
Krylov Integration Factor Method for High Spatial Dimension Convection-Diffusion Problems on Sparse Grids

Dong Lu

Publication Date

13-06-2017

License

This work is made available under a All Rights Reserved license and should only be used in accordance with
that license.

Citation for this work (American Psychological Association 7th edition)

Lu, D. (2017). Krylov Integration Factor Method for High Spatial Dimension Convection-Diffusion Problems on
Sparse Grids (Version 1). University of Notre Dame. https://doi.org/10.7274/mw22v408901

This work was downloaded from CurateND, the University of Notre Dame's institutional repository.

For more information about this work, to report or an issue, or to preserve and share your original work,
please contact the CurateND team for assistance at curate@nd.edu.

mailto:curate@nd.edu

KRYLOV INTEGRATION FACTOR METHOD FOR HIGH SPATIAL

DIMENSION CONVECTION-DIFFUSION PROBLEMS ON SPARSE GRIDS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Dong Lu

Yong-Tao Zhang, Director

Graduate Program in Applied and Computational Mathematics and Statistics

Notre Dame, Indiana

June 2017

c© Copyright by

Dong Lu

2017

All Rights Reserved

KRYLOV INTEGRATION FACTOR METHOD FOR HIGH SPATIAL

DIMENSION CONVECTION-DIFFUSION PROBLEMS ON SPARSE GRIDS

Abstract

by

Dong Lu

Integration factor (IF) methods are a class of efficient time discretization meth-

ods for solving stiff problems via evaluation of an exponential function of the corre-

sponding matrix for the stiff operator. The computational challenge in applying the

methods for partial differential equations (PDEs) on high spatial dimensions (multi-

dimensional PDEs) is how to deal with the matrix exponential for very large matrices.

Compact integration factor methods developed in [Nie et al., Journal of Computa-

tional Physics, 227 (2008) 5238-5255] provide an approach to reduce the cost pro-

hibitive large matrix exponentials for linear diffusion operators with constant diffusion

coefficients in high spatial dimensions to a series of much smaller one dimensional

computations. This approach is further developed in [Wang et al., Journal of Compu-

tational Physics, 258 (2014) 585-600] to deal with more complicated high dimensional

reaction-diffusion equations with cross-derivatives in diffusion operators. Another ap-

proach is to use Krylov subspace approximations to efficiently calculate large matrix

exponentials. In [Chen and Zhang, Journal of Computational Physics, 230 (2011)

4336-4352], Krylov subspace approximation is directly applied to the implicit inte-

gration factor (IIF) methods for solving high dimensional reaction-diffusion problems.

Recently the method is combined with weighted essentially non-oscillatory (WENO)

schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-

Dong Lu

388] to efficiently solve semilinear and fully nonlinear convection-reaction-diffusion

equations. A natural question that arises is how these two approaches may perform

differently for various types of problems. In the first part of this dissertation, we

study the computational power of Krylov IF-WENO methods for solving high spa-

tial dimension convection-diffusion PDE problems (up to four spatial dimensions).

Systematical numerical comparison and complexity analysis are carried out for the

computational efficiency of the two different approaches. We show that although the

Krylov IF-WENO methods have linear computational complexity, both the compact

IF method and the Krylov IF method have their own advantages for different type

of problems. This study provides certain guidance for using IF-WENO methods to

solve general high spatial dimension convection-diffusion problems.

In the second part of this dissertation, we combine the Krylov integration factor

methods with sparse grid combination techniques and solve high spatial dimension

convection-diffusion equations such as Fokker-Planck equations on sparse grids. Nu-

merical examples are presented to show that significant computational times are saved

by applying the Krylov integration factor methods on sparse grids.

Dedicated to my family.

ii

CONTENTS

FIGURES . v

TABLES . viii

ACKNOWLEDGMENTS . xi

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: NUMERICAL METHODS . 6
2.1 IIF-WENO methods . 6
2.2 Two approaches for high dimensional problems 11

2.2.1 Krylov approximation method 11
2.2.2 Compact / array-representation method 15

2.2.2.1 cIIF/AcIIF for reaction-diffusion equations 16
2.2.2.2 AcIIF-WENO schemes for CDR equations 20
2.2.2.3 Detailed formulae for AcIIF-WENO schemes. 27

2.3 Krylov IF method on sparse grids . 29
2.4 Linear stability analysis of the IIF2 scheme for CDR equations. . . . 33

CHAPTER 3: NUMERICAL EXAMPLES FOR COMPUTATIONAL COM-
PLEXITY STUDY OF KRYLOV INTEGRATION FACTOR WENO
METHOD . 38
3.1 Diffusion problems . 38

3.1.1 Diffusion problems without cross-derivatives 39
3.1.2 Diffusion problems with cross-derivatives 52
3.1.3 A system with stiff reactions from mathematical biology . . . 67

3.2 Convection-Diffusion problems . 69

CHAPTER 4: NUMERICAL EXAMPLES FOR KRYLOV INTEGRATION
METHODS ON SPARSE GRIDS . 96
4.1 Isotropic diffusion problems . 97
4.2 A 3D problem with anisotropic diffusion and constant diffusion coeffi-

cients . 109
4.3 A 3D problem with anisotropic diffusion and variable diffusion coeffi-

cients . 113

iii

4.4 A convection-diffusion problem . 117
4.5 Three dimensional Fokker-Planck equations 119

CHAPTER 5: CONCLUSION . 128

BIBLIOGRAPHY . 131

iv

FIGURES

2.1 Semi-coarsened sparse grids {Ωl1,l2} with the finest level NL = 3. . . . 30

2.2 Linear stability regions of the IIF2 scheme (2.10) for different values
of d∆t under a fixed value of a∆t. (a) a∆t = 1.0; (b) a∆t = 10.0; (c)
a∆t = −1.0; (d) a∆t = −10.0. 36

2.3 Linear stability regions of the IIF2 scheme (2.10) for different values
of a∆t under a fixed value of d∆t. (a) d∆t = 1.0; (b) d∆t = 2.0; (c)
d∆t = 10.0; (d) d∆t = 20.0. 37

3.1 Numerical solutions of Example 6 using the Krylov IIF2 scheme: con-
centrations of [L], [LR], [LS], [S] at T = 100 seconds for the Dpp-Sog
system when receptors are over-expressed. ∆t = hx = hy = 0.001375
in the simulation. Parameters are DL = DLS = DS = 85µm2s−1;
vL = 1nMs−1; vS = 80nMs−1; kon = 0.4µM−1s−1; koff = 4×10−6s−1;
kdeg = 5 × 10−4s−1; jon = 95µM−1s−1; joff = 4 × 10−6s−1; jdeg =
0.54s−1; τ = 1; Rh = 9µM ; R0 = 3µM 70

3.2 Numerical solutions of Example 6 using the cIIF2 scheme: concen-
trations of [L], [LR], [LS], [S] at T = 100 seconds for the Dpp-Sog
system when receptors are over-expressed. ∆t = hx = hy = 0.001375
in the simulation. Parameters are DL = DLS = DS = 85µm2s−1;
vL = 1nMs−1; vS = 80nMs−1; kon = 0.4µM−1s−1; koff = 4×10−6s−1;
kdeg = 5 × 10−4s−1; jon = 95µM−1s−1; joff = 4 × 10−6s−1; jdeg =
0.54s−1; τ = 1; Rh = 9µM ; R0 = 3µM 71

3.3 Numerical solutions of nonlinear viscous Burgers’ equation on a 80×
80 mesh by the Krylov IIF2-WENO scheme and the cIIF2-WENO
scheme. Time T = 5/π2. Left picture: result of Krylov IIF2-WENO;
right picture: result of cIIF2-WENO. 79

3.4 Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75. Numeri-
cal solutions of (4.5) using the KrylovIIF2-WENO scheme. Final time
T = 10. 4t = 0.017. The numbers of spatial grid points are NA = 120,
NB = 120, NEA

= 60. 86

3.5 Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75. Numeri-
cal solutions of (4.5) using the KrylovIIF2-WENO scheme. Final time
T = 50. 4t = 0.017. The numbers of spatial grid points are NA = 120,
NB = 120, NEA

= 60. 86

v

3.6 Distribution of A and B with differentEA values, at time T = 0, 20, 35, 50.
Numerical solutions of (4.5) using the KrylovIIF2-WENO scheme.
4t = 0.017. The numbers of spatial grid points are NA = 120,
NB = 120, NEA

= 60. 87

3.7 Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75. Numer-
ical solutions of (4.5) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 10. 4t = 0.017. The
numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60. . 87

3.8 Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75. Numer-
ical solutions of (4.5) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 50. 4t = 0.017. The
numbers of spatial grid points are NA = 120, NB = 120, NEA

= 60. . 88

3.9 Distribution of A and B with different EA values, at time T = 0, 20, 35, 50.
Numerical solutions of (4.5) using the AcIIF2-WENO scheme with
Krylov subspace approximations. 4t = 0.017. The numbers of spatial
grid points are NA = 120, NB = 120, NEA

= 60. 88

3.10 Distribution of A and B with EA = 4.5, 12, 19.5, 27 and EB = 15.
Numerical solutions of (3.17) using the KrylovIIF2-WENO scheme.
Final time T = 10. 4t = 0.1. The numbers of spatial grid points are
NA = 40, NB = 40, NEA

= 20, NEB
= 20. 93

3.11 Distribution of A and B with EA = 4.5, 12, 19.5, 27 and EB = 15.
Numerical solutions of (3.17) using the KrylovIIF2-WENO scheme.
Final time T = 50. 4t = 0.1. The numbers of spatial grid points are
NA = 40, NB = 40, NEA

= 20, NEB
= 20. 93

3.12 Distribution of A and B with EA = 15 and EB = 15, at time T =
0, 10, 30, 50. Numerical solutions of (3.17) using the KrylovIIF2-WENO
scheme. 4t = 0.1. The numbers of spatial grid points are NA = 40,
NB = 40, NEA

= 20, NEB
= 20. 94

3.13 Distribution of A and B with EA = 4.5, 12, 19.5, 27 and EB = 15.
Numerical solutions of (3.17) using the AcIIF2-WENO scheme with
Krylov subspace approximations. Final time T = 10. 4t = 0.1. The
numbers of spatial grid points are NA = 40, NB = 40, NEA

= 20,
NEB

= 20. 94

3.14 Distribution of A and B with EA = 4.5, 12, 19.5, 27 and EB = 15.
Numerical solutions of (3.17) using the AcIIF2-WENO scheme with
Krylov subspace approximations. Final time T = 50. 4t = 0.1. The
numbers of spatial grid points are NA = 40, NB = 40, NEA

= 20,
NEB

= 20. 95

vi

3.15 Distribution of A and B with EA = 15 and EB = 15, at time T =
0, 10, 30, 50. Numerical solutions of (3.17) using the AcIIF2-WENO
scheme with Krylov subspace approximations. 4t = 0.1. The numbers
of spatial grid points are NA = 40, NB = 40, NEA

= 20, NEB
= 20. . 95

4.1 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on single-grid. Final time T = 10. 4t = 0.015. Distribution
of molecular species A and B with EA = 12.66, 21.09, 29.53, 37.97. . . 123

4.2 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on sparse-grid. Final time T = 10. 4t = 0.015. Distribution
of molecular species A and B with EA = 12.66, 21.09, 29.53, 37.97. . . 125

4.3 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on single-grid. Final time T = 50. 4t = 0.015. Distribution
of molecular species A and B with EA = 12.66, 21.09, 29.53, 37.97. . . 125

4.4 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on sparse-grid. Final time T = 50. 4t = 0.015. Distribution
of molecular species A and B with EA = 12.66, 21.09, 29.53, 37.97. . . 126

4.5 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on single-grid. Distribution of molecular species A and B with
different EA values, at time T = 0, 20, 35, 50. 4t = 0.015. 126

4.6 Numerical solutions of the 3D Fokker-Planck equation using the KrylovIIF2
scheme on sparse-grid. Distribution of molecular species A and B with
different EA values, at time T = 0, 20, 35, 50. 4t = 0.015. 127

vii

TABLES

3.1 EXAMPLE 1. 2D CASE, CIIF2 SCHEME 43

3.2 EXAMPLE 1. 2D CASE, KRYLOVIIF2 SCHEME 44

3.3 EXAMPLE 1. 2D CASE, CIIF3 SCHEME 45

3.4 EXAMPLE 1. 2D CASE, KRYLOVIIF3 SCHEME 46

3.5 EXAMPLE 1. 3D CASE, CIIF2 SCHEME 47

3.6 EXAMPLE 1. 3D CASE, KRYLOVIIF2 SCHEME 48

3.7 EXAMPLE 2. CIIF2 SCHEME . 50

3.8 EXAMPLE 2. KRYLOVIIF2 SCHEME 51

3.9 EXAMPLE 3. KRYLOVIIF2 SCHEME 54

3.10 EXAMPLE 3. DIRECT ACIIF2 SCHEME 55

3.11 EXAMPLE 3. ACIIF2 SCHEME WITH KRYLOV SUBSPACE AP-
PROXIMATIONS . 56

3.12 EXAMPLE 4. KRYLOVIIF2 SCHEME 59

3.13 EXAMPLE 4. DIRECT ACIIF2 SCHEME 60

3.14 EXAMPLE 4. ACIIF2 SCHEME WITH KRYLOV SUBSPACE AP-
PROXIMATIONS . 61

3.15 EXAMPLE 5. KRYLOVIIF2 SCHEME 64

3.16 EXAMPLE 5. DIRECT ACIIF2 SCHEME 65

3.17 EXAMPLE 5. ACIIF2 SCHEME WITH KRYLOV SUBSPACE AP-
PROXIMATIONS . 66

3.18 EXAMPLE 7. KRYLOVIIF2-WENO SCHEME 73

3.19 EXAMPLE 7. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE
APPROXIMATIONS . 74

3.20 EXAMPLE 8. KRYLOVIIF2-WENO SCHEME 76

3.21 EXAMPLE 8. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE
APPROXIMATIONS . 77

3.22 CPU TIME COMPARISONS FOR SOLVING THE NONLINEAR
VISCOUS BURGERS’ EQUATION 80

viii

3.23 NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE KRYLOVIIF2
SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV SUBSPACE
APPROXIMATIONS FOR THE 3D FOKKER-PLANCK EQUATION
(4.5) . 84

3.24 CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME
WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 3D
FOKKER-PLANCK EQUATION (4.5) 85

3.25 NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE KRYLOVIIF2
SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV SUBSPACE
APPROXIMATIONS FOR THE 4D FOKKER-PLANCK EQUATION
(3.17) . 91

3.26 CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME
WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 4D
FOKKER-PLANCK EQUATION (3.17) 92

4.1 EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON
OF NUMERICAL ERRORS AND CPU TIMES FOR COMPUTA-
TIONS ON SINGLE-GRID AND SPARSE-GRID. 103

4.2 EXAMPLE 1, 2D CASE, KRYLOVIIF3 SCHEME, COMPARISON
OF NUMERICAL ERRORS AND CPU TIMES FOR COMPUTA-
TIONS ON SINGLE-GRID AND SPARSE-GRID. 104

4.3 EXAMPLE 1, 3D CASE, KRYLOVIIF2 SCHEME, COMPARISON
OF NUMERICAL ERRORS AND CPU TIMES FOR COMPUTA-
TIONS ON SINGLE-GRID AND SPARSE-GRID. 105

4.4 EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON
OF THE NUMBER OF MULTIPLICATION AND DIVISION OP-
ERATIONS IN ONE TIME STEP. 107

4.5 EXAMPLE 1, 2D CASE, CRANK-NICOLSON SCHEME WITH A
MULTIGRID SOLVER (THE TWO-GRID CORRECTION SCHEME)
FOR THE LINEAR SYSTEMS. 107

4.6 EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, NON-UNIFORM
GRIDS. COMPARISON OF NUMERICAL ERRORS AND CPU TIMES
FOR COMPUTATIONS ON SINGLE-GRID AND SPARSE-GRID. 108

4.7 EXAMPLE 2. KRYLOVIIF2 SCHEME, COMPARISON OF NU-
MERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON
SINGLE-GRID AND SPARSE-GRID. 111

4.8 EXAMPLE 3. KRYLOVIIF2 SCHEME, COMPARISON OF NU-
MERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON
SINGLE-GRID AND SPARSE-GRID. 115

4.9 EXAMPLE 4. KRYLOVIIF2 SCHEME, COMPARISON OF NU-
MERICAL ERRORS AND CPU TIMES 118

ix

4.10 NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE KRYLOVIIF2
SCHEME TO SOLVE THE 3D FOKKER-PLANCK EQUATION ON
SINGLE AND SPARSE GRIDS. 124

4.11 CPU TIME FOR THE KRYLOVIIF2 SCHEME TO SOLVE THE
3D FOKKER-PLANCK EQUATION ON SINGLE AND SPARSE
GRIDS . 124

x

ACKNOWLEDGMENTS

First I would like to thank my advisor Dr. Yong-Tao Zhang, for the continu-

ous support of my graduate study and research, for his patience, encouragement,

enthusiasm, and immense knowledge.

I would like to thank Dr. Bei Hu and Dr. Martina Bukac for being my dissertation

readers. I appreciate their helpful comments and suggestions. I would also like to

thank other faculty at Notre Dame for their lecture and help.

I would like to thank my group members including Yuan Liu, Tian Jiang, Liang

Wu and Michael Machen for their suggestions and encouragement to my research.

I especially would like to thank every member of the Department of Applied and

Computational Mathematics and Statistics for building such a great environment

which respects and supports each individual’s development. I would also like to

thank my other friends at Notre Dame for making my graduate study an enjoyable

journey.

I would like to thank my parents. They were always supporting me and encour-

aging me with their best wishes.

Finally, I would like to thank my husband Jianxu Chen and my daughter Lily

Chen. They are the source of my joy and inspiration.

xi

CHAPTER 1

INTRODUCTION

Efficient and accurate temporal numerical schemes are important for the perfor-

mance of high order accuracy numerical simulations. A number of state-of-the-art

high order time-stepping methods were developed in the literature. Here we just give

a few examples and do not provide a complete list. For example, the total variation

diminishing (TVD) Runge-Kutta (RK) schemes [13, 14, 45, 47]; spectral deferred

correction (SDC) methods [4, 11, 21, 32, 39]; high order implicit-explicit (IMEX)

multistep / RK methods [1, 9, 27, 52, 57]; hybrid methods of SDC and high order

RK schemes [8]; etc.

Integration factor (IF) methods are a class of “exactly linear part” time discretiza-

tion methods for the solution of nonlinear partial differential equations (PDEs) with

the linear highest spatial derivatives. This class of methods performs the time evo-

lution of the stiff linear operator via evaluation of an exponential function of the

corresponding matrix. Hence the integration factor type time discretization can re-

move both the stability constrain and time direction numerical errors from the high

order derivatives [3, 10, 26, 28, 38]. Here time direction numerical errors are numerical

errors for solving the semi-discretized ODE system resulting from spatial discretiza-

tions of the PDE. In [42], a class of efficient implicit integration factor (IIF) methods

were developed for solving systems with both stiff linear and nonlinear terms. A

novel property of the methods is that the implicit terms are free of the exponential

operation of the linear terms. Hence the exact evaluation of the linear part is decou-

pled from the implicit treatment of the nonlinear terms. As a result, if the nonlinear

1

terms do not involve spatial derivatives, the size of the nonlinear system arising from

the implicit treatment is independent of the number of spatial grid points; it only

depends on the number of the original PDEs. This distinguishes IIF methods [42]

from implicit exponential time differencing (ETD) methods in [3].

Nonlinear convection-diffusion-reaction (CDR) systems of equations [22] are com-

mon mathematical models in applications from biology, chemistry and physics. A

CDR system defined on a multidimensional spatial domain has the following general

form

~ut +
d∑
i=1

~fi(~u)xi = ∇ · (D(~u)∇~u) + ~r(~u), (1.1)

where ~u is the unknown vector function, ~fi, i = 1, · · · , d are flux vector functions in

d spatial dimensions, D(~u) is the diffusion matrix and it could be nonlinear, and ~r is

the reaction term. Often the CDR models in applications have nonlinear convection

and reaction terms, but a linear diffusion term ∇ · (D∇~u), where D is the diffusion

matrix that is independent of ~u. In such case, the system is semilinear. To numeri-

cally solve this time-dependent problem (1.1), a nonlinear stable discretization suit-

able for hyperbolic PDEs is needed for the nonlinear convection terms, to deal with

the convection-dominated cases or a spatial mixture of convection-dominated and

diffusion-dominated cases. Weighted essentially non-oscillatory (WENO) schemes

are such kind of nonlinear stable discretizations. They are a class of popular high

order numerical methods for solving hyperbolic PDEs whose solutions have complex

solution structures. It is robust to apply WENO schemes in discretizing the convec-

tion terms in a general convection-diffusion problem, as that shown in [37]. We use

WENO schemes to solve convection-diffusion equations so that various situations in

a general problem can be dealt with directly.

WENO schemes have the advantage of attaining uniform high order accuracy in

smooth regions while maintaining sharp and essentially monotone transitions in large

2

gradient regions of the solution. WENO schemes are designed based on the successful

ENO schemes in [17, 47]. The first WENO scheme was constructed in [34] for a third

order finite volume version. In [23], third and fifth order finite difference WENO

schemes in multi-space dimensions were constructed, with a general framework for

the design of the smoothness indicators and non-linear weights. The main idea of

the WENO scheme is to form a weighted combination of several local reconstructions

based on different stencils (usually referred to as small stencils) and use it as the final

WENO reconstruction. The combination coefficients (also called non-linear weights)

depend on the linear weights, often chosen to increase the order of accuracy over that

on each small stencil, and on the smoothness indicators which measure the smooth-

ness of the reconstructed function in the relevant small stencils. Hence an adaptive

interpolation or reconstruction procedure is actually the essential part of the WENO

schemes. Later, WENO schemes on unstructured meshes (e.g. arbitrary triangular

or tetrahedral meshes) were developed to deal with complex domain geometries, see

e.g. [20, 35, 55, 56].

Recently, we developed IIF-WENO methods for solving nonlinear CDR systems

in [24]. The methods can be designed for arbitrary order of accuracy. The stiffness of

the system is resolved well and the methods are stable by using time step sizes which

are just determined by the non-stiff hyperbolic part of the system. Large time step

size computations are obtained. For CDR systems (1.1) defined on high dimensional

spatial domains, the major computational challenge in applying the methods is how

to deal with the matrix exponential for very large matrices. Currently there are two

approaches to deal with the large matrix exponential problem in IIF methods. One

is the class of compact implicit integration factor (cIIF) methods in [33, 43]. cIIF

methods reduce the cost prohibitive large matrix exponentials for linear diffusion

operators with constant diffusion coefficients in high spatial dimensions to a series of

much smaller one dimensional computations.

3

This approach is further extended in [53] as an array-representation technique to

deal with more complicated high dimensional reaction-diffusion equations with cross-

derivatives in diffusion operators. The method is termed as array-representation

compact implicit integration factor (AcIIF) method. Another approach is to use

Krylov subspace approximations to efficiently calculate large matrix exponentials. In

[7], Krylov subspace approximation is directly applied to the IIF methods for solving

high dimensional reaction-diffusion problems.

A natural question that arises is how these two approaches may perform differ-

ently for various types of problems when they are applied to solve more complicated

CDR equations. In the first part of this dissertation, we study the computational

power of Krylov IIF-WENO methods for solving high spatial dimension convection-

diffusion PDE problems (up to four spatial dimensions) by direct numerical simu-

lations. Systematical numerical comparison and complexity analysis are carried out

for the computational efficiency of the two different approaches. We show that al-

though the Krylov IIF-WENO methods have linear computational complexity, both

the compact IIF method and the Krylov IIF method have their own advantages for

different type of problems. This study provides certain guidance for using IIF-WENO

methods to solve high spatial dimension problems.

In the second part of this dissertation, we aim at achieving more efficient compu-

tations of Krylov IIF schemes than the existing work in the literature by developing

the Krylov IIF schemes on sparse grids for high spatial dimension problems. In re-

cent years, sparse-grid has become a major approximation tool for high-dimensional

problems. It has been successfully used in many scientific and engineering applica-

tions. Discretizations on sparse grids involve O(N · (logN)d−1) degrees of freedom

only, where d denotes the underling problem’s dimensionality and N is the number

of grid points in one coordinate direction. A detailed review on sparse-grid technique

can be found in [6]. Sparse-grid techniques were introduced by Zenger [54] in 1991 to

4

reduce the number of degrees of freedom in finite-element calculations. The sparse-

grid combination technique, which was introduced in 1992 by Griebel et al. [15], can

be seen as a practical implementation of the sparse-grid technique. In the sparse-

grid combination technique, the final solution is a linear combination of solutions on

semi-coarsened grids, where the coefficients of the combination are chosen such that

there is a canceling in leading-order error terms and the accuracy order can be kept

to be the same as that on single full grids [15, 30, 31].

The rest of this dissertation is organized as following. In chapter 2, we first re-

view the IIF-WENO methods for solving CDR equations developed in [24]. Then

we present two different approach to deal with the high dimensional problems, i.e.,

the direct Krylov approach and the AcIIF approach. In order to compare it with

the Krylov approach, we combine the AcIIF method with WENO method for solving

CDR equations. After that, Krylov IIF methods on sparse grids are developed. In

chapter 3, we perform systematical numerical comparison and complexity analysis for

applying these two approaches to various high dimensional problems including three

and four dimensional Fokker-Planck equations. In chapter 4, we perform extensive

numerical experiments to test the sparse-grid Krylov IIF methods and show signif-

icant savings in computational costs by comparisons with single-grid computations.

Conclusions are given in chapter 5.

5

CHAPTER 2

NUMERICAL METHODS

In section 2.1, we briefly review the IIF-WENO methods for solving CDR equa-

tions developed in [24]. In section 2.2, we present two approaches for dealing with high

dimensional problems: Krylov approximation method and compact/array-representation

method. For the AcIIF method designed in [53], we combine it with WENO method

and derive the corresponding schemes for solving CDR equations. In section 2.3, we

develop the krylov IF methods on sparse grids. In section 2.4, linear stability analysis

of the IIF2 scheme(2.10) for CDR equations is given.

2.1 IIF-WENO methods

The method of lines (MOL) approach is applied to the equation (1.1). For the

simplicity of presentation, we consider the scalar equation case. The system case

is solved component by component following the same procedure as the scalar case.

For nonlinear convection terms
∑d

i=1 fi(u)xi , the third order finite difference WENO

scheme with Lax-Friedrichs flux splitting [46] is used. The second or fourth order

central finite difference scheme (depending on the order of accuracy of IIF time

discretizations) is used to discretize the diffusion terms.

For the convection terms, the conservative finite-difference schemes we use approx-

imate the point values at a uniform (or smoothly varying) grid in a conservative fash-

ion. The finite difference WENO schemes approximate derivatives of multi-dimension

in a dimension by dimension way. For example, the x-direction derivative f(u)x at a

6

grid point is approximated by a conservative flux difference

f(u)x|x=xi ≈
1

∆x
(f̂i+1/2 − f̂i−1/2), (2.1)

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on the

three-point values f(ul) (here for the simplicity of notations, we use ul to denote the

value of the numerical solution u at the point xl along the line y = yj, z = zk with

the understanding that the value could be different for different y and z coordinates),

l = i − 1, i, i + 1, when the wind is positive (i.e., when f ′(u) ≥ 0 for the scalar

case, or when the corresponding eigenvalue is positive for the system case with a

local characteristic decomposition). This numerical flux f̂i+1/2 is written as a convex

combination of two second order numerical fluxes based on two different substencils of

two points each, and the combination coefficients depend on a “smoothness indicator”

measuring the smoothness of the solution in each substencil. The detailed formulae

is

f̂i+1/2 = w0

[
1

2
f(ui) +

1

2
f(ui+1)

]
+ w1

[
−1

2
f(ui−1) +

3

2
f(ui)

]
, (2.2)

where

wr =
αr

α1 + α2

, αr =
dr

(ε+ βr)2
, r = 0, 1. (2.3)

d0 = 2/3, d1 = 1/3 are called the “linear weights”, and β0 = (f(ui+1)− f(ui))
2, β1 =

(f(ui)−f(ui−1))2 are called the “smoothness indicators”. ε is a small positive number

chosen to avoid the denominator becoming 0. We take ε = 10−3 in this dissertation.

When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with nu-

merical values f(ui), f(ui+1) and f(ui+2) are used to construct a third order WENO

approximation to the numerical flux f̂i+1/2. The formulae for negative and positive

wind cases are symmetric with respect to the point xi+1/2. For the general case of

7

f(u), we perform the ”Lax-Friedrichs flux splitting”

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u)− αu), (2.4)

where α = maxu |f ′(u)|. f+(u) is the positive wind part, and f−(u) is the negative

wind part. Corresponding WENO approximations are applied to find numerical

fluxes f̂+
i+1/2 and f̂−i+1/2 respectively. Similar procedures are applied to the other

directions for g(u)y and h(u)z. See [23, 46] for more details. For diffusion terms,

central differences are used. After spatial discretizations, a semi-discretized ODE

system

d~U

dt
= ~Fd(~U) + ~Fa(~U) + ~R(~U) (2.5)

is obtained. Here ~U = (ui)1≤i≤N , ~Fd(~U) = (F̂di(~U))1≤i≤N , ~Fa(~U) = (F̂ai(~U))1≤i≤N ,

~R = (r(ui))1≤i≤N . N is the total number of grid points, ~Fd(~U) is the approximation

for the diffusion terms by the second or fourth order finite difference schemes, and

F̂di is a linear or nonlinear function of numerical values on the approximation stencil.

If the diffusion term is linear, ~Fd(~U) = C~U where C is the approximation matrix

for the linear diffusion operator by the central finite difference scheme. ~Fa(~U) is the

approximation for the nonlinear advection terms by the third order finite difference

WENO scheme, and F̂ai is a nonlinear function of several numerical values on the

WENO approximation stencil. ~R(~U) is the nonlinear reaction term, and r(ui) is a

nonlinear function which only depends on numerical values at one grid point. In [24],

we developed a method to deal with the nonlinear diffusion terms by factoring out

the linear part which mainly contributes to the stiffness of the nonlinear diffusion

terms, then applying the integration factor approach to remove this stiffness. In this

dissertation, our main focus is on studying the computational complexity of Krylov

and compact IIF methods for high dimensional problems. Hence we simplify our

discussions to problems with linear diffusion, i.e., ~Fd(~U) = C~U . IIF methods for

8

(2.5) are constructed by exactly integrating the linear part of the system. Directly

multiply (2.5) by the integration factor e−Ct and integrate over one time step from

tn to tn+1 ≡ tn + ∆tn to obtain

~U(tn+1) = eC∆tn ~U(tn) + eC∆tn

∫ ∆tn

0

e−Cτ ~Fa(~U(tn + τ))dτ

+ eC∆tn

∫ ∆tn

0

e−Cτ ~R(~U(tn + τ))dτ. (2.6)

Two of the nonlinear terms in (2.6) have different properties. The nonlinear reac-

tion term ~R(~U) is usually stiff but local, while the nonlinear term ~Fa(~U) derived

from WENO approximations to the convection term is nonstiff but couples numer-

ical values at grid points of the stencil. Hence we use different methods to treat

them and avoid solving a large coupled nonlinear system. For the stiff reaction term

e−Cτ ~R(~U(tn+τ)), we approximate it implicitly by an (r−1)-th order Lagrange poly-

nomial with interpolation points at tn+1, tn, . . . , tn+2−r. The nonstiff convection term

is highly nonlinear due to the WENO approximations. Different from the nonlin-

ear reaction term, we approximate the nonlinear convection term e−Cτ ~Fa(~U(tn + τ))

explicitly by an (r − 1)-th order Lagrange polynomial with interpolation points at

tn, tn−1, . . . , tn+1−r. The r-th order IIF scheme for CDR equations is obtained as

~Un+1 = eC∆tn ~Un + ∆tn{αn+1
~R(~Un+1) +

0∑
i=2−r

αn+ie
C(∆tn−τi) ~R(~Un+i)

+
0∑

i=1−r

βn+ie
C(∆tn−τi) ~Fa(~Un+i)}, (2.7)

where the coefficients

αn+i =
1

∆tn

∫ ∆tn

0

1∏
j=2−r,j 6=i

τ − τj
τi − τj

dτ, i = 1, 0,−1, · · · , 2− r; (2.8)

9

βn+i =
1

∆tn

∫ ∆tn

0

0∏
j=1−r,j 6=i

τ − τj
τi − τj

dτ, i = 0,−1,−2, · · · , 1− r. (2.9)

τ1 = ∆tn, τ0 = 0, τi = −
∑−1

k=i ∆tn+k for i = −1,−2,−3, · · · , 1 − r. ~Un+i is the

numerical solution for ~U(tn+i). Specifically, the second order scheme (IIF2) is of the

following form

~Un+1 = eC∆tn ~Un + ∆tn

{
αn+1

~R(~Un+1) + αne
C∆tn ~R(~Un)

+βn−1e
C(∆tn+∆tn−1) ~Fa(~Un−1) + βne

C∆tn ~Fa(~Un)
}
, (2.10)

where

αn =
1

2
, αn+1 =

1

2
, βn−1 = − ∆tn

2∆tn−1

, βn =
1

∆tn−1

(
∆tn

2
+ ∆tn−1).

And the third order scheme (IIF3) is

~Un+1 = eC∆tn ~Un + ∆tn

{
αn+1

~R(~Un+1) + αne
C∆tn ~R(~Un) + αn−1e

C(∆tn+∆tn−1) ~R(~Un−1)

+βn−2e
C(∆tn+∆tn−1+∆tn−2) ~Fa(~Un−2) + βn−1e

C(∆tn+∆tn−1) ~Fa(~Un−1) + βne
C∆tn ~Fa(~Un)

}
,

(2.11)

where

αn+1 =
1

(∆tn + ∆tn−1)
(
∆tn

3
+

∆tn−1

2
),

αn =
1

∆tn−1

(
∆tn

6
+

∆tn−1

2
),

αn−1 = − ∆t2n
6∆tn−1(∆tn−1 + ∆tn)

,

βn = 1 +
1

∆tn−1(∆tn−1 + ∆tn−2)
[
∆t2n

3
+

∆tn
2

(2∆tn−1 + ∆tn−2)],

βn−1 = − 1

∆tn−1∆tn−2

[
∆t2n

3
+

∆tn
2

(∆tn−1 + ∆tn−2)],

βn−2 =
1

∆tn−2(∆tn−1 + ∆tn−2)
(
∆t2n

3
+

∆tn∆tn−1

2
).

10

Remark: Theoretical analysis including stability and error analysis of the IIF schemes

for convection-diffusion-reaction equations is given in [24, 25]. Due to the nonlinear-

ity of WENO schemes [46] and the global property of the exponential integrator in

the IIF schemes, theoretical analysis of the complete IIF-WENO schemes is still an

open problem and it will be one of our future work.

2.2 Two approaches for high dimensional problems

The efficiency of IIF schemes for high dimensional problems largely depends on

the methods to evaluate the product of the matrix exponential and a vector, for

example eC∆tv. For PDEs defined on high spatial dimensions (2D and above), a large

and sparse matrix C is generated in the schemes (2.7). But the exponential matrix

eC∆t is dense. For high dimensional problems, direct computation and storage of such

exponential matrix are prohibitive in terms of both CPU cost and computer memory.

Two approaches have been developed to solve this problem. Here we discuss and

compare the computational efficiency of these two approaches when they are applied

to IIF-WENO methods for solving high dimensional problems. We first review the

Krylov approximation method. The Krylov approximation method was applied to

IIF schemes in [7]. It has been applied for solving CDR equations in [24].

2.2.1 Krylov approximation method

Notice that we do not need the full exponential matrices such as eC∆t itself,

but only the products of the exponential matrices and some vectors in the schemes

(2.7). The Krylov subspace approximations to the matrix exponential operator is

an excellent choice in terms of both accuracy and efficiency. Follow the literature

(e.g. [12, 41]), we describe the Krylov subspace methods to approximate eC∆tv as

11

following.

The large sparse matrix C is projected to the Krylov subspace

KM = span{v, Cv, C2v, · · · , CM−1v}. (2.12)

The dimension M of the Krylov subspace is much smaller than the dimension N

of the large sparse matrix C. In all numerical computations of this dissertation, we

take M = 25 for different N , and accurate results are obtained in the numerical

experiments. An orthonormal basis VM = [v1, v2, v3, · · · , vM] of the Krylov subspace

KM is generated by the well-known Arnoldi algorithm [51]:

1. Compute the initial vector: v1 = v/‖v‖2.

2. Perform iterations: Do j = 1, 2, · · · ,M :

1) Compute the vector w = Cvj.

2) Do i = 1, 2, · · · , j:

(a) Compute the inner product hi,j = (w, vi).

(b) Compute the vector w = w − hi,jvi.

3) Compute hj+1,j = ‖w‖2.

4) If hj+1,j ≡ 0, then

stop the iteration;

else

compute the next basis vector vj+1 = w/hj+1,j.

In the Arnoldi algorithm, if hj+1,j ≡ 0 for some j < M , it means that the convergence

has occurred and the Krylov subspace is KM = span{v1, v2, · · · , vj}, so the iteration

can be stopped at this step j, and we assign the value of this j to M . This algorithm

will produce an orthonormal basis VM of the Krylov subspace KM . Denote the M×M

upper Hessenberg matrix consisting of the coefficients hi,j by HM . Since the columns

12

of VM are orthogonal, we have

HM = V T
MCVM . (2.13)

This means that the very small Hessenberg matrix HM represents the projection of

the large sparse matrix C to the Krylov subspace KM , with respect to the basis VM .

Also since VM is orthonormal, the vector VMV
T
Me

C∆tv is the orthogonal projection of

eC∆tv on the Krylov subspace KM , namely, it is the best approximation to eC∆tv in

KM . Therefore

eC∆tv ' VMV
T
Me

C∆tv = βVMV
T
Me

C∆tv1 = βVMV
T
Me

C∆tVMe1,

where β = ‖v‖2, and e1 denotes the first column of the M ×M identity matrix IM .

Using (2.13) we obtain the approximation

eC∆tv ' βVMe
HM∆te1. (2.14)

Thus the large eC∆t matrix exponential problem is replaced with the much smaller

problem eHM∆t. The small matrix exponential eHM∆t will be computed using a scaling

and squaring algorithm with a Padé approximation, see [12, 18, 41]. Then the Krylov

approximations are directly applied in schemes (2.7), (2.10) or (2.11) to obtain Krylov

IIF schemes for CDR equations [24]. The r-th order Krylov IIF scheme for CDR

equations has the following form

~Un+1 = ∆tnαn+1
~R(~Un+1) + γ0,nVM,0,ne

HM,0,n∆tne1

+∆tn

(
βn+1−rγ1−r,nVM,1−r,ne

HM,1−r,n(∆tn−τ1−r)e1 +
−1∑

i=2−r

γi,nVM,i,ne
HM,i,n(∆tn−τi)e1

)
,

(2.15)

13

where γ0,n = ‖Un + ∆tn(αn ~R(~Un) + βn ~Fa(~Un))‖2, VM,0,n and HM,0,n are orthonor-

mal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with

the initial vector Un + ∆tn(αn ~R(~Un) + βn ~Fa(~Un)). γ1−r,n = ‖ ~Fa(~Un+1−r)‖2, VM,1−r,n

and HM,1−r,n are orthonormal basis and upper Hessenberg matrix generated by

the Arnoldi algorithm with the initial vector ~Fa(~Un+1−r). γi,n = ‖αn+i
~R(~Un+i) +

βn+i
~Fa(~Un+i)‖2, VM,i,n and HM,i,n are orthonormal basis and upper Hessenberg matrix

generated by the Arnoldi algorithm with the initial vectors αn+i
~R(~Un+i)+βn+i

~Fa(~Un+i),

for i = 2 − r, 3 − r, · · · ,−1. Notice that VM,0,n, VM,1−r,n and VM,i,n, i = 2 − r, 3 −

r, · · · ,−1 are orthonormal bases of different Krylov subspaces for the same matrix

C, which are generated with different initial vectors in the Arnoldi algorithm. Specif-

ically, the second order Krylov IIF (KrylovIIF2) scheme has the following form

~Un+1 =
1

2
∆tn ~R(~Un+1) + γ0,nVM,0,ne

HM,0,n∆tne1

− (∆tn)2

2∆tn−1

(
γ−1,nVM,−1,ne

HM,−1,n(∆tn+∆tn−1)e1

)
, (2.16)

where γ0,n =
∥∥∥Un + ∆tn

(
1
2
~R(~Un) + 1

∆tn−1
(∆tn

2
+ ∆tn−1) ~Fa(~Un)

)∥∥∥
2
, VM,0,n and HM,0,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algo-

rithm with the initial vector Un+∆tn

(
1
2
~R(~Un) + 1

∆tn−1
(∆tn

2
+ ∆tn−1) ~Fa(~Un)

)
. γ−1,n =

‖ ~Fa(~Un−1)‖2, VM,−1,n and HM,−1,n are orthonormal basis and upper Hessenberg ma-

trix generated by the Arnoldi algorithm with the initial vector ~Fa(~Un−1). And the

third order Krylov IIF (KrylovIIF3) scheme has the form

~Un+1 =
2∆tn + 3∆tn−1

6(∆tn + ∆tn−1)
∆tn ~R(~Un+1) + γ0,nVM,0,ne

HM,0,n∆tne1

+∆tn

(
2(∆tn)2 + 3∆tn∆tn−1

6∆tn−2(∆tn−1 + ∆tn−2)
γ−2,nVM,−2,ne

HM,−2,n(∆tn+∆tn−1+∆tn−2)e1

+γ−1,nVM,−1,ne
HM,−1,n(∆tn+∆tn−1)e1

)
, (2.17)

where γ0,n = ‖Un + ∆tn(αn ~R(~Un) + βn ~Fa(~Un))‖2, VM,0,n and HM,0,n are orthonormal

14

basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the

initial vector Un + ∆tn(αn ~R(~Un) + βn ~Fa(~Un)). γ−2,n = ‖ ~Fa(~Un−2)‖2, VM,−2,n and

HM,−2,n are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi

algorithm with the initial vector ~Fa(~Un−2). γ−1,n = ‖αn−1
~R(~Un−1) +βn−1

~Fa(~Un−1)‖2,

VM,−1,n and HM,−1,n are orthonormal basis and upper Hessenberg matrix generated

by the Arnoldi algorithm with the initial vectors αn−1
~R(~Un−1) + βn−1

~Fa(~Un−1). See

the equation (2.11) for values of αn, βn, αn−1, βn−1.

As that pointed out in [24], in the implementation of the Krylov approximation

methods we do not store matrices C, because only multiplications of matrices C with

a vector are needed in the methods, and they correspond to certain finite difference

operations.

Remark. By the analysis in [12, 19], an error estimation of the Krylov subspace

approximation (2.14) is

||eC∆tv − βVMeHM∆te1||2 ≤ 10βe−M
2/(5ρ∆t), (2.18)

where M is the dimension of the Krylov subspace, and eigenvalues of the matrix C

are in the interval [−4ρ, 0]. For a fixed ρ∆t, the Krylov approximation error (2.18)

decays exponentially with respect to the square of the Krylov subspace dimension

M .

2.2.2 Compact / array-representation method

We first review the compact IIF (cIIF) method and the array-representation com-

pact IIF (AcIIF) method for solving high dimensional reaction-diffusion equations,

developed in [43] and [53]. Then we discuss how to apply the cIIF / AcIIF method

in the IIF-WENO schemes for solving high dimensional CDR equations.

15

2.2.2.1 cIIF/AcIIF for reaction-diffusion equations

We illustrate the cIIF method by solving a two-dimensional reaction-diffusion

equation with constant diffusion coefficient

∂u

∂t
= D(

∂2u

∂x2
+
∂2u

∂y2
) +R(u), (x, y) ∈ Ω = {a < x < b, c < y < d}, (2.19)

with periodic boundary conditions in the y−direction and no-flux boundary condi-

tions in the x−direction. The spatial domain is partitioned by a rectangular mesh

with Nx+2 and Ny+2 grid points in each direction. The grid sizes are hx = b−a
Nx+1

, and

hy = d−c
Ny+1

. Using the second order central difference discretization on the diffusion

terms, a system of ODEs

dui,j
dt

= D(
ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

) +R(ui,j) (2.20)

is obtained. The idea of cIIF method [43] is that in stead of representing numerical

values ui,j in a large vector, numerical values are organized and stored in a matrix

(see (2.22)). The semi-discretized ODE system is written in a compact form

dU

dt
= AU + UB +R(U), (2.21)

where the three matrices U , A and B are

UNx×(Ny+1) =



u1,1 u1,2 · · · u1,Ny u1,Ny+1

u2,1 u2,2 · · · u2,Ny u2,Ny+1

...
...

...
...

...

uNx,1 uNx,2 · · · uNx,Ny uNx,Ny+1


, (2.22)

16

ANx×Nx =
D

h2
x



−2
3

2
3

1 −2 1

1 −2 1

.

1 −2 1

2
3
−2

3


, (2.23)

B(Ny+1)×(Ny+1) =
D

h2
y



−2 1 0 0 · · · 1

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

.

0 0 · · · 1 −2 1

1 0 · · · 0 1 −2


. (2.24)

Then following the similar procedure for deriving IIF methods [42], we multiply (2.21)

by the integration factors e−At from the left and e−Bt from the right, and integrate

over one time step from tn to tn+1 ≡ tn +4t to obtain

Un+1 = eA4tUne
B4t + eA4t

(∫ 4t
0

e−AτR(U(tn + τ))e−Bτdτ
)
eB4t. (2.25)

We approximate the integrand in (2.25) by an (r− 1)th order lagrange interpolation

polynomial with interpolation points at tn+1, tn, . . . , tn+2−r, and obtain the rth order

cIIF scheme for two-dimensional reaction-diffusion equations

Un+1 = eA4tUne
B4t +4t

(
α1R(Un+1) +

r−2∑
i=0

α−ie
(i+1)A4tR(Un−i)e

(i+1)B4t
)
, (2.26)

where

α−i =
1

4t

∫ 4t
0

r−2∏
k=−1
k 6=i

τ + k4t
(k − i)4t

dτ, −1 ≤ i ≤ r − 2. (2.27)

17

In particular, the second order cIIF scheme (cIIF2) is

Un+1 = eA4t
(
Un +

4t
2
R(Un)

)
eB4t +

4t
2
R(Un+1). (2.28)

Note that the matrices A and B have sizes of a one-dimensional problem. Hence

in cIIF schemes (2.26), (2.28) for a two-dimensional problem, we only need to com-

pute matrix exponentials for matrices with sizes of one-dimensional problems. This

fact also holds for cIIF schemes of three-dimensional reaction-diffusion equations, as

shown in [43].

In order to solve reaction-diffusion problems with cross-derivatives and non-constant

diffusion coefficients on higher spatial dimensions, cIIF method has been extended to

the array-representation compact IIF (AcIIF) method in [53]. We review the AcIIF

method [53] in the following and then describe the procedure to apply this approach

to our IIF schemes for CDR equations in the next subsection. The numerical solu-

tions are stored in multi-dimensional arrays, for example, a two-dimensional array

U = (Uk1,k2), k1 = 1, · · · , Nx; k2 = 1, · · · , Ny + 1 for the two-dimensional problem

(2.20)-(2.24). If we fix the second index k2, the two-dimensional array U defines a

vector

U(:, k2) = (U1,k2 , U2,k2 , · · · , UNx,k2)
T . (2.29)

Then the array U can be considered as the collection of these vectors on a one-

dimensional array, with k2 going through from 1 to Ny+1. This collection is presented

using symbol
⊗

in [53], so we can write

U =
⊗

1≤k2≤Ny+1

U(:, k2). (2.30)

The finite difference operators are linear operators in (2.20) since the diffusion terms

18

here are linear. Define finite difference operators Lx and Ly as

(LxU)k1,k2 = D(
Uk1+1,k2 − 2Uk1,k2 + Uk1−1,k2

h2
x

), (2.31)

and

(LyU)k1,k2 = D(
Uk1,k2+1 − 2Uk1,k2 + Uk1,k2−1

h2
y

), (2.32)

then the semi-discretized scheme (2.20) with the array U can be written as

dU

dt
= (Lx + Ly)U +R(U). (2.33)

Apply IIF schemes, e.g., the second order IIF scheme (IIF2) [42] in (2.33) to obtain

Un+1 = e(Lx+Ly)4t
(
Un +

4t
2
R(Un)

)
+
4t
2
R(Un+1). (2.34)

To implement the scheme (2.34) using array-representation technique, we first repre-

sent

LxU =
⊗

1≤k2≤Ny+1

AU(:, k2), (2.35)

where A is given in (2.23). So the exponential of Lx can have the array-representation

eLx4tU =
⊗

1≤k2≤Ny+1

eA4tU(:, k2). (2.36)

Similarly,

eLy4tU =
⊗

1≤k1≤Nx

eB4tU(k1, :), (2.37)

where B is given in (2.24). Since Lx and Ly commute with each other for this constant

diffusion coefficient equation case, e(Lx+Ly)4t = eLx4teLy4t. The array-representation

form of the IIF2 scheme [42], i.e., the AcIIF2 scheme for the 2D reaction-diffusion

19

equation (2.19), is

Un+1 −
4t
2
R(Un+1) =

⊗
1≤k2≤Ny+1

eA4t

(⊗
1≤k1≤Nx

eB4tV (k1, :)

)
(:, k2), (2.38)

where V = Un + 4t
2
R(Un). Similarly the AcIIF2 scheme for a 3D reaction-diffusion

equation with constant diffusion coefficient and without cross-derivatives is

Un+1 −
4t
2
R(Un+1)

=
⊗

1≤k2≤Ny
1≤k3≤Nz

eA114t

(⊗
1≤k1≤Nx
1≤k3≤Nz

eA224t

(⊗
1≤k1≤Nx
1≤k2≤Ny

eA334tV (k1, k2, :)

)
(k1, :, k3)

)
(:, k2, k3),

(2.39)

where V = Un+4t
2
R(Un), U is a three-dimensional array to store the numerical values

of u, Nx, Ny, Nz are number of spatial grid points in x, y, z directions respectively.

A11,A22,A33 are differential matrices for approximating diffusion operators in x, y, z

directions respectively, and they have sizes of a one-dimensional problem, i.e., Nx ×

Nx, Ny ×Ny and Nz ×Nz.

It is easy to see that the AcIIF2 scheme (2.38) is equivalent to the cIIF2 scheme

(2.28). As that pointed out in [53], AcIIF schemes are actually equivalent to cIIF

schemes for reaction-diffusion equations without cross-derivatives. However, AcIIF

schemes can be easily applied to more general high dimensional reaction-diffusion

equations with cross-derivatives as shown in [53].

2.2.2.2 AcIIF-WENO schemes for CDR equations

Since AcIIF method is an efficient approach for solving high dimensional reaction-

diffusion equations, we apply it in the IIF-WENO schemes for solving high dimen-

sional CDR equations. We present the schemes for the general three and four spatial

20

dimension cases that CDR equations have cross-derivatives and the diffusion coef-

ficients can be non-constant, such as the Fokker-Planck equations in the following

chapter 3. For such cases with non-constant diffusion coefficients, differential matri-

ces can not commute and an operator splitting is needed to achieve the second order

accuracy in AcIIF approach. Hence we use the second order AcIIF scheme here.

Consider the three dimensional case of CDR equation (1.1), d = 3, with cross-

derivatives for the linear diffusion terms and periodic boundary conditions. For the

simplicity of presentation, we consider the scalar equation case. The system case

is solved component by component following the same procedure as the scalar case.

The diffusion matrix D is

D =


a1 + a2 b1 b2

b1 a3 + c1 b3

b2 b3 c2 + c3

 , (2.40)

where ai, bi and ci, i = 1, 2, 3 are constant or non-constant coefficients of the diffusion

terms. The diffusion terms can be grouped into three classes for the convenience of

applying the AcIIF method, i.e., (a1
∂2

∂x12
+ 2b1

∂2

∂x1∂x2
+ c1

∂2

∂x22
)u, (a2

∂2

∂x12
+ 2b2

∂2

∂x1∂x3
+

c2
∂2

∂x32
)u, and (a3

∂2

∂x22
+ 2b3

∂2

∂x2∂x3
+ c3

∂2

∂x32
)u. Applying the second order IIF-WENO

scheme (2.10) to the equation and re-grouping the exponential terms, we obtain

~Un+1 = eC4tn
(
~Un +4tnαn ~R(~Un) +4tnβn ~Fa(~Un)

)
+ eC(4tn+4tn−1)

(
4tnβn−1

~Fa(~Un−1)
)
+4tnαn+1

~R(~Un+1)

= Θ1 +Θ2 +4tnαn+1
~R(~Un+1),

(2.41)

where

Θ1 = eC4tn ~V1, ~V1 , ~Un +4tnαn ~R(~Un) +4tnβn ~Fa(~Un), (2.42)

Θ2 = eC(4tn+4tn−1)~V2, ~V2 , 4tnβn−1
~Fa(~Un−1). (2.43)

21

αn, αn+1, βn−1, βn are given in (2.10). Then we can apply the array representation

approach in computations of the matrix exponentials. Numerical solutions for u

are stored in a three-dimensional array U with size N1 × N2 × N3, where N1, N2

and N3 are numbers of grid points of three spatial directions respectively. First

we use L12 to denote the second order central finite difference approximation of

(a1
∂2

∂x12
+ 2b1

∂2

∂x1∂x2
+ c1

∂2

∂x22
) as

(L12U)k1,k2,k3 =
a1

h2
1

(Uk1+1,k2,k3 − 2Uk1,k2,k3 + Uk1−1,k2,k3)

+
2b1

4h1h2

(Uk1+1,k2+1,k3 + Uk1−1,k2−1,k3 − Uk1+1,k2−1,k3 − Uk1−1,k2+1,k3)

+
c1

h2
2

(Uk1,k2+1,k3 − 2Uk1,k2,k3 + Uk1,k2−1,k3).

(2.44)

where h1, h2 and h3 (not used in the above equation) are the grid sizes of the three

spatial directions respectively. Similarly we can define finite difference operators L13

and L23. The diffusion terms in the equation are approximated by Fd(~U) = C~U =

(L12 + L13 + L23)U . To derive the array representation of the operator L12, we fix

k3 in the three-dimensional array U(:, :, k3) which represents a N1 ×N2 matrix, and

collect all these two-dimensional matrices along a vector. This leads to

U =
⊗

1≤k3≤N3

U(:, :, k3).

For constant diffusion coefficient cases, we can define a linear mapping A12, from a

matrix space consisting of all N1 ×N2 matrices to itself as following

(A12M)i,j =
2b1

4h1h2

(Mi+1,j+1 +Mi−1,j−1 −Mi−1,j+1 −Mi+1,j−1)

+
a1

h2
1

(Mi+1,j − 2Mi,j +Mi−1,j) +
c1

h2
2

(Mi,j+1 − 2Mi,j +Mi,j−1).

(2.45)

22

Then, the array representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3

A12U(:, :, k3),

eL124tU =
⊗

1≤k3≤N3

eA124tU(:, :, k3).

Similarly, the array representations for L13 and L23 can be written in terms ofA13 and

A23 respectively. Note that here A12, A13, A23 and their exponentials are actually

(N1 ·N2)×(N1 ·N2), (N1 ·N3)×(N1 ·N3) and (N2 ·N3)×(N2 ·N3) matrices respectively.

For schemes (2.41) - (2.43), vectors ~V1 and ~V2 are stored in three-dimensional

arrays V1 and V2 as that for U . If L12, L13 and L23 commute with each other as the

case that the diffusion coefficients are constants, application of array representations

to (2.42) and (2.43) leads to direct decomposition of large matrix exponentials for C

to much smaller ones. For detailed formulas in implementation the method, see the

equations in (2.50) in section 2.2.2.3.

If L12, L13 and L23 do not commute with each other as the case that the diffusion

coefficients are not constants, two modifications to the method are needed. One is

that the finite difference operators L12, L13 and L23 may depend on other spatial

dimensions since the diffusion coefficients can be functions of all spatial variables.

For example, different index k3 results in different finite difference operators L12 and

different linear mappings A12. Hence the linear mappings are represented by Ak312, Ak213

and Ak123 in such cases. The other is that the Strang operator splitting [49] is needed

to obtain a second order accuracy. By the Strang symmetric operator splitting, we

have

eC4tn = e(L12+L13+L23)4tn = e
4tn
2
L12e

4tn
2
L13e4tnL23e

4tn
2
L13e

4tn
2
L12 +O(4tn3). (2.46)

Then array representations are applied in (2.42) and (2.43) for decomposition of large

23

matrix exponentials of C. See the equations in (2.51) and (2.52) in section 2.2.2.3

for detailed implementation formulas.

Similarly, for a four dimensional CDR equation (1.1), d = 4, with cross-derivatives

for the linear diffusion terms and periodic boundary conditions, the diffusion matrix

D is

D =



a1 + a2 + a3 b1 b2 b3

b1 a4 + a5 + c1 b4 b5

b2 b4 a6 + c2 + c4 b6

b3 b5 b6 c3 + c5 + c6


, (2.47)

where ai, bi and ci, i = 1, 2, 3, 4, 5, 6 are constant or non-constant coefficients of the

diffusion terms. The diffusion terms can be grouped into six classes for the conve-

nience of applying the AcIIF method, i.e., (a1
∂2

∂x12
+ 2b1

∂2

∂x1∂x2
+ c1

∂2

∂x22
)u, (a2

∂2

∂x12
+

2b2
∂2

∂x1∂x3
+ c2

∂2

∂x32
)u, (a3

∂2

∂x12
+ 2b3

∂2

∂x1∂x4
+ c3

∂2

∂x42
)u, (a4

∂2

∂x22
+ 2b4

∂2

∂x2∂x3
+ c4

∂2

∂x32
)u,

(a5
∂2

∂x22
+2b5

∂2

∂x2∂x4
+c5

∂2

∂x42
)u, (a6

∂2

∂x32
+2b6

∂2

∂x3∂x4
+c6

∂2

∂x42
)u. We apply the second order

IIF-WENO scheme (2.10) and obtain the same form schemes (2.41)-(2.43), but with

a much larger system size. Again we can apply the array representation approach in

computations of the matrix exponentials. Numerical solutions for u are stored in a

four-dimensional array U with size N1×N2×N3×N4, where N1, N2, N3 and N4 are

numbers of grid points of four spatial directions respectively. We use L12 to denote

the second order central finite difference approximation of (a1
∂2

∂x12
+2b1

∂2

∂x1∂x2
+c1

∂2

∂x22
)

as

(L12U)k1,k2,k3,k4 =
a1

h2
1

(Uk1+1,k2,k3,k4 − 2Uk1,k2,k3,k4 + Uk1−1,k2,k3,k4)

+
2b1

4h1h2

(Uk1+1,k2+1,k3,k4 + Uk1−1,k2−1,k3,k4 − Uk1+1,k2−1,k3,k4

− Uk1−1,k2+1,k3,k4) +
c1

h2
2

(Uk1,k2+1,k3,k4 − 2Uk1,k2,k3,k4 + Uk1,k2−1,k3,k4).

(2.48)

24

Similarly L13, L14, L23, L24 and L34 are defined. Then the diffusion terms in the

equation are approximated by Fd(~U) = C~U = (L12 +L13 +L14 +L23 +L24 +L34)U .

To derive the array representation of the operator L12, we fix k3 and k4 in the four-

dimensional array U(:, :, k3, k4) which represents a N1 × N2 matrix, and collect all

these two-dimensional matrices along a vector to obtain

U =
⊗

1≤k3≤N3
1≤k4≤N4

U(:, :, k3, k4).

The same linear mapping A12 is defined as (2.45) for three dimensional cases. The

array representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3
1≤k4≤N4

A12U(:, :, k3, k4),

eL124tU =
⊗

1≤k3≤N3
1≤k4≤N4

eA124tU(:, :, k3, k4).

Similarly, the array representation for L13, L14, L23, L24 and L34 can be written in

terms of A13, A14, A23, A24 and A34 respectively.

For schemes (2.41) - (2.43), vectors ~V1 and ~V2 are stored in four-dimensional arrays

V1 and V2 as that for U . If L12, L13, L14, L23, L24 and L34 commute with each other,

array representation is applied in schemes (2.41) - (2.43) to decompose large matrix

exponentials for C to much smaller ones. For detailed formulas in implementation of

the method, see the equations (2.53) and (2.54) in section 2.2.2.3.

If L12, L13, L14, L23, L24 and L34 do not commute with each other(e.g., the

case that the diffusion coefficients are not constants), again two modifications are

needed in the method. One is that the linear mappings may depend on other spatial

dimensions since the diffusion coefficients can be functions of all spatial variables.

For example, different indexes k3, k4 result in different finite difference operators L12

25

and different linear mappings A12. Hence the linear mappings are represented by

Ak3,k412 , Ak2,k413 , Ak2,k314 , Ak1,k423 , Ak1,k324 and Ak1,k234 in such cases. The other is that again

the Strang symmetric operator splitting is needed to achieve a second order accuracy.

Namely, we have

eC4tn = e(L12+L13+L14+L23+L24+L34)4tn =e
4tn
2
L34e

4tn
2
L24e

4tn
2
L23e

4tn
2
L14e

4tn
2
L13e4tnL12

e
4tn
2
L13e

4tn
2
L14e

4tn
2
L23e

4tn
2
L24e

4tn
2
L34 +O(4t3n).

(2.49)

Then application of array representation in (2.42) and (2.43) leads to decomposition

of large matrix exponentials of C into much smaller ones. See the equations (2.55) -

(2.58) in section 2.2.2.3 for detailed implementation formulas.

Remark: All linear mappings (i.e., A12,A13, etc) here are actually N2 ×N2 matri-

ces if all spatial directions have the same number of grid points N . Although matrix

exponentials in any higher dimensional problems can be reduced to computations of

such N2 × N2 matrices’ exponentials, it is still expensive to directly calculate them

as shown in the following numerical experiments. Applications of Krylov subspace

approximations of section 2.2.1 in computations of these N2 × N2 matrices’ expo-

nentials are still necessary for the efficiency of the AcIIF-WENO method for high

dimensional CDR problems.

Remark: An advantage of cIIF / AcIIF schemes is that they have simpler for-

mulations than the Krylov IIF schemes, hence easier to code the algorithms. For

multidimensional CDR or reaction-diffusion problems whose diffusion terms do not

have cross-derivatives, cIIF / AcIIF schemes can be directly applied because we only

need to compute matrix exponentials for matrices with sizes of one-dimensional prob-

lems, i.e. N ×N matrices with N the number of grid points in one spatial direction.

Such matrix exponentials are computed using a scaling and squaring algorithm with

a Padé approximation. They are computed and stored before the time evolution, and

26

directly used at every time step [43]. As that shown in the numerical experiments

of the chapter 3, the cIIF / AcIIF schemes implemented this way are more efficient

than the Krylov IIF schemes for problems which do not have cross-derivative diffusion

terms, on not very refined meshes.

2.2.2.3 Detailed formulae for AcIIF-WENO schemes.

(1) For the three dimensional CDR equation, if L12, L13 and L23 commute with

each other, then

Θ1 =
⊗

1≤k1≤N1

eA234tn

(⊗
1≤k2≤N2

eA134tn

(⊗
1≤k3≤N3

eA124tnV1(:, :, k3)

)
(:, k2, :)

)
(k1, :, :),

Θ2 =
⊗

1≤k1≤N1

eA23(4tn+4tn−1)

(⊗
1≤k2≤N2

eA13(4tn+4tn−1)

(⊗
1≤k3≤N3

eA12(4tn+4tn−1)V2(:, :, k3)

)
(:, k2, :)

)
(k1, :, :).

(2.50)

If L12, L13 and L23 do not commute with each other, then

Θ1 =
⊗

1≤k3≤N3

eA
k3
12
4tn
2

(⊗
1≤k2≤N2

eA
k2
13
4tn
2 V ∗1 (:, k2, :)

)
(:, :, k3),

V ∗1 =
⊗

1≤k1≤N1

eA
k1
234tn

(⊗
1≤k2≤N2

eA
k2
13
4tn
2

(⊗
1≤k3≤N3

eA
k3
12
4tn
2 V1(:, :, k3)

)
(:, k2, :)

)
(k1, :, :);

(2.51)

and

Θ2 =
⊗

1≤k3≤N3

eA
k3
12

(4tn+4tn−1)

2

(⊗
1≤k2≤N2

eA
k2
13

(4tn+4tn−1)

2 V ∗2 (:, k2, :)

)
(:, :, k3),

V ∗2 =
⊗

1≤k1≤N1

eA
k1
23 (4tn+4tn−1)

(⊗
1≤k2≤N2

eA
k2
13

(4tn+4tn−1)

2

(⊗
1≤k3≤N3

eA
k3
12

(4tn+4tn−1)

2 V2(:, :, k3)

)
(:, k2, :)

)
(k1, :, :).

(2.52)

27

(2) For the four dimensional CDR equation, if L12, L13, L14, L23, L24 and L34

commute with each other, then

Θ1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA344tn

(⊗
1≤k1≤N1
1≤k3≤N3

eA244tn

(⊗
1≤k1≤N1
1≤k4≤N4

eA234tn

(⊗
1≤k2≤N2
1≤k3≤N3

eA144tn

(⊗
1≤k2≤N2
1≤k4≤N4

eA134tn

(

⊗
1≤k3≤N3
1≤k4≤N4

eA124tnV1(:, :, k3, k4)

)
(:, k2, :, k4)

)
(:, k2, k3, :)

)
(k1, :, :, k4)

)
(k1, :, k3, :)

)
(k1, k2, :, :),

(2.53)

Θ2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA34(4tn+4tn−1)

(⊗
1≤k1≤N1
1≤k3≤N3

eA24(4tn+4tn−1)

(⊗
1≤k1≤N1
1≤k4≤N4

eA23(4tn+4tn−1)

(⊗
1≤k2≤N2
1≤k3≤N3

eA14(4tn+4tn−1)

(

⊗
1≤k2≤N2
1≤k4≤N4

eA13(4tn+4tn−1)

(⊗
1≤k3≤N3
1≤k4≤N4

eA12(4tn+4tn−1)V2(:, :, k3, k4)

)
(:, k2, :, k4)

)

(:, k2, k3, :)

)
(k1, :, :, k4)

)
(k1, :, k3, :)

)
(k1, k2, :, :).

(2.54)

If L12, L13, L14, L23, L24 and L34 do not commute with each other, then

Θ1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

4tn
2

(⊗
1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

4tn
2

(⊗
1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

4tn
2

(⊗
1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

4tn
2

(

⊗
1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

4tn
2 V ∗1 (:, k2, :, k4)

)
(:, k2, k3, :)

)
(k1, :, :, k4)

)
(k1, :, k3, :)

)
(k1, k2, :, :),

(2.55)

V ∗1 =
⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 4tn

(⊗
1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

4tn
2

(⊗
1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

4tn
2

(⊗
1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

4tn
2

(⊗
1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

4tn
2

(⊗
1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

4tn
2 V1(k1, k2, :, :)

)
(k1, :, k3, :)

)
(k1, :, :, k4)

)

(:, k2, k3, :)

)
(:, k2, :, k4)

)
(:, :, k3, k4).

(2.56)

28

And

Θ2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(4tn+4tn−1)

2

(⊗
1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(4tn+4tn−1)

2

(⊗
1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(4tn+4tn−1)

2

(⊗
1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(4tn+4tn−1)

2

(⊗
1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(4tn+4tn−1)

2 V ∗2 (:, k2, :, k4)

)

(:, k2, k3, :)

)
(k1, :, :, k4)

)
(k1, :, k3, :)

)
(k1, k2, :, :),

(2.57)

V ∗2 =
⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 (4tn+4tn−1)

(⊗
1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(4tn+4tn−1)

2

(⊗
1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(4tn+4tn−1)

2

(⊗
1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(4tn+4tn−1)

2

(⊗
1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(4tn+4tn−1)

2

(⊗
1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(4tn+4tn−1)

2

V2(k1, k2, :, :)

)
(k1, :, k3, :)

)
(k1, :, :, k4)

)
(:, k2, k3, :)

)
(:, k2, :, k4)

)
(:, :, k3, k4).

(2.58)

2.3 Krylov IF method on sparse grids

To achieve further efficiency in solving the CDR equations (1.1) on high spatial

dimensions by Krylov IIF schemes, we present the Krylov IIF schemes on sparse grids

by sparse-grid combination technique. The basic idea of sparse-grid combination

technique is that by combining several solutions on different semi-coarsened grids

(sparse grids), a final solution on the most refined mesh is obtained. The most

refined mesh is corresponding to the usual single full grid. Since the PDEs are

solved on semi-coarsened grids which have much fewer grid points than the single full

grid, computation costs are saved a lot. The final solution obtained by sparse-grid

combination technique is required to have the similar accuracy as that by solving the

PDEs directly on a single full grid. For example see [15, 30, 31].

Here we use two dimensional (2D) case as the example to illustrate the idea.

29

Figure 2.1. Semi-coarsened sparse grids {Ωl1,l2} with the finest level
NL = 3.

Higher dimensional cases are similar. Consider a 2D domain [a, b]2. The construction

of semi-coarsened grids is as follows. We first partition the domain into the coarsest

mesh, which is called a root grid Ω0,0 with Nr cells in each direction. The root grid

mesh size is H = b−a
Nr

. The multi-level refinement on the root grid is performed to

obtain a family of semi-coarsened grids {Ωl1,l2}. The semi-coarsened grid {Ωl1,l2} has

mesh sizes hl1 = 2−l1H in the x direction and hl2 = 2−l2H in the y direction, where

l1 = 0, 1, · · · , NL, l2 = 0, 1, · · · , NL, see figure 2.1. Superscripts l1, l2 indicate the

level of refinement relative to the root grid Ω0,0, and NL indicates the finest level.

Therefore, our finest grid is ΩNL,NL with mesh size h = 2−NLH for both x and y

directions.

To solve equation (1.1), we will use the second order Krylov IIF (KrylovIIF2)

method (2.16) or the third order Krylov IIF (KrylovIIF3) scheme (2.17) for time

discretization. Spatial discretizations are the classical second or fourth order central

schemes for diffusion terms, and the third order WENO scheme or the upwind scheme

30

for convection terms. Following the spare-grid combination techniques, rather than

on a single full grid, the PDE (1.1) is solved on the following (2NL + 1) sparse grids

{Ωl1,l2}I :

{
Ω0,NL ,Ω1,NL−1, · · · ,ΩNL−1,1,ΩNL,0

}
and

{
Ω0,NL−1,Ω1,NL−2, · · · ,ΩNL−2,1,ΩNL−1,0

}
.

And I denotes the index set

I =
{

(l1, l2)|l1 + l2 = NL or l1 + l2 = NL − 1
}
.

By carrying out time marching of the PDE using Krylov IIF schemes on these

(2NL + 1) sparse grids, we obtain (2NL + 1) sets of numerical solutions {U l1,l2}I

(one set of numerical solution is obtained on each sparse grid). The next step is

to combine solutions on sparse grids to obtain the final solution on the finest grid

ΩNL,NL . The key point here is that the PDE is never solved directly on ΩNL,NL in

order to save computational costs. To extend numerical solutions on sparse grids

to that on the finest grid, we apply a prolongation operator PNL,NL (defined in the

spare-grid combination techniques [15, 30, 31]) on each sparse grid solution U l1,l2 to

obtain (2NL + 1) solutions on the finest grid ΩNL,NL . And finally, these solutions are

combined to form the final solution ÛNL,NL on ΩNL,NL .

Next we provide details on the prolongation operator PNL,NL . Prolongation op-

erator PNL,NL maps numerical solutions {U l1,l2}I on sparse grids onto the finest grid

ΩNL,NL . And a prolongation operator is basically an interpolation operator. For

example, U l1,l2 is numerical solution on Ωl1,l2 , then PNL,NLU l1,l2 gives numerical val-

ues on the most refined mesh ΩNL,NL . For the 2D case, first in one direction(e.g.

the x direction), we construct (Nr2
l1−1) quadratic interpolation polynomials P 2

i (x),

i = 1, · · · , Nr2
l1−1, by the third order Lagrange interpolation. Each interpolation

uses three adjacent grid points to construct a quadratic polynomial. Note that a

31

higher order interpolation is needed for comparable numerical accuracy as that of

the numerical schemes, if higher order accuracy numerical schemes are used to solve

PDEs on sparse grids (see [15, 30, 31]). Then we evaluate P 2
i (x) on the grid points

of ΩNL,l2 , which is the most refined meshes in the x direction. Next, in the other

direction (e.g. the y direction), we construct (Nr2
l2−1) quadratic interpolation poly-

nomials P 2
j (y), j = 1, · · · , Nr2

l2−1, and evaluate them on the grid points of ΩNL,NL .

At last we get PNL,NLU l1,l2 , defined on the finest grid ΩNL,NL . We summarize the

algorithm of Krylov IIF scheme on sparse grids as following.

Algorithm: Krylov IIF scheme with sparse-grid combination technique

• Step 1: Restrict the initial condition u(x, y, 0) to (2NL+1) sparse grids {Ωl1,l2}I
defined above;

• Step 2: On each sparse grid Ωl1,l2 , solve the equation (1.1) by KrylovIIF scheme
to reach the final time T . Then we get (2NL + 1) sets of solutions {U l1,l2}I ;

• Step 3: At the final time T ,

– on each grid Ωl1,l2 , apply prolongation operator PNL,NL on U l1,l2 . We get
PNL,NLU l1,l2 , defined on the most refined mesh ΩNL,NL .

– do the combination to get the final solution

ÛNL,NL =
∑

l1+l2=NL

PNL,NLU l1,l2 −
∑

l1+l2=NL−1

PNL,NLU l1,l2 . (2.59)

For three dimensional (3D) or higher dimensional problems, the algorithm is sim-

ilar although prolongation operations are performed in additional spatial directions.

The sparse-grid combination formula for higher dimensional cases can be found in

the literature, e.g. in [15]. Specifically the 3D formula is

ÛNL,NL,NL =
∑

l1+l2+l3=NL

PNL,NL,NLU l1,l2,l3 − 2
∑

l1+l2+l3=NL−1

PNL,NL,NLU l1,l2,l3

+
∑

l1+l2+l3=NL−2

PNL,NL,NLU l1,l2,l3 .

(2.60)

32

2.4 Linear stability analysis of the IIF2 scheme for CDR equations.

To analyze the linear stability of IIF schemes, we use the following scalar linear

test equation

ut = au− du+ ru, with r ∈ C, and a, d ∈ R, d > 0. (2.61)

In the context of solving CDR equations, a and d actually represent spatial dis-

cretizations for the convection term and the diffusion term respectively. Following

the stability analysis approach in [42], we show boundaries of the stability regions in

the complex plane for r∆t, a family of curves for different values of d∆t and a∆t,

and indicate the corresponding stability regions. Here we present the analysis of the

IIF2 scheme (2.10) as an example. More details and analysis results can be found in

[24].

Applying the IIF2 scheme (2.10) to the equation (2.61) with a uniform time step

size ∆t, then substituting un = einθ into the resulting equation, we obtain

(1− λ

2
)e2iθ = e−d∆t(1 +

λ

2
+

3

2
a∆t)eiθ − a

2
∆te−2d∆t, (2.62)

where λ = r∆t has a real part λr and imaginary part λi. Solve the equation (2.62)

for λr and λi to have 
λr =

B1C2 −B2C1

A1B2 − A2B1

;

λi =
A1C2 − A2C1

A2B1 − A1B2

,

(2.63)

33

where 

A1 = e−d∆t1

2
cos θ +

1

2
cos 2θ,

B1 = −e−d∆t1

2
sin θ − 1

2
sin 2θ,

C1 = −a
2

∆te−2d∆t + e−d∆t(1 +
3

2
a∆t) cos θ − cos 2θ,

A2 = e−d∆t1

2
sin θ +

1

2
sin 2θ,

B2 = e−d∆t1

2
cos θ +

1

2
cos 2θ,

C2 = e−d∆t(1 +
3

2
a∆t) sin θ − sin 2θ.

(2.64)

Stability regions in the complex plane of r∆t for different values of d∆t under a fixed

value of a∆t are presented in Figure 2.2. As examples we choose four different a∆t

values: a∆t = 1.0, a∆t = 10.0 , a∆t = −1.0 and a∆t = −10.0. The points on

boundaries of stability regions are obtained by varying θ from 0 to 2π in (2.63) and

(2.64). A stability boundary curve divides the whole complex plane into the stable

region and the unstable region for a pair of fixed values of d∆t and a∆t. Based on

analyzing the growth factor of the scheme (2.10) for some special values of d∆t, a∆t

and λ, we find that the stable regions always include the point λ = (−20, 0) for any

values of d∆t and a∆t used in Figure 2.2. Then stable and unstable regions are

determined and shown in Figure 2.2. From Figure 2.2, we can see that the whole

regions outside of the stability boundary curves are stable regions, which shows that

the IIF2 scheme (2.10) has large stability regions. For a fixed a∆t, the stable region

becomes larger with the increase of the value of d∆t. Next we show stability regions

for different values of a∆t under a fixed value of d∆t in Figure 2.3. d∆t = 1.0 ,

d∆t = 2.0, d∆t = 10.0 and d∆t = 20.0 are chosen as examples. Again, analysis

of the growth factor of the scheme (2.10) for some special values of d∆t, a∆t and

λ, we find that the stable regions always include the point λ = (−10, 0) for any

values of a∆t and d∆t used in Figure 2.3. Stable regions for the cases shown in

Figure 2.3 are the whole regions outside of the stability boundary curves. For a

34

fixed d∆t, the stable region becomes smaller with the increase of the value of |a|∆t

which corresponds to the convection terms. Based on the linear stability analysis, we

conclude that the diffusion term tends to stabilize the scheme, while the convection

term gives constraints on time step sizes. Due to the implicit property of the scheme,

the stability regions are quite large and often include the whole left complex plane,

with a relatively large size diffusion parameter d and a mild size convection parameter

a.

35

0 2 4 6 8
−4

−2

0

2

4

(a) a∆t=1.0
−10 0 10 20 30

−20

−10

0

10

20

(b) a∆t=10.0

1.6 1.8 2 2.2 2.4 2.6
−0.4

−0.2

0

0.2

0.4

(c) a∆t=−1.0
−20 −15 −10 −5 0 5 10

−20

−10

0

10

20

(d) a∆t=−10.0

stable

unstable
d∆t=1.0

d∆t=2.0

d∆t=3.0

d∆t=5.0
stable

d∆t=5.0

d∆t=3.0

stable
stable

d∆t=5.0

d∆t=3.0

d∆t=2.0

d∆t=1.0

unstable

d∆t=5.0

d∆t=3.0

unstable

d∆t=1.0

d∆t=2.0

d∆t=1.0

d∆t=2.0

unstable

Figure 2.2. Linear stability regions of the IIF2 scheme (2.10) for different
values of d∆t under a fixed value of a∆t. (a) a∆t = 1.0; (b) a∆t = 10.0;

(c) a∆t = −1.0; (d) a∆t = −10.0.

36

−10 −5 0 5 10 15
−10

−5

0

5

10

−2 0 2 4 6
−4

−2

0

2

4

1.999 1.9995 2 2.0005 2.001
−1

−0.5

0

0.5

1
x 10

−3

2 2 2
−4

−2

0

2

4
x 10

−8

(b) d∆t=2.0(a) d∆t=1.0

(c) d∆t=10.0

stable

a∆t=−7.0

a∆t=5.0

a∆t=−2.0

a∆t=1.0

stable

a∆t=−5.0

stable
a∆t=5.0 unstable

a∆t=−2.0

a∆t=1.0

a∆t=2.0

stable
a∆t=−2.0

a∆t=1.0

a∆t=2.0

unstable

a∆t=−7.0

a∆t=−5.0

a∆t=5.0

a∆t=2.0

unstable

a∆t=−2.0

a∆t=1.0

a∆t=2.0

unstable

a∆t=−5.0

a∆t=5.0

a∆t=−7.0

a∆t=−7.0

a∆t=−5.0

(d) d∆t=20.0

Figure 2.3. Linear stability regions of the IIF2 scheme (2.10) for different
values of a∆t under a fixed value of d∆t. (a) d∆t = 1.0; (b) d∆t = 2.0; (c)

d∆t = 10.0; (d) d∆t = 20.0.

37

CHAPTER 3

NUMERICAL EXAMPLES FOR COMPUTATIONAL COMPLEXITY STUDY

OF KRYLOV INTEGRATION FACTOR WENO

METHOD

In this chapter, we use different types of numerical examples to systematically

compare the computational efficiency of two different approaches in using integration

factor methods for solving high dimensional problems. Examples include equations

with analytical solutions, convection-dominated equation, a stiff reaction problem

from mathematical modeling of the dorsal-ventral patterning in Drosophila embryos,

and three dimensional and four dimensional Fokker-Planck equations. We test the

convergence and CPU times, and analyze computational complexity of numerical

schemes via mesh refinement studies. We perform simulations on different meshes

including very fine ones. Computations on fine meshes are needed to resolve small

structures in complicated solutions which often arise in application problems. Com-

parisons of computational efficiency by different methods on very fine meshes in this

dissertation can provide certain guidance in choosing the suitable numerical methods.

All of the numerical simulations in this chapter are performed on a 2.3 GHz, 16GB

RAM Linux workstation.

3.1 Diffusion problems

We first test problems without convection, i.e., study computational complexity of

both approaches without considering the cost of WENO scheme. Then the complete

convection-diffusion problems are tested in the next subsection.

38

3.1.1 Diffusion problems without cross-derivatives

Example 1 (A problem with linear reaction). We consider a reaction-

diffusion problem with linear reaction

∂u

∂t
= 0.2∇ · (∇u) + 0.1u.

First we test the two dimensional case defined on the domain Ω = {0 < x < 2π, 0 <

y < 2π}, subject to no-flux boundary conditions at x = 0, x = 2π and periodic

boundary conditions in the y-direction, i.e.,

∂u

∂x
(0, y, t) =

∂u

∂x
(2π, y, t) = 0; u(x, 0, t) = u(x, 2π, t).

The initial condition is u(x, y, 0) = cos(x)+sin(y). The exact solution of the problem

is u(x, y, t) = e−0.1t(cos(x) + sin(y)). We compute the problem until the final time

T = 1 by the second order cIIF/AcIIF scheme (2.28) or (2.38) (they are equivalent),

and the second order Krylov IIF scheme (2.16) with the convection term Fa = 0. Since

the problem has a linear reaction term, the local implicit equation is just a linear

equation and can be solved directly. We test the L∞ errors, numerical accuracy orders

and CPU times on successively refined meshes to compare the two approaches. The

total numbers of multiplication and division operations at one time step are counted.

The cIIF2 method needs 2N3 + 8N2 + 6N operations, where N is the number of

grid points in each spatial direction. The KrylovIIF2 method for this problem needs

(M2 + 12M + 7)N2 + (M2 + 20M + 7)N +O(M3) operations at every time step. M

is the dimension of Krylov subspace. M = 25 for all examples in this dissertation,

and M does not need to be increased when the spatial-temporal resolution is refined.

Here O(M3) term is the number of operations for computing matrix exponential of a

small M×M matrix such as eHM4t. Since it is a small constant which is independent

39

of N , we omit it. Hence for M = 25, the number of operations at one time step for

the KrylovIIF2 scheme is estimated to be 932N2 + 1132N . This is a two dimensional

problem with N2 grid points. So the KrylovIIF2 scheme has a linear computational

complexity, while the computational complexity of the cIIF2 scheme is not linear.

However, their computational efficiency depends on the size of the problem. The

numerical errors, accuracy orders, CPU times (time unit: second) for a complete

simulation, for time evolution part and for one time step are listed in Table 3.1

and Table 3.2 for the cIIF2 scheme and the KrylovIIF2 scheme. We also list the

ratios of corresponding CPU times on an N ×N mesh to that on a N
2
× N

2
mesh, to

study the computational complexity of these two approaches. Both methods give the

same numerical errors and the second order accuracy. For this two dimensional time

dependent parabolic problem, we achieve large time step size computation ∆t = 0.5h

by using the IIF method. A linear computational complexity method should have

the CPU time ratio be 8 for a complete time evolution and the ratio 4 for one time

step. The KrylovIIF2 scheme’s CPU time ratios shown in Table 3.2 verify its linear

computational complexity. On the other hand, although the cIIF2 scheme’s CPU

time ratios shown in Table 3.1 are not linear, the cIIF2 scheme is more efficient

than the KrylovIIF2 scheme on 40× 40, 80× 80 and 160× 160 meshes, because the

cIIF2 scheme has a much smaller coefficient 2 in its leading operation amount than

the KrylovIIF2 whose leading operation amount coefficient is 932. On more refined

meshes 640× 640 and 1280× 1280, the KrylovIIF2 scheme is more efficient than the

cIIF2. On 320 × 320 mesh, the cIIF2 scheme is more efficient than the KrylovIIF2

scheme for one time step, but KrylovIIF2 is more efficient for the complete simulation

and for the whole time evolution. This is because that cIIF schemes compute matrix

exponentials (e.g., matrix exponentials for N × N matrices A∆t and B∆t) before

the time evolution and at the last time step when ∆t changes to reach the final time

T . So additional CPU times are needed. Other strategies to improve computational

40

efficiency can be explored further here, for example, interpolation in time for the

last time step rather than recomputing matrix exponentials. This will be one of our

future work.

We perform the same test for third order schemes. The third order cIIF scheme

cIIF3 (the scheme (2.26) with r = 3) and the third order KrylovIIF scheme KrylovIIF3

(2.17) are used to compute the same two-dimensional problem until the final time

T = 1. The comparison results are presented in Table 3.3 and Table 3.4. Both

methods have comparable numerical errors and accuracy orders. We observe higher

than third order (around fourth order) numerical accuracy orders because we used

a fourth order central difference scheme to discretize the diffusion terms. This is

for the purpose of having comparable spatial and temporal numerical errors. Again

as that in the second order schemes, the Krylov IIF scheme KrylovIIF3 shows a

linear computational complexity, while the cIIF scheme cIIF3 does not. However,

cIIF3 is more efficient than KrylovIIF3 on not very refined meshes such as 40 × 40,

80×80, 160×160 and 320×320. On very refined meshes 640×640 and 1280×1280,

KrylovIIF3 is more efficient.

Then we test the three dimensional case defined on the domain Ω = {0 ≤

x ≤ π, 0 ≤ y ≤ π, 0 ≤ z ≤ π}, subject to no-flux boundary conditions. The

initial condition is u(x, y, z, 0) = cos(x) + cos(y) + cos(z). The exact solution is

u(x, y, z, t) = e−0.1t(cos(x)+cos(y)+cos(z)). We count the total numbers of multipli-

cation and division operations at one time step. The cIIF2 scheme needs 3N4 + 4N3

operations, while the KrylovIIF2 scheme requires (M2+8M+6)N3+12MN2+O(M3)

operations. N is the number of grid points in each spatial direction. Again M is the

dimension of the Krylov subspace and M = 25. O(M3) term is the number of oper-

ations for computing matrix exponential of a small M ×M matrix such as eHM4t.

Since it is a small constant which is independent of N , we omit it. Hence for M = 25,

the number of operations at one time step for the KrylovIIF2 scheme is estimated to

41

be 831N3 + 300N2. Since three dimensional problem has N3 grid points, the com-

putational complexity of the KrylovIIF2 scheme is linear, while the computational

complexity of the cIIF2 scheme is not linear. Again as that for the two dimensional

problem, their computational efficiency depends on the size of the problem. We

compute the problem until the final time T = 1. The numerical errors, accuracy

orders, CPU times for a complete simulation, for time evolution part and for one

time step, and the ratios of corresponding CPU times on an N ×N mesh to that on

a N
2
× N

2
mesh are listed in Table 3.5 and Table 3.6 for the cIIF2 scheme and the

KrylovIIF2 scheme. Both methods give the same numerical errors and the second

order accuracy. For a three dimensional time dependent problem with ∆t = h/3, a

linear computational complexity method should have the CPU time ratio be 16 for a

complete time evolution and the ratio 8 for one time step. The KrylovIIF2 scheme’s

CPU time ratios shown in Table 3.6 verify its linear computational complexity. How-

ever, the cIIF2 scheme is more efficient than KrylovIIF2 scheme on 10 × 10 × 10,

20 × 20 × 20, 40 × 40 × 40, 80 × 80 × 80, and 160 × 160 × 160 meshes, because the

cIIF2 scheme has a much smaller coefficient 3 in its leading operation amount than

the KrylovIIF2 whose leading operation amount coefficient is 831. On the most re-

fined mesh 320× 320× 320, the KrylovIIF2 scheme is more efficient than the cIIF2.

We can also see that the cIIF2 scheme needs slightly additional CPU times to com-

pute a few N ×N matrix exponentials before the time evolution and at the last time

step.

42

TABLE 3.1

EXAMPLE 1. 2D CASE, CIIF2 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 7.45× 10−4 0.13 0.09 0.0031

80× 80 1.86× 10−4 2.00 1.43 11.06 1.04 12.21 0.025 7.92

160× 160 4.66× 10−5 2.00 18.26 12.73 14.21 13.66 0.20 8.02

320× 320 1.16× 10−5 2.00 269.66 14.77 225.03 15.84 1.77 8.88

640× 640 2.91× 10−6 2.00 4,667.67 17.31 4,328.65 19.24 19.58 11.07

1280× 1280 7.28× 10−7 2.00 79,855.09 17.11 76,837.65 17.75 180.42 9.22

43

TABLE 3.2

EXAMPLE 1. 2D CASE, KRYLOVIIF2 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 7.45× 10−4 0.50 0.50 0.04

80× 80 1.86× 10−4 2.00 3.56 7.16 3.56 7.16 0.14 3.58

160× 160 4.66× 10−5 2.00 27.34 7.68 27.34 7.68 0.54 3.92

320× 320 1.16× 10−5 2.00 219.15 8.02 219.15 8.02 2.15 4.01

640× 640 2.91× 10−6 2.00 1,828.21 8.34 1,828.21 8.34 8.91 4.15

1280× 1280 7.28× 10−7 2.00 14,174.02 7.75 14,174.02 7.75 34.66 3.89

44

TABLE 3.3

EXAMPLE 1. 2D CASE, CIIF3 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 1.47× 10−5 0.21 0.16 0.01

80× 80 9.18× 10−7 4.00 2.43 11.37 1.96 12.31 0.05 7.82

160× 160 5.74× 10−8 4.00 34.41 14.18 30.38 15.49 0.49 9.44

320× 320 3.59× 10−9 4.00 433.57 12.60 397.46 13.08 3.41 7.01

640× 640 2.29× 10−10 3.97 7,782.29 17.95 7,385.89 18.58 33.51 9.83

1280× 1280 2.89× 10−11 2.99 145,987.45 18.76 141,798.99 19.20 332.66 9.93

45

TABLE 3.4

EXAMPLE 1. 2D CASE, KRYLOVIIF3 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 1.47× 10−5 1.13 1.12 0.09

80× 80 9.18× 10−7 4.00 7.45 6.60 7.39 6.59 0.28 3.22

160× 160 5.74× 10−8 4.00 62.08 8.33 61.58 8.34 1.21 4.37

320× 320 3.59× 10−9 4.00 504.81 8.13 500.40 8.13 4.90 4.06

640× 640 2.35× 10−10 3.94 3,743.59 7.42 3,696.45 7.39 17.63 3.60

1280× 1280 1.25× 10−11 4.23 33,080.77 8.84 32,580.07 8.81 80.09 4.54

46

TABLE 3.5

EXAMPLE 1. 3D CASE, CIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 2.24× 10−3 0.0061 0.0057 0.00054

20× 20× 20 5.79× 10−4 1.95 0.21 34.99 0.21 36.76 0.010 19.12

40× 40× 40 1.87× 10−4 1.63 6.93 32.67 6.90 32.96 0.18 17.05

80× 80× 80 5.50× 10−5 1.77 230.83 33.33 230.60 33.42 2.99 16.94

160× 160× 160 1.53× 10−5 1.85 8,792.19 38.09 8,790.15 38.12 55.13 18.42

320× 320× 320 4.06× 10−6 1.91 367,739.27 41.83 367,712.22 41.83 1242.62 22.54

47

TABLE 3.6

EXAMPLE 1. 3D CASE, KRYLOVIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 2.24× 10−3 0.22 0.22 0.02

20× 20× 20 5.79× 10−4 1.95 3.06 14.15 3.06 14.15 0.15 7.02

40× 40× 40 1.87× 10−4 1.63 50.54 16.49 50.54 16.49 1.30 8.51

80× 80× 80 5.50× 10−5 1.77 850.24 16.82 850.24 16.82 11.06 8.53

160× 160× 160 1.53× 10−5 1.85 13,637.13 16.04 13,637.13 16.04 89.28 8.07

320× 320× 320 4.06× 10−6 1.91 225,543.28 16.54 225,543.28 16.54 735.62 8.24

48

Example 2 (A problem with nonlinear reaction). We consider a reaction-

diffusion problem with nonlinear reaction

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− u2 + e−2t cos2(πx) cos2(πy) + (2π2 − 1)e−t cos(πx) cos(πy).

The PDE is defined on the two dimensional domain (x, y) ∈ (0, 1) × (0, 1), subject

to no-flux boundary conditions. The initial condition is u(x, y, 0) = cos(πx) cos(πy).

The exact solution of the problem is u(x, y, t) = e−t cos(πx) cos(πy). We compute

the problem until the final time T = 1 by the cIIF2 scheme and the KrylovIIF2

scheme. Again we test the L∞ errors, numerical accuracy orders and CPU times

on successively refined meshes to compare the two approaches for such a nonlinear

reaction-diffusion problem. In the cIIF2 scheme and the KrylovIIF2 scheme, a local

nonlinear equation needed to be solved at every grid point, due to the implicit treat-

ment for the reaction term. Here the local nonlinear equation is solved by fixed-point

iterations as that in [42]. The results are reported in Table 3.7 and Table 3.8. we

can see that both methods give the second order accuracy and they have comparable

numerical errors, while KrylovIIF2 has smaller numerical errors on refined meshes

640 × 640 and 1280 × 1280. The ratios of corresponding CPU times on an N × N

mesh to that on a N
2
× N

2
mesh show that the KrylovIIF2 scheme has a linear compu-

tational complexity. Similar as the last example, the cIIF2 scheme is more efficient

than the KrylovIIF2 scheme on meshes 40 × 40, 80 × 80, 160 × 160 and 320 × 320.

On more refined meshes 640× 640 and 1280× 1280, the KrylovIIF2 scheme is more

efficient than the cIIF2 scheme.

49

TABLE 3.7

EXAMPLE 2. CIIF2 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 2.81× 10−3 0.56 0.49 0.0062

80× 80 7.19× 10−4 1.97 6.35 11.30 5.73 11.67 0.036 5.78

160× 160 1.82× 10−4 1.98 82.36 12.97 76.56 13.35 0.24 6.61

320× 320 4.56× 10−5 1.99 1,202.63 14.60 1,146.50 14.98 1.80 7.56

640× 640 1.14× 10−5 2.00 18,055.74 15.01 17,598.19 15.35 13.72 7.63

1280× 1280 2.86× 10−6 2.00 375,400.69 20.79 371,035.11 21.08 142.81 10.41

50

TABLE 3.8

EXAMPLE 2. KRYLOVIIF2 SCHEME

N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

40× 40 2.81× 10−3 3.85 3.85 0.05

80× 80 7.19× 10−4 1.97 26.50 6.88 26.50 6.88 0.17 3.51

160× 160 1.81× 10−4 1.99 198.52 7.49 198.52 7.49 0.61 3.63

320× 320 4.45× 10−5 2.03 1,621.66 8.17 1,621.66 8.17 2.54 4.13

640× 640 7.65× 10−6 2.54 12,822.76 7.91 12,822.76 7.91 9.92 3.91

1280× 1280 1.90× 10−6 2.01 104,679.46 8.16 104,679.46 8.16 40.07 4.04

51

3.1.2 Diffusion problems with cross-derivatives

Example 3 (A 3D problem with constant diffusion coefficients). We

consider a three-dimensional reaction-diffusion problem with constant diffusion coef-

ficients

ut = (0.1uxx−0.15uxy+0.1uyy)+(0.1uxx+0.2uxz+0.2uzz)+(0.2uyy+0.15uyz+0.1uzz)+0.8u,

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary

conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution

of the problem is

u(x, y, z, t) = e−0.2t sin(x+ y + z).

This problem was used in [53] for testing the AcIIF2 scheme. We compute the prob-

lem until the final time T = 1 by the KrylovIIF2 scheme (2.16) with the convection

term Fa = 0, and the AcIIF2 scheme (2.41), (2.50) with the convection term Fa = 0.

For the AcIIF2 scheme, we implement it in two different ways. One way is to directly

compute the matrix exponentials in (2.50). As that shown in the following numerical

results, it is still very expensive in terms of both CPU times and computer mem-

ory to directly calculate such N2 ×N2 matrices’ exponentials. A more efficient way

to implement AcIIF schemes is to apply Krylov subspace approximations of section

2.2.1 in computations of these N2×N2 matrices’ exponentials. We call such method

AcIIF schemes with Krylov subspace approximations. Again we test the L∞ errors,

numerical accuracy orders and CPU times on successively refined meshes to com-

pare the KrylovIIF2 scheme, the direct AcIIF2 scheme, and the AcIIF2 scheme with

Krylov subspace approximations for this problem. The results are reported in Table

3.9, Table 3.10, and Table 3.11. We can see that all of methods give the same nu-

merical errors and the second order accuracy. However, the direct AcIIF2 scheme is

computationally expensive as shown in Table 3.10, in both CPU times and computer

52

memory costs. The significant CPU time and computer memory costs for the direct

AcIIF2 scheme come from the direct computations and stores of several N2×N2 ma-

trices’ exponentials. In fact, the computations on the 160× 160× 160 mesh can not

be performed due to memory restrictions of our workstation. Direct large N2 × N2

matrix-vector multiplications require a large amount of CPU time for refined meshes

as shown in Table 3.10 the one time step CPU times. On the other hand, if we use the

Krylov approach to approximate these N2×N2 matrices’ exponentials in the AcIIF2

scheme, the computational efficiency can be improved dramatically. This is shown

in Table 3.11. An interesting case is that for the coarse meshes such as 10× 10× 10

and 20 × 20 × 20, the one time step CPU time for the direct AcIIF2 scheme is less

than that for the AcIIF2 scheme with Krylov subspace approximations due to the

relative small sizes of N2 × N2 matrix-vector multiplications. However, the total

CPU time for the direct AcIIF2 scheme still costs more due to the expensive direct

evaluations of N2 × N2 matrices’ exponentials. In Table 3.9, we report results for

the KrylovIIF2 scheme. The efficiency of the KrylovIIF2 scheme is impressive. In

fact, the KrylovIIF2 scheme is the most efficient one among all three approaches here

on all meshes. We can also see that both the KrylovIIF2 scheme and the AcIIF2

scheme with Krylov subspace approximations have linear computational complexity

as shown by the CPU time ratios in Table 3.9 and Table 3.11.

53

TABLE 3.9

EXAMPLE 3. KRYLOVIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 4.21× 10−2 0.15 0.15 0.03

20× 20× 20 1.11× 10−2 1.92 2.09 13.51 2.08 13.52 0.21 6.76

40× 40× 40 2.79× 10−3 2.00 33.11 15.88 33.09 15.89 1.65 7.95

80× 80× 80 6.97× 10−4 2.00 538.81 16.27 538.70 16.28 13.69 8.27

160× 160× 160 1.74× 10−4 2.00 8,413.74 15.62 8,412.93 15.62 109.56 8.00

320× 320× 320 4.36× 10−5 2.00 132,359.95 15.73 132,353.57 15.73 866.21 7.91

54

TABLE 3.10

EXAMPLE 3. DIRECT ACIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 4.21× 10−2 2.16 1.08 0.01

20× 20× 20 1.11× 10−2 1.92 143.85 66.60 73.36 67.75 0.28 31.73

40× 40× 40 2.79× 10−3 2.00 11,831.05 82.24 5,214.92 71.09 8.88 32.26

80× 80× 80 6.97× 10−4 2.00 1,601,309.44 135.35 753,295.70 144.45 485.98 54.73

160× 160× 160 - - - - - - - -55

TABLE 3.11

EXAMPLE 3. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 4.21× 10−2 1.17 1.17 0.23

20× 20× 20 1.11× 10−2 1.92 8.66 7.41 8.66 7.41 0.87 3.70

40× 40× 40 2.79× 10−3 2.00 96.87 11.18 96.86 11.18 4.85 5.59

80× 80× 80 6.97× 10−4 2.00 1,352.48 13.96 1,352.37 13.96 34.70 7.15

160× 160× 160 1.74× 10−4 2.00 21,221.14 15.69 21,220.33 15.69 275.57 7.94

320× 320× 320 4.36× 10−5 2.00 339,245.16 15.99 339,238.81 15.99 2,217.32 8.05

56

Example 4 (A 4D problem with constant diffusion coefficients). We test

a higher dimensional problem, the four-dimensional reaction-diffusion problem with

constant diffusion coefficients

ut =(0.1ux1x1 − 0.15ux1x2 + 0.1ux2x2) + (0.1ux1x1 + 0.2ux1x3 + 0.2ux3x3)+

(0.1ux1x1 + 0.2ux1x4 + 0.2ux4x4) + (0.1ux2x2 + 0.2ux2x3 + 0.2ux3x3)+

(0.1ux2x2 + 0.2ux2x4 + 0.2ux4x4) + (0.2ux3x3 + 0.15ux3x4 + 0.1ux4x4) + 2u,

(3.1)

where (x1, x2, x3, x4) ∈ Ω = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 <

2π} with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) =

sin(x1 + x2 + x3 + x4). The exact solution of the problem is

u(x1, x2, x3, x4, t) = e−0.5t sin(x1 + x2 + x3 + x4).

We compute the problem until the final time T = 1 by the KrylovIIF2 scheme (2.16)

with the convection term Fa = 0, and the AcIIF2 scheme (2.41), (2.53), (2.54) with

the convection term Fa = 0. For the AcIIF2 scheme, we also implement it in two

different ways, i.e., the direct computations of N2×N2 matrices’ exponentials and the

Krylov subspace approximations of them. The numerical results are reported in Table

3.12, Table 3.13 and Table 3.14. We obtain the same conclusion as the 3D problem

(Example 3). All of methods give the same numerical errors and the second order

accuracy. However, the direct AcIIF2 scheme is computationally the most expensive

one among three approaches for relatively refined meshes such as 40×40×40×40. We

count the total numbers of multiplication and division operations at one time step.

The direct AcIIF2 scheme needs 6N6+2N4 operations, where N is the number of grid

points in each spatial direction. The computational complexity is not linear and CPU

time ratio is expected to be around 26 = 64 when the spatial mesh is refined once.

This is verified in Table 3.13. As a result of the significant increase of computation

57

time with mesh refinement, CPU time has reached the maximum computation time

restriction of our workstation and the computation on 80× 80× 80× 80 can not be

performed. The computational efficiency is improved dramatically when the Krylov

approach is used to approximate these N2×N2 matrices’ exponentials in the AcIIF2

scheme, as shown in Table 3.14. Again, the KrylovIIF2 scheme is the most efficient

one among all three approaches here on all meshes as shown in Table 3.12. In terms

of total numbers of multiplication and division operations at one time step, the

KrylovIIF2 scheme needs (M2 + 28M + 4)N4 + O(M3) operations, and the AcIIF2

scheme with Krylov subspace approximations needs (6M2 + 66M + 14)N4 + O(N2)

operations. M is the dimension of the Krylov subspace and M = 25 in this example.

Hence they have linear computational complexity.

58

TABLE 3.12

EXAMPLE 4. KRYLOVIIF2 SCHEME

N ×N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10× 10 1.16× 10−1 1.60 1.59 0.32

20× 20× 20× 20 2.92× 10−2 1.99 49.34 30.89 49.30 30.92 4.93 15.49

40× 40× 40× 40 7.24× 10−3 2.01 1,596.13 32.35 1,595.56 32.37 79.79 16.19

80× 80× 80× 80 1.81× 10−3 2.00 70,569.13 44.21 70,560.68 44.22 1,929.45 24.18

59

TABLE 3.13

EXAMPLE 4. DIRECT ACIIF2 SCHEME

N ×N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10× 10 1.16× 10−1 5.20 3.04 0.19

20× 20× 20× 20 2.92× 10−2 1.99 398.91 76.75 258.66 85.06 11.84 63.91

40× 40× 40× 40 7.24× 10−3 2.01 38,341.37 96.12 25,777.97 99.66 799.41 67.50

80× 80× 80× 80 - - - - - - - -

60

TABLE 3.14

EXAMPLE 4. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N ×N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10× 10 1.16× 10−1 23.70 23.69 4.73

20× 20× 20× 20 2.92× 10−2 1.99 346.17 14.61 346.13 14.61 34.59 7.31

40× 40× 40× 40 7.24× 10−3 2.01 7,779.73 22.47 7,779.17 22.47 389.45 11.26

80× 80× 80× 80 1.81× 10−3 2.00 217,356.07 27.94 217,347.68 27.94 5,573.58 14.3161

Example 5 (A 3D problem with variable diffusion coefficients). In this exam-

ple, we test the three-dimensional reaction-diffusion problem with variable diffusion

coefficients

ut =0.5uxx − 0.5 sin(x+ y)uxy + 0.5uyy

+ 0.5uxx −
1

3
cos yuxz +

1

3
uzz

+ 0.5(1 + cosx)uyy − 0.5(1 + cos x)uyz +
1

3
(1 + cos x)uzz + f(x, y, z, u),

(3.2)

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary

conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The source term

f(x, y, z, u) =
(
1.3 + 2

3
− 0.5 sin(x+ y) + 1

3
(cosx− cos y)

)
u. The exact solution of this

problem is

u(x, y, z, t) = e−0.2t sin(x+ y + z).

This problem was used in [53] for testing the AcIIF2 scheme. We compute the prob-

lem until the final time T = 1. The KrylovIIF2 scheme (2.16) with the convection

term Fa = 0, and the AcIIF2 scheme (2.41), (2.51), (2.52) with the convection term

Fa = 0 are tested. Two different ways to implement the AcIIF2 scheme, i.e., direct

computations of N2×N2 matrices’ exponentials and Krylov subspace approximations

of them, are performed. The numerical results are reported in Table 3.15, Table 3.16

and Table 3.17. We obtain the same conclusion as Example 3 and Example 4. All

of methods achieve similar numerical errors and the second order accuracy. Again,

the direct AcIIF2 scheme is computationally the most expensive one among three

approaches due to direct computations of quite a few N2 × N2 matrices’ exponen-

tials. Especially for this problem with variable diffusion coefficients, much more

N2 × N2 matrices’ exponentials need to be computed than that for constant diffu-

sion coefficient problems because such N2 ×N2 matrices Ak312, Ak213 and Ak123 in (2.51)

and (2.52) are different at different spatial grid points. Since direct implementation

62

of the AcIIF2 scheme computes and stores these N2 × N2 matrices’ exponentials

before the time evolution, much more computer memory is used to store matrices’

exponentials than that by the approach of Krylov subspace approximations, in which

multiplications of exponential matrices and vectors are performed in the time evo-

lution process and no matrix’s exponential is pre-stored. In fact, the computations

on the 80× 80× 80 mesh by the direct AcIIF2 scheme can not be performed due to

memory restrictions of our workstation. Table 3.16 shows that a complete simulation

needs much more CPU times than that of the time evolution part. This verifies that

direct computations of these N2 ×N2 matrices’ exponentials require a large amount

of CPU resources. Again, the computational efficiency can be improved dramatically

by using the Krylov approach to approximate multiplications of N2 × N2 matri-

ces’ exponentials with vectors in the AcIIF2 scheme, as shown in Table 3.17. And

computations can be performed on much more refined meshes (Table 3.17) since we

do not need to pre-store these N2 × N2 matrices’ exponentials. The most efficient

one is the computations by using the KrylovIIF2 scheme, as shown in Table 3.15. In

terms of total numbers of multiplication and division operations at one time step, the

KrylovIIF2 scheme needs (M2 +19M+7)N3 +MN2 +MN+O(M3) operations, and

the AcIIF2 scheme needs 5N5 + 6N3 operations. N is the number of grid points in

each spatial direction, while the constant M is the dimension of the Krylov subspace

and M = 25 in this example. Hence the KrylovIIF2 scheme has linear computational

complexity as shown by the CPU time ratios in Table 3.15.

63

TABLE 3.15

EXAMPLE 5. KRYLOVIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 2.15× 10−1 0.17 0.17 0.03

20× 20× 20 5.29× 10−2 2.02 2.20 13.06 2.19 13.10 0.22 6.56

40× 40× 40 1.34× 10−2 1.99 35.05 15.94 35.00 15.98 1.75 7.89

80× 80× 80 3.34× 10−3 2.00 551.57 15.73 551.17 15.75 14.13 8.07

160× 160× 160 8.34× 10−4 2.00 8,992.13 16.30 8,989,12 16.31 115.99 8.21

320× 320× 320 2.09× 10−4 2.00 153,195.14 17.04 153,171.55 17.04 958.75 8.27

64

TABLE 3.16

EXAMPLE 5. DIRECT ACIIF2 SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 2.12× 10−1 13.79 6.77 0.02

20× 20× 20 5.19× 10−2 2.03 1,723.95 125.01 852.12 125.81 0.54 27.17

40× 40× 40 1.31× 10−2 1.99 328,908.44 190.79 145,345.87 170.57 20.18 37.45

80× 80× 80 - - - - - - - -

65

TABLE 3.17

EXAMPLE 5. ACIIF2 SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 2.12× 10−1 1.99 1.99 0.40

20× 20× 20 5.19× 10−2 2.03 14.87 7.45 14.86 7.45 1.49 3.73

40× 40× 40 1.31× 10−2 1.99 165.34 11.12 165.28 11.12 8.26 5.56

80× 80× 80 3.27× 10−3 2.00 2,299.09 13.91 2,298.70 13.91 58.91 7.13

160× 160× 160 8.17× 10−4 2.00 35,181.50 15.30 35,178.49 15.30 456.60 7.75

320× 320× 320 2.04× 10−4 2.00 577,577.49 16.42 577,553.96 16.42 3,775.65 8.27

66

3.1.3 A system with stiff reactions from mathematical biology

Example 6. We consider an example in mathematical modeling of the dorsal-ventral

patterning in Drosophila embryos, a regulatory system involving several zygotic genes

[40]. Among them, decapentaplegic (Dpp) promotes dorsal cell fates such as am-

nioserosa and inhibits development of the ventral central nervous system; and an-

other gene Sog promotes central nervous system development. In this system, Dpp is

produced only in the dorsal region while Sog is produced only in the ventral region.

For the wild-type, the Dpp activity has a sharp peak around the mid-line of the dorsal

with the presence of its “inhibitor” Sog. Intriguingly, mutation of Sog results in a loss

of ventral structure as expected, but, in addition, the amnioserosa is reduced as well.

It appears that the Dpp antagonist, Sog, is required for maximal Dpp signaling [2].

Motivated by experimental study on over-expression of the cell receptors along the

anterior-posterior axis of the embryo [40], a two-dimensional reaction diffusion model

was developed [29] to exam the Dpp activities outside the area of elevated receptors

in a Drosophila embryo. The model has stiff reaction terms due to largely different

biochemical reaction rates in the system [43]. Here we compare the computational

efficiency of compact IIF method and Krylov IIF method for solving this example.

Let [L], [S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp-Sog complex,

and Dpp-receptor complex, respectively. The dynamics of the Dpp-Sog system is

governed by the following reaction diffusion system [29]:

∂[L]

∂t
= DL

(
∂2[L]

∂x2
+
∂2[L]

∂y2

)
− kon[L] (R(x, y)− [LR]) + koff [LR]

−jon[L][S] + (joff + τjdeg)[LS] + VL(x, y)

∂[LR]

∂t
= kon[L] (R(x, y)− [LR])− (koff + kdeg)[LR]

∂[LS]

∂t
= DLS

(
∂2[LS]

∂x2
+
∂2[LS]

∂y2

)
+ jon[L][S]− (joff + jdeg)[LS]

∂[S]

∂t
= DS

(
∂2[S]

∂x2
+
∂2[S]

∂y2

)
− jon[L][S] + joff [LS] + VS(x, y) (3.3)

67

in the domain 0 < x < Xmax, 0 < y < Ymax, where

R(x, y) =


Rh, x ≤ Xh,

R0, x > Xh.

(3.4)

VL(X, Y) =


vL, y < 1

2
Ymax,

0, y ≥ 1
2
Ymax.

(3.5)

VS(X, Y) =


0, y < 1

2
Ymax,

vS, y ≥ 1
2
Ymax.

(3.6)

The boundary conditions for [L], [LS], and [S] are no-flux at x = 0 and x = Xmax,

and periodic at y = 0 and y = Ymax. R(x, y) is the concentration of the initially

available receptor in space; x = Xh is the boundary between the two regions with

different level of receptors; VL(x, y) and VS(x, y) are the production rates for Dpp and

Sog, respectively; DL, DLS, DS are diffusion coefficients; τ is the cleavage rate for Sog,

and other coefficients are on, off and degradation rate constants for the corresponding

biochemical reactions. The initial concentrations of all morphogen molecules are

zeros. Both Xmax and Ymax are taken to be 0.055cm, based on the embryo size of

Drosophila at its certain developmental stage [40]. We study the cell receptor over-

expression experiments in [40] by setting Rh = 9µM in the region 0 < x ≤ Xh =

0.02cm, and R0 = 3µM in the rest part of the domain. The second order Krylov

IIF (Krylov IIF2) scheme and the second order compact IIF (cIIF2) scheme are

used to simulate the system. The numerical solutions for the concentrations of Dpp,

Dpp-receptor, Dpp-Sog and Sog are presented in Figure 3.1 and Figure 3.2. Similar

results are obtained for these two methods. Simulations by both methods confirm

that the over-expression of receptor induces a local boost of Dppreceptor activities

near the boundary of two different concentration regions of receptors, similar to the

68

experimental observations in [40]. However the computational efficiency of these two

methods are different. It takes 871.26 seconds CPU time for the cIIF2 scheme to

finish the simulation, while it costs 8152.50 seconds CPU time for the Krylov IIF2

scheme. Again, consistent observations with previous examples are obtained. For

this example which has diffusion terms without cross-derivatives, compact approach

is more efficient than the Krylov approach.

3.2 Convection-Diffusion problems

In this section, we test these schemes for dealing with high dimensional convection-

diffusion problems with WENO discretizations for convection terms.

Example 7 (A 4D convection-diffusion equation with anisotropic diffusion

and constant diffusion coefficients). We consider a four-dimensional convection-

diffusion equation with cross-derivative diffusion terms and constant diffusion coeffi-

cients

ut + (
1

2
u2)x1 + (

1

2
u2)x2 + (

1

2
u2)x3 + (

1

2
u2)x4 =

(0.1ux1x1 − 0.15ux1x2 + 0.1ux2x2) + (0.1ux1x1 + 0.2ux1x3 + 0.2ux3x3)+

(0.1ux1x1 + 0.2ux1x4 + 0.2ux4x4) + (0.1ux2x2 + 0.2ux2x3 + 0.2ux3x3)+

(0.1ux2x2 + 0.2ux2x4 + 0.2ux4x4) + (0.2ux3x3 + 0.15ux3x4 + 0.1ux4x4) + S(x1, x2, x3, x4, t),

(3.7)

where (x1, x2, x3, x4) ∈ Ω = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 <

2π} with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) =

sin(x1 + x2 + x3 + x4). The exact solution is

u(x1, x2, x3, x4) = e−0.5t sin(x1 + x2 + x3 + x4).

69

0

0.05

0

0.05
0

5

x 10
−4

X(cm)Y(cm)

D
pp

 (
µ

M
)

0

0.05

0

0.05
0

0.05

0.1

X(cm)Y(cm)

D
pp

−
re

ce
pt

or
 (

µ
M

)

0

0.05

0

0.05
0

0.02

0.04

X(cm)Y(cm)

D
pp

−
S

og
 (

µ
M

)

0

0.05

0

0.05
0

5

X(cm)Y(cm)

S
og

 (
µ

M
)

Figure 3.1. Numerical solutions of Example 6 using the Krylov IIF2
scheme: concentrations of [L], [LR], [LS], [S] at T = 100 seconds for the

Dpp-Sog system when receptors are over-expressed.
∆t = hx = hy = 0.001375 in the simulation. Parameters are
DL = DLS = DS = 85µm2s−1; vL = 1nMs−1; vS = 80nMs−1;
kon = 0.4µM−1s−1; koff = 4× 10−6s−1; kdeg = 5× 10−4s−1;

jon = 95µM−1s−1; joff = 4× 10−6s−1; jdeg = 0.54s−1; τ = 1; Rh = 9µM ;
R0 = 3µM .

70

0

0.05

0

0.05
0

5

x 10
−4

X(cm)Y(cm)

D
pp

 (
µ

M
)

0

0.05

0

0.05
0

0.05

0.1

X(cm)Y(cm)

D
pp

−
re

ce
pt

or
 (

µ
M

0

0.05

0

0.05
0

0.02

0.04

X(cm)Y(cm)

D
pp

−
S

og
 (

µ
M

)

0

0.05

0

0.05
0

5

X(cm)Y(cm)

S
og

 (
µ

M
)

Figure 3.2. Numerical solutions of Example 6 using the cIIF2 scheme:
concentrations of [L], [LR], [LS], [S] at T = 100 seconds for the Dpp-Sog

system when receptors are over-expressed. ∆t = hx = hy = 0.001375 in the
simulation. Parameters are DL = DLS = DS = 85µm2s−1; vL = 1nMs−1;
vS = 80nMs−1; kon = 0.4µM−1s−1; koff = 4× 10−6s−1; kdeg = 5× 10−4s−1;
jon = 95µM−1s−1; joff = 4× 10−6s−1; jdeg = 0.54s−1; τ = 1; Rh = 9µM ;

R0 = 3µM .

71

The source term

S(x1, x2, x3, x4, t) = (4e−0.5t cos(x1 + x2 + x3 + x4) + 2)e−0.5t sin(x1 + x2 + x3 + x4).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme

(2.16) and the AcIIF2-WENO scheme (2.41), (2.53), (2.54) with Krylov subspace

approximations to matrix exponentials in (2.53) and (2.54) are used. Here time

step sizes are determined only by the convection (hyperbolic) part of the equation

with CFL number 0.1. Numerical results are reported in Table 3.18 and Table 3.19.

We can see that both schemes achieve the same numerical errors and second order

accuracy. However, the KrylovIIF2-WENO scheme is much more efficient than the

AcIIF2-WENO scheme with Krylov subspace approximations for this example.

72

TABLE 3.18

EXAMPLE 7. KRYLOVIIF2-WENO SCHEME

N ×N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10× 10 2.27× 10−2 6.55 6.52 0.65

20× 20× 20× 20 1.01× 10−2 1.18 242.15 36.97 241.64 37.08 10.51 16.13

40× 40× 40× 40 3.30× 10−3 1.61 8,013.72 33.09 8,005.98 33.13 166.82 15.87

80× 80× 80× 80 9.00× 10−4 1.87 316,945.98 39.55 316,803.84 39.57 3,084.58 18.49

73

TABLE 3.19

EXAMPLE 7. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N ×N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10× 10 2.27× 10−2 110.57 110.54 11.07

20× 20× 20× 20 1.01× 10−2 1.18 2,290.56 20.72 2,290.05 20.72 99.25 8.96

40× 40× 40× 40 3.30× 10−3 1.61 60,778.28 26.53 60,770.28 26.54 1,269.46 12.79

80× 80× 80× 80 9.00× 10−4 1.87 1,812,641.33 29.82 1,812,266.39 29.82 17,984.97 14.1774

Example 8 (A 3D convection-diffusion equation with anisotropic diffusion

and variable diffusion coefficients). We add convection terms to the example

5 and consider the following three-dimensional convection-diffusion equation with

cross-derivative diffusion terms and variable diffusion coefficients

ut + (
1

2
u2)x + (

1

2
u2)y + (

1

2
u2)z =

0.5uxx − 0.5 sin(x+ y)uxy + 0.5uyy + 0.5uxx −
1

3
cos(y)uxz +

1

3
uzz

+ 0.5(1 + cosx)uyy − 0.5(1 + cos x)uyz +
1

3
(1 + cos x)uzz + S(x, y, z, t),

(3.8)

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary

conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution

of this equation is

u(x, y, z, t) = e−0.2t sin(x+ y + z).

And the source term S(x, y, z, t) is

S(x, y, z, t) =
(

3e−0.2t cos(x+y+z)+
59

30
−0.5 sin(x+y)+

1

3
(cos(x)−cos(y))

)
e−0.2t sin(x+y+z).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme

(2.16), and the AcIIF2-WENO scheme (2.41), (2.51), (2.52) with Krylov subspace

approximations to matrix exponentials in (2.51) and (2.52) are tested. Time step sizes

are determined only by the convection (hyperbolic) part of the equation with CFL

number 0.1. Numerical results are reported in Table 3.20 and Table 3.21. The same

observations as the last example are obtained. Both schemes achieve almost the same

numerical errors and second order accuracy. The KrylovIIF2-WENO scheme is much

more efficient than the AcIIF2-WENO scheme with Krylov subspace approximations

for this convection-diffusion example with anisotropic diffusion and variable diffusion

coefficients.

75

TABLE 3.20

EXAMPLE 8. KRYLOVIIF2-WENO SCHEME

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 1.37× 10−1 1.22 1.22 0.09

20× 20× 20 2.99× 10−2 2.19 21.24 17.35 21.21 17.37 0.76 8.11

40× 40× 40 5.28× 10−3 2.50 393.16 18.51 392.95 18.52 6.89 9.10

80× 80× 80 1.09× 10−3 2.28 8,463.98 21.53 8,462.12 21.53 61.55 8.93

160× 160× 160 2.62× 10−4 2.05 95,558.44 11.29 95,545.98 11.29 413.83 6.7276

TABLE 3.21

EXAMPLE 8. ACIIF2-WENO SCHEME WITH KRYLOV SUBSPACE

APPROXIMATIONS

N ×N ×N L∞ error Order CPU(s) R1 CPU1(s) R2 CPU2(s) R3

10× 10× 10 1.37× 10−1 10.05 10.05 0.78

20× 20× 20 2.99× 10−2 2.19 81.47 8.10 81.44 8.10 2.91 3.73

40× 40× 40 5.28× 10−3 2.50 936.26 11.49 936.05 11.49 16.43 5.64

80× 80× 80 1.09× 10−3 2.28 11,024.66 11.78 11,022.74 11.78 91.27 5.56

160× 160× 160 2.61× 10−4 2.06 215,299.80 19.53 215,287.37 19.53 936.02 10.26

77

Example 9 (A convection-dominated problem). In this example, we test

the performance of the schemes for convection-dominated case. Consider the two-

dimensional nonlinear viscous Burgers’ equation


ut + (

u2

2
)x + (

u2

2
)y = 0.01∆u, −2 ≤ x ≤ 2, − 2 ≤ y ≤ 2,

u(x, y, 0) = 0.3 + 0.7 sin(
π

2
(x+ y)),

(3.9)

with periodic boundary condition. Since the viscous coefficient is much smaller than

the convection coefficient, a sharp gradient (the shock wave) is developed along with

the time evolution. The Krylov IIF2-WENO scheme and the cIIF2-WENO scheme

are used to solve the PDE to T = 5/π2. The numerical results are reported in Figure

3.3. We can observe that the WENO scheme plays an important role here to obtain

a sharp, non-oscillatory shock transition region. The time step size is only restricted

by the hyperbolic part of the PDE with CFL number 0.5. We compare the CPU

times of the Krylov IIF2-WENO scheme and the cIIF2-WENO scheme on different

meshes. The results are reported in Table 3.22. Consistent observations with previous

examples are obtained. For this example which has diffusion terms without cross-

derivatives, compact approach is more efficient than the Krylov approach, except the

case with a very refined mesh.

78

−2
−1

0
1

2

−3
−2

−1
0

1
2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Y

KrylovIIF2, d=0.01

X

−2−1012

−3
−2

−1
0

1
2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Y

cIIF2, d=0.01

X

Figure 3.3. Numerical solutions of nonlinear viscous Burgers’ equation on a
80× 80 mesh by the Krylov IIF2-WENO scheme and the cIIF2-WENO

scheme. Time T = 5/π2. Left picture: result of Krylov IIF2-WENO; right
picture: result of cIIF2-WENO.

79

TABLE 3.22

CPU TIME COMPARISONS FOR SOLVING THE NONLINEAR

VISCOUS BURGERS’ EQUATION

N ×N KrylovIIF2 CPU(s) cIIF2 CPU(s)

40× 40 0.52 0.10

80× 80 5.83 1.20

160× 160 29.81 15.15

320× 320 378.36 290.28

640× 640 3,067.96 4,344.81

Example 10 (Fokker-Planck equations). The Fokker-Planck equation (FPE) [44]

describes in a statistical sense how a collection of initial data evolves in time, e.g.,

in describing Brownian motion. It is a N -dimensional convection-diffusion equation

and has been applied in computing statistical properties in many systems. In [53],

AcIIF schemes with second order central difference spatial discretizations for the

diffusion terms were applied in solving FPEs which describe the time evolution of the

probability density function of stochastic systems [44]. The general form of FPEs is

∂p(x, t)

∂t
= −

R∑
r=1

{
N∑
i=1

nri
∂

∂xi

(
qr(x, t)−

1

2

N∑
j=1

nrj
∂qr(x, t)

∂xj

)}
, (3.10)

where p(x, t) is the probability density of the system at the state x = (x1, x2, . . . , xN)

and time t. In the context of bio-chemical reactions, R denotes the total number of

chemical reactions in the system, N the total number of species involving in the

reaction, and xi denotes the copy number of i-th reactant. nri is the change of

80

xi when the r-th reaction occurs once. qr(x, t) is defined by qr(x, t) = wr(x)p(x, t),

where wr(x, t) is the reaction propensity function for r-th reaction at state x and time

t. In this section, we study computational efficiency of Krylov IIF-WENO scheme

and AcIIF-WENO scheme for solving high dimensional FPE. Since IIF schemes in

this dissertation are multistep methods, numerical values at the first time step are

needed to start computations for solving convection-diffusion equations. We use a

third order Runge-Kutta scheme for the first step time evolution. Then the second

order Krylov IIF scheme and AcIIF scheme are used to continue the time evolution.

(1) A three dimensional Fokker-Planck equation.

We first compare the computational efficiency of the KrylovIIF2-WENO scheme

(2.16) and the AcIIF2-WENO scheme (2.41), (2.51), (2.52) with Krylov subspace ap-

proximations for a three dimensional Fokker-Planck equation [48] which involves two

metabolites A and B and one enzyme EA. The reactions are described as following

(here ∅ means that there is no reactant or product in the reaction):

∅
kA[EA]

1+[A]/KI−→ A, ∅ kB−→ B,

A+B
k[A][B]−→ ∅,

A
µ[A]−→ ∅, B

µ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
µ[EA]−→ ∅.

(3.11)

In this system, the total number of reactions R is 7, and the total number of

chemical species N is 3. The vectors nr = (nr1, nr2, nr3) are n1 = (1, 0, 0), n2 =

(0, 1, 0), n3 = (−1,−1, 0), n4 = (−1, 0, 0), n5 = (0,−1, 0), n6 = (0, 0, 1), n7 =

(0, 0,−1). We denote the system state x by x = (x1, x2, x3) which is ([A], [B], [EA])

81

in this case. Then the propensity functions wr(x) are

w1 =
kAx3

1 + x1/KI

, w2 = kB, w3 = kx1x2,

w4 = µx1, w5 = µx2, w6 =
kEA

1 + x1/KR

, w7 = µx3,

(3.12)

where kA = 0.3s−1, kB = 2s−1, KI = 30, k = 0.001s−1, µ = 0.004s−1, KR = 30 and

kEA
= 1s−1 [48]. Then the FPE can be written as

∂p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7), (3.13)

where Lr represents the operator for the r-th reaction. Specifically,

L1 =
∂q1(x, t)

∂x1

− 1

2

∂2q1(x, t)

∂x2
1

,

L2 =
∂q2(x, t)

∂x2

− 1

2

∂2q2(x, t)

∂x2
2

,

L3 = −∂q3(x, t)

∂x1

− ∂q3(x, t)

∂x2

− 1

2

(∂2q3(x, t)

∂x2
1

+
∂2q3(x, t)

∂x2
2

+ 2
∂2q3(x, t)

∂x1∂x2

)
,

L4 = −∂q4(x, t)

∂x1

− 1

2

∂2q4(x, t)

∂x2
1

,

L5 = −∂q5(x, t)

∂x2

− 1

2

∂2q5(x, t)

∂x2
2

,

L6 =
∂q6(x, t)

∂x3

− 1

2

∂2q6(x, t)

∂x2
3

,

L7 = −∂q7(x, t)

∂x3

− 1

2

∂2q7(x, t)

∂x2
3

.

(3.14)

The computational domain is Ω = [0, 100] × [0, 100] × [0, 45], which covers nearly

all the possible states of the chemical reactions, since the probability of [A] > 100,

[B] > 100, and [EA] > 45 is sufficiently small. The initial condition in our simulation

is a Gaussian distribution centered at point (30, 40, 20) with standard deviation
√

30.

Zero Dirichlet boundary conditions are used.

For spatial discretizations, we use the third order WENO scheme for the convec-

82

tion terms and the second order central difference scheme for the diffusion terms.

And we compare the second order Krylov IIF scheme and the second order AcIIF

scheme with Krylov subspace approximations. For simulation results shown in the

figures here, the time step size 4t is 0.017 (corresponding to the CFL number 0.4 for

the convection part) and the numbers of spatial grid points are NA = 120, NB = 120,

NEA
= 60. In Table 3.23, we list the errors and accuracy orders for both schemes,

and the same numerical errors and second order accuracy are obtained. Since there

is no explicit form for the exact solution in this example, we focus on testing the

schemes’ temporal accuracy. So the spatial resolution is fixed to be 120× 120× 60,

and numerical errors for a time step size4t are obtained by calculating the difference

of numerical values for 4t and 4t/2. We compare the computational efficiency of

these two schemes and list CPU times of using them to solve the problem until the

final time T = 10 with 4t = 0.017, in Table 3.24. The CPU times in Table 3.24 show

that the KrylovIIF2-WENO scheme is more efficient than the AcIIF2-WENO scheme

with Krylov subspace approximations, for this example. In Figures 3.4, 3.5, and 3.6,

we show contour plots of numerical solutions by the KrylovIIF2-WENO scheme on

two dimensional domain of molecular species A and B, with different values of the

third dimension EA. Contour plots of numerical solutions by the AcIIF2-WENO

scheme with Krylov subspace approximations are presented in Figures 3.7, 3.8, and

3.9. We see that both methods generate similar numerical solutions.

83

TABLE 3.23

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE

KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV

SUBSPACE APPROXIMATIONS FOR THE 3D FOKKER-PLANCK

EQUATION (4.5)

KrylovIIF2-WENO

time step size L∞error Order

4t 1.56× 10−8

4t/2 3.90× 10−9 2.00

4t/4 1.00× 10−9 1.96

AcIIF2-WENO with Krylov subspace approx.

time step L∞error Order

4t 1.56× 10−8

4t/2 3.90× 10−9 2.00

4t/4 1.00× 10−9 1.96

84

TABLE 3.24

CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME

WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 3D

FOKKER-PLANCK EQUATION (4.5)

CPU CPU1 CPU2

KrylovIIF2-WENO 44,568.7 44,562.3 75.24

AcIIF2-WENO with Krylov 183,126.0 183,120.0 309.38

(2) A four dimensional Fokker-Planck equation.

We further test the methods for a higher dimensional problem, i.e., a four dimen-

sional FPE which involves two metabolites A and B and two enzymes EA and EB.

The reactions are described as following (here ∅ means that there is no reactant or

product in the reaction):

∅
kA[EA]

1+[A]/KI−→ A, ∅
kB [EB]

1+[B]/KI−→ B,

A+B
k[A][B]−→ ∅,

A
µ[A]−→ ∅, B

µ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
µ[EA]−→ ∅,

∅
kEB

1+[B]/KR−→ EB, EB
µ[EB]−→ ∅.

(3.15)

In this system, the total number of reactions R is 9, and the total number of

chemical species N is 4. The vectors nr = (nr1, nr2, nr3, nr4) are n1 = (1, 0, 0, 0),

n2 = (0, 1, 0, 0), n3 = (−1,−1, 0, 0), n4 = (−1, 0, 0, 0), n5 = (0,−1, 0, 0), n6 =

(0, 0, 1, 0), n7 = (0, 0,−1, 0), n8 = (0, 0, 0, 1), n9 = (0, 0, 0,−1). We denote the

85

x

y

T=10, z=12.75

20 40 60 80

20

40

60

80

0

5

10

15

x 10
−5

x

y

T=10, z=21.75

20 40 60 80

20

40

60

80

0

1

2

3
x 10

−4

x

y

T=10, z=30.75

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−5

x

y

T=10, z=39.75

20 40 60 80

20

40

60

80

0

0.5

1

1.5

2

2.5

x 10
−7

Figure 3.4. Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (4.5) using the KrylovIIF2-WENO scheme. Final

time T = 10. 4t = 0.017. The numbers of spatial grid points are
NA = 120, NB = 120, NEA

= 60.

x

y

T=50 z=12.75

20 40 60 80

20

40

60

80

0

1

2

x 10
−4

x

y

T=50 z=21.75

20 40 60 80

20

40

60

80

0

5

10

15

x 10
−5

x

y

T=50 z=30.75

20 40 60 80

20

40

60

80

0

1

2

3

4

5

6
x 10

−6

x

y

T=50 z=39.75

20 40 60 80

20

40

60

80

0

5

10

15
x 10

−9

Figure 3.5. Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (4.5) using the KrylovIIF2-WENO scheme. Final

time T = 50. 4t = 0.017. The numbers of spatial grid points are
NA = 120, NB = 120, NEA

= 60.

86

x

y

(a) T=0, z=20.25

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(b) T=20, z=18.75

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(c) T=35, z=17.25

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(d) T=50, z=16.50

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

Figure 3.6. Distribution of A and B with different EA values, at time
T = 0, 20, 35, 50. Numerical solutions of (4.5) using the KrylovIIF2-WENO

scheme. 4t = 0.017. The numbers of spatial grid points are NA = 120,
NB = 120, NEA

= 60.

x

y

T=10, z=12.75

20 40 60 80

20

40

60

80

0

5

10

15

x 10
−5

x

y

T=10, z=21.75

20 40 60 80

20

40

60

80

0

1

2

3
x 10

−4

x

y

T=10, z=30.75

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−5

x

y

T=10, z=39.75

20 40 60 80

20

40

60

80

0

0.5

1

1.5

2

2.5

x 10
−7

Figure 3.7. Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (4.5) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 10. 4t = 0.017. The numbers of

spatial grid points are NA = 120, NB = 120, NEA
= 60.

87

x

y

T=50 z=12.75

20 40 60 80

20

40

60

80

0

1

2

x 10
−4

x

y

T=50 z=21.75

20 40 60 80

20

40

60

80

0

5

10

15

x 10
−5

x

y

T=50 z=30.75

20 40 60 80

20

40

60

80

0

1

2

3

4

5

6
x 10

−6

x

y

T=50 z=39.75

20 40 60 80

20

40

60

80

0

5

10

x 10
−9

Figure 3.8. Distribution of A and B with EA = 12.75, 21.75, 30.75, 39.75.
Numerical solutions of (4.5) using the AcIIF2-WENO scheme with Krylov
subspace approximations. Final time T = 50. 4t = 0.017. The numbers of

spatial grid points are NA = 120, NB = 120, NEA
= 60.

x

y

(a) T=0, z=20.25

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(b) T=20, z=18.75

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(c) T=35, z=17.25

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

x

y

(d) T=50, z=16.50

20 40 60 80

20

40

60

80

0

1

2

3

x 10
−4

Figure 3.9. Distribution of A and B with different EA values, at time
T = 0, 20, 35, 50. Numerical solutions of (4.5) using the AcIIF2-WENO

scheme with Krylov subspace approximations. 4t = 0.017. The numbers of
spatial grid points are NA = 120, NB = 120, NEA

= 60.

88

system state x by x = (x1, x2, x3, x4) which is ([A], [B], [EA], [EB]) in this case. Then

the propensity functions wr(x) are

w1 =
kAx3

1 + x1/KI

, w2 =
kBx4

1 + x2/KI

, w3 = kx1x2, w4 = µx1,

w5 = µx2, w6 =
kEA

1 + x1/KR

, w7 = µx3, w8 =
kEB

1 + x2/KR

, w9 = µx4,

(3.16)

where kA = 0.3s−1, kB = 0.3s−1, KI = 60, k = 0.001s−1, µ = 0.002s−1, KR = 30,

kEA
= 0.02s−1 and kEB

= 0.02s−1[48]. Then the FPE can be written as

∂p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9), (3.17)

where Lr represents the operator for the r-th reaction. Specifically,

L1 =
∂q1(x, t)

∂x1

− 1

2

∂2q1(x, t)

∂x2
1

,

L2 =
∂q2(x, t)

∂x2

− 1

2

∂2q2(x, t)

∂x2
2

,

L3 = −∂q3(x, t)

∂x1

− ∂q3(x, t)

∂x2

− 1

2

(∂2q3(x, t)

∂x2
1

+
∂2q3(x, t)

∂x2
2

+ 2
∂2q3(x, t)

∂x1∂x2

)
,

L4 = −∂q4(x, t)

∂x1

− 1

2

∂2q4(x, t)

∂x2
1

,

L5 = −∂q5(x, t)

∂x2

− 1

2

∂2q5(x, t)

∂x2
2

,

L6 =
∂q6(x, t)

∂x3

− 1

2

∂2q6(x, t)

∂x2
3

,

L7 = −∂q7(x, t)

∂x3

− 1

2

∂2q7(x, t)

∂x2
3

,

L8 =
∂q8(x, t)

∂x4

− 1

2

∂2q8(x, t)

∂x2
4

,

L9 = −∂q9(x, t)

∂x4

− 1

2

∂2q9(x, t)

∂x2
4

.

(3.18)

The computational domain is Ω = [0, 80] × [0, 80] × [0, 30] × [0, 30]. The initial

89

condition in our simulation is a Gaussian distribution centered at point (30, 40, 15, 12)

with standard deviation
√

40. Zero Dirichlet boundary conditions are used.

Same as that for the three dimensional problem, for spatial discretizations we use

the third order WENO scheme for the convection terms and the second order central

difference scheme for the diffusion terms. We compare the computational efficiency of

the second order Krylov IIF scheme (2.16) and the second order AcIIF scheme (2.41),

(2.55)-(2.58) with Krylov subspace approximations. For simulation results shown in

the figures here, the time step size4t is 0.1 (corresponding to the CFL number 0.6 for

the convection part) and the numbers of spatial grid points are NA = 40, NB = 40,

NEA
= 20, NEB

= 20. In Table 3.25, we list the errors and accuracy orders for both

schemes, and the same numerical errors and second order accuracy are obtained. We

compare the computational efficiency of these two schemes and list CPU times of

using them to solve the problem until the final time T = 10 with 4t = 0.1, in Table

3.26. We obtain the same conclusion as that for the three dimensional problem. The

CPU times in Table 3.26 show that the KrylovIIF2-WENO scheme is more efficient

than the AcIIF2-WENO scheme with Krylov subspace approximations, for this four

dimensional example. In Figures 3.10, 3.11, and 3.12, we show contour plots of

numerical solutions by the KrylovIIF2-WENO scheme on two dimensional domain of

molecular species A and B, with different values of the third and the fourth dimension

EA and EB. Contour plots of numerical solutions by the AcIIF2-WENO scheme with

Krylov subspace approximations are presented in Figures 3.13, 3.14, and 3.15. We

see that both methods generate similar numerical solutions.

90

TABLE 3.25

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE

KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME WITH KRYLOV

SUBSPACE APPROXIMATIONS FOR THE 4D FOKKER-PLANCK

EQUATION (3.17)

KrylovIIF2-WENO

time step size L∞ error Order

4t 1.03× 10−8

4t/2 2.58× 10−9 2.00

4t/4 6.47× 10−10 2.00

AcIIF2-WENO with Krylov subspace approx.

time step L∞ error Order

4t 1.03× 10−8

4t/2 2.58× 10−9 2.00

4t/4 6.47× 10−10 2.00

91

TABLE 3.26

CPU TIME FOR KRYLOVIIF2 SCHEME AND THE ACIIF2 SCHEME

WITH KRYLOV SUBSPACE APPROXIMATIONS FOR THE 4D

FOKKER-PLANCK EQUATION (3.17)

CPU CPU1 CPU2

KrylovIIF2-WENO 3831.98 3826.48 38.09

AcIIF2-WENO with Krylov 93320.7 93315.6 924.16

92

x
1

x 2

(a) T=10, x
3
=4.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

1

2

3

x 10
−6

x
1

x 2

(b) T=10, x
3
=12.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

x 10
−6

x
1

x 2

(c) T=10, x
3
=19.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

8

10

12

x 10
−6

x
1

x 2

(d) T=10, x
3
=27.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−7

Figure 3.10. Distribution of A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (3.17) using the KrylovIIF2-WENO

scheme. Final time T = 10. 4t = 0.1. The numbers of spatial grid points
are NA = 40, NB = 40, NEA

= 20, NEB
= 20.

x
1

x 2

(a) T=50, x
3
=4.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

0.5

1

1.5

2

x 10
−6

x
1

x 2

(b) T=50, x
3
=12.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−6

x
1

x 2

(c) T=50, x
3
=19.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

x 10
−6

x
1

x 2

(d) T=50, x
3
=27.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

8

10

x 10
−8

Figure 3.11. Distribution of A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (3.17) using the KrylovIIF2-WENO

scheme. Final time T = 50. 4t = 0.1. The numbers of spatial grid points
are NA = 40, NB = 40, NEA

= 20, NEB
= 20.

93

x
1

x 2

(a) T=0, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

0.5

1

1.5

2

x 10
−5

x
1

x 2

(b) T=10, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

20
x 10

−6

x
1

x 2

(c) T=30, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

x 10
−6

x
1

x 2

(d) T=50, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−6

Figure 3.12. Distribution of A and B with EA = 15 and EB = 15, at time
T = 0, 10, 30, 50. Numerical solutions of (3.17) using the

KrylovIIF2-WENO scheme. 4t = 0.1. The numbers of spatial grid points
are NA = 40, NB = 40, NEA

= 20, NEB
= 20.

x
1

x
2

(a) T=10, x
3
=4.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

1

2

3

x 10
−6

x
1

x
2

(b) T=10, x
3
=12.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

x 10
−6

x
1

x
2

(c) T=10, x
3
=19.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

8

10

12

x 10
−6

x
1

x
2

(d) T=10, x
3
=27.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−7

Figure 3.13. Distribution of A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (3.17) using the AcIIF2-WENO scheme
with Krylov subspace approximations. Final time T = 10. 4t = 0.1. The

numbers of spatial grid points are NA = 40, NB = 40, NEA
= 20, NEB

= 20.

94

x
1

x 2

(a) T=50, x
3
=4.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

0.5

1

1.5

2

x 10
−6

x
1

x 2

(b) T=50, x
3
=12.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−6

x
1

x 2

(c) T=50, x
3
=19.50 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

x 10
−6

x
1

x 2

(d) T=50, x
3
=27.00 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

2

4

6

8

10

x 10
−8

Figure 3.14. Distribution of A and B with EA = 4.5, 12, 19.5, 27 and
EB = 15. Numerical solutions of (3.17) using the AcIIF2-WENO scheme
with Krylov subspace approximations. Final time T = 50. 4t = 0.1. The

numbers of spatial grid points are NA = 40, NB = 40, NEA
= 20, NEB

= 20.

x
1

x 2

(a) T=0, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

0.5

1

1.5

2

x 10
−5

x
1

x 2

(b) T=10, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

20
x 10

−6

x
1

x 2

(c) T=30, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

15

x 10
−6

x
1

x 2

(d) T=50, x
3
=15 x

4
=15

20 40 60

10

20

30

40

50

60

70

0

5

10

x 10
−6

Figure 3.15. Distribution of A and B with EA = 15 and EB = 15, at time
T = 0, 10, 30, 50. Numerical solutions of (3.17) using the AcIIF2-WENO
scheme with Krylov subspace approximations. 4t = 0.1. The numbers of

spatial grid points are NA = 40, NB = 40, NEA
= 20, NEB

= 20.

95

CHAPTER 4

NUMERICAL EXAMPLES FOR KRYLOV INTEGRATION METHODS ON

SPARSE GRIDS

In this section, we use various numerical examples to show the computational

efficiency of Krylov IIF schemes with sparse-grid combination technique on sparse

grids, by comparing to the same schemes on regular grids. Examples include reaction-

diffusion equations without convection, and convection-diffusion problems. Equations

with different types of diffusions are tested, namely, equations with constant diffusion

coefficients, with variable diffusion coefficients, and with / without cross derivatives.

We test examples with an exact solution and a three dimensional Fokker-Planck

equation which has broad applications. For each example, we compute numerical

accuracy errors and convergence orders of the schemes, and record CPU times. We

also list the ratios of corresponding CPU times on an Nh × Nh mesh to that on a

Nh

2
× Nh

2
mesh, to study the computational complexity of the schemes on sparse grids

and on regular single grids. Here in the data Tables and texts of this section, Nh×Nh

(or a coarser one Nh

2
× Nh

2
in the text description) denotes the most refined mesh in

sparse grids or a regular mesh in single grid computations. Since Krylov IIF schemes

remove time step size constraint of stiff diffusion and reaction terms, the time step

sizes can be taken as that for a pure hyperbolic problem, i.e., proportional to the

spatial grid sizes. For computations on sparse grids, PDEs are evolved on different

semi-coarsened sparse grids. How to choose time step sizes for each individual time

evolution is an interesting question. Via numerical experiments, we found that for

the example 1, which is a relatively simple constant diffusion problem without cross

96

derivatives and convection terms, if the grids are uniform, the time step sizes are

taken to be proportional to the minimum spatial grid size of each spatial direction

on each individual semi-coarsened sparse grid Ωl1,l2 , i.e. 4t = c ×min(hl1 , hl2). c is

a constant. Hence time step sizes may take different values for solving the PDE on

different semi-coarsened sparse grid, although each individual time evolution reaches

the same final time. The resulting numerical accuracy orders keep the desired values.

However for more complicated problems such as Example 2, Example 3, Example 4

and Example 5, time step sizes on all semi-coarsened sparse grids need to take the

same value. It is determined by the spatial grid size h of the most refined grid ΩNL,NL ,

namely, it is proportional to h with 4t = c × h. Numerical experiments show that

the desired numerical accuracy orders are reached with time step sizes taken this way.

Hence for a general problem, the numerical experiments in this dissertation suggest

that time step sizes on all semi-coarsened sparse grids should be determined by the

spatial grid size h of the most refined grid ΩNL,NL . All of the numerical simulations

in this chapter are performed on a 2.3 GHz, 16GB RAM Linux workstation.

4.1 Isotropic diffusion problems

Example 1 (Isotropic diffusion problems). We consider a reaction-diffusion

problem with isotropic diffusion

∂u

∂t
= 0.2∇ · (∇u) + 0.1u.

First we test the two dimensional case defined on the domain Ω = {0 < x < 2π, 0 <

y < 2π}, subject to periodic boundary conditions, i.e.,

u(0, y, t) = u(2π, y, t); u(x, 0, t) = u(x, 2π, t).

97

The initial condition is u(x, y, 0) = cos(x)+sin(y). The exact solution of the problem

is u(x, y, t) = e−0.1t(cos(x) + sin(y)). We compute the problem till final time T = 1

by the second order Krylov IIF scheme (KrylovIIF2) (2.16) on both single grids and

sparse grids, and compare their computational efficiency. We present the L∞ errors,

L2 errors, the corresponding numerical accuracy orders, and CPU times on succes-

sively refined meshes to show the efficiency of computations on sparse grids. There

are two different ways to refine meshes for computations on sparse grids. One way is

to refine the root grid Ω0,0, and keep the number of semi-coarsened sparse-grid levels

(total NL + 1 levels) unchanged. For example, sparse-grid with a 10 × 10 root grid

and NL = 3 has the finest mesh 80×80. If the root grid is refined once to be 20×20,

with NL = 3 unchanged we can obtain the finest mesh 160× 160. The other way is

to increase the number of levels (refine level), and keep the root grid Ω0,0 unchanged.

For example, if we increase NL = 3 to NL = 4 with a 10 × 10 root grid, the finest

mesh which is 80× 80 for the NL = 3 case is refined to be 160× 160 for the NL = 4

case. The numerical errors, accuracy orders, and CPU times are listed in Table 4.1 for

computations by the KrylovIIF2 scheme on single-grid and sparse-grid. The compu-

tations on single-grid, and sparse grids with two different mesh refinement methods

achieve the similar numerical errors and the second order accuracy. However, compu-

tations on sparse-grid are much more efficient than those on single-grid. Comparing

the CPU times in Table 4.1, we can see that for computations on sparse grids with

the first mesh refinement method (i.e., refine root grids), more than 50% computa-

tion time can be saved, especially on more refined meshes. Moreover, the CPU time

savings are even more significant for computations on sparse grids with the second

mesh refinement method (i.e., refine level). As that shown in Table 4.1, 92% CPU

time can be saved for the computation on a 640× 640 mesh. We also list the ratios

of corresponding CPU times on an Nh×Nh mesh to that on a Nh

2
× Nh

2
, to study the

computational complexity of the methods. For this two dimensional time dependent

98

parabolic problem, we achieve large time step size computation 4t = O(h) by using

the Krylov IIF method. A linear computational complexity method should have the

CPU time ratio be 8 for a complete time evolution. The CPU time ratios shown in

Table 4.1 for computations on single-grid verify its linear computational complexity.

For computations on sparse grids, the CPU time ratio is around 8 for the refining

root grid case, and around 4 for the refining level case. Hence the computational

complexity on sparse-grid is also linear for the first mesh refinement method, and

much better than linear for the second mesh refinement method.

We perform the same test for the third order scheme. The third order Krylov

IIF scheme (KrylovIIF3) (2.17) on single-grid and the same scheme with sparse-grid

combination technique are used to compute this two-dimensional problem till final

time T = 1. Again we use two different ways to refine meshes on sparse grids. The

numerical results are reported in Table 4.2. Comparable numerical errors and fourth

order accuracy order are obtained for all three different approaches. The fourth order

accuracy order here is due to the fourth order central difference scheme to discretize

the diffusion terms. It is obvious here that the spatial errors dominate and are larger

than the temporal errors. Again, computations on sparse-grid are more efficient than

those on single-grid as that shown in Table 4.2. Especially for the the second mesh

refinement method (i.e., refine level), 82% CPU time can be saved for the computation

on a 640× 640 mesh. In terms of computational complexity, the KrylovIIF3 scheme

shows a linear computational complexity on single-grid as that for the second order

scheme. The computational complexity of the KrylovIIF3 scheme on sparse-grid is

also linear for the first mesh refinement method, and much better than linear for the

second mesh refinement method.

Then we test the three dimensional case defined on the domain Ω = {0 ≤

x ≤ π, 0 ≤ y ≤ π, 0 ≤ z ≤ π}, subject to no-flux boundary conditions. The

initial condition is u(x, y, z, 0) = cos(x) + cos(y) + cos(z). The exact solution is

99

u(x, y, z, t) = e−0.1t(cos(x) + cos(y) + cos(z)). We compute the problem till final time

T = 1. The numerical errors, accuracy orders, CPU times for a complete simulation

and the ratios of CPU times on an Nh × Nh mesh to that on a Nh

2
× Nh

2
mesh are

listed in Table 4.3 for the KrylovIIF2 scheme on single-grid and on sparse-grid with

two different mesh refinement approaches. The computation on the 640× 640× 640

single-grid can not be performed due to the computer memory restriction. Computer

memory is saved significantly by using sparse-grid and computations can be success-

fully done for the 640× 640× 640 mesh case. We observe that all computations give

comparable numerical errors and the second order accuracy. For a three dimensional

time dependent problem with ∆t = h/3, a linear computational complexity method

should have the CPU time ratio be 16. For single-grid computation, the KrylovIIF2

scheme’s CPU time ratios shown in Table 4.3 verify its linear computational com-

plexity. We also observe that the KrylovIIF2 scheme on sparse-grid with the first

mesh refinement method (refining root grid) has CPU time ratio be around 16, so it

also has linear computational complexity. And computations on sparse-grid with the

second mesh refinement method (i.e., refining level) has CPU time ratio be around 5

as that shown in Table 4.3, hence its computational complexity is much better than

linear. In terms of computational efficiency, the savings of CPU times and improve-

ment of the efficiency for solving this three dimensional problem on sparse-grid are

more significant than that for two dimensional problems, as that shown in Table 4.3.

For example, we compare the CPU times for computations on a 320×320×320 mesh.

With the number of cells in each spatial direction of a root grid Nr = 40 and the

finest level NL = 3, the CPU time for the computation on sparse-grid (25, 244.30 sec-

onds) is about 1/10 of that on a single-grid (225, 543.28 seconds). And with a coarser

root grid Nr = 10 and the finest level NL = 5, the CPU time for the computation

on sparse-grid (2321.95 seconds) is about 1/100 of that on a single-grid (225, 543.28

seconds), so 99% CPU time is saved. Since higher dimensional problems generally

100

demand much more computational time than low dimensional ones, the efficiency

achieved here verifies advantages of Krylov IIF schemes designed on sparse-grid for

solving higher dimensional problems.

We use the KrylovIIF2 scheme here as an example to further analyze the com-

putational complexity on singe-grid and sparse-grid. We estimate the number of

multiplication and division operations in one time step for computations on single-

grid and sparse-grid for the 2D case. The number of operations is (M2 + 14M +

9)[(1 + 1.5NL)2NLN2
r + (6 · 2NL − 4)Nr + 2NL + 1] for the computation on sparse-grid

with an Nr × Nr root grid and NL fine levels. For the computation on an Nh × Nh

single-grid, the number of operations is (M2 + 14M + 9)N2
h . M is the dimension of

Krylov subspace, and M = 25 here. In Table 4.4, we list the number of operations

for these grids used in this example. It shows that computations on sparse-grid need

fewer operations than that on single-grid, especially the savings of operations are very

significant for computations on sparse-grid with the second mesh refinement method

(i.e., refining level).

It is interesting to compare the computational efficiency of Krylov IIF method

on singe-grid and sparse-grid studied in this dissertation with a fully implicit scheme

with an advanced linear system solver such as a multigrid method. As an example,

we apply the Crank-Nicolson scheme [16] in discretizing the 2D case here. A multi-

grid solver (the Two-Grid correction scheme) [5] is implemented to solve the linear

system at every time step. We take the number of relaxation times to be 3 in the

Two-Grid correction scheme [5]. The results including numerical errors, accuracy or-

ders and CPU times are reported in Table 4.5. The Crank-Nicolson scheme with the

Two-Grid correction multigrid solver for solving this problem has similar numerical

errors and the second order accuracy order as the KrylovIIF2 scheme on singe-grid

and sparse-grid (Table 4.1). In terms of computational efficiency, the Crank-Nicolson

scheme with the Two-Grid correction multigrid solver is more efficient on relatively

101

coarse mesh (e.g. the 80× 80 mesh) than the KrylovIIF2 scheme. However, on more

refined meshes the KrylovIIF2 scheme is more efficient. Especially, the improvement

of efficiency is very obvious for computations on sparse-grid. More systematic com-

parisons of Krylov IIF schemes and fully implicit schemes with efficient multigrid

solvers will be carried out in our future research.

Remark. The numerical methods with sparse grid combination technique are pre-

sented using uniform rectangular meshes in this dissertation. The approach can be

straightforwardly implemented on non-uniform rectangular meshes. Here we test the

KrylovIIF2 scheme with sparse grid combination technique on non-uniform rectan-

gular meshes by applying it in solving the 2D case of this example. The non-uniform

meshes are obtained by randomly perturbing x-coordinates and y-coordinates of a

uniform mesh in the range of (−0.3h, 0.3h). We use five points in one spatial direction

to approximate the diffusion terms on non-uniform meshes. Hence the approxima-

tions to the diffusion terms are on a centered stencil and the accuracy order for the

diffusion terms is 3. The numerical errors, accuracy orders, and CPU times are listed

in Table 4.6 for computations by the KrylovIIF2 scheme on single-grid and sparse-

grid. We draw consistent conclusion with computations on uniform meshes. Namely,

the computations on single-grid, and sparse grids with two different mesh refinement

methods achieve the similar numerical errors, while computations on sparse-grid are

much more efficient than those on single-grid.

102

TABLE 4.1

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80 1.86× 10−4 8.74× 10−5 3.56

160× 160 4.66× 10−5 2.00 2.25× 10−5 1.96 27.34 7.68

320× 320 1.16× 10−5 2.00 5.71× 10−6 1.98 219.15 8.02

640× 640 2.91× 10−6 2.00 1.44× 10−6 1.99 1,828.21 8.34

Sparse-grid, refine root grids

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 1.83× 10−4 9.15× 10−5 2.50

20 3 160× 160 4.57× 10−5 2.00 2.29× 10−5 2.00 14.74 5.91

40 3 320× 320 1.14× 10−5 2.00 5.71× 10−6 2.00 104.47 7.09

80 3 640× 640 2.86× 10−6 2.00 1.43× 10−6 2.00 817.09 7.82

Sparse-grid, refine level

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 1.83× 10−4 9.15× 10−5 2.50

10 4 160× 160 4.57× 10−5 2.00 2.29× 10−5 2.00 9.33 3.74

10 5 320× 320 1.08× 10−5 2.09 5.38× 10−6 2.09 36.03 3.86

10 6 640× 640 2.68× 10−6 2.00 1.34× 10−6 2.00 142.53 3.96

103

TABLE 4.2

EXAMPLE 1, 2D CASE, KRYLOVIIF3 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80 8.82× 10−7 4.41× 10−7 7.45

160× 160 5.63× 10−8 4.00 2.82× 10−8 3.97 62.08 8.33

320× 320 3.56× 10−9 4.00 1.78× 10−9 3.98 504.81 8.13

640× 640 2.33× 10−10 3.94 1.17× 10−10 3.93 3,743.59 7.42

Sparse-grid, refine root grids

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 8.82× 10−7 4.41× 10−7 7.85

20 3 160× 160 5.63× 10−8 3.97 2.82× 10−8 3.97 48.09 6.13

40 3 320× 320 3.56× 10−9 3.98 1.78× 10−9 3.98 356.76 7.42

80 3 640× 640 2.26× 10−10 3.98 1.13× 10−10 3.98 2,850.46 7.99

Sparse-grid, refine level

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 8.82× 10−7 4.41× 10−7 7.85

10 4 160× 160 5.63× 10−8 3.97 2.82× 10−8 3.97 34.26 4.36

10 5 320× 320 3.56× 10−9 3.98 1.78× 10−9 3.98 152.83 4.46

10 6 640× 640 2.26× 10−10 3.98 1.13× 10−10 3.98 688.69 4.51

104

TABLE 4.3

EXAMPLE 1, 3D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80× 80 5.50× 10−5 2.43× 10−5 850.24

160× 160× 160 1.53× 10−5 1.85 6.58× 10−6 1.88 13,637.13 16.04

320× 320× 320 4.06× 10−6 1.91 1.71× 10−6 1.94 225,543.28 16.54

Sparse-grid, refine root grids

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 5.40× 10−5 2.39× 10−5 89.35

20 3 160× 160× 160 1.50× 10−5 1.85 6.49× 10−6 1.88 1,494.67 16.73

40 3 320× 320× 320 3.99× 10−6 1.91 1.69× 10−6 1.94 25,244.30 16.89

80 3 640× 640× 640 1.03× 10−6 1.95 4.30× 10−7 1.97 422,502.00 16.74

Sparse-grid, refine level

105

TABLE 4.3

Continued

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 5.40× 10−5 2.39× 10−5 89.35

10 4 160× 160× 160 1.54× 10−5 1.81 6.68× 10−6 1.84 453.00 5.07

10 5 320× 320× 320 4.21× 10−6 1.87 1.78× 10−6 1.91 2,321.95 5.13

10 6 640× 640× 640 1.09× 10−6 1.95 4.53× 10−7 1.97 12,730.90 5.48

106

TABLE 4.4

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, COMPARISON OF

THE NUMBER OF MULTIPLICATION AND DIVISION OPERATIONS

IN ONE TIME STEP.

Nh ×Nh single-grid sparse-grid(refine root grid) sparse-grid(refine level)

80× 80 6,297,600 4,769,448 4,769,448

160× 160 25,190,400 18,191,208 11,934,936

320× 320 100,761,600 71,012,328 28,625,544

640× 640 403,046,400 280,564,968 66,727,992

TABLE 4.5

EXAMPLE 1, 2D CASE, CRANK-NICOLSON SCHEME WITH A

MULTIGRID SOLVER (THE TWO-GRID CORRECTION SCHEME)

FOR THE LINEAR SYSTEMS.

Nh ×Nh L∞ error Order L2 error Order CPU(s)

80× 80 1.86× 10−4 9.29× 10−5 1.81

160× 160 4.65× 10−5 2.00 2.32× 10−5 2.00 24.76

320× 320 1.16× 10−5 2.00 5.81× 10−6 2.00 352.57

640× 640 2.90× 10−6 2.00 1.45× 10−6 2.00 5,125.76

107

TABLE 4.6

EXAMPLE 1, 2D CASE, KRYLOVIIF2 SCHEME, NON-UNIFORM

GRIDS. COMPARISON OF NUMERICAL ERRORS AND CPU TIMES

FOR COMPUTATIONS ON SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80 1.17× 10−6 3.44× 10−7 16.86

160× 160 8.21× 10−8 3.83 2.58× 10−8 3.73 190.58 11.30

320× 320 6.75× 10−9 3.60 2.96× 10−9 3.12 1,045.65 5.49

640× 640 1.10× 10−9 2.61 5.66× 10−10 2.39 8,495.37 8.12

Sparse-grid, refine root grids

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 1.17× 10−6 3.44× 10−7 9.72

20 3 160× 160 8.21× 10−8 3.83 2.58× 10−8 3.73 65.78 6.77

40 3 320× 320 6.75× 10−9 3.60 2.96× 10−9 3.12 491.27 7.47

80 3 640× 640 1.12× 10−9 2.60 5.72× 10−10 2.37 3,852.75 7.84

Sparse-grid, refine level

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 1.17× 10−6 3.44× 10−7 9.72

10 4 160× 160 8.21× 10−8 3.83 2.58× 10−8 3.73 45.06 4.64

10 5 320× 320 6.75× 10−9 3.60 2.96× 10−9 3.12 206.02 4.57

10 6 640× 640 1.10× 10−9 2.61 5.66× 10−10 2.39 936.73 4.55

108

4.2 A 3D problem with anisotropic diffusion and constant diffusion coefficients

Example 2 (A 3D problem with anisotropic diffusion and constant dif-

fusion coefficients). We consider a three-dimensional reaction-diffusion problem

with cross-derivative diffusion terms and constant diffusion coefficients

ut = (0.1uxx−0.15uxy+0.1uyy)+(0.1uxx+0.2uxz+0.2uzz)+(0.2uyy+0.15uyz+0.1uzz)+0.8u,

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary

conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution

of the problem is

u(x, y, z, t) = e−0.2t sin(x+ y + z).

In [36], we show that for high dimensional problems with anisotropic diffusion terms,

Krylov IIF schemes are more efficient than compact IIF methods [43]. It is inter-

esting to test Krylov IIF scheme on sparse-grid for such problems with anisotropic

diffusion terms. We compute the problem till final time T = 1 by the KrylovIIF2

scheme (2.16) on both single-grid and sparse-grid. The L∞ errors, L2 errors, the cor-

responding numerical accuracy orders, and CPU times on successively refined meshes

are reported in Table 4.7.

As that in the last example, the computation on the 640× 640× 640 single-grid

can not be performed due to the computer memory restriction. Computer memory

is saved significantly by using sparse-grid and computations can be successfully done

for the 640×640×640 mesh case. We observe that computations on both single-grid

and sparse-grid give similar numerical errors and the second order accuracy. Again, it

is shown in Table 4.7 that by preforming computations on sparse grids, a significant

amount of CPU time can be saved, especially if we use a relatively large finest level

NL and a small number of cells Nr in each spatial direction of the root grid. For

example, we compare the CPU times for computations on a 320 × 320 × 320 mesh.

109

With the number of cells in each spatial direction of a root grid Nr = 40 and the

finest level NL = 3, the CPU time for the computation on sparse-grid (29, 573.60

seconds) is about 22% of that on a single-grid (132, 359.95 seconds), and 78% CPU

time is saved. Furthermore, with a coarser root grid Nr = 10 and the finest level

NL = 5, the CPU time for the computation on sparse-grid (4371.18 seconds) is only

3.3% of that on a single-grid (132, 359.95 seconds), and 96.7% CPU time is saved.

We can also observe that if the mesh refinement is done by refining root grids, the

KrylovIIF2 scheme on sparse grids has the linear computational complexity as that

for the KrylovIIF2 scheme on single-grid, with CPU time ratios around 16. If the

mesh refinement is done by refining level, the CPU time ratios are around 6, and the

computations on sparse grids have much better than linear computational complexity.

110

TABLE 4.7

EXAMPLE 2. KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80× 80 6.97× 10−4 4.93× 10−4 538.81

160× 160× 160 1.74× 10−4 2.00 1.23× 10−4 2.00 8,413.74 15.62

320× 320× 320 4.36× 10−5 2.00 3.08× 10−5 2.00 132,359.95 15.73

Sparse-grid, refine root grids

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 7.49× 10−4 5.13× 10−4 118.58

20 3 160× 160× 160 1.76× 10−4 2.09 1.24× 10−4 2.05 1,817.95 15.33

40 3 320× 320× 320 4.36× 10−5 2.10 3.09× 10−5 2.01 29,573.60 16.27

80 3 640× 640× 640 1.09× 10−5 2.00 7.71× 10−6 2.00 465,538.00 15.74

111

TABLE 4.7

Continued

Sparse-grid, refine level

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 7.49× 10−4 5.13× 10−4 118.58

10 4 160× 160× 160 1.87× 10−4 2.00 1.30× 10−4 1.98 728.21 6.14

10 5 320× 320× 320 4.73× 10−5 1.98 3.28× 10−5 1.98 4,371.18 6.00

10 6 640× 640× 640 1.20× 10−5 1.98 8.30× 10−6 1.98 25,736.20 5.89

112

4.3 A 3D problem with anisotropic diffusion and variable diffusion coefficients

Example 3 (A 3D problem with anisotropic diffusion and variable dif-

fusion coefficients). In this example, we consider a three-dimensional reaction-

diffusion problem with cross-derivative diffusion terms and variable diffusion coeffi-

cients

ut =0.5uxx − 0.5 sin(x+ y)uxy + 0.5uyy

+ 0.5uxx −
1

3
cos yuxz +

1

3
uzz

+ 0.5(1 + cosx)uyy − 0.5(1 + cos x)uyz +
1

3
(1 + cos x)uzz + f(x, y, z, u),

(4.1)

where (x, y, z) ∈ Ω = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary

conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The source term

f(x, y, z, u) =
(
1.3 + 2

3
− 0.5 sin(x+ y) + 1

3
(cosx− cos y)

)
u. The exact solution of this

problem is

u(x, y, z, t) = e−0.2t sin(x+ y + z).

As the last example, in [36] we show that for this problem with anisotropic diffusion

terms, Krylov IIF schemes are more efficient than compact IIF methods [43]. Here

we use this example to show the significant improvement of computational efficiency

of Krylov IIF scheme on sparse grids. We compute the problem till final time T = 1

by the KrylovIIF2 scheme (2.16) on both single-grid and sparse-grid. Again we use

two different ways to refine meshes for computations on sparse grids. The numerical

results are reported in Table 4.8. We obtain the similar observations and draw the

same conclusion as the last example which has constant diffusion coefficients. Com-

puter memory is saved significantly by using sparse-grid and computations can be

successfully done for the 640 × 640 × 640 mesh case, for which the computation on

single-grid can not be performed due to computer memory restriction. Again, ap-

plying sparse-grid combination technique in the Krylov IIF scheme brings in a huge

113

benefit in terms of CPU time savings while the similar numerical errors and accuracy

orders are kept as that for the single-grid computations. For example, we compare

the CPU times for computations on a 320×320×320 mesh. With the number of cells

in each spatial direction of a root grid Nr = 40 and the finest level NL = 3, the CPU

time for the computation on sparse-grid (55, 060.30 seconds) is about 36% of that

on a single-grid (153, 195.14 seconds), and 64% CPU time is saved. Furthermore,

with a coarser root grid Nr = 10 and the finest level NL = 5, the CPU time for the

computation on sparse-grid (8139.66 seconds) is only 5.3% of that on a single-grid

(153, 195.14 seconds), and 94.7% CPU time is saved. We can also observe that if

the mesh refinement is done by refining root grids, the KrylovIIF2 scheme on sparse

grids has the linear computational complexity as that for the KrylovIIF2 scheme on

single-grid, with CPU time ratios around 16. If the mesh refinement is done by re-

fining level, the CPU time ratios are around 6, and the computations on sparse grids

have much better than linear computational complexity.

114

TABLE 4.8

EXAMPLE 3. KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES FOR COMPUTATIONS ON

SINGLE-GRID AND SPARSE-GRID.

Single-grid

Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80× 80 3.34× 10−3 1.09× 10−3 551.57

160× 160× 160 8.34× 10−4 2.00 2.71× 10−4 2.01 8,992.13 16.30

320× 320× 320 2.09× 10−4 2.00 6.79× 10−5 2.00 153,195.14 17.04

Sparse-grid, refine root grids

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 3.19× 10−3 1.10× 10−3 229.37

20 3 160× 160× 160 8.13× 10−4 1.97 2.70× 10−4 2.03 3,618.00 15.77

40 3 320× 320× 320 2.07× 10−4 1.97 6.77× 10−5 1.99 55,060.30 15.22

80 3 640× 640× 640 5.21× 10−5 1.99 1.70× 10−5 2.00 865,203.00 15.71

115

TABLE 4.8

Continued

Sparse-grid, refine level

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80× 80 3.19× 10−3 1.10× 10−3 229.37

10 4 160× 160× 160 7.85× 10−4 2.02 2.82× 10−4 1.97 1,414.63 6.17

10 5 320× 320× 320 1.94× 10−4 2.02 7.30× 10−5 1.95 8,139.66 5.75

10 6 640× 640× 640 4.83× 10−5 2.01 1.90× 10−5 1.94 46,392.90 5.70

116

4.4 A convection-diffusion problem

Example 4 (A convection-diffusion problem). In this example, we test the

method for solving problems with convection terms. Consider a two-dimensional

convection-diffusion problem

∂u

∂t
+ (

1

2
u2)x + (

1

2
u2)y = 0.2(

∂2u

∂x2
+
∂2u

∂y2
) + f(x, y, t),

where (x, y) ∈ Ω = {0 < x < 2π, 0 < y < 2π} with periodic boundary conditions.

The initial condition is u(x, y, 0) = cos(x) + sin(y). The exact solution is

u(x, y, t) = e−0.1t(cos(x) + sin(y)).

The source term f(x, y, t) is

f(x, y, t) =
(

0.1 + e−0.1t(− sin(x) + cos(y))
)
e−0.1t(cos(x) + sin(y)).

The KrylovIIF2 scheme (2.16) with the third order WENO approximation for the

convection terms is used here. We compute the problem till final time T = 1 on

both single-grid and sparse-grid. Here the time step sizes are determined only by the

convection (hyperbolic) part of the equation since the IIF schemes remove stability

constraint of diffusion and reaction terms [24]. The CFL number for the convection

terms is taken to be 0.5 in the computations. Numerical errors, numerical accuracy

orders, CPU times for a complete simulation, and the ratios of CPU times on an

Nh × Nh mesh to that on a Nh

2
× Nh

2
mesh are reported. Again, two approaches to

perform mesh refinement in sparse-grid computations are used, i.e., the refining root

grid approach and the refining level approach. In this example, for mesh refinement

in sparse-grid computations by the refining root grid approach, we test performance

of the method with two different finest levels NL = 3 and NL = 4. Numerical

117

results are reported in Table 4.9. We observe that the desired second order accuracy

due to the second order Krylov IIF scheme is achieved for all methods. About

computational efficiency, we observe that in general a big amount of CPU time is

saved if computations are performed on sparse grids. Specifically, for example for

the 640× 640 mesh case, computations on sparse grids can save 57% CPU time (the

Nr = 40, NL = 4 case), and even 83% CPU time (the Nr = 10, NL = 6 case)

comparing with the single-grid computation, and keep comparable numerical errors.

See Table 4.9.

Again we can also observe that if the mesh refinement is done by refining root

grids, KrylovIIF2 scheme on sparse grids has the linear computation complexity as

that for the KrylovIIF2 scheme on single-grid, with CPU time ratios around 8. If the

mesh refinement is done by refining level, the CPU time ratios are around 5, and the

computations on sparse grids have better than linear computational complexity.

TABLE 4.9

EXAMPLE 4. KRYLOVIIF2 SCHEME, COMPARISON OF

NUMERICAL ERRORS AND CPU TIMES

Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

80× 80 1.67×10−4 6.91×10−5 13.77

160× 160 2.23×10−5 2.91 1.27×10−5 2.44 104.16 7.56

320× 320 9.54×10−6 1.22 4.61×10−6 1.47 851.93 8.18

640× 640 2.80×10−6 1.77 1.30×10−6 1.82 6,958.20 8.17

118

TABLE 4.9

Continued

Sparse-grid, refine root grids, NL = 3

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 3.52×10−3 8.24×10−4 13.24

20 3 160× 160 3.32×10−5 6.72 1.36×10−5 5.92 81.58 6.16

40 3 320× 320 9.44×10−6 1.82 4.60×10−6 1.56 601.76 7.38

80 3 640× 640 2.80×10−6 1.76 1.30×10−6 1.82 4,712.98 7.83

Sparse-grid, refine root grids, NL = 4

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 4 160× 160 4.97×10−4 1.07×10−4 58.22

20 4 320× 320 8.70×10−6 5.84 4.48×10−6 4.58 395.54 6.79

40 4 640× 640 2.78×10−6 1.65 1.30×10−6 1.78 3,001.72 7.59

80 4 1280×1280 7.46×10−7 1.90 3.43×10−7 1.93 24,183.80 8.06

Sparse-grid, refine level

Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio

10 3 80× 80 3.52×10−3 8.24×10−4 13.24

10 4 160× 160 4.97×10−4 2.82 1.07×10−4 2.94 58.22 4.40

10 5 320× 320 3.88×10−5 3.68 8.63×10−6 3.63 260.20 4.47

10 6 640× 640 5.69×10−6 2.77 1.59×10−6 2.44 1,170.34 4.50

4.5 Three dimensional Fokker-Planck equations

Example 5 (Three dimensional Fokker-Planck equations).

119

The Fokker-Planck equation (FPE) [44] describes in a statistical sense how a

collection of initial data evolves in time, e.g., in describing Brownian motion. It is

a N -dimensional convection-diffusion equation and has been applied in computing

statistical properties in many systems. In [53], Array-representation integration fac-

tor scheme was applied in solving FPEs which describe the time evolution of the

probability density function of stochastic systems [44]. The general form of FPEs is

∂p(x, t)

∂t
= −

R∑
r=1

{
N∑
i=1

nri
∂

∂xi

(
qr(x, t)−

1

2

N∑
j=1

nrj
∂qr(x, t)

∂xj

)}
, (4.2)

where p(x, t) is the probability density of the system at the state x = (x1, x2, . . . , xN)

and time t. In the context of bio-chemical reactions, R denotes the total number of

chemical reactions in the system, N the total number of species involving in the reac-

tion, and xi denotes the copy number of i-th reactant. nri is the change of xi when the

r-th reaction occurs once. qr(x, t) is defined by qr(x, t) = wr(x)p(x, t), where wr(x, t)

is the reaction propensity function for r-th reaction at state x and time t. Here we

apply the second order Krylov IIF scheme KrylovIIF2 (2.16) on both single-grid and

sparse-grid in solving a three dimensional Fokker-Planck equation [48] which involves

two metabolites A and B and one enzyme EA and show computational efficiency of

the scheme on sparse-grid. Since KrylovIIF2 scheme for solving convection-diffusion

equations is a multistep method, numerical values at the first time step are needed to

start the computation. We use a third order Runge-Kutta scheme for the first step

time evolution. Then the KrylovIIF2 scheme is used to continue the time evolution.

The reactions are described as following (here ∅ means that there is no reactant or

120

product in the reaction):

∅
kA[EA]

1+[A]/KI−→ A, ∅ kB−→ B,

A+B
k[A][B]−→ ∅,

A
µ[A]−→ ∅, B

µ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
µ[EA]−→ ∅.

(4.3)

In this system, the total number of reactions R is 7, and the total number of

chemical species N is 3. The vectors nr = (nr1, nr2, nr3) are n1 = (1, 0, 0), n2 =

(0, 1, 0), n3 = (−1,−1, 0), n4 = (−1, 0, 0), n5 = (0,−1, 0), n6 = (0, 0, 1), n7 =

(0, 0,−1). We denote the system state x by x = (x1, x2, x3) which is ([A], [B], [EA])

in this case. Then the propensity functions wr(x) are

w1 =
kAx3

1 + x1/KI

, w2 = kB, w3 = kx1x2,

w4 = µx1, w5 = µx2, w6 =
kEA

1 + x1/KR

, w7 = µx3,

(4.4)

where kA = 0.3s−1, kB = 2s−1, KI = 30, k = 0.001s−1, µ = 0.004s−1, KR = 30 and

kEA
= 1s−1 [48]. Then the FPE can be written as

∂p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7), (4.5)

121

where Lr represents the operator for the r-th reaction. Specifically,

L1 =
∂q1(x, t)

∂x1

− 1

2

∂2q1(x, t)

∂x2
1

,

L2 =
∂q2(x, t)

∂x2

− 1

2

∂2q2(x, t)

∂x2
2

,

L3 = −∂q3(x, t)

∂x1

− ∂q3(x, t)

∂x2

− 1

2

(∂2q3(x, t)

∂x2
1

+
∂2q3(x, t)

∂x2
2

+ 2
∂2q3(x, t)

∂x1∂x2

)
,

L4 = −∂q4(x, t)

∂x1

− 1

2

∂2q4(x, t)

∂x2
1

,

L5 = −∂q5(x, t)

∂x2

− 1

2

∂2q5(x, t)

∂x2
2

,

L6 =
∂q6(x, t)

∂x3

− 1

2

∂2q6(x, t)

∂x2
3

,

L7 = −∂q7(x, t)

∂x3

− 1

2

∂2q7(x, t)

∂x2
3

.

(4.6)

The computational domain is Ω = [0, 100] × [0, 100] × [0, 45], which covers nearly

all the possible states of the chemical reactions, since the probability of [A] > 100,

[B] > 100, and [EA] > 45 is sufficiently small. The initial condition in our simulation

is a Gaussian distribution centered at point (30, 40, 20) with standard deviation
√

30.

Zero Dirichlet boundary conditions are used. For spatial discretizations, we use

the upwind scheme for the convection terms and the second order central difference

scheme for the diffusion terms. For simulations here, the time step size 4t is 0.015

(corresponding to the CFL number 0.4 for the convection part) and the numbers

of cells in spatial directions are NA = 128, NB = 128, NEA
= 64. For the sparse-

grid computations, the root grid is 16 × 16 × 8, and the finest level is NL = 3. In

Table 4.10, we list the errors and accuracy orders for both single-grid and sparse-

grid computations, and the similar numerical errors and second order accuracy are

obtained. Since there is no explicit form for the exact solution in this example, we

focus on testing the schemes’ temporal accuracy. So the spatial resolution is fixed

to be 128 × 128 × 64, and numerical errors for a time step size 4t are obtained by

122

x

y

T=10, z=12.66

20 40 60 80 100

20

40

60

80

100

0

0.5

1

x 10
−4

x

y

T=10, z=21.09

20 40 60 80 100

20

40

60

80

100

0

1

2

3
x 10

−4

x

y

T=10, z=29.53

20 40 60 80 100

20

40

60

80

100

0

2

4

6
x 10

−5

x

y

T=10, z=37.97

20 40 60 80 100

20

40

60

80

100

2

4

6

8

10

12

x 10
−7

Figure 4.1. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Final time T = 10. 4t = 0.015.

Distribution of molecular species A and B with
EA = 12.66, 21.09, 29.53, 37.97.

calculating the difference of numerical values for 4t and 4t/2. We compare the

computational efficiency of the scheme on single and sparse grids and list CPU times

of using them to solve the problem till the final time T = 10 with 4t = 0.015,

in Table 4.11. The CPU times in Table 4.11 show that a significant amount of

CPU time (82% CPU time) is saved by using the sparse-grid combination technique.

In Figures 4.2, 4.4, and 4.6, we show contour plots of the numerical solutions by

the KrylovIIF2 scheme with sparse-grid combination technique on two dimensional

domain of molecular species A and B, with different values of the third dimension

EA. Contour plots of the numerical solutions by the same scheme on single-grid are

presented in Figures 4.1, 4.3, and 4.5. We see that both approaches generate similar

numerical solutions.

123

TABLE 4.10

NUMERICAL ERRORS AND ACCURACY ORDERS FOR THE

KRYLOVIIF2 SCHEME TO SOLVE THE 3D FOKKER-PLANCK

EQUATION ON SINGLE AND SPARSE GRIDS.

On single-grid

time step L∞ error accuracy

4t 1.20× 10−11

4t/2 3.04× 10−12 1.99

4t/4 7.61× 10−13 2.00

On sparse-grid

time step L∞ error accuracy

4t 1.32× 10−11

4t/2 3.40× 10−12 1.96

4t/4 8.41× 10−13 2.01

TABLE 4.11

CPU TIME FOR THE KRYLOVIIF2 SCHEME TO SOLVE THE 3D

FOKKER-PLANCK EQUATION ON SINGLE AND SPARSE GRIDS

CPU

On single-grid 78,745

On sparse-grid 14,218

124

x

y

T=10, z=12.66

20 40 60 80 100

20

40

60

80

100

0

5

10

x 10
−5

x

y

T=10, z=21.09

20 40 60 80 100

20

40

60

80

100

0

0.5

1

1.5

2

2.5

x 10
−4

x

y

T=10, z=29.53

20 40 60 80 100

20

40

60

80

100

0

2

4

6
x 10

−5

x

y

T=10, z=37.97

20 40 60 80 100

20

40

60

80

100

0

5

10

x 10
−7

Figure 4.2. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Final time T = 10. 4t = 0.015.

Distribution of molecular species A and B with
EA = 12.66, 21.09, 29.53, 37.97.

x

y

T=50, z=12.66

20 40 60 80 100

20

40

60

80

100

0

5

10

x 10
−5

x

y

T=50, z=21.09

20 40 60 80 100

20

40

60

80

100

0

0.5

1

1.5
x 10

−4

x

y

T=50, z=29.53

20 40 60 80 100

20

40

60

80

100

0

5

10

x 10
−6

x

y

T=50, z=37.97

20 40 60 80 100

20

40

60

80

100

0.5

1

1.5

2
x 10

−7

Figure 4.3. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Final time T = 50. 4t = 0.015.

Distribution of molecular species A and B with
EA = 12.66, 21.09, 29.53, 37.97.

125

x

y

T=50, z=12.66

20 40 60 80 100

20

40

60

80

100

0

2

4

6

8

10
x 10

−5

x

y

T=50, z=21.09

20 40 60 80 100

20

40

60

80

100

0

2

4

6

8

10

x 10
−5

x

y

T=50, z=29.53

20 40 60 80 100

20

40

60

80

100

0

5

10

15

x 10
−6

x

y

T=50, z=37.97

20 40 60 80 100

20

40

60

80

100

0

1

2

3

4

5
x 10

−7

Figure 4.4. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Final time T = 50. 4t = 0.015.

Distribution of molecular species A and B with
EA = 12.66, 21.09, 29.53, 37.97.

x

y

(a) T=0, z=20.39

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(b) T=20, z=18.28

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(c) T=35, z=17.58

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(d) T=50, z=17.58

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

Figure 4.5. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on single-grid. Distribution of molecular species A and

B with different EA values, at time T = 0, 20, 35, 50. 4t = 0.015.

126

x

y

(a) T=0, z=20.39

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(b) T=20, z=18.28

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(c) T=35, z=17.58

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

x

y

(d) T=50, z=17.58

20 40 60 80 100

20

40

60

80

100

0

1

2

3

x 10
−4

Figure 4.6. Numerical solutions of the 3D Fokker-Planck equation using the
KrylovIIF2 scheme on sparse-grid. Distribution of molecular species A and

B with different EA values, at time T = 0, 20, 35, 50. 4t = 0.015.

127

CHAPTER 5

CONCLUSION

In the first part of this dissertation, we systematically perform numerical com-

parison and computational complexity analysis to study two different approaches in

dealing with solving high spatial dimension diffusion and convection-diffusion PDE

problems by integration factor WENO methods. Specifically, one approach is the cIIF

/ AcIIF method, and the other one is the Krylov IIF method, i.e., direct application

of Krylov subspace approximations in efficiently calculating large matrix exponentials

in integration factor methods. Via extensive numerical experiments and analysis of

the results for various high spatial dimension problems, we find that both the cIIF

/ AcIIF method and the Krylov IIF method have their own advantages for different

type of problems. The Krylov IIF method has linear computational complexity. For

the numerical examples tested in this dissertation, it is shown that on not very refined

meshes, the cIIF / AcIIF method is more efficient than the Krylov IIF method for

problems whose diffusion terms do not have cross-derivatives. The Krylov IIF method

is more efficient on such problems for very refined meshes due to its linear compu-

tational complexity property. For high dimensional problems whose diffusion terms

have no cross-derivatives, the cIIF / AcIIF method only needs to compute matrix ex-

ponentials with sizes as that for one spatial dimension problems (i.e., N×N matrices

and N is the number of spatial grid points in one spatial direction). Hence it is very

efficient. For high dimensional problems whose diffusion terms have cross-derivatives,

the AcIIF method can reduce Nd×Nd matrices’ exponentials to a series of N2×N2

matrices’ exponentials. However, computations of these N2×N2 matrices’ exponen-

128

tials are still costly in CPU time and computer memory, especially for a not very

coarse mesh. Applications of Krylov subspace approximations to these N2×N2 ma-

trices’ exponentials in the AcIIF method can significantly improve its computational

efficiency. We compare three approaches including the AcIIF method, the AcIIF

method with Krylov subspace approximation, and the direct Krylov IIF method for

problems whose diffusion terms have cross-derivatives, and find that the most effi-

cient method for such problems is the direct Krylov IIF method, as that shown in the

numerical experiments. Certainly the efficiency of the Krylov IIF method depends on

the dimension size M of Krylov subspace used in computation. In the development of

Krylov IIF schemes for solving high spatial dimension convection-diffusion-reaction

PDEs [7, 24, 25], M is taken to be 25 and Krylov subspace approximation errors

are much smaller than truncation errors of the numerical schemes which discretize

the PDEs, for different problems and matrices’ sizes. Following the literature, for all

examples in this dissertation, we choose M = 25 and obtain correct accuracy orders

of the numerical schemes, even for very large N4×N4 matrices from the four spatial

dimension PDEs. It will be interesting to study possible dependence of the parameter

M on different types of PDEs (different differential operators) and problems, which

is one of our future work.

In the second part of this dissertation, we design the Krylov IIF scheme on sparse

grids for solving high spatial dimension problems. With the Krylov IIF scheme on

sparse-grid, more efficient algorithm than our previous work is achieved. Numerical

experiments are performed for the sparse-grid Krylov IIF method to show significant

savings in computational costs by comparisons with single-grid computations. It

will be interesting to theoretically analyze the errors for the sparse-grid Krylov IIF

method in solving both linear and nonlinear problems, and design the sparse-grid

combination technique on unstructured triangular meshes. These will be our future

work.

129

Another recent interesting work on the IIF method is to apply it in solving stochas-

tic reaction-diffusion equations in [50]. Stochastic reaction-diffusion equations have

broad applications in modeling biological or physical systems which are subjected

to noises and environmental perturbations. Stiffness in stochastic reaction-diffusion

equations may occur in the deterministic and/or the stochastic terms. In [50], the

stiff deterministic diffusion and reaction terms were treated by the IIF approach, and

the stochastic term was dealt with explicitly. Nice stability properties and efficiency

of the original IIF method were preserved well. It provides an efficient new approach

for solving stochastic reaction-diffusion equations with stiff deterministic terms. For

such problems with high spatial dimensions, both Krylov IIF and AcIIF methods

discussed in this dissertation can be straightforwardly applied in dealing with the

large matrix exponential challenge arising from the stiff deterministic diffusion. We

expect to see the effectiveness of the Krylov IIF and AcIIF methods in solving high

spatial dimension stochastic problems, as that discussed in this dissertation. This is

one of our future research.

130

BIBLIOGRAPHY

1. U. M. Ascher, S. J. Ruuth, and B. Wetton. Implicit-explicit methods for time-
dependent PDE’s. University of British Columbia, Department of Computer
Science, 1993.

2. H. L. Ashe and M. Levine. Local inhibition and long-range enhancement of dpp
signal transduction by sog. Nature, 398(6726):427–431, 1999.

3. G. Beylkin, J. M. Keiser, and L. Vozovoi. A new class of time discretization
schemes for the solution of nonlinear pdes. Journal of Computational Physics,
147(2):362–387, 1998.

4. A. Bourlioux, A. T. Layton, and M. L. Minion. High-order multi-implicit spectral
deferred correction methods for problems of reactive flow. Journal of Computa-
tional Physics, 189(2):651–675, 2003.

5. W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM,
2000.

6. H.-J. Bungartz and M. Griebel. Sparse grids. Acta numerica, 13:147–269, 2004.

7. S. Chen and Y.-T. Zhang. Krylov implicit integration factor methods for spatial
discretization on high dimensional unstructured meshes: application to discon-
tinuous galerkin methods. Journal of Computational Physics, 230(11):4336–4352,
2011.

8. A. Christlieb, B. Ong, and J.-M. Qiu. Integral deferred correction methods con-
structed with high order runge-kutta integrators. Mathematics of Computation,
79(270):761–783, 2010.

9. K. Christopher A and C. Mark H. Additive runge-kutta schemes for convection-
diffusion-reaction equations. 2001.

10. S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems.
Journal of Computational Physics, 176(2):430–455, 2002.

11. A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods
for ordinary differential equations. BIT Numerical Mathematics, 40(2):241–266,
2000.

131

12. E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by krylov
approximation methods. SIAM Journal on Scientific and Statistical Computing,
13(5):1236–1264, 1992.

13. S. Gottlieb and C.-W. Shu. Total variation diminishing runge-kutta schemes.
Mathematics of computation of the American Mathematical Society, 67(221):73–
85, 1998.

14. S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order
time discretization methods. SIAM review, 43(1):89–112, 2001.

15. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solu-
tion of sparse grid problems. Citeseer, 1990.

16. B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time dependent problems and differ-
ence methods, volume 24. John Wiley & Sons, 1995.

17. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high
order accurate essentially non-oscillatory schemes, iii. Journal of computational
physics, 71(2):231–303, 1987.

18. N. J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–1193,
2005.

19. M. Hochbruck and C. Lubich. On krylov subspace approximations to the matrix
exponential operator. SIAM Journal on Numerical Analysis, 34(5):1911–1925,
1997.

20. C. Hu and C.-W. Shu. Weighted essentially non-oscillatory schemes on triangular
meshes. Journal of Computational Physics, 150(1):97–127, 1999.

21. J. Huang, J. Jia, and M. Minion. Arbitrary order krylov deferred correction
methods for differential algebraic equations. Journal of Computational Physics,
221(2):739–760, 2007.

22. W. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33. Springer Science & Business
Media, 2013.

23. G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted eno schemes.
Journal of computational physics, 126(1):202–228, 1996.

24. T. Jiang and Y.-T. Zhang. Krylov implicit integration factor weno methods for
semilinear and fully nonlinear advection–diffusion–reaction equations. Journal of
Computational Physics, 253:368–388, 2013.

25. T. Jiang and Y.-T. Zhang. Krylov single-step implicit integration factor weno
methods for advection–diffusion–reaction equations. Journal of Computational
Physics, 311:22–44, 2016.

132

26. L. Ju, J. Zhang, L. Zhu, and Q. Du. Fast explicit integration factor methods for
semilinear parabolic equations. Journal of Scientific Computing, 62(2):431–455,
2015.

27. A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven. Application
of implicit–explicit high order runge–kutta methods to discontinuous-galerkin
schemes. Journal of Computational Physics, 225(2):1753–1781, 2007.

28. A.-K. Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff pdes.
SIAM Journal on Scientific Computing, 26(4):1214–1233, 2005.

29. A. Lander, Q. Nie, F. Wan, and Y.-T. Zhang. Localized ectopic expression of
dpp receptors in a drosophila embryo. Studies in Applied Mathematics, 123(2):
175–214, 2009.

30. B. Lastdrager, B. Koren, and J. Verwer. The sparse-grid combination technique
applied to time-dependent advection problems. In Multigrid Methods VI, pages
143–149. Springer, 2000.

31. B. Lastdrager, B. Koren, and J. Verwer. Solution of time-dependent advection-
diffusion problems with the sparse-grid combination technique and a rosenbrock
solver. Computational Methods in Applied Mathematics Comput. Methods Appl.
Math., 1(1):86–98, 2001.

32. A. T. Layton and M. L. Minion. Conservative multi-implicit spectral deferred
correction methods for reacting gas dynamics. Journal of Computational Physics,
194(2):697–715, 2004.

33. X. Liu and Q. Nie. Compact integration factor methods for complex domains and
adaptive mesh refinement. Journal of computational physics, 229(16):5692–5706,
2010.

34. X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.
Journal of computational physics, 115(1):200–212, 1994.

35. Y. Liu and Y.-T. Zhang. A robust reconstruction for unstructured weno schemes.
Journal of Scientific Computing, 54(2-3):603–621, 2013.

36. D. Lu and Y.-T. Zhang. Krylov integration factor method on sparse grids for high
spatial dimension convection–diffusion equations. Journal of Scientific Comput-
ing, 69(2):736–763, 2016.

37. J. Lu, J. Fang, S. Tan, C.-W. Shu, and M. Zhang. Inverse lax–wendroff procedure
for numerical boundary conditions of convection–diffusion equations. Journal of
Computational Physics, 317:276–300, 2016.

38. Y. Maday, A. T. Patera, and E. M. Rønquist. An operator-integration-factor
splitting method for time-dependent problems: application to incompressible
fluid flow. Journal of Scientific Computing, 5(4):263–292, 1990.

133

39. M. L. Minion et al. Semi-implicit spectral deferred correction methods for or-
dinary differential equations. Communications in Mathematical Sciences, 1(3):
471–500, 2003.

40. C. M. Mizutani, Q. Nie, F. Y. Wan, Y.-T. Zhang, P. Vilmos, R. Sousa-Neves,
E. Bier, J. L. Marsh, and A. D. Lander. Formation of the bmp activity gradient
in the drosophila embryo. Developmental cell, 8(6):915–924, 2005.

41. C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

42. Q. Nie, Y.-T. Zhang, and R. Zhao. Efficient semi-implicit schemes for stiff sys-
tems. Journal of Computational Physics, 214(2):521–537, 2006.

43. Q. Nie, F. Y. Wan, Y.-T. Zhang, and X.-F. Liu. Compact integration factor
methods in high spatial dimensions. Journal of Computational Physics, 227(10):
5238–5255, 2008.

44. H. Risken. The fokker-planck equation. methods of solution and applications,
vol. 18 of. Springer Series in Synergetics, 1989.

45. C.-W. Shu. Total-variation-diminishing time discretizations. SIAM Journal on
Scientific and Statistical Computing, 9(6):1073–1084, 1988.

46. C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In Advanced numerical approximation
of nonlinear hyperbolic equations, pages 325–432. Springer, 1998.

47. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes. Journal of Computational Physics, 77(2):439–471,
1988.

48. P. Sjöberg, P. Lötstedt, and J. Elf. Fokker–planck approximation of the master
equation in molecular biology. Computing and Visualization in Science, 12(1):
37–50, 2009.

49. G. Strang. On the construction and comparison of difference schemes. SIAM
Journal on Numerical Analysis, 5(3):506–517, 1968.

50. C. Ta, D. Wang, and Q. Nie. An integration factor method for stochastic and
stiff reaction–diffusion systems. Journal of computational physics, 295:505–522,
2015.

51. L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

52. J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer. Rkc time-stepping for
advection–diffusion–reaction problems. Journal of Computational Physics, 201
(1):61–79, 2004.

134

53. D. Wang, L. Zhang, and Q. Nie. Array-representation integration factor method
for high-dimensional systems. Journal of computational physics, 258:585–600,
2014.

54. C. Zenger. Sparse grid. In W. Hackbusch, editor, Notes on Numerical Fluid
Mechanics, volume 31, pages 241–251. Vieweg, Braunschweig, 1991.

55. Y.-T. Zhang and C.-W. Shu. High-order weno schemes for hamilton–jacobi equa-
tions on triangular meshes. SIAM Journal on Scientific Computing, 24(3):1005–
1030, 2003.

56. Y.-T. Zhang and C.-W. Shu. Third order weno scheme on three dimensional
tetrahedral meshes. Communications in Computational Physics, 5(2-4):836–848,
2009.

57. X. Zhong. Additive semi-implicit runge–kutta methods for computing high-speed
nonequilibrium reactive flows. Journal of Computational Physics, 128(1):19–31,
1996.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated

by Megan Patnott.

135

	Abstract
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: NUMERICAL METHODS
	2.1 IIF-WENO methods
	2.2 Two approaches for high dimensional problems
	2.2.1 Krylov approximation method
	2.2.2 Compact / array-representation method
	2.2.2.1 cIIF/AcIIF for reaction-diffusion equations
	2.2.2.2 AcIIF-WENO schemes for CDR equations
	2.2.2.3 Detailed formulae for AcIIF-WENO schemes.

	2.3 Krylov IF method on sparse grids
	2.4 Linear stability analysis of the IIF2 scheme for CDR equations.

	CHAPTER 3: NUMERICAL EXAMPLES FOR COMPUTATIONAL COMPLEXITY STUDY OF KRYLOV INTEGRATION FACTOR WENO METHOD
	3.1 Diffusion problems
	3.1.1 Diffusion problems without cross-derivatives
	3.1.2 Diffusion problems with cross-derivatives
	3.1.3 A system with stiff reactions from mathematical biology

	3.2 Convection-Diffusion problems

	CHAPTER 4: NUMERICAL EXAMPLES FOR KRYLOV INTEGRATION METHODS ON SPARSE GRIDS
	4.1 Isotropic diffusion problems
	4.2 A 3D problem with anisotropic diffusion and constant diffusion coefficients
	4.3 A 3D problem with anisotropic diffusion and variable diffusion coefficients
	4.4 A convection-diffusion problem
	4.5 Three dimensional Fokker-Planck equations

	CHAPTER 5: CONCLUSION
	BIBLIOGRAPHY

