wr(x) are

w1 =
kAx3

1 + x1/KI
, w2 =

kBx4

1 + x2/KI
, w3 = kx1x2, w4 = µx1,

w5 = µx2, w6 =
kEA

1 + x1/KR
, w7 = µx3, w8 =

kEB

1 + x2/KR
, w9 = µx4,

(65)

41



where kA = 0.3s−1, kB = 0.3s−1, KI = 60, k = 0.001s−1, µ = 0.002s−1, KR = 30,
kEA

= 0.02s−1 and kEB
= 0.02s−1[42]. Then the FPE can be written as

∂p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9), (66)

where Lr represents the operator for the r-th reaction. Specifically,

L1 =
∂q1(x, t)

∂x1
− 1

2

∂2q1(x, t)

∂x2
1

,

L2 =
∂q2(x, t)

∂x2
− 1

2

∂2q2(x, t)

∂x2
2

,

L3 = −∂q3(x, t)

∂x1
− ∂q3(x, t)

∂x2
− 1

2

(∂2q3(x, t)

∂x2
1

+
∂2q3(x, t)

∂x2
2

+ 2
∂2q3(x, t)

∂x1∂x2

)

,

L4 = −∂q4(x, t)

∂x1
− 1

2

∂2q4(x, t)

∂x2
1

,

L5 = −∂q5(x, t)

∂x2
− 1

2

∂2q5(x, t)

∂x2
2

,

L6 =
∂q6(x, t)

∂x3
− 1

2

∂2q6(x, t)

∂x2
3

,

L7 = −∂q7(x, t)

∂x3
− 1

2

∂2q7(x, t)

∂x2
3

,

L8 =
∂q8(x, t)

∂x4
− 1

2

∂2q8(x, t)

∂x2
4

,

L9 = −∂q9(x, t)

∂x4
− 1

2

∂2q9(x, t)

∂x2
4

.

(67)

The computational domain is Ω = [0, 80] × [0, 80] × [0, 30] × [0, 30]. The initial condi-
tion in our simulation is a Gaussian distribution centered at point (30, 40, 15, 12) with
standard deviation

√
40. Zero Dirichlet boundary conditions are used.

Same as that for the three dimensional problem, for spatial discretizations we use
the third order WENO scheme for the convection terms and the second order central
difference scheme for the diffusion terms. We compare the computational efficiency
of the second order Krylov IIF scheme (17) and the second order AcIIF scheme (41),
(73)-(76) with Krylov subspace approximations. For simulation results shown in the
figures here, the time step size △t is 0.1 (corresponding to the CFL number 0.6 for
the convection part) and the numbers of spatial grid points are NA = 40, NB = 40,
NEA

= 20, NEB
= 20. In Table 25, we list the errors and accuracy orders for both

schemes, and the same numerical errors and second order accuracy are obtained. We
compare the computational efficiency of these two schemes and list CPU times of
using them to solve the problem until the final time T = 10 with △t = 0.1, in Table
26. We obtain the same conclusion as that for the three dimensional problem. The
CPU times in Table 26 show that the KrylovIIF2-WENO scheme is more efficient
than the AcIIF2-WENO scheme with Krylov subspace approximations, for this four
dimensional example. In Figures 10, 11, and 12, we show contour plots of numerical
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solutions by the KrylovIIF2-WENO scheme on two dimensional domain of molecular
species A and B, with different values of the third and the fourth dimension EA and
EB . Contour plots of numerical solutions by the AcIIF2-WENO scheme with Krylov
subspace approximations are presented in Figures 13, 14, and 15. We see that both
methods generate similar numerical solutions.

KrylovIIF2-WENO

time step size L∞ error Order
△t 1.03 × 10−8

△t/2 2.58 × 10−9 2.00
△t/4 6.47 × 10−10 2.00

AcIIF2-WENO with Krylov subspace approx.

time step L∞ error Order
△t 1.03 × 10−8

△t/2 2.58 × 10−9 2.00
△t/4 6.47 × 10−10 2.00

Table 25: Numerical errors and accuracy orders for the KrylovIIF2 scheme and the AcIIF2 scheme with
Krylov subspace approximations for the 4D Fokker-Planck equation (66). The third order WENO scheme
is used for the convection terms. Final time T = 5. △t = 0.1.

CPU CPU1 CPU2

KrylovIIF2-WENO 3831.98 3826.48 38.09
AcIIF2-WENO with Krylov 93320.7 93315.6 924.16

Table 26: CPU time for KrylovIIF2 scheme and the AcIIF2 scheme with Krylov subspace approximations
for the 4D Fokker-Planck equation (66). The third order WENO scheme is used for the convection terms.
Final time T = 10. △t = 0.1. CPU: CPU time for a complete simulation. CPU1: CPU time for time
evolution part. CPU2: CPU time for one time step. CPU time unit: seconds.

4 Conclusions and Discussions

In this paper, we systematically perform numerical comparison and computational
complexity analysis to study two different approaches in dealing with solving high spa-
tial dimension diffusion and convection-diffusion PDE problems by integration factor
WENO methods. Specifically, one approach is the cIIF / AcIIF method, and the
other one is the Krylov IIF method, i.e., direct application of Krylov subspace ap-
proximations in efficiently calculating large matrix exponentials in integration factor
methods. Via extensive numerical experiments and analysis of the results for various
high spatial dimension problems, we find that both the cIIF / AcIIF method and the
Krylov IIF method have their own advantages for different type of problems. The
Krylov IIF method has linear computational complexity. For the numerical examples
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Figure 10: Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (66) using the KrylovIIF2-WENO scheme. Final time
T = 10. △t = 0.1. The numbers of spatial grid points are NA = 40, NB = 40, NEA

= 20,
NEB

= 20.
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Figure 11: Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (66) using the KrylovIIF2-WENO scheme. Final time
T = 50. △t = 0.1. The numbers of spatial grid points are NA = 40, NB = 40, NEA

= 20,
NEB

= 20.
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Figure 12: Distribution of molecular species A and B with EA = 15 and EB = 15, at
time T = 0, 10, 30, 50. Numerical solutions of (66) using the KrylovIIF2-WENO scheme.
△t = 0.1. The numbers of spatial grid points are NA = 40, NB = 40, NEA

= 20, NEB
= 20.
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Figure 13: Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (66) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 10. △t = 0.1. The numbers of spatial grid
points are NA = 40, NB = 40, NEA

= 20, NEB
= 20.
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Figure 14: Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (66) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 50. △t = 0.1. The numbers of spatial grid
points are NA = 40, NB = 40, NEA

= 20, NEB
= 20.
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Figure 15: Distribution of molecular species A and B with EA = 15 and EB = 15, at time
T = 0, 10, 30, 50. Numerical solutions of (66) using the AcIIF2-WENO scheme with Krylov
subspace approximations. △t = 0.1. The numbers of spatial grid points are NA = 40,
NB = 40, NEA

= 20, NEB
= 20.
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tested in this paper, it is shown that on not very refined meshes, the cIIF / AcIIF
method is more efficient than the Krylov IIF method for problems whose diffusion
terms do not have cross-derivatives. The Krylov IIF method is more efficient on such
problems for very refined meshes due to its linear computational complexity property.
For high dimensional problems whose diffusion terms have no cross-derivatives, the
cIIF / AcIIF method only needs to compute matrix exponentials with sizes as that
for one spatial dimension problems (i.e., N × N matrices and N is the number of
spatial grid points in one spatial direction). Hence it is very efficient. For high di-
mensional problems whose diffusion terms have cross-derivatives, the AcIIF method
can reduce Nd ×Nd matrices’ exponentials to a series of N2 ×N2 matrices’ exponen-
tials. However, computations of these N2 × N2 matrices’ exponentials are still costly
in CPU time and computer memory, especially for a not very coarse mesh. Applica-
tions of Krylov subspace approximations to these N2 × N2 matrices’ exponentials in
the AcIIF method can significantly improve its computational efficiency. We compare
three approaches including the AcIIF method, the AcIIF method with Krylov subspace
approximation, and the direct Krylov IIF method for problems whose diffusion terms
have cross-derivatives, and find that the most efficient method for such problems is the
direct Krylov IIF method, as that shown in the numerical experiments. Certainly the
efficiency of the Krylov IIF method depends on the dimension size M of Krylov sub-
space used in computation. In the development of Krylov IIF schemes for solving high
spatial dimension convection-diffusion-reaction PDEs [5, 19, 20], M is taken to be 25
and Krylov subspace approximation errors are much smaller than truncation errors of
the numerical schemes which discretize the PDEs, for different problems and matrices’
sizes. Following the literature, for all examples in this paper, we choose M = 25 and
obtain correct accuracy orders of the numerical schemes, even for very large N4 × N4

matrices from the four spatial dimension PDEs. It will be interesting to study possi-
ble dependence of the parameter M on different types of PDEs (different differential
operators) and problems, which is one of our future work.

Appendix: Detailed formulae for AcIIF-WENO schemes.

(1) For the three dimensional CDR equation, if L12, L13 and L23 commute with
each other, then

Θ1 =
⊗

1≤k1≤N1

eA23△tn

(

⊗

1≤k2≤N2

eA13△tn

(

⊗

1≤k3≤N3

eA12△tnV1(:, :, k3)

)

(:, k2, :)

)

(k1, :, :),

Θ2 =
⊗

1≤k1≤N1

eA23(△tn+△tn−1)

(

⊗

1≤k2≤N2

eA13(△tn+△tn−1)

(

⊗

1≤k3≤N3

eA12(△tn+△tn−1)V2(:, :, k3)

)

(:, k2, :)

)

(k1, :, :).

(68)
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If L12, L13 and L23 do not commute with each other, then

Θ1 =
⊗

1≤k3≤N3

eA
k3
12

△tn
2

(

⊗

1≤k2≤N2

eA
k2
13

△tn
2 V ∗

1 (:, k2, :)

)

(:, :, k3),

V ∗
1 =

⊗

1≤k1≤N1

eA
k1
23△tn

(

⊗

1≤k2≤N2

eA
k2
13

△tn
2

(

⊗

1≤k3≤N3

eA
k3
12

△tn
2 V1(:, :, k3)

)

(:, k2, :)

)

(k1, :, :);

(69)
and

Θ2 =
⊗

1≤k3≤N3

eA
k3
12

(△tn+△tn−1)

2

(

⊗

1≤k2≤N2

eA
k2
13

(△tn+△tn−1)

2 V ∗
2 (:, k2, :)

)

(:, :, k3),

V ∗
2 =

⊗

1≤k1≤N1

eA
k1
23 (△tn+△tn−1)

(

⊗

1≤k2≤N2

eA
k2
13

(△tn+△tn−1)

2

(

⊗

1≤k3≤N3

eA
k3
12

(△tn+△tn−1)

2 V2(:, :, k3)

)

(:, k2, :)

)

(k1, :, :).

(70)

(2) For the four dimensional CDR equation, if L12, L13, L14, L23, L24 and L34

commute with each other, then

Θ1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA34△tn

(

⊗

1≤k1≤N1
1≤k3≤N3

eA24△tn

(

⊗

1≤k1≤N1
1≤k4≤N4

eA23△tn

(

⊗

1≤k2≤N2
1≤k3≤N3

eA14△tn

(

⊗

1≤k2≤N2
1≤k4≤N4

eA13△tn

(

⊗

1≤k3≤N3
1≤k4≤N4

eA12△tnV1(:, :, k3, k4)

)

(:, k2, :, k4)

)

(:, k2, k3, :)

)

(k1, :, :, k4)

)

(k1, :, k3, :)

)

(k1, k2, :, :),

(71)

Θ2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA34(△tn+△tn−1)

(

⊗

1≤k1≤N1
1≤k3≤N3

eA24(△tn+△tn−1)

(

⊗

1≤k1≤N1
1≤k4≤N4

eA23(△tn+△tn−1)

(

⊗

1≤k2≤N2
1≤k3≤N3

eA14(△tn+△tn−1)

(

⊗

1≤k2≤N2
1≤k4≤N4

eA13(△tn+△tn−1)

(

⊗

1≤k3≤N3
1≤k4≤N4

eA12(△tn+△tn−1)V2(:, :, k3, k4)

)

(:, k2, :, k4)

)

(:, k2, k3, :)

)

(k1, :, :, k4)

)

(k1, :, k3, :)

)

(k1, k2, :, :).

(72)
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If L12, L13, L14, L23, L24 and L34 do not commute with each other, then

Θ1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

△tn
2

(

⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

△tn
2

(

⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

△tn
2

(

⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

△tn
2

(

⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

△tn
2 V ∗

1 (:, k2, :, k4)

)

(:, k2, k3, :)

)

(k1, :, :, k4)

)

(k1, :, k3, :)

)

(k1, k2, :, :),

(73)

V ∗
1 =

⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 △tn

(

⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

△tn
2

(

⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

△tn
2

(

⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

△tn
2

(

⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

△tn
2

(

⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

△tn
2 V1(k1, k2, :, :)

)

(k1, :, k3, :)

)

(k1, :, :, k4)

)

(:, k2, k3, :)

)

(:, k2, :, k4)

)

(:, :, k3, k4).

(74)
And

Θ2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(△tn+△tn−1)

2

(

⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(△tn+△tn−1)

2

(

⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(△tn+△tn−1)

2

(

⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(△tn+△tn−1)

2

(

⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(△tn+△tn−1)

2 V ∗
2 (:, k2, :, k4)

)

(:, k2, k3, :)

)

(k1, :, :, k4)

)

(k1, :, k3, :)

)

(k1, k2, :, :),

(75)

V ∗
2 =

⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 (△tn+△tn−1)

(

⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(△tn+△tn−1)

2

(

⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(△tn+△tn−1)

2

(

⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(△tn+△tn−1)

2

(

⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(△tn+△tn−1)

2

(

⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(△tn+△tn−1)

2 V2(k1, k2, :, :)

)

(k1, :, k3, :)

)

(k1, :, :, k4)

)

(:, k2, k3, :)

)

(:, k2, :, k4)

)

(:, :, k3, k4).

(76)
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