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A MODELING STUDY TO CHARACTERIZE MICROTUBULE MECHANISMS

OF DYNAMIC INSTABILITY: CONNECTING MICRO-LEVEL TIP

STRUCTURES TO MACRO-LEVEL PHASES

Abstract

by

Shant M. Mahserejian

Microtubules (MTs) are cytoplasmic biopolymers that are common in eukaryotic

cells. The MT is assembled by αβ tubulin dimer subunits that can be in either a GTP-

or GDP-bound nucleotide state. These dimer subunit connect with longitudinal

bonds to form linear strands called protofilements (PFs). Lateral bonds connect 13

PFs together to form the tube-like structure of a MT. GTP-bound subunits collect

near the MT tip region to form a GTP-cap, which helps maintain the bonds that

hold the MT structure intact. Losing the GTP-cap exposes GDP-bound subunits

which are more likely to break their bonds, and promote subunits to detach from the

MT structure. The MT length changes in time by undergoing spontaneous switches

between periods of sustained growth and rapid shortening, which characterize the

behavior called dynamic instability (DI).

The molecular reactions that drive MT dynamics primarily affect the tip portion

of the structure. Therefore, a study of the connection between MT tip structures

and macro-level phases is needed to gain a better understanding of the mechanisms

that drive phase changes in DI. Laboratory conditions limit the level of detail that

can be experimentally collected from MT structures. Computational models are a

vital tool that provide this level of information, and they have helped understand
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how molecular level reactions alter the micro-level MT structure, which drives the

MT length changes observed at the macro-level. The detailed 13-PF MT model was

capable of running long-time simulations that display DI behavior with a low com-

putational cost, but it made use of an approximation that skips over MT structural

states. This study first develops the extended 13-PF MT model in order to simu-

late a biochemically exact trajectory of all the MT structural states resulting from

possible reactions events. Then, the minimal MT structure that includes the lateral

bond is considered to present the simplified 2-PF MT model, a novel consideration

which helps make calculations of the MT tip structure features more feasible while

successfully simulating DI behavior.

The high frequency and low amplitude fluctuations present in simulated MT

length history data make it difficult to pinpoint where DI phases begin and end,

and where phase transitions occur. To this end, an unsupervised machine learning

method based on K-means clustering is presented to identify, classify, and analyze

macro-level phases present in MT length history data. Application of this method

revealed an intermediate phase called “stutters”, during which the rate of MT length

change is smaller in magnitude compared to classically recognized growth and short-

ening phases. Additionally, stutter phases commonly appeared as a transitional phase

during catastrophe events, between growth and shortening phases. This indicated

that before a catastrophe event takes place, a MT is likely to first undergo structural

changes that do not alter the MT length, which result in structural configurations

prone to entering a period of rapid depolymerization. The proposed DI phase clas-

sification method now can identify these periods, which in past experimental studies

have been observed, but not separately considered as a unique class of behavior

[21]. Furthermore, the stutter events specifically provide a target region to study the

mechanisms involved with catastrophe events.

Finally, a supervised machine learning approach called Random Forest was used
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to test the ability for micro-level tip structure features to predict their correspond-

ing macro-level DI phases, and to forecast upcoming phase transitions. The results

indicated that the GTP-cap size and it’s relative position to the cracked tip region

are important factors in predicting which DI phase a MT is in. In addition to the

GTP-cap size, information on the PF-tip lengths and the dispersion of GTP-bound

subunits in the tip region were found to be important in forecasting upcoming phase

transitions. Thus, specific MT tip structures and the reaction events that create

them are identified as the mechanisms that drive respective transitions between DI

phases.
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FIGURES

1.1 An illustration of a microtubule (MT) length history plot demonstrat-
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riods of growth (solid) and more rapid shortening (dashed). The tran-
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MT will likely depolymerize down to having a length near zero. The
rare transitions from shortening to growth is called a rescue, since it
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2.1 A rendering of the fundamentals of a MT structure. Each blue and
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pairing forms the αβ tubulin dimer subunits, which are the basic build-
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the MT polymer (adapted from [56]). . . . . . . . . . . . . . . . . . . 11

2.2 MT structures rendered from simulations. Each block represents one
αβ tubulin dimer (referred to as a subunit). The red subunits are GTP-
bound, and the green subunits are GDP-bound. GTP-bound subunits
that have been more recently incorporated in the MT structure mostly
populate the top of the polymer structure, and the older ones in lower
portions have a higher likelihood of having undergone hydrolysis, and
thus tend to be GDP-bound. The bent conformation of individual
GDP-bound subunits are the cause for the curved profile of laterally
unbonded sections of PF tips (adapted from [47]). . . . . . . . . . . . 12

2.3 There are five molecular-level reaction events considered during MT
dynamics that can alter the structure of the biopolymer. Growth (or
polymerization) occurs when a single GTP-bound subunits is added to
a PF tip, and shortening (or depolymerization) occurs when a sequence
of laterally unbonded subunits detach from the MT. Lateral bonds can
form or break between neighboring PFs. Hydrolysis is the irreversible
event when a GTP-bound subunit (red) transitions into a GDP-bound
state (green) (Adapted from [56]). . . . . . . . . . . . . . . . . . . . . 14
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2.4 (a) A rendered illustration adapted from [1], and (b) in vitro images
adapted from[52] of MT structures during growth and shortening. In
both subfigures, the MT on the left is growing with a visibly straighter
profile due to the presence of a GTP-cap, especially when compared
to the shortening MT on the right, which has “ram’s horns” structure
visible possibly due to sections of laterally unbonded protofilement tips
largely populated with GDP-bound subunits. . . . . . . . . . . . . . . 16

3.1 A 2D visualization from the computational model simulation. The red
and green blocks represent GTP- and GDP-bound subunits respec-
tively. The 13 vertical sequences of subunits are the PFs. The white
squares between neighboring PFs are the lateral bonds. The first PF is
duplicated on the right of the 13th PF to illustrate the shift that occurs
at the seam. Laterally unbonded subunits that protruded above the
surrounding structure are the PF tips. A crack is created by missing
lateral bonds between PFs. The seed is the indestructible portion at
the bottom of the polymer structure, and has a shorter height for the
first PF to accommodate the shift at the seam. When the tip region
is highly populated with GTP-bound subunits, a stabilizing GTP-cap
can form without clear boundaries. . . . . . . . . . . . . . . . . . . . 38

3.2 Length history plots for tubulin concentration levels ranging from 6-
14µM in (a)-(i), from one hour simulations of the extended 13-PF MT
model, and the parameter values defined in Table 3.1. The horizontal
axis represents time in minutes, and the vertical axis is the length of
the MT measured in number of subunits. . . . . . . . . . . . . . . . 63

3.3 An arbitrary example of a 2-PF MT structure and its components.
The red and green boxes represent GTP- and GDP-bound subunits
respectively. The vertical sequence of subunits create the two parallel
PFs in the structure. The gray boxes are the single sequence of lateral
bonds allowed to form between PFs. The seed is the indestructible
portion at the very bottom of the 2-PF MT structure. The gate and
above-gate subunits (G- and AG-subunits respectively) are located
near the interface of the top-most lateral bond, and the cracked portion
of missing lateral bonds between PFs. The crack depth is measured
by the number of subunits in the shorter PF tip. The gated tip is
the combination of the individual laterally unbonded PF tips and the
G-subunits together. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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3.4 The five possible dynamic events that can change the 2-PF structure.
Polymerization can lengthen a PF tip by one GTP-subunit. Depoly-
merization can remove a consecutive sequence of laterally unbonded
subunits in a PF tip. The top-most lateral bond can break. A new
lateral bond can form immediately above the top-most lateral bond,
given that the space between two laterally neighboring subunits ex-
ists. Hydrolysis can irreversibly change a GTP-bound subunit into a
GDP-bound state (adapted from [46]). . . . . . . . . . . . . . . . . . 70

3.5 Length history plots for tubulin concentrations ranging from 6-14µM
in (a)-(i), from one hour simulations of the simplified 2-PF MT model,
and the parameter values defined in Table 3.2. The horizontal axis
represents time in minutes, and the vertical axis is the length of the
MT measured in number of subunits. . . . . . . . . . . . . . . . . . 77
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CHAPTER 1

INTRODUCTION

Microtubules (MTs) are cytoplasmic biopolymers found in eukaryotic cells. As cy-

toskeletal components, MTs play a crucial role in cell shape structural support, and in

cellular processes such as cell division and organelle transportation. MTs collectively

perform these functions as part of a dynamic network within the cytoskeleton, but

each MT independently undergoes its own dynamic changes. More specifically, they

portray a unique behavior called dynamic instability (DI), classically characterized

by repeated changes between growth and shortening phases called catastrophes and

rescues (see Figure 1.1) [17, 45, 62]. Interrupting this DI behavior in MTs can result

in diseases, such as Alzheimer’s, Parkinson’s, and some forms of cancer [23, 33, 35].

DI behavior is a result of changes to the MT structure, a tube-like polymer whose

walls are constructed with protofilament (PF) strands bound together in parallel

(see Figures 2.1 and 2.2). Currently, the mechanisms of transitions in DI behavior

are poorly understood, and a clear connection between micro-level structures and

macro-level DI behavior has not yet been made.

In order to study MT behavior at a deeper level, computational models have ac-

companied biological experiments to help learn more about the mechanisms leading

to the macro-level dynamics characterizing DI behavior. However, the complexity of

the MT structure (illustrated in Figure 2.1) needed to be simplified in order to begin

modeling the fundamental features of MT dynamics. Earlier, coarse grained models

were introduced by reducing the structure to a single-PF, and provided a useful tool

for studying bio-polymers in general. In the case of MT structures, which typically
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Figure 1.1. An illustration of a microtubule (MT) length history plot
demonstrating dynamic instability (DI). The MT length undergoes

sustained periods of growth (solid) and more rapid shortening (dashed).
The transitions from growth to shortening are called catastrophes, since the
MT will likely depolymerize down to having a length near zero. The rare
transitions from shortening to growth is called a rescue, since it saves the

bioploymer from losing most of its structural mass.

consist of 13 PFs, the course grained models like the one presented in [32, 54] ap-

proximate the polymer to have just a single-PF. A subunit in the single-PF model

represents the dynamical behavior as an approximation of a row of subunits across all

13-PFs found in a MT. Each subunit can be in one of two nucleotide bounded states:

the energy carrying guanosine-triphosphate (GTP) bound state that promotes stable

bonds, and the low energy guanosine-diphosphate (GDP) bound state that promotes

breaking bonds. The simplified model has been successful in demonstrating DI behav-

ior, while simultaneously making simulations computationally affordable. This was

mainly a result of the interaction between polymerization/depolymerization rates

from the single-PF structure, and the hydrolysis rates changing the subunit states.

Additionally, the resulting correlation found between shortening phases and losing the

GTP-cap agreed with experimental observations, which revealed little to no GTP-

2



bound subunits present during shortening phases [10, 20, 40, 44, 62, 79–81]. This

computational model has been beneficial in studying the bulk behavior of MTs as

well as their competition for resources among multiple MTs, since it is easy to simu-

late the dynamics of a large population [54]. Furthermore, this simplification offers an

attractive model for studying other biopolymers as well. For example, a slight modi-

fication to this model can represent another cytoskeletal component called actin, and

can successfully simulate its characteristic dynamic behavior called treadmilling [43].

Recent studies with single-PF models consider the critical concentrations and the

parameter ranges typical of the various behaviors that are possible when considering

both DI and treadmilling [43].

Upon gaining a better understanding of the fundamental role of the kinetic rates

needed to display DI behavior, new models were developed to represent more of

the complex features seen in actual MT structures. By including the entire 13-PF

structure into the MT model, the lateral bonds that kept the tubular structure’s

walls intact inevitably had to be considered. The first attempts in using the 13-

PF models limited the structure to certain profiles, and only considered certain tip

configurations observed during growth and shortening phases separately (see Figure

2.4). These models were used to study the short-term behavior promoted by starting

simulations from blunt or tapered MT tips [14, 27, 85]. This limited structure model

was a good start, however they were lacking the dynamical considerations to simulate

phase transitions due to the computational limitations that only allowed for short-

duration simulations.

More recently, a mechanical model presented by Odde et al. added more de-

tails to the MT model by allowing for energy minimization to adjust the structural

configuration after every dynamical event that added/removed subunits to/from the

biopolymer [77]. Though this considered a greater level of detail compared to older

models, the computational cost of performing the energy minimization alone makes
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it an unfeasible option for studying macro-level phase transitions in MT dynamics.

Also, this model made a simplifying assumption, where new subunits form two bonds

simultaneously: longitudinal bonds with the subunits below, and lateral bonds with

neighboring subunits on one side. This assumption may have been reasonable to

implement the simulations and demonstrate the importance of losing a GTP-cap to

promote a shortening phase, but it is biochemically unlikely for multiple bonds to

form simultaneously, especially when considering the timescale during which energy

minimization occurs (see Section 3.5.1 for details). Furthermore, they too limited

their scope to the variety in structural features that are observed with MTs in the

laboratory, and their studies did not consider long term MT dynamics [63].

One of the key structural features observed in experiments are the strands of

individual PFs that protruded from the tip of the MT structure, and create a frayed

profile [53]. These individual PF extensions, which resemble “ram horns” due to the

internal curvature created by the intrinsic bend found in GDP-bound subunits, can

only be created if lateral bonds form or break separately from other bond formations.

Recently, a statistical mechanics approach has studied these frayed tip profiles using

a limited structure format, by only considering shortening phases [41]. However,

for a model to truly consider the full range of MT dynamics that form frayed tips,

lateral bonds need to be modeled so that they can break sequentially even during

growth phases. The only model, to our knowledge, that makes this consideration

is the detailed level 13-PF MT model [56]. This model has successfully simulated

long-term DI behavior similar to biologically relevant MT systems, including phase

transitions with low computational cost, as a result of micro-level reaction events

being considered. In addition, the frayed tip profile is represented through cracks,

or laterally unbonded sections between PFs near the tip of the MT structure. The

resulting simulated data from this model indicated that the state of the subunits

at the bottom of these cracks is important in determining whether the MT would
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continue in a growth or shortening phase, or possibly undergo a transition in the

short-term.

By tracing the history of computational models that study MT dynamics, the

need for exposing the structural complexities associated with dynamic behavior is

clear. In particular, the next step would include the development of a model that

displays the appropriate level of dynamics, such that enough structural details are

visible, while simultaneously generating enough data to reveal DI behavior. In this

dissertation, a computational modeling approach is used to meet these requirements,

and the resulting in silico data is used for analysis.

First, the detailed level 13-PF model is extended by removing an approximation to

the treatment of hydrolysis, which was originally introduced to save on computational

cost. Hydrolysis events were updated so that they are treated in the same manner as

polymerization, depolymerization, lateral bond formation, and lateral bond breakage

events. This correctly executes the Gillespie algorithm, where the simulated sequence

of reaction events outputs a bio-chemically exact trajectory of MT structural states.

Furthermore, the code was optimized to calculate hydrolysis rates more efficiently,

bringing performance and computational cost of the exact method to the same level as

the approximated version. This extended 13-PF MT model now makes it possible to

create long-time simulations, and thus to study a wide variety of structures occurring

over many phase transitions, while also providing data on MT structure details that

are not available in the laboratory setting.

Second, in order to study the tip region where most of the relevant dynamical

changes to the structure occur, a simplification is desired to reduce the sheer number

of distinct tip configurations that exist with the 13-PF model, but without losing

the complexity and relevance offered by its treatment of lateral bonds. To this end,

a 2-PF model is introduced, where the lateral bond and the consequential cracks

in the tip region are still present. This model provides a more tractable scenario
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for studying possible tip structures, and to identify which patterns are relevant to

changes in macro-level dynamics of MTs.

Next, analysis of the macro-level results from the extended 13-PF model and the

2-PF model required a data-driven statistical approach. Prior methods of approxi-

mating DI phases made use of a pencil and straight-edge approach to identify periods

of consistent growth or shortening, and choosing transition points relied on a human

eye. Some automated approaches segmented different periods by seeking a mini-

mum height change based on a priori assumptions of what growth and shortening

rates would be. When attempting to use these methods in conjunction with the de-

tailed level 13-PF model, the approximation failed to be accurate in several moments

of intermediate dynamics, which were observed to have slopes in the length history

plots smaller in magnitude than those expected from traditional growth or shortening

phases. Also, the resulting approximations identified transition points very poorly,

especially since part of the goal of this study is to observe the structural features

associated with exact moments of macro-level changes. For this reason, an improved

automated method creating a continuous piece-wise linear approximation is needed

to adaptively handle the stochastically occurring transitions observed during DI be-

havior, as introduced in this dissertation. Once periods of consistent behavior were

accurately segmented from length history plots, an unsupervised classification method

labels each segment into appropriate phases, while being blind to the bi-phase as-

sumptions of past methods. This automated approximation and classification model

is applicable to any DI data extracted from either experiment or from simulation.

Using this approach on simulated data revealed the existence of a third DI phase,

referred here as “stutters”, which represent periods of consistent behavior that have

a smaller magnitude rate of change to MT length compared to classical growth or

shortening periods. Furthermore, stutters frequently appear as a transitional phase

between growth and shortening during catastrophe events. This may represent the
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“slow-down” period before shortening periods, which have observed but not quanti-

fied experimentally [21]. The presented DI phase classification method now allows

for the separate treatment of these periods that have been overlooked in past studies.

Finally, in order to make a connection between the detailed level tip structure

features measured from the 2-PF MT model (see an example of a 2-PF MT tip

structure in Figure 3.3) to the macro-level dynamic phases identified by the afore-

mentioned classification model, a machine learning approach is introduced to develop

a prediction and forecasting model. This method of data analysis carefully considers

structural features of the 2-PF tip region that are bio-chemically relevant, have been

shown to be important in past literature, and are easy to extend to a 13-PF case

once shown to be worthwhile in the simplified model. The predictive model makes

a connection between the structural features and DI phases, while the forecasting

model determines if a sequence of structural features would continue the same phase,

or trigger a transition.

The use of computational models in studying the biological system of MTs is

crucial in gaining an understanding of the structural mechanisms connected with DI

phases, and the causes for DI phase transitions. First, the scope of structural detail

provided by simulations is not attainable experimentally. Technological limitations,

both in temporal and spatial resolution, do not allow for the real-time tracking of

structural configurations, nor the exact organization of subunit states that make up

the MT. The computational model following the Gillespie algorithm as presented in

this dissertation does provide this level of detail. Using a long-time simulation and

observing the structural features during a large number of phase transitions provides

an appropriate setting to use a combination of mathematical and statistical modeling

techniques to identify the underlying patterns leading to DI phase transitions. Pre-

vious work has hypothesized on some structural characteristics that would promote

growth or shortening phases, such as the loss of a GTP-cap. However, little is under-
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stood about the exact order in which the structural changes occur, and whether those

structural changes are responsible for macro-level dynamic changes, or are a result of

them. Computational models also allow for flexibility in considering theoretical con-

figurations, adjusting rate parameters, and controlling conditions to test hypotheses

that lead to a better understanding of how phase transitions occur. Hence, diving

deeper into simulated data during moments near phase transitions, and particularly

during intermediate phases that are not quite growth or shortening, is the proposed

idea for seeking the mechanisms that dictate DI behavior observed in MT dynamics.

In Chapter 2, the biological details of MTs and the problem that they pose is laid

out, which are the important considerations for modeling the MT structure and its

dynamics. Chapter 3 outlines the details of the computational model developed and

used in this study, how it is implemented, and how this leads to the simplified 2-PF

MT version. Chapter 4 describes the first data analysis from a macro-level perspec-

tive, which can be used to approximation and classify DI phase segments found in the

length history of any data representing DI behavior. Chapter 5 describes the second

data analysis approach, which bridges different time scales by predicting macro-level

DI phase behavior from the micro-level structural features of the 2-PF MT tip region.

Finally, Chapter 6 consolidates the conclusions about how the structural features of

a MT tip are related to the length profile changes in time.
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CHAPTER 2

BIOLOGICAL AND MODELING BACKGROUND

In this chapter, the necessary biological considerations are presented to help the

development of the microtubule (MT) models used in this study. An important aspect

of the mathematical representation is to utilize results from experimental scenarios,

and reproducing them in computational simulations. Computational modeling ap-

proaches to verify results are beneficial in providing a deeper understanding of the

mechanics involved in the changes that take place in a biological system. Existing

models have provided some insight to which MT structures relate to different gen-

eral dynamics, though they have not yet satisfied a complete understanding of which

mechanisms lead to significant shifts during dynamic instability behavior in MTs. In

order to ensure the correct level of detail is included in this study, the biological per-

spective of what is truly understood about MTs is first reviewed in order to develop

the computational model, and the subsequent simulated data will then be used for

identifying the MT structure features associated to dynamic phase transitions.

2.1 Description of Microtubules (MTs)

The MT structure is the central focus of this study. This section reviews the

components that make up the MT structure at the dimer subunit level, as well as

the dynamic events that lead to altering the structure at this level. These micro-level

events accumulate over longer periods of time, and result in changes to MT length

that is commonly studied at the macro-level. In this farther vantage point, the length

history plot displays the characteristic behavior of MTs called dynamic instability, the
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sporadic and sudden changes between periods of growth and shortening. However,

it is a sequence of reaction events at the molecular level that alter the structural

integrity of the MT structure, and make it more or less prone to dynamic changes as

discussed later in this section.

2.1.1 The MT Structure

The structure of the MT is a hollow tube, and the tube wall typically consists of 13

linear polymers side by side (see Figure 2.1) [17, 45, 62]. An individual linear polymer,

called a protofilament (PF), is built from αβ tubulin dimers [17, 45, 62]. These αβ

dimers are referred to as subunits, since they are the basic building blocks of a MT,

and they are integrated into the polymer structure through longitudinal bonds. The

PFs are connected to each other through lateral bonds between neighboring subunits,

and forming a lattice: the longitudinal direction through each PF, and the lateral

direction through neighboring PFs. The lateral bond between the first and last PFs

is called the “seam”, where there is a 1.5 dimer shift in the arrangement of subunit

neighbors. Thus, the subunits have a helical arrangement as they form the outer

walls of the MT’s tubelike structure.

The individual αβ dimer subunits can be in one of two states. While in the

cytoplasm, or when the β end of the dimer is exposed and unbonded, a guanosine-

triphosphate (GTP) molecule (an energy carrier) can bind to the subunit to form

the GTP-bound state of a subunit. A short time after a dimer subunit has been

internalized into the MT structure, and another subunit has longitudinally bonded

above it on the β end of the dimer, a guanosine-diphosphate GDP molecule can

replace the GTP molecule through a process called hydrolysis, and thus forms a

subunit in the GDP-bound state (see Figure 2.2). The structure of the GDP-bound

subunit is bent compared to the straighter GTP-bound subunit [76, 77].
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Figure 2.1. A rendering of the fundamentals of a MT structure. Each blue
and yellow sphere represent α and β monomers respectively. The combined
pairing forms the αβ tubulin dimer subunits, which are the basic building
blocks of the MT. Vertical strands of subunits are held together through

longitudinal bonds as part of a PF. The PFs are joined together with lateral
bonds to form the walls of a tube-like structure. The first and 13th PFs

come together at a special sequence of lateral bonds called the seam, where
their orientation of neighboring subunits is shifted by three monomers,

which creates the helical structure in the MT polymer (adapted from [56]).

2.1.2 Dynamic Instability (DI) of MTs

One important feature of how the MT structure changes over time is called dy-

namic instability (DI), the abrupt transition from growth to shortening of the MT

length, and vice versa [17, 45, 62]. This behavior is part of a healthy functioning cell,

and disrupting it can lead to diseases such as Alzheimer’s, Parkinson’s, and cancer

[23, 33, 35]. During growth, the MT undergoes sustained and consistent lengthening

of the its structure, though rates of growth may vary slightly during these periods. In

contrast, during shortening, the MT experiences a much quicker rate of change to the

overall length, such that the majority of the biopolymer mass present at the start of

the shortening period is deconstructed and dispersed into the cytoplasm, and by the
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Figure 2.2. MT structures rendered from simulations. Each block
represents one αβ tubulin dimer (referred to as a subunit). The red
subunits are GTP-bound, and the green subunits are GDP-bound.

GTP-bound subunits that have been more recently incorporated in the MT
structure mostly populate the top of the polymer structure, and the older

ones in lower portions have a higher likelihood of having undergone
hydrolysis, and thus tend to be GDP-bound. The bent conformation of
individual GDP-bound subunits are the cause for the curved profile of

laterally unbonded sections of PF tips (adapted from [47]).

end a very short MT remains. For this reason, the event when a MT transitions from

a growth to a shortening period is described as a “catastrophe”, and the rare events

when the biopolymer structure is saved from near complete destruction is referred to

as “rescue” (see Figure 1.1) [17, 45, 62].

The dynamic instability processes observed on the macro-level of a single MT

are the result of the collective micro-dynamics occurring at the subunit level. The

bio-chemical reactions of forming and breaking bonds are the molecular level changes

fundamentally giving rise to a MT’s growth or shortening. Individual GTP-bond

subunits are incorporated into the MT structure when a longitudinal bond is created

between the new subunit and the top-most subunit of one of the PFs in the MT.

Thus, the event of a MT growing by a single subunit is called “polymerization”.

Once incorporated into the MT, a subunit is allowed to form a lateral bond with an

adjacent subunit of a neighboring PF, if it exists there. Lateral bonds help stabilize

the MT structure, since they strengthen the ties between an individual subunit and

the surrounding MT lattice. Otherwise, any subunit not laterally bonded to its
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neighbors is subject to break its longitudinal bond with the subunit below it. Thus,

any sequence of subunits can without lateral bonds may detach from the MT structure

in an event called “depolymerization”. Since a MT can polymerize one subunit at a

time, yet lose multiple subunits simultaneously through depolymerization, it’s easy

to see why growth periods at the macro-level occur with more steady and slower rates

when compared to shortening periods [31].

The five possible events that are recognized to alter the MT structure are poly-

merization, depolymerization, lateral bonds forming, lateral bonds breaking, and

hydrolysis, as illustrated in Figure 2.3. From a macro-level perspective, the growth

and shortening periods observed through a MT length history profile are most sig-

nificantly a consequence of polymerization and depolymerization events. However,

it should be noted that lateral bonds forming and breaking, and subunits changing

states via hydrolysis are all events that surely change the MT structural configuration

despite their lack of contribution to a changing MT length. In the rest of this section,

the extended effects of these five events on the structural integrity of a MT polymer

are discussed, leading to an improved understanding on MT dynamic behaviors at

large.

2.1.3 Impact of MT Structure on MT Dynamics

The growth and shortening behavior of a MT is a direct consequence of subunits

being added and subtracted to the polymer structure. However the likelihood of

polymerization and depolymerization depends on the structural integrity of the MT.

The state of individual subunits can play a role in the collective stability of the MT as

a whole, and hydrolysis is the bio-chemical reaction that controls this feature in MT

dynamics. After a short time, the GTP molecules on the newly incorporated subunits

are hydrolyzed to GDP molecules. This change in state promotes the affected portion

of a PF to bend back and curl away from the central axis of the MT, as seen in MT
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Figure 2.3. There are five molecular-level reaction events considered during
MT dynamics that can alter the structure of the biopolymer. Growth (or
polymerization) occurs when a single GTP-bound subunits is added to a
PF tip, and shortening (or depolymerization) occurs when a sequence of

laterally unbonded subunits detach from the MT. Lateral bonds can form
or break between neighboring PFs. Hydrolysis is the irreversible event
when a GTP-bound subunit (red) transitions into a GDP-bound state

(green) (Adapted from [56]).

tips with PFs that fray and curl outward (i.e. they look like rams horns). In contrast,

when a PF is comprised of predominantly GTP-bound subunits, the local structure

is straighter and more easily allows for the formation of lateral bonds. So, hydrolysis

destabilizes the MT structure, because GDP-bound populated ram-horn like PFs are

bend father away from the rest of the MT structure, which makes it more difficult

for a lateral bond to form between two subunits when at least one of them is in

a GDP-bound state. Figure 2.4 illustrates the difference between these structures

during growth and shortening. Furthermore, the bent conformation of GDP-bound

subunit can an add strain to its existing bonds after undergoing hydrolysis, and this

increases the risk of breaking those bonds [76, 77].
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Additionally, the timing and irreversibility of hydrolysis leads to an interesting

structural orientation of the MT structure. Newly incorporated subunits tend to be

in a GTP-bound state, and are added to the top-most positions of a PF. In time,

hydrolysis events alter these GTP-bound subunits into a GDP-bound state, which

can act as an indicator for age of subunits within the MT structure. Effectively,

younger GTP-bound subunits populate the top of the MT, leaving the older GDP-

bound subunits to predominantly populate most of the lower MT structure. This

characteristic lends to the tendency for a growing MT to have a region near the

tip rich with GTP-bound subunits, called the “GTP-cap” [10, 20, 40, 44, 62, 79–

81] (see Figure 2.4). MTs with a large enough GTP-cap are somewhat protected

from the onset of a catastrophe event, mostly because the GTP-bound subunits are

straighter and are more resilient to lateral bonds breaking. MTs without a GTP-cap

have a great deal of GDP-bound subunits exposed in the tip-region, which tend to

promote breaking of lateral bonds, which then makes depolymerization more likely

[10, 20, 40, 44, 62, 79–81]. Hence, MTs with GTP-caps are more stable, prevent the

loss of subunits, and instead tend to grow [10, 20, 40, 44, 62, 79–81].

Though hydrolysis helps the MT subunits change into their shaky GDP-bound

state, this is countered and controlled by the addition of new GTP-bound subunits

from the cytoplasm. Therefore the dynamics of the MT at large lies in the inter-

action between the available concentration of fresh GTP-bound tubulin dimers and

hydrolysis events catching up to the newly polymerized subunits. At tubulin concen-

trations that are too low, below the critical concentration for elongation, polymeriza-

tion events are not enough to outlast the hydrolysis events, a GTP-cap is unlikely to

form, and therefore the MT length remains near zero. At tubulin concentration that

are much higher, above the critical concentration of persistent growth, polymerization

events can easily overcome the changes from hydrolysis to maintain an everlasting

GTP-cap, so much so that catastrophes are very rare, and MT growth is imminent.
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(a) (b)

Figure 2.4. (a) A rendered illustration adapted from [1], and (b) in vitro
images adapted from[52] of MT structures during growth and shortening.
In both subfigures, the MT on the left is growing with a visibly straighter
profile due to the presence of a GTP-cap, especially when compared to the

shortening MT on the right, which has “ram’s horns” structure visible
possibly due to sections of laterally unbonded protofilement tips largely

populated with GDP-bound subunits.

However, in the range of available tubulin concentration levels between these two

critical concentrations, polymerization and hydrolysis compete in a manner where

substantially long MT structures may form, however catastrophe events inevitably

unravel the components of the biopolymer back into the cytoplasm. The classical DI

behavior is observed in this range, and renders MTs to be steady-state polymers. This

is distinguishable from equilibrium polymers, which possess an overlap of different

interpretations for a single critical concentration value [43].

It is helpful to know about the structural features associated with MT dynamics,

such as the presence of the GTP-cap, but there is a deeper connection that is still lack-

ing. More specifically, the mechanisms that underlie the dynamic phase transitions

are poorly understood. Much of what is known has been observed experimentally,

and several computational models representing MT systems have duplicated these

results during growth and shortening phases separately. However, the short-comings

of the experimental scenario prevent more detailed observations of the MT structure
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at precise moments near significant dynamic changes. Both time and spatial resolu-

tions are exhausted in laboratory conditions, and thus are not reliable to study the

interactions between individual subunits and the resulting structural configurations.

For this reason, a computational model considering the reactions at this level of detail

is desired to surmount the hurdles posed in the laboratory.

2.2 List of Assumptions

To develop a computational model representing the MT system at the level

where individual subunit interactions are recognized, biological considerations of MTs

known to date are used to develop the simplifying assumptions needed to establish

the fundamental basis of the desired model. The following list identifies the assump-

tions in relation to structural or dynamic components, and the justification for their

appropriateness to the MT systems relevant to this study:

1. Only a single GTP-bound subunits can attach to a MT: the concentration of
GDP nucleotide in the cell or in vitro is generally assumed to be low relative to
the concentration of GTP nucleotide, and that the rate of exchange by tubulin
of GDP for GTP is fast. Therefore, the model assumes that only GTP tubulin
can add to the end of a MT [9]. Thus, a polymerization event involves a single
GTP-bound subunit to form a longitudinal bond with the top-most subunit
of an individual PF tip. With this consideration, the rates of polymerization
would depend on the availability of GTP-bound tubulin concentration in the
cytoplasm. Finally, it is further assumed that individual GTP-bound subunits
are uniformly distributed throughout the cytoplasm, and any fluctuations of
the available tubulin concentration levels in the environment are neglected.

2. Fixed levels of free-tubulin concentration: the cytoplasmic environment con-
sidered here to provide the free-tubulin pool of subunits is assumed to be held
at fixed levels. Since only a single MT is being observed in the simulations,
there competition between other MTs, spatial inconsitencies, or other sources
of depleting tubulin concentration levels are not considered.

3. Sequential lateral bond formation/breakage: As subunits are incorporated into
the MT structure, the lateral bonds with a neighboring subunit are assumed
to form only if the neighboring subunits immediately below them have already
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formed a lateral bond. Similarly, lateral bonds are assumed to break only if
there is a lateral bond missing above it. This is analogous to “pulling a zipper”
up and down, where the teeth on both sides represent subunits, and the pull
tab is the top-most lateral bond. Those subunits above the top-most lateral
bond cannot yet be bonded until the position of the top-most lateral bond
moves up to them, and those subunits below the top-most lateral bond cannot
break their bond until the position of the top-most lateral bond moves down
to them. This configuration creates a “crack” between neighboring PFs in the
region above the top-most lateral bond. This assumption is further justified
by the existence of the ram-horns in experimental observations, which logically
cannot be contemplated without the sequential dynamics of lateral bonds. The
likelihood of lateral bonds breaking especially depends on the nucleotide bounds
state of the subunits it is connecting, but as well as the existence of lateral bonds
existing on the outsides of those same subunits. The possibility of a lateral bond
breaking is less likely if both subunits surrounding it are still secured to the
MT structure by lateral bonds. This in turn promotes crack formations more
as a result of individual PFs extending on their own, rather than lateral bonds
being quickly zipped down.

4. Sequential subunit gain/loss: Polymerization and depolymerization events are
assumed to occur sequentially, such that a MT can grow or shorten only by
gaining or losing subunits at the ends of polymer structure respectively. This
assumption is valid since a longitudinal bond needs to form so that the PF
within a MT can lengthen. Similarly, a longitudinal bond below a subunit
without lateral bonds must be broken so that it (and any string of subunits
above it) can be freed from the MT structure. This sequential polymerization
and depolymerization also enables the observations of consistent and slower
growth rates, as well as the faster and sporadic shortening rates.

5. Random hydrolysis: Hydrolysis events are assumed to occur randomly to those
GTP-bound subunits within the MT structure that have formed a longitudinal
bond with another subunit above it. This is valid, since the only bio-chemical
restriction preventing a GTP-bound subunit from hydrolyzing is that the dimer
not be exposed from the β end. The non-reversibility of hydrolysis and the
choice of an appropriate rate have already been shown to create realistically
sized GTP-caps in computational models using the random dynamics, without
further assuming a vectorized or sequential restriction [55, 56].

6. The majority of MT dynamics occur in the tip region: This is assumption is
quite obvious, and results from the assumptions for the sequential dynamics
made above. The definition of the tip-region is clarified in Chapter 5, but
this assumption allows us to put attention on the portion of the MT structure
where immediate structural changes occur. Subunits are gained and lost from
the PF tips, lateral bonds are formed and broken at the interface defined by
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the top-most lateral bonds relatively close to the PF tips, and hydrolysis affects
GTP-bound subunits predominantly located in the GTP-cap near the MT tip
region.

7. The MT Seed: In nature, cytoskeletal polymers tend to have dynamics on both
end of the filament structure, at the plus (+) ends where more growth takes
place, and minus (-) end where the dynamics are slower as well as subunit
loss is more likely. To simplify the region of interest to the MT tip, where
most of the interactions take place, the model being developed here assumes an
indestructible seed, such that only the dynamics from the plus end to occur, and
ignores any dynamics from the minus end. This is analogous to the GMPCPP
in vitro experimental conditions where an seed is fixed to a glass substrate,
and MT dynamics are observed and measured from the highly dynamic plus
end [40]. In this instance, a catastrophe event often will precede a shortening
period, after which the MT structure will shorten near to or up to the seed, but
the bonds and subunits comprising the seed are unaffected. Furthermore, the
seed is considered the initial condition and starting point for the computational
model, unless otherwise specified.

8. Subunit states alter bond strength: As discussed in the Section 2.1.3, GDP-
bound subunits tend to bend more than their GTP-bound counterparts as ob-
served in the ram-horn like structures. The added strain by the bent PF in
the presence of a GDP-bound subunit is assumed to aid the breaking of a lat-
eral bond. Also, the bent configuration further exposes a non-laterally bonded
subunit connected above out of the MT scaffolding, and hence is assumed to
increases the likelihood for the longitudinal bond above a GDP-bound sub-
unit to break. These assumptions facilitates the observations of the stability
and preference towards growth provided by MT structures with a significantly
sized GTP-cap, versus MT tip structures greatly populated with GDP-bound
subunits.

9. Reaction rates depend on the state of the MT structure: The five events being
considered to alter the MT structure are understood to take place with certain
limitations. Polymerization depends on the availability of GTP-bound subunits
to lengthen a MT. Depolymerization requires subunits to be free of lateral bonds
in order to facilitate dissociation, and breaking a longitudinal bond depends on
the state of the subunit below the bond. Lateral bond formation requires two
subunits in neighboring PFs to be present in the space immediately above
the top-most lateral bond. Lateral bond breaking depends on the state of
the subunits that they are connecting. Hydrolysis depends on the presence of
GTP-bound subunits. With the exception of polymerization, the likelihood of
these events occurring depends on the MT structure’s state at a given moment
in time. Furthermore, past MT structures may create limiting conditions for
what possible MT structures can form, however only the current MT structure
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is assumed to have any effect on what reaction event occurs at any moment.

2.3 Computational Models of MTs

In addition to the knowledge base built from experimental methods, a combina-

tion of computational and theoretical modeling of MTs has also been an indispensable

alternative approach to study MT dynamics at a detailed molecular level. From the

pioneering work of Chen and Hill [11, 12, 38], MT modeling evolved from simplified

single-PF models [2, 8, 11, 24, 25, 38, 39, 54, 59, 66–68, 73] to more recent multiple-

PFs models [4, 12, 34, 47, 55, 56, 58, 76, 77]. In this section, the history of some of

these different models is reviewed to gain an understanding for which of their com-

ponents are important for carrying into newer models, including the computational

model being used in this study, which seeks to connect micro-level MT tip structures

to macro-level dynamical changes.

2.3.1 1-Protofilament Microtubule (1-PF MT) Models

For the most part, single PF models describe the polymerization and depolymer-

ization process of MTs as the addition and detachment of one or multiple subunits,

respectively. The corresponding rates for adding and subtracting subunits were de-

duced approximately from experiments. For the hydrolysis process, two mechanisms

have been employed. In the models described in [39, 59, 66, 67], the GTP hydrolysis

occurs at only the interface between a GTP-bound subunit and a GDP-bound sub-

unit vertically along a PF, which is called vectorial hydrolysis. Once the hydrolysis

boundary (the interface between a GTP-bound subunit and a GDP-bound subunit)

catches up to the growth front of a MT, the MT structure will be composed of all

GDP-bound subunits, and the MT would be prone to undergo catastrophe. In the

other hydrolysis mechanism, called random hydrolysis and used in[2, 8, 24, 25, 54, 68],

GTP hydrolysis can occur randomly everywhere except the terminal subunit at the
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tip of each PF. When the polymerization rate is larger than the hydrolysis rate,

vectorial hydrolysis generates large GTP caps, while random hydrolysis prevents the

occurrence of large GTP caps, the latter of which is consistent with the experimental

results [10, 20, 64, 78, 79, 81]. In addition, random hydrolysis allows for the existence

of the experimentally observed remnants of GTP-bound subunits in the MT lattice

[18]. It should be noted that in comparison to vectorial hydrolysis, random hydrol-

ysis allows for GTP-caps that do not have a clear interface between the GTP- and

GDP-bound subunits in the MT structure, and this adds to the difficulty of clearly

defining a GTP-cap and measuring its size.

2.3.2 Detailed Level 13-PF MT Models

Simulations of MT models have the beneficial aspect of providing details that

are not available in the laboratory. These computational representations of MTs

are brought into the discussion in order to study which structural features play im-

portant roles in displaying dynamic instability behavior. While [5, 8, 27] developed

stochastic multiple-PF MT models, the individual PFs behaved independently, and

no inter-PF lateral interactions were included in those models. To address a deeper

level of micro-level details, the mechanochemical model presented in [77, 85] con-

sider energy minimization to determine structural configurations between reaction

events. However in [77], lateral bonds are automatically formed when new subunits

are incorporated into the MT structure, and the energy minimization step causes the

simulation run time to be too long without this simplification that does not allow

for the consideration of cracks (laterally unbonded sections between PFs). The ap-

proach in [85] allows for curling PFs, but does so without considering lateral bond

interactions. Both [77, 85] include more detail than necessary, and in doing so make

assumptions that compromise the number of structural configurations covered by the

model. Furthermore, these models have simulation run times that are too long to gen-

21



erate length history plots for studying the connection between micro-level structures

along with the macro-level behavior.

Other detailed level computational models treated the MT as a polymer consisting

of 13 PFs and independent lateral bonds between them, and utilized a stochastic

dynamics to evolve the MT structure, which are much quicker to simulate [47, 56].

These models showed that shortening MTs exhibit deep cracks[56], and if the subunits

at the bottom of the cracks are GDP-bound, the MTs are more likely to undergo

catastrophe [47]. Furthermore, allowing for cracks between PFs at the MT tip is

realistic, since other models without this consideration are not able to explain the

existence of the ram-horn structures seen experimentally.

However, the dynamics of the lateral bonds in any 13-PF MT model create com-

plex structures in the, including an overwhelming number of distinct MT tip struc-

tural configurations to consider. The significance of the MT tip region was discussed

earlier in this chapter in Sections 2.1 and 2.2. The MT tip structure includes a ma-

jority of the subunits that dictate the probabilities for which reaction events can take

place, therefore once the different MT tip structure configurations are known, the

dynamics rates of the MT can be computed. Determining the probabilities of a MT

being in different tip configurations during each dynamic phase is an important part

of understanding the structural mechanisms that lead to phase changes. Despite the

low computational costs provided by the 13-PF models presented in [47, 56], approx-

imating hydrolysis events effectively skips over some structural configurations, and

this returns a somewhat incomplete representation of the tip configurations that are

of interest.

2.3.3 Requirements for a New 13-PF MT Model

Building from basic detailed level 13-PF models, this study seeks to construct

a computational model capable of simulating all of the possible structural configu-
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rations realized during dynamic instability behavior. Furthermore, a rich data set

requires running long time simulations in order to acquire a deeper understanding

of which structural configurations are observed during different phases, and which

ones are commonly involved in significantly transitioning the dynamics. Such a data

set would display hours of DI, with many growth and shortening periods, and rich

with catastrophes, rescues, and any other phase transition event that can be con-

templated. Though the [77, 85] models provides a level of detail including energy

transactions of each reaction event, the computational expense of simulating hours

of MT behavior is far too high, especially since the scope of this study is concerned

with the MT structures at the end of each event. For this reason, the detailed level

13-PF MT model of [47, 56] is the preferred starting point. To this, improvements

are made for acquiring a more detailed output with a reasonable computation time.

However, the previous model approximates hydrolysis events separate from the other

four reaction events. For the model developed here, an exact method is constructed

by omitting any approximations to reaction events, and calculating the occurrence

of every possible reaction event at each step of the algorithm in order to simulate an

bio-chemically realistic trajectory of MT structural states.

It is important to recognize that the reaction events that create and alter a MT

structure follow a Markov process, such that the occurrence any single event depends

only on the present state of the MT structure. Furthermore, the lack of dependence

on past states qualifies the entire MT structure to carry the memoryless property. So,

the computation model developed in this study simulates the MT evolution through

a stochastic sequence of events that alter the MT structure one at a time. Kinetic

rates for each reaction event dictate the order for this sequence. More specifically,

the Gillespie algorithm is utilized to choose the sequence order, especially since it is a

common approach used to simulate molecular reactions in biochemistry and epidemi-

ology settings [3, 19, 22, 26, 65]. Also, using the Gillespie Algorithm is considered
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an exact method for simulating the trajectory of MT states when approximations

are not made [29, 30]. Based on the kinetic rates, times are randomly sampled from

exponential distributions for each possible event, and the event with the smallest

time is selected to occur at a given step in the simulation. This provides continu-

ous time values between reaction events, associated to every single structural change

undergone by the MT being simulated. Chapter 3 describes more of the details for

how the knowledge of MT structure and dynamics at the biological level listed in

this chapter are used to develop the computational model capable of simulating MT

behavior needed for this study.
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CHAPTER 3

STOCHASTIC COMPUTATIONAL MODELS

A key trait of MT behavior involves the dynamic instability (DI) patterns char-

acterized by the rapid changes observed between periods of growth and shortening,

and vice-versa. This display of DI emerges from events on the molecular level, which

effectively add/subtract subunits to/from PFs, form/break lateral bonds between

PFs, and change the nucleotide-bounded state of dimer subunits. A MT with a fixed

seed goes through its dynamic processes by mostly altering the end-region of the

biopolymer farthest from the seed, i.e. the tip region. PF and lateral bond construc-

tion/deconstruction is assumed to be sequential in nature, in that they only affect

the top-most portion of each MT component, and the rest of the MT structure goes

mostly unaltered. The older dimer subunits within the MT are located lower in the

structure, and they are more prone to have already undergone the change in their

subunits bounded state. So, the corresponding hydrolysis events will more likely tar-

get newer sections of the MT structure, which form near the top. If we take into

consideration the immediate effect of these events, then it is easy to see that most of

the changes to the MT structure occur at the tip region, defined by the portion of the

MT end including, but not limited to, the segments of PFs lacking a lateral bond.

Thus, the desire to peer more closely at the molecular-level dynamics that lead to

the macro-level changes as observed in DI behavior begs us to focus on the MT tip

region, the portion of the MT structure where all the action occurs. In this chapter,

the details for developing a computational model are outlined for studying the MT

structure in the tip region at a detailed time scale. In addition, a simplified variant
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of the model is presented in order to accommodate studying the structural features

that occur in the tip region. By using the the simulated data from the computational

model presented in this chapter, the statistical analyses conducted in later chapters

on the structural features not available in the laboratory are made possible.

3.1 Extending the Basic 13-PF MT Model

This dissertation is interested in further exploring the MT structures and how

they relate to changes in MT dynamics and, on a larger scale, transitions seen in DI

behavior. Attention is turned on the MT tip region. The reaction events affecting the

MT structure shape (dimer subunit gain/loss, lateral bond forming/breaking) result

in changes to the MT tip region exclusively. Additionally, when considering the

existence of a GTP-cap near the tip of the MT, it’s easy to see that most hydrolysis

events will also be targeting those GTP-bounds subunits included in the tip region as

opposed to those few remaining GTP-bound subunits located in the lower portions

of the MT structure. In other words, the tip region is where the most MT structural

changes take place, and hence where focus is placed when extracting meaningful

information about MT dynamics.

So, a detailed understanding of how changes in the MT tip affect macro-level

behavior is desired. However, it is quickly understood that considering the tip region

alone fails the memoryless property required for a Markov process. For example, when

the tip region interfacing boundary is defined at the position of the top-most lateral

bonds, calculating the probability or kinetic rate for a lateral bond breaking event

requires knowledge of the two subunits below the tip region, and this information is

not available when only tracking the subunits located in the tip. If the tip region

cutoff is defined at the position below the top-most lateral bond instead, the kinetic

rates are now possible to calculate, however the destination state after a lateral

bond breaking event occurs requires knowledge of the states for those subunits two
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positions below the current top-most lateral bond. So on, and so forth, this leads to

finally requiring the knowledge of the states of the subunits as far down as the MT

seed, which at this point is the entire MT structure. Therefore, it is not possible to

model the tip region alone as a Markov process. Instead, the entire MT structure

is modeled, and the information regarding the tip region is extracted throughout

the simulation. For this reason, the existing detailed level computational models are

extended to study the structural dynamics that take place in the MT tip region.

The single-PF models in [2, 8, 10, 18, 20, 24, 25, 39, 54, 59, 64, 66–68, 78, 79, 81],

and the conclusions reached using them, have inevitably inspired the more recent de-

tailed level models developed using a 13-PF configuration in [5, 8, 27, 47, 55, 56, 77,

85]. The benefits offered by these detailed computational models include the ability

to take a closer look at the different sub-structures created and morphed by the in-

dividual events which represent biochemical reactions associated with MT dynamics.

The bulk behavior is captured by these models in the form of the MT length history,

and the corresponding simulations display various forms of DI dependent on model

parameters. This is an analogous to the limited scope of the bio-polymer behavior

observed in vitro. Knowing that the MT tip is the region of interest for studying

the mechanisms that dictate key changes in DI behavior poses some limiting factors.

Electron microscopy during strictly growth or shortening periods has provided im-

portant high spatial resolution information for the existence of ram-horn structures,

but accessing this level of detail is not possible during macro-level dynamic changes

with this approach[16, 52, 75]. The dynamic imaging techniques used to observe MTs

(typically fluorescent tagged tubulin) do not provide detailed structural information

at the subunit level. The exact structural configurations of which type of subunits

comprise individual PFs are not visible, nor are the lateral bonds between them.

This is where the benefits of computational models shine through, by offering an

alternative domain to study a biological scenario through a perspective not available
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in the laboratory. Therefore, in order to study the MT tip structures and how they

are associated to transitional behavior changes in length history, the existing detailed

level 13-PF MT computational model is altered and extended to suit the necessary

needs for studying this relevant biopolymer sub-structure.

3.1.1 The Basic 13-PF MT Model

The detailed level computational model of a 13-PF MT used in [34, 47, 55, 56] was

chosen as the starting point in this study for several of its novel properties. First, this

model is capable of simulating a full assortment of macro-level dynamic behaviors that

emerge from micro-level reactions with either a fixed or varying concentration level

for available tubulin dimer pool. This model’s simulation using tubulin concentration

levels chosen within an appropriate range of critical concentrations can output MT

length histories for long time durations with characteristics similar to the length

evolution seen with DI in laboratory observations. Second, it is an MT model that

represents the lateral bonds independently, without considering an excess level of

detailed dynamics. The detailed level model of [77] assumes lateral bonds to form

simultaneously with longitudinal bonds once a new subunit is incorporated into the

MT structure. The independent behavior of lateral bonds forming and breaking

is preferred for the needs of this study since it does not violate the assumption of

only allowing one bio-chemical reaction to occur at a time. In regards to the tip

structure, the chosen model also allows for the formation of cracks between PFs, and

represents them in the form of missing lateral bonds. Cracks described in this manner

offer a reasonable method for how the “ram horn” configurations are observed. In

comparison, the molecular-mechanical model of [85] relies on the deformations of

individual dimers to create PF curls without considering lateral bond interactions.

Additionally, recent experimental observations have shown that there are indeed

cracks between PFs, and the absence of cracks adds further support to lateral bond
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interactions between neighboring PFs [60]. It should also be added that individual

subunit contributions to shaping the MT structure are taken into consideration in the

form of kinetic rate constants that depend on the nucleotide bound state of dimer

subunits. GTP-bound subunits tend to be straight, and hence are more prone to

maintain existing bonds compared to their bent GDP-bound counterparts. Finally,

the computational power available now offers more memory per processor in com-

parison to what was available a decade ago, the time at which the detailed level

models were first conceived. These improvements to processing power have not over-

come some high computational costs, such as the caveat of the energy minimization

calculations in the [77] model, or the calculations involved with the spatial consider-

ations in the [85] model. Instead, new improvements to computer hardware memory

certainly benefit the computational speed of implementing a kinetic Monte Carlo sim-

ulation, which needs to track the state of the individual subunits in the entire MT

structure. This makes the existing detailed 13PF MT model a good candidate to

extend beyond it’s current approximate implementation for the purposes of studying

the structural configurations associated with DI phases and phase transitions.

The basic 13-PF MT model of [34, 47, 55, 56] offers an opportunity to simulate a

large amount of data that tracks a MTs structure through its dynamic processes with

low computational costs. However, in order to accommodate the need for observing

all of the tip structures relevant to key moments of significant dynamic changes, this

model must be extended in order to reveal all of the structural states that are possible

in a sequence of reaction events. In its current form, the detailed level 13-PF MT

model approximates hydrolysis events, by allowing multiple subunits to hydrolyze

simultaneously after one of the other four reaction events (lateral bonding/breaking

or subunit gain/loss) have occurred. Despite this approximation being a reasonable

one, it violates the assumption that only one of the bio-chemical reactions occur at a

time. Furthermore, it also creates a scenario where several structural configurations
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are skipped over when observing the simulation’s output, which in turn counters the

intentions of studying the details of the structures that should be observed during

MT dynamics. For this reason, the computational model is extended to more care-

fully implement the Gillespie Algorithm, where hydrolysis reaction events are treated

similarly along with the other four dynamic events that alter the MT structure. This

extension to the original model is capable of delivering an exact method. For long-

time simulation runs, the Gillespie Algorithm can deliver data closely resembling

a large number of transitions through a realistic sequence of bio-chemical reactions

and structural states by making fewer model considerations, and therefore fewer as-

sumptions. With a large simulation data set, enough information can be gathered to

determine which structural states are connected to different phases observed in DI

behavior, and even more, which states are more prevalent during transitions between

dynamic phases.

3.1.2 Extending the 13-PF MT Model to Study the Tip Region

In this study, the tip region structural configuration is of particular interest, since

those structures are the most dynamic portion of a MT. A first attempt to define

which portion of the MT structure is included in the tip region should reveal some

of the complications involved with defining a generic tip region for a 13-PF MT.

When considering a MT formed by 13 PFs and 13 lateral bonds between them,

the tip region definition takes on many variations depending on where one decides to

separate the tip from the rest of the MT structure. Different lateral bond heights allow

for sections of PFs to be partially bound, deeming the strict “laterally unbonded”

region inapplicable. Allowing for all partially bound PF regions as part of the tip

region leaves a large number of PFs and lateral bonds to account for in a single tip

structure configuration. For example, if the cutoff is chosen as the shortest lateral

bonds height position, then the tip may include a substantial section of PFs that are
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laterally bound to their neighbors, a relatively stagnant section of structure when

compared to the laterally unbonded parts that are more inclined to change from the

MT dynamics. This classical representation of a 13-PF MT serves too complex a

scenario for tackling the tip structure study as is.

As a first attempt to study the MT structures at this level, a model using a simpler

configuration structure is desired to make studying the tip region more tractable.

To this end, a 2-PF MT is presented as the simplest MT structure that takes the

lateral bond into consideration: 2-PFs with a single lateral bond between the adjacent

subunits. This representation can be perceived as a 2-PF polymer, or as an arbitrary

pair of neighboring PFs embedded within a larger 13-PF MT. Although this offers

a less complicated scenario than the 13-PF case, it is worth recognizing that the

proposed 2-PF case is relevant to actual two-stranded filaments that exhibit dynamic

instability behavior, such as a protein called ParM [28]. Since the scope of the study

is making reference to conclusions and model parameters associated with prior MT

studies, the 2-PF structure and its behavior will be referred to as a special case MT.

The dynamics in the model simplification follow directly from the proposed Gillespie

Algorithm extension of the detailed 13-PF MT model. However, due to the relevance

of the changes enacted, this chapter first discusses the new implementation of the

extended 13-PF MT model, and then moves the discussion towards the simplified

2-PF MT version. By laying the groundwork for this computational implementation,

these will be the two models referenced throughout the remainder of this study.

3.2 Representation of the 13-PF MT Structure

The structure of the MT used in the computational model here follows from the

list of assumptions understood from the biological perspective detailed in Section 2.2.

Many detailed level 13-PF models agree on only including the helical orientation to

create the tube-like structure [5, 8, 27, 47, 55, 56, 77, 85]. However, in the model being
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introduced here, the lateral bonds introduced in [34, 47, 55, 56] are also included.

This section describes in detail the components that make up the totality of the

biopolymer structure for the computational model being presented.

3.2.1 Tubulin Dimer Subunits

The MT model developed here considers the smallest structural components, or

the “basic building blocks”, to be the α − β tubulin dimer compounds, which are

often referred to as “dimer subunits”, or just “subunits”. The dimer subunits can be

found in one of two forms: GTP-bound, or the hydrolyzed counterpart, GDP-bound

(see the red and green blocks in Figure 3.1). Only GTP-bound subunits are able

to form a longitudinal bond with a subunit already part of a MT at the very top.

Once embedded into the MT structure, a dimer subunit may hydrolyze into a GDP-

bound state. The GTP-bound subunits are considered to fill the free tubulin pool

with concentrations on the order of micro-molar (µM) levels in the form of “Free-

GTP-Tubulin”, such that they are available to polymerize onto the MT structure

[31]. When the subunits detach from the MT, GDP-bound subunits are assumed to

quickly change back to a GTP-bound state, and therefore replenish the Free-tubulin

concentration levels used for simulations [31]. The scope of this study involves the

dynamics of a single MT at a time, it does not constitute the need for competition

between multiple MTs, and therefore assuming a constant free-tubulin concentration

at micro-molar levels is reasonable.

3.2.2 Protofilaments (PFs)

A consecutive sequence of subunits held together by longitudinal bonds consti-

tutes a PF structure. These PFs are constructed by allowing only a single GTP-bound

subunit to attach the the top most position of the PF during any one polymerization

event [56]. However, the deconstruction of a PF is more involved, where any consecu-
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tive section of the PF from the top down that is not supported by a lateral bond can

detach. This casts light on the expected rate of polymerization to be much slower

compared to the rapid rate of depolymerization resulting from the shear difference of

the number of subunits exchanged through each event. The sections of PF that are

laterally unbonded are significant in their own right, since those subunits are the ones

susceptible to depolymerization (see Figure 3.1). For this reason, the term PF tips

refer to the sequence of subunits that are not laterally bonded to both neighboring

PFs. In the 13-PF case, there are situations where sections of PFs have a lateral

bond on one side and not on there other, however these are sometimes referred to

as sheets of protruding PFs, and are not included in the PF tip definitions per se.

However, the significance of PF tip is more apparent in the 2-PF model described

later.

The inherent chemical structure for the GTP-bound subunits encourages the for-

mation of sections PFs that are straighter than the sections consisting of GDP-bound

subunits. This causes the so called “ram-horns”, or curved polymer structures as ob-

served in the PF tips. Additionally, in laterally bonded sections of a MT, subunits

that hydrolyze into GDP-bound states add strain to the structure, which increases

the internal energy [71]. The model being developed here is not concerned with the

consequential geometry or the spatial coordinates of individual subunits; only the

order of the subunits as they appear in each PF is considered. Instead, the difference

in the dimer subunit bounded state is reflected in the dynamics rates associated with

different scenarios. These rates defined in Section 3.3.2 reflect that GTP-bound sub-

units promote a more stable structure and growth of PFs and lateral bonds, whereas

GDP-bound subunits tend to destabilize the MT structure by discouraging lateral

bond formation and encouraging shortening of PFs.
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3.2.3 Lateral Bonds

Individual lateral bonds can form, from the base toward the top of the MT, be-

tween pairs of neighboring dimer subunits in the same position within their respective

PFs. A single new bond can form only in the available space directly above a previ-

ously existing bond, and only the single top most lateral bond can break. We refer to

the consecutive sequence these bonds all together as the lateral bond (see the white

squares in Figure 3.1). The top position of a sequence of lateral bonds can be thought

of as a “zipper-head”, which as it moves up binds the teeth on the two sides of a

zipper. Sections of teeth that are not zipped (above the zipper-head) are free to move

around, whereas the zipped sections (below the zipper-head) combine the two sides

into a single sheet that is restricted and stabilized. Similarly, the lateral bond sta-

bilizes the PFs between which they form, since only those subunits lacking a lateral

bond are allowed to depolymerize, but those subunits with a lateral bond will remain

a part of the polymer structure. Also, how high the zipper-head can go depends how

much available zipper-teeth there are to bind together. In the case of MTs, a lateral

bond’s height, determined by the position of the top-most subunits that are laterally

bound, can only rise as high as the shorter PF that it brings together. This results

from the condition that neighboring pair of subunits need to exists so that a lateral

bond can form between them. The laterally unbonded section between two neigh-

boring PFs is called the crack (see Figure 3.1), and the crack depth is measured

by the the shorter of the PFs that extends around the crack section, where future

lateral bonds can be formed.

Independently, the lateral bond height can be thought of as a biased random walk

on a discrete lattice with a moveable upper boundary defined by the heights of its

surrounding PFs. The lattice allows for the lateral bond height to move up only if

there are neighboring pairs of subunits immediately above the top-most lateral bond

(i.e. if there exists a non-zero crack depth). The bias is due to the higher success rate
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of a lateral bonds forming with GTP-bound subunit dimers compared to GDP-bound

ones. This puts emphasis on the state of the subunits at the interface between the

lateral bond height and the crack, which we refer to as the “gate” [47]. The pair

of subunits bound together by the top-most lateral bond are labeled as the Gate

subunits (or G-subunits), and the pair of subunits at the bottom of the crack are

labeled as Above Gate subunits (AG-subunits). Ultimately, the likely direction

of the lateral bond height’s movement depends on the bounded state of the G- and

AG-subunits. Notice that in configurations that lack a crack between PFs, the lateral

bond would be the same height as at least one of the adjacent PFs. In this case, it

is not possible to identify AG-subunits, effectively yielding a zero probability for the

lateral bond to move upward. The lower boundary of a lateral bond would be located

at the very bottom of the MT, and is defined by the MT seed.

Additional support provided by lateral bonds comes when both neighboring lateral

bonds are present. The likelihood of a lateral bond breaking diminishes greatly when

both of the subunits connected by the lateral bond in questions still have existing

lateral bonds to the left and right. This restriction limits how cracks are formed,

and prevents their existence to be a result of lateral bonds quickly zipping down.

Instead, the rapid breaking of lateral bonds seen during shortening phases are instead

more reliant on the nucleotide bound states of the subunits surrounding it. This

restriction was introduced in the model used in [34, 47, 55, 56] in accordance with

the approximate mechanical constraints measured in simulations.

3.2.4 Seam

The lateral bonds connect neighboring subunits that are at the same position

with their PFs, except between the first and last PFs. The sequence of lateral bonds

between PF #1 and PF #13 is called the seam, which creates a shift in subunit

neighbors, such that the subunits in PF #1 are bonded and positioned next to those
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subunits in PF #13 1.5 above their position. It should be noted that the 1.5 dimer

shift is considered in all of the calculations involving the position of the top-most

lateral bond in the seam, however the visualization output treats dimers as individual

units and thus displays the seam to have a shift with 1.0 dimer height difference.

Furthermore, to accommodate for that fact the subunits surrounding the seam are

associated with two neighboring subunits each, the kinetic rates for lateral bonds

forming and breaking are doubled.

3.2.5 MT Seed

In order for the MT structure to take its form, it relies on an initial condition,

or a MT seed, represented by the collection of short sections at the bottom of each

PF configured with permanently GTP-bound subunits, and lateral bonds between

them that cannot break. Consequently, the subunits in the MT seed cannot detach

from the polymer structure, and the choice of a GTP-bounded state is because it

encourages stability, and hence promotes polymerization at the beginning of the

simulation [40]. Since the seed constitutes a permanent part of the structure, the

seed height is equivalently the minimum height taken on by the entire MT structure,

as well as the individual PFs and lateral bonds. In the 13-PF MT model, the portion

of the MT seed associated with PF #1 is shortened by one subunit length compared

to the other seed height for the rest of the PFs, as illustrated in Figure 3.1. This is to

accommodate the shift in correspondence between neighboring subunits as created by

the seam, which in turn creates the helical pattern as expected in the MT structure.

Any biasing affects of the seed structure’s orientation on the MT configurations are

considered minimal, because the seed’s purpose is mostly to promote the onset of

MT growth. Most of the dynamics and configurations of interest take place when

the MT has grown quite long, and the changes to the MT structure are occurring far

away from the seed.
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3.2.6 Complete MT Structure

The complete 13-PF MT structure is a combination of all the components listed

in this section. One can imagine that the 13 PFs can be arranged side by side,

creating a 2-D lattice when they are held together through a sequence of lateral

bonds between them (see Figure 3.1). When they are wrapped around a longitudinal

axis parallel to the PFs, the PFs form the walls of a tube-like polymer. The first and

13th PFs come together at the seam, where there is a 1.5 dimer shift in arranging the

neighboring subunits within these PFs, and this completes the helical orientation of

the subunits throughout the MT. At the bottom of the MT structure, the seed creates

an indestructible portion of GTP-subunits, that acts both as an initial condition

where growth can begin, as well as the minimum structure to which a shortening

MT can be reduced. The tip region of the 13-PF MT can be quite complex, where

PFs can extrude to different lengths, and cracks between PF tips can add to the

complexity of the possible tip structures that can be realized. Furthermore, the tip

region and several rows of subunits below it is where a stabilizing GTP-cap can form.

Finally, the total length of the MT is measured by averaging over the total length of

all the PFs.

As it is described further in Section 3.3, most of the structural changes take place

in the tip region farthest away from the MT seed. Even so, it is important to track

the entirety of the MT structure and the individual subunits, their nucleotide bound

states, and the presence of lateral bonds throughout the evolution of the structural

changes that are possible in the presented computational model. Even when the

MT grows to lengths far beyond the seed, it is very possible (and expected in some

circumstances) for the MT dynamics to result in a structure that is more susceptible

to rapid shortening phases, where lateral bonds can break quickly and multiple sub-

units can depolymerize at a time. In these cases, the complete configuration of the

MT structure needs to be tracked to ensure that the rates of the micro-level reaction
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Figure 3.1. A 2D visualization from the computational model simulation.
The red and green blocks represent GTP- and GDP-bound subunits

respectively. The 13 vertical sequences of subunits are the PFs. The white
squares between neighboring PFs are the lateral bonds. The first PF is

duplicated on the right of the 13th PF to illustrate the shift that occurs at
the seam. Laterally unbonded subunits that protruded above the

surrounding structure are the PF tips. A crack is created by missing lateral
bonds between PFs. The seed is the indestructible portion at the bottom of

the polymer structure, and has a shorter height for the first PF to
accommodate the shift at the seam. When the tip region is highly

populated with GTP-bound subunits, a stabilizing GTP-cap can form
without clear boundaries.

events that physically evolve the biopolymer are being determined correctly.

3.3 The Extended 13-PF MT Model

In this section, the dynamics included in the computational model are described,

such that the individual molecular level reactions that change the MT structure

accumulate to resemble the DI behavior as observed experimentally from a macro-

level perspective. In order to represent the rules set forth by these reaction events,

similar considerations are made here as those in the computational models in [34, 47,

55, 56] to describe the possible changes in PF length and lateral bond heights. The
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most significant change to that model is the treatment of hydrolysis events without an

approximation. The resulting model will represent the dynamics of a MT structure

as a Markovian stochastic process, since the possible reactions only depend on the

current state of the MT structure, and the concentration of free-tubulin available for

polymerizing the PFs. Once the stochastic dynamics are defined, they can be used

to build a computational algorithm to simulate the resulting behavior of this model.

3.3.1 Micro-level Reaction Events Determining MT Dynamics

Following through with the reactions that are expected to affect and change a MT

structural configuration, the dynamics in the computational model are restricted to

the following five events and their respective rules:

1. Polymerization: a single GTP-bound subunit may attach to a MT, by forming
a longitudinal bond formation between the top subunit in a PF and an available
GTP-bound free-tubulin subunit.

2. Depolymerization: single/multiple subunit(s) may detach from a MT, by break-
ing a single longitudinal bond between any non-laterally bonded subunit in a
PF tip and the subunit below it, thus causing the loss of any number of subunits
above the breaking point.

3. Lateral bond formation: a single lateral bond may form directly above the top-
most lateral bond only when both PFs have existing subunits there.

4. Lateral bond breakage: the single top-most lateral bond may break, except if
this bond is part of the MT seed.

5. Hydrolysis: a single GTP-bound subunit may hydrolyze into a GDP-bound
subunit, except for the top-most subunit of any PF, and in the MT seed.

These rules are all based on established MT structure and biochemistry [31].
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3.3.2 Kinetic Rates for Molecular Reaction Events

The kinetic rate constants, and their respective rates of occurrence for the five

events being considered in the MT dynamics are as follows:

1. kGTPpoly is the kinetic rate constant of polymerization for a GTP-bound subunit

onto a PF (longitudinal bond formation). Since this involves pulling in GTP-
bound subunits from the environment, the rate for this reaction should depend
on the tubulin levels available in the substrate. The kinetic rate for polymer-

ization is κ · c

c+ c1/2
, where c is the concentration of free GTP-bound tubulin

available in the surrounding cytoplasm environment, κ is the maximum growth
rate possible, and c1/2 = κ

kGTP
poly

is the concentration that allows for half the

maximum growth rate. This follows from the Michaelis-Menten kinetics, used
commonly to describe biochemical reactions that involve concentrations in a
substrate [61]. Despite using this form in the computations of the model pre-
sented here, it is interesting to note for c1/2 = 200µM , the relation c1/2 � c is
valid for the tubulin concentration ranges used in this and similar studies. This
relation can reduce Michaelis-Menten form to a linear approximation, which
in turn gives us a kinetic rate for polymerization ≈ kGTPpoly · c. This rate is the
only dependence on the cytoplasmic tubulin concentration in the model, and c
is further considered to be the input parameter that generates the different DI
behaviors possible from this model. Only GTP-bound subunits are assumed
to form longitudinal bonds with the top-most subunits in a PF, so there is no
kinetic rate considered for the polymerization of GDP-bound subunits.

2. kGTPdepoly and kGDPdepoly are the kinetic rate constants of depolymerization (longitu-

dinal bond breakage). Since the rate of depolymerization only depends on a
single longitudinal bond breaking, kGTPdepoly and kGDPdepoly also directly provide the
rates of these processes. In this computational model, the rate of a longitudinal
bond breaking below a given subunit is consistent with predictions based on MT
structure [69, 82]. If for a given subunit, the adjacent subunit below is GTP-
bound, then the PF in this location tends to be straight, and the subunit in
question detaches by breaking the longitudinal bond below it with rate kGTPdepoly.
If the subunit below is GDP-bound, then the PF in this location tends to be
bent, and the subunit in question detaches with rate kGDPdepoly [76, 77]. Because of
the different structural tendencies, the relation kGTPdepoly < kGDPdepoly is maintained,
which agrees with experimental observations. The kinetic rate for a single lon-
gitudinal bond to break is equivalent to the kinetic rate constant for subunits
in PF tips that do not have any lateral bonds, and thus are free to dissociate
from the MT structure by breaking a longitudinal bond from below.
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3. kTTbond(k
TD
bond, k

DT
bond, and kDDbond) are kinetic rate constants of lateral bond forma-

tion between the two AG-subunits when they are both GTP-bound (one is
GTP-bound and one is GDP-bound subunit, one is GDP-bound and one is
GTP-bound subunit, and both are GDP-bound subunits respectively). The
kinetic rate is equivalent to the kinetic rate constant for a lateral bond to form
between a pair of laterally neighboring AG-subunits exists in the space directly
above the top-most position of a sequence of lateral bonds, if they exist. The
respective rates for lateral bonds forming at the seam are doubled since they
would represent two bonds forming for any one subunit on either side of the
seam due to the 1.5 dimer seam shift.

4. kTTbreak(k
TD
break, k

DT
break, and kDDbreak) are kinetic rate constants of lateral bond break-

age between the two G-subunits when they are both GTP-bound (one is GTP-
bound and one is GDP-bound subunit, one is GDP-bound and one is GTP-
bound subunit, and both are GDP-bound subunits respectively). Breaking of
lateral bonds is assumed to be influenced by the nucleotide state of the G-
subunits because it has been experimentally shown that GDP-bound subunits
have a strong preference for the bent conformation, while GTP-bound subunits
are more compatible with the straight conformation parallel to the rest of the
MT lattice [31]. The kinetic rate is equivalent to the kinetic rate constant for
a lateral bond to break between a pair of laterally neighboring G-subunits, if
the lateral bond is not part of the MT seed. However, a geometric penalty is
considered, and the rate of breaking any lateral bond is decreased by a factor
of πbreak = 1000 when there already exist lateral bonds on the farther sides of
the subunits connected by the bond in question. This assumption was used to
approximate the mechanical constraints of the MT lattice as demonstrated in
[34, 47, 55, 56]. The respective rates for lateral bonds breaking at the seam are
doubled since they would represent two bonds breaking for any one subunit on
either side of the seam due to the 1.5 dimer seam shift.

5. kh is the kinetic rate constant of hydrolysis for a GTP-bound subunit to become
GDP-bound subunit. The kinetic rate is equivalent to the kinetic rate constant
for an individual GTP-bound subunit to hydrolyze, provided it does not occupy
the top-most position of any PF, or it is not part of the MT seed.

These rates can be thought of using arbitrary units of time (aut), and 1aut is

set equal to 1 second (sec) for the purpose of comparing to experiments. Thus, all

rates used here will have units of aut−1 = sec−1. Since this is a stochastic model,

the rates represent “probabilities per unit time”. The actual values used are listed

later in this chapter, and a parameter tuning process was performed in [34, 47, 55,

56] for the hydrolysis approximation model, from which the model being developed
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here is extended. Ridding the approximation treatment in the new generation of

the computational model, however, has little effect on the sensitivity of these rate

constants on the simulated behavior generated by the model. This makes sense,

because ultimately the hydrolysis approximation was valid, but, for this detailed level

study, the exact trajectory of structural configurations is desired. This parameter set

is more greatly affected when the 2-PF simplification is introduced in Section 3.8.3,

when the necessary alterations are introduced.

3.3.3 Rates of Subunit Addition and Loss

At this point, the possible events responsible for changing the MT structure in

the computational model have been established, and their corresponding kinetic rates

have been identified. However, for polymerization and depolymerization events, it is

important to distinguish the kinetic rates of longitudinal bond formation or breakage

(with units in 1/time) from the rates of subunit addition or loss (with units of sub-

units/time). This can be analogous to measuring the velocity of growth or shortening

of the PF length, since the subunit heights are effectively considered a unit of mea-

suring the total length of the MT. However, it should be noted that the number of

PFs affects how the MT length is measured. Since this study leads to a simplification

that reduces the number of PFs considered in the polymer structure, the concept of

velocity is therefore avoided in further discussion. In any case, the number of sub-

units associating and dissociating from the polymer during the described dynamics

is preserved in any variation of MT structural configuration.

Polymerization events allow only one GTP-bound subunit to attach onto a PF,

therefore the rate of subunit addition, Rsubunit addition, follows from the Michaelis-

Menten formula used to compute the kinetic rate for polymerizing a single dimer
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subunit defined earlier in this chapter:

Rsubunit addition = (1 subunit) ·
(
kGTPpoly c1/2

(
c

c+ c1/2

)
sec−1

)
=
kGTPpoly c c1/2

c+ c1/2
subunits/sec (3.1)

≈ kGTPpoly c subunits/sec when c� c1/2

Depolymerization events, however, allow for any sequence of laterally unbonded

subunits in a PF tip to detach, and effectively be dissociated from the MT structure.

Thus, depolymerization is a more involved process, especially when considering the

different rates for breaking longitudinal bonds connected to a GTP- and GDP-bounds

subunits from below. So, in order to formulate the rate of subunit loss, the states of

most of the PF tip configuration plus the top-most subunit with at least one lateral

bond must be known. Let ntip be the length of a PF tip. The subunits in the tip are

indexed from the top down, such that the 1st position corresponds to top-most subunit

in the PF tip, and the nthtip position bottom-most subunit in the PF tip, such that

subunits 1 to ntip do not have any laterally bonds. Using this indexing, the (ntip+1)th

position corresponds first subunit below the PF tip, which is laterally bonded to at

least one of it’s neighboring PFs. Let Xi represent the nucleotide bounded state of a

subunit, GTP- or GDP-bound, in position i, where 1 ≤ i ≤ (ntip + 1). Now, consider

the following notation for describing a configuration for a sequence of dimer subunits:

XPF
1,...,ntip

= [X1, X2, ..., Xntip
] for the subunits in a PF tip,

XPF
2,...,ntip+1 = [X2, X3, ..., Xntip+1] for the subunits below those in XPF

1,...,ntip
.

So, the kinetic rate for a longitudinal bond to break below any one of the subunits

in a PF tip depends on the nucleotide bound states of the subunit below, which are

defined in XPF
2,...,ntip+1. More specifically, if the longitudinal bond between the ith and

43



(i+ 1)th subunits were to break, the kinetic rate for that event would be

k
Xi+1

break =


kGTPbreak if Xi+1 is GTP-bound

kGDPbreak if Xi+1 is GDP-bound

For a PF tip of length ntip, there are ntip-many possible depolymerization events

that can take place:

• Case i = 1The longitudinal bond between the 1st and 2nd subunits, X1 and X2,
can break with rate kX2

break, causing the top subunit, X1 to dissociate from the
MT.

• For i = 2 The longitudinal bond between the 2nd and 3rd subunits, X2 and X3,
can break with rate kX3

break, causing the top two subunits, XPF
1,2 = [X1, X2], to

dissociate from the MT.

• Case i = 3 The longitudinal bond between the 3rd and 4th subunits, X3 and X4,
can break with rate kX4

break, causing the top three subunits, XPF
1,2,3 = [X1, X2, X3],

to dissociate from the MT.

• Cases 4 ≤ i ≤ ntip The longitudinal bond between the ith and (i+1)th subunits,

Xi and Xi, can break with rate kXi
break, causing the top i-many subunits, XPF

1,...,i =
[X1, ..., Xi], to dissociate from the MT.

• Case i = ntip The longitudinal bond between the nthtip and (ntip + 1)th subunits,

Xntip
and Xntip+1, can break with rate k

Xntip+1

break causing all of the ntip-many
subunits in the PF tip, XPF

1,...,ntip
= [X1, ..., Xntip

], to dissociate from the MT.

Now, it should be clear that for a particular depolymerization event, the rate

of subunit loss is the product of the kinetic rate of depolymerization involved with

breaking the longitudinal bond and the number of subunits to be dissociated from

the MT structure as a result:

(i subunits) ·
(
kXi
depoly sec

−1) = i kXi
depolysubunits/sec

whereXi is the nucleotide bound state of the subunit below the longitudinal bond that
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is breaking. Now, for the entire PF tip configuration XPF
1,...,ntip

to detach, knowledge

of the configuration of subunits below, XPF
2,...,ntip+1, is needed. Let

K =

ntip+1∑
i=2

kXi
depoly = kX2

depoly + kX3
depoly + ...+ k

Xntip+1

depoly , (3.2)

such that K defines the total rate for a detachment event to occur, computed as

the sum of the possible kinetic rates of depolymerization for a given configuration

of subunits XPF
2,...,ntip+1. Conditional on a depolymerization event occurring for a PF

tip configuration XPF
1,...,ntip

, the conditional probabilities, pi, for the individual cases

i = 1 to i = ntip defined above, can be computed as follows:

• Case i = 1 The conditional probability for depolymerization of the top-most
subunit, [X1]: p1 = kX2

depoly/K

• Case i = 2 The conditional probability for depolymerization of the top two
subunits, XPF

1,2 = [X1, X2]: p2 = kX3
depoly/K

• Cases 3 ≤ i ≤ ntip The conditional probability for depolymerization of the top

i subunits, XPF
1,2,3 = [X1, X2, ... , Xi]: pi = k

Xi+1

depoly/K

• Case i = ntip The conditional probability for depolymerization of the entire PF

tip, XPF
1,...ntip

= [X1, X2, ... , Xntip
]: pntip

= k
Xntip+1

depoly /K

Since i subunits are dissociated with probability pi, and given that a depolymerization

event is to occur, the conditional expected number of subunits to be lost can be

calculated as follows:

ntip∑
i=1

(i subunits)(pi) = p1 + 2p2 + ...+ ntippntip
subunits (3.3)

Thus, the rate of subunit loss 1 for a particular PF tip configuration can be calcu-

1The formulation for the rate of subunit loss is part of an interdisciplinary collaboration pending
publication, including contributions from Ava Mauro, Erin Jonasson, and Holly Goodson
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lated as the product of the corresponding rate of a depolymerization event (Equation

3.2), and the expected number of subunits to depolymerize (Equation 3.3):

Rsubunit loss =
(
p1 + 2p2 + ...+ ntippntip

subunits
)
· (K sec−1)

= K

kX2
depoly

K
+ 2

kX3
depoly

K
+ ...+ ntip

k
Xntip+1

depoly

K

 subunits/sec

= kX2
depoly + 2kX3

depoly + ...+ ntipk
Xntip+1

depoly subunits/sec

=

ntip∑
i=1

ik
Xi+1

depoly subunits/sec (3.4)

Clearly, the rate of subunit loss depends strongly on the nucleotide bound states of

the subunits in a particular configuration of a PF tip and the subunit below it. This

adds further support for requiring a closer study of the configurations involved in the

tip region to gain a deeper understanding of what drives MT dynamics. Furthermore,

it is interesting to note that if the breaking rate were to be uniform for all subunit

types, and kGTPdepoly = kGDPdepoly, and the rate Kshorten = kXi
depoly were the same for all i, then

the rate of subunit loss Rsubunit loss =
∑ntip

s=1 sKshorten which is in agreement with the

shortening term in Equation (2) used for the mean-field study of [55]. However, the

model developed here is concerned with a more detailed look at the MT structure,

and the different subunit types are always considered to affect the depolymerization

rates, which is effectively one way of featuring the differences between the straight

orientation of GTP-bound subunits and the bent GDP-bound subunits.

At this point, the rates of subunit addition and loss, Rsubunit addition in Equation

3.1 and Rsubunit loss in Equation 3.4 respectively, have been formulated. These are the

rates that alter the length of PFs, and effectively the measured length of the entire MT

structure. The MT length is what can be measured in experimental observations, and

is the common domain where simulated data can be compared to invivo data. More

details of extracting macro-level information are discussed in Chapter 4. These two
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rates presented in this section are important to describe how the total content of the

MT is prone to change for one specific structural configuration. The rate of subunit

loss in particular will be used as a feature describing the tip region for the predictive

models developed in Chapter 5. However, polymerization and depolymerization are

not the only ways of altering the MT structure. Hydrolysis events also change the

state of individual subunits, which in turn changes the rate at which other reaction

events can occur. Moreover, lateral bonds forming and breaking changes the position

of the top-most lateral bond between PFs, which in turn changes the number of

subunits that are susceptible to depolymerization. The next section describes the

structural states and the transitions between them taking into consideration all of

the reaction events considered in the MT dynamics of this computational model.

3.4 MT States and the Master Equation

As part of a Markov process, the MT is assumed to make stochastic transitions

representing molecular reaction events that step the biopolymer from one structural

state to another, without any dependence on older states. A specific combination

and the orientation of the structural components in a 13-PF MT described in the

previous section are involved in constructing any one MT structural configuration.

The possible reaction events that take place depend on the structural components

near the MT tip. However, the tip region alone is not enough to define the states of

a Markov process. In this section, the MT structural components and the reaction

events introduced in Sections 3.2 and 3.3.1 will be used to describe the state space

for the model being developed in this study, as well as the transition probabilities

between those states in the form of a master equation.
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3.4.1 The State Space S

Random hydrolysis events leave GTP-bound subunits scattered throughout the

top portion of the MT structure, and their positions need to be tracked as part of the

MT structure in the Markov process. Additionally, lateral bond breaking events ex-

tend the cracked portion, and introduce new subunits into the PF tip configurations.

If only the tip region was considered the states of the Markov chain, additional infor-

mation of the older subunits in the MT structure would be necessary to identify the

target state after a lateral bond breaking event. Requiring this additional informa-

tion violates the Markov memoryless property [57]. Thus, the tip region alone is not

adequate to represent the individual states at each step of the stochastic process. The

same issue of requiring additional information of older subunits would persist even

if larger sections beyond the tip region were included in the state’s definition, since

there is always a non-zero probability that hydrolysis has not changed the nucleotide-

bound state of one particular subunit deep in the MT structure, which in turn would

alter the transition rates for events that involve that subunit. For this reason, the

entire MT structural configurations is chosen to define the states at each step of the

Markov process being modeled. This does not change the fact that the tip region

is still the focal point dictating how most transitions are to occur. Instead, relevant

information about the tip is extracted from the entire MT’s configuration as it is

being simulated.

Furthermore, from a practical implementation perspective, the computational cost

of tracking the entire MT structure at each step is not an issue for the processing

memory currently available, and even long time simulations are completed within

a reasonable amount of wall-clock time. Especially for the tubulin concentration

levels being used as the input parameter in this study, DI behavior is modeled in

the simulations, which means that eventually even the longest MT configuration

will experience a catastrophe event, triggering a rapid shortening of the polymer
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structure, and thus freeing the processor memory of the thousands of subunits being

tracked. Of course, lower tubulin concentration levels would make catastrophe events

more frequent, which would prevent very long MT structures from being created,

and thus speeding up computational time. However, it should be noted that for

tubulin concentrations above the critical concentration for persistent growth would

make catastrophes infrequent, and this would allow for MT structures to grow very

long, ultimately taking up a great amount of processor memory and slowing down

computational time.

Let S = {all the MT structural configurations} be the state space for the Markov

chain. The minimum structure in S would be the MT seed, and the rest of S would

contain a combination of any sequences of GTP- or GDP-bound subunits that con-

struct different PFs on top of the MT seed, and any sequence of lateral bonds between

those PFs, given that the top-most position of any sequence of lateral bonds has a

position at the same height or below the height of the surround PFs. Based on a

priori knowledge, there is a higher likelihood for some of the MT structures in S

to be observed than others. However, for completeness, the stochastic nature of the

Markov chain model being developed requires the infinite number of combinations of

possible MT structural configurations to be considered in S. To describe the prob-

ability of a MT structure attaining any one configuration, the master equation for

this Markov process is developed in the remainder of this section.

3.4.2 Master Equation

The possible reaction events that would transition a MT configuration in S to

another, along with their kinetic rates, were listed in Section 3.3.2. For a general

case, the master equation describing the probability of being in any one state is

desired, and by nature of a Markovian process, this depends on the likelihood of

being able to transition into that state. Let a random variable X represent any MT
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configuration in the set S. Let p(x) = p(X = x) be the occurrence probability of

an arbitrary MT configuration x ∈ S. Then, the following master equation can be

formulated:

d

dt
p(x) =

∑
y∈Ypoly(x)

p(y)kGTPpoly

(
cc1/2
c+ c1/2

)
+

+
∑

y∈Y GTP
depoly(x)

p(y)kGTPdepoly +
∑

y∈Y GDP
depoly(x)

p(y)kGDPdepoly +

+
∑

y∈Ybreak(x)

p(y)kbreak(y) +
∑

y∈Ybond(x)

p(y)kbond(y) +

+
∑

y∈YS−break(x)

p(y)kS−break(y) +
∑

y∈YS−bond(x)

p(y)kS−bond(y) +

+
∑

y∈Yh(x)

p(y)kh − p(x)
∑

k∗ (3.5)
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where the alternative notations for the kinetic rates represent the following:

kbreak(y) =



kTTbreak

if y has a non-seam lateral bond w/

two GTP-bound G-subunits

kTDbreak

if y has a non-seam lateral bond w/

GTP- and GDP-bound G-subunits

kDTbreak

if y has a non-seam lateral bond w/

GDP- and GTP-bound G-subunits

kDDbreak

if y has a non-seam lateral bond w/

two GDP-bound G-subunits

kbond(y) =



kTTbond

if y has a non-seam crack w/

two GTP-bound AG-subunits

kTDbond

if y has a non-seam crack w/

GTP- and GDP-bound AG-subunits

kDTbond

if y has a non-seam crack w/

GDP- and GTP-bound AG-subunits

kDDbond

if y has a non-seam crack w/

two GDP-bound AG-subunits

kS−break(y) =



kTTS−break

if y has a seam lateral bond w/

two GTP-bound G-subunits

kTDS−break

if y has a seam lateral bond w/

GTP- and GDP-bound G-subunits

kDTS−break

if y has a seam lateral bond w/

GDP- and GTP-bound G-subunits

kDDS−break

if y has a seam lateral bond w/

two GDP-bound G-subunits
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kS−bond(y) =



kTTS−bond

if y has a seam crack w/

two GTP-bound AG-subunits

kTDS−bond

if y has a seam crack w/

GTP- and GDP-bound AG-subunits

kDTS−bond

if y has a seam crack w/

GDP- and GTP-bound AG-subunits

kDDS−bond

if y has a seam crack w/

two GDP-bound AG-subunits∑
k∗ =

∑
{kinetic rates for all the events that x can undergo}

and where the configurations y in each summation term belong to the following

subsets of S:

Ypoly(x) = {y ∈ S| y can polymerize a GTP-bound subunit to form x}

Y GTP
depoly(x) = {y ∈ S| y can break a longitudinal bond above

a GTP-bound subunit to form x}

Y GDP
depoly(x) = {y ∈ S| y can break a longitudinal bond above

a GDP-bound subunit to form x}

Ybreak(x) = {y ∈ S| y can break a non-seam lateral bond to form x}

Ybond(x) = {y ∈ S| y can form a a non-seam lateral bond to form x}

YS−break(x) = {y ∈ S| y can break a seam lateral bond to form x}

YS−bond(x) = {y ∈ S| y can form a lateral bond in a seam to form x}

Yh(x) = {y ∈ S| y can hydrolyze a GTP-bound subunit to form x}

Note that each term
∑

y p(y)ki represent all the ways that the MT structure can

transition into configuration x via the reaction event associated with ki. Furthermore,
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the term being subtracted on the RHS of the master equation, p(x)
∑
k∗, represents

all the ways a MT can transition out of state x. In typical circumstances, the master

equation seen here may be simpler, since there may not exist some MT structural

configurations in S that would transition into configuration x via certain reaction

events, which would render the corresponding Yi(x) to be an empty set.

3.5 Simulating the Extended 13-PF MT Model

This chapter has developed the structure and reactions rates for the MT system,

which represent the states and transitions in a Markov process. In order to model the

evolution of a MT structure through time, the represented kinetic chemical reactions

are chosen to occur in a stochastic order, where the occurrence probabilities depends

on the structural state at a given point in time. For this, a kinetic Monte Carlo scheme

resembling the Gillespie Algorithm is utilized to choose the order of reaction events

to occur, and the time durations associated with each reaction. The remainder of

this section describes the type of Gillespie Algorithm used to implement the detailed

computational model simulations, and the benefits of using this method to represent

the structural changes that a MT polymer can undergo.

3.5.1 The Gillespie Stochastic Simulation Algorithm

In this extension of the detailed level computational model for MT dynamics, the

hydrolysis approximation is removed by applying equal treatment to all of the reaction

events that can alter the MT structural configuration. By doing so, the goal is to

develop an exact method which can simulate the time evolution of transitions that

are possible to achieve from one structural state to another, and creates a statistically

correct chemical reaction trajectory. This original algorithm was presented by Daniel

T. Gillespie in his 1976 and 1977 papers [29, 30], where he presented the “direct”

and “first-reaction” methods of implementing a Monte Carlo scheme for molecular
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reactions in a volume V . The approach presented here is a variation that resembles

the “first-reaction” method, which produces non-uniform continuous time steps, and

is developed to suit the needs of the MT system. Essentially, the algorithm randomly

samples a waiting time for each possible event, and selects the event with the smallest

time to dictate the transition at each step.

Recall that the set S represents the different structural configuration states that

a MT can take on, and let x ∈ S be an arbitrary configuration state. Let Ri be one

of the five types of unidirectional reaction events that can transition x into another

structural configuration. Note that the integer index i depends on the state x, which

restricts Ri to one of the following types of reactions events that can occur:

• Polymerization: subject to tubulin concentration levels, independent of x

• Depolymerization: subject to the number and types of subunits in PF tips in
x, and the G-subunits

• Lateral Bond Formation: subject to the types of AG-subunit pairs in x

• Lateral Bond Breaking: subject to the types of G-subunit pairs in x

• Hydrolysis: subject to the number of eligible GTP-bound subunits in x

For each reaction Ri, the corresponding reaction rate constants, the parameters ki

have been presented with more detail in Section 3.3.2. To develop the algorithm, it is

necessary to make the following fundamental hypothesis, and the “only assumption”,

which states that the reaction parameter ki can be defined as:

kiδt ≡average probability, to first order in δt, that a (3.6)

reaction Ri will occur in the next time interval δt.

Note that the probability of more than one reaction occurring during the interval δt

is o(δt). Since the limit δt → 0 will eventually be taken, it is reasonable to restrict
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the number of reaction events to occur during the interval δt to be no more than one

[29].

The Monte Carlo step in this algorithm requires sampling waiting times by using

uniformly distributed random numbers between 0 and 1. From the hypothesis in 3.6,

and the theory outlined in [29], it follows that the waiting times between reaction

events follow a Poisson process, such that the time duration of each possible reaction

event can be sampled as:

∆ti =− ln(ri)

ki
(3.7)

where each ri ∼ U [0, 1] is randomly generated for each possible reaction Ri. Note that

the time values being sampled will represent continuous-time durations, and do not

depend on uniform time steps between reaction events. Once a time has been sampled

for all possible reaction events, the reaction Ri corresponding to the smallest waiting

time ∆ti is chosen to be the transition event to occur at that step in the simulation.

Clearly, those reaction events with larger corresponding rates will have a better chance

of being selected as the event to occur. Some reaction events (depolymerization and

lateral bonds forming and breaking) strongly depend on the structural configuration,

so for these reactions, the index i is specific to the particular reactant component.

For example, in the 13-PF MT model, if there are only 10 possible locations where

lateral bonds can form, then 10 of the waiting times that are sampled would be

associated to those 10 specific lateral bonds forming. However, polymerization and

hydrolysis only require a single time value to be sampled; there is only one way for

the polymerization rate to be calculated using the Michaelis-Menten formula, and

the hydrolysis rate is a scalar multiple between the rate constant kh and the number

of hydrolyzable GTP-bound subunits available in a configuration state. Once one of

these reactions corresponds to the smallest sampled time duration for the transition
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event, then the specific PF or GTP-bound subunit that is to be the reactant can be

chosen stochastically by generating a new random integer accordingly.

So, using this method, the following algorithm steps are used in the stochastic

simulation for computational MT model presented here:

• Step 0: Choose an initial configuration x ∈ S at time t = 0, usually the MT
seed.

• Step 1: Determine the reaction rates ki for the possible events Ri that the
current configuration state x can undergo, at the current time t. (For events
not possible for configuration x, assign ki = 0.)

• Step 2: Generate a random number ri for each possible event Ri to sample
waiting times ∆ti using Equation 3.7. (Those impossible events will be assigned
a very long waiting time).

• Step 3: Determine the index for the smallest waiting time,

i∗ = arg min
∀i

(∆ti)

• Step 4: Evolve the MT configuration x with the reaction event Ri∗ correspond-
ing to smallest waiting time found in Step 3

– Step 4.1: If Ri∗ is polymerization, then generate a new random integer
from 1 to NPF = (the number of PFs in the MT) to choose which PF
receives the new subunit.

– Step 4.2: If Ri∗ is hydrolysis, then generate a new random integer from 1 to
Nh = (the number of hydrolyzable GTP-bound subunits in x) to choose
one eligible GTP-bound subunit as the reactant.

• Step 5: Update the current time with the time duration from reaction Ri∗ ,

t = t+ ∆ti∗

• Step 6: Repeat Steps 1-5 until t reaches the desired total simulation time.

Utilizing the Gillespie stochastic simulation algorithm as laid out in Steps 1-6

simulates a trajectory of MT structural states transitions that are chemically possible,

with corresponding waiting times that are statistically correct. A computational
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model following this algorithm will generate the output desired to study the MT

structural features at any given moment in the simulation, particularly at those

times where significant dynamic changes to the total MT length are detectable from

a macro-level perspective. This model, brings this study one step closer towards the

goal of determining the tip structure of a MT during catastrophe and rescue events,

and to gain a deeper understanding of the mechanisms that lead to those drastic

changes observed in DI behavior.

3.6 Model Parameter Values

The model parameters are comprised of the kinetic rate constants for the different

reaction events that are possible, and the input parameter representing the tubulin

concentration levels in the cytoplasm available for polymerization. The values used

for the computational model developed here utilize the kinetic rate constants listed in

Table 3.1. They were obtained from “parameter set C” in [56], which is one of three

parameter sets tuned to generate reasonable DI behavior that match the experimental

observations of MT systems. Some of the kinetic rate constant values were selected

within a reasonable range of bio-chemically acceptable values, as well as their relation

to other rate constants. The calibration of the entire “parameter set C” values was

conducted through a trial and error approach, and is admittedly not an exhaustive

method. Thus, there probably exist other sets of values for the kinetic rate constants

that simulate behavior resembling DI behavior.

However, “parameter set C” is chosen as preferred set for its characteristics match-

ing the manner in which catastrophe and rescue phase transition occur, using the prior

generation of the model implementing the hydrolysis approximation. Since that ap-

proximation was a reasonable one, the resulting differences in simulated DI behavior

is minimal for the extended computational model being presented here. In other

words, the simulated DI behavior in the newer, extended model is very similar to
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that created by the older model, especially when taking into consideration the highly

stochastic nature of the system being modeled.

Furthermore, the purpose of this study is to focus on the structural details, and the

MT state trajectories are more complete with the new extended model. “Parameter

set C” combined with a 10µM tubulin concentration level has been used in the

past for simulating MT behavior rich in catastrophe and rescue transition events

[34, 47, 55, 56]. This combination of parameters has been satisfactory, therefore

pursing a parameter set more closely representing experimental conditions was not

attempted. For this reason, the same combination of parameters is used in this study,

and more details for measuring the DI behavior from a macro-level perspective are

discussed the Chapter 4.

3.7 Computational Implementation

As it has been mentioned throughout this chapter, the purpose of extending the

detailed level stochastic model of [55, 56] was to unearth the structural details that

can be observed during key dynamic moments, like catastrophes and rescues. The

approximation treatment used by the prior generation of the stochastic model skips

over possible structural configurations by allowing multiple subunits to hydrolyze

after one of the other four reaction events take place. Ultimately, this approximation

was reasonable, especially when making macro-level measurements on DI behavior.

The main benefit offered by removing this approximation and following the Gillespie

Algorithm more closely, is that the trajectory of structural configuration states that is

bio-chemically exact, and the time durations between reaction events is statistically

correct. Thus, the newer model simulations reveal more information on the times

spent in each structural state by a MT polymer.
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TABLE 3.1

PARAMETER VALUES FOR KINETIC RATE CONSTANTS USED IN

THE 13-PF COMPUTATIONAL MODEL

Polymerization kGTPpoly = 1.25

Depolymerization kGTPdepoly = 0.02

kGDPdepoly = 20

Lateral Bond Forming Non-seam Bonds Seam Bonds

kTTbond = 100 kTTS−bond = 200

kTDbond = 100 kTDS−bond = 200

kDTbond = 100 kDTS−bond = 200

kDDbond = 100 kDDS−bond = 200

Lateral Bond Breaking Non-seam Bonds Seam Bonds

kTTbreak = 70 kTTS−break = 140

kTDbreak = 90 kTDS−break = 180

kDTbreak = 90 kDTS−break = 180

kDDbreak = 400 kDDS−break = 800

Hydrolysis kh = 0.7

These rates are equivalent to “parameter set C” in [56]. They have units sec−1, and
are proportional to probabilities of occurrence per unit time.

3.7.1 A Lower Cost Implementation of Hydrolysis Reactions

The hydrolysis approximation in the former generation of the computational

model was primarily implemented as a time saving tactic. The Monte Carlo step

dealing with hydrolysis was a time consuming task, where each complete PF had to

be searched for eligible GTP-bound subunits. The time durations and the order of

reaction events (excluding hydrolysis) were sampled and selected in a similar man-
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ner to the algorithm described earlier in this chapter. After each reaction event was

selected to occur, the probability of an individual GTP-bounds subunit to hydrolyze

during each time duration was estimated. As the MT structure was searched, and

an eligible GTP-bound subunit was encountered, a separate Monte Carlo step was

implemented to stochastically choose multiple subunits for hydrolysis. As the 13-PF

MT grows longer, often thousands of subunits long, so does the computational cost

for searching for eligible GTP-bound subunits and generating a random number for

each one.

In order to ease this costly computational after removing the approximation, a

speedup in the code was implemented. The code was first modified to track the

number of eligible GTP-bound subunits in each PF, at each step of the simulation.

This was not difficult, especially since each step of the simulation would change

the MT structure one subunit at a time, except for depolymerization events, which

required special treatment to determine how many eligible GTP-bound subunits it

dissociated from the MT. This special circumstance particularly benefited from the

binary representation of subunits that was used, where a 1 and 0 resembles a GTP-

and GDP-bound subunit respectively. By tracking the number of hydrolyzable GTP-

bound subunits in each PF, the total hydrolysis rate was easily computed. If a

hydrolysis reaction event was chosen, then a new random number was generated to

help determine which PF contains the reactant GTP-bound subunit. The likelihood

of a PF being selected was determined by the number of hydrolyzable GTP-bound

subunits it contained. Once a particular PF was determined, another random number

was generated to stochastically choose which eligible GTP-bound subunit within that

PF would transition into a GDP-bound state. With this new implementation, only

a single PF is involved in the hydrolysis implementation, rather than the entire MT

structure in the older model. Additionally, after a hydrolysis event has been selected,

only two new random numbers are generated: the first when selecting the PF, and
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the second for identifying a GTP-bound subunit within that PF. Recall that the old

version generated a new random number for every GTP-bound subunit in the entire

MT. So, the speedup in the new version of the code not only reduced the time to

search for a GTP-bound subunit, but also reduced the amount of random numbers

that need to be generated.

Removing the hydrolysis approximation effectively does add more steps through-

out the simulation, since the structure after every hydrolysis event is now realized.

This in turn should add to computational costs, and ultimately lengthen the total

time to run the new code. However, it should be noted that utilizing the speedup

significantly reduced the computational cost for dealing with any hydrolysis events.

Generating a one-hour simulation takes ≈ 10min, which is comparable to the wall-

clock time of the older approximated version of the code reported in [55, 56], while

considering fluctuations inherent to the stochastic nature of the simulation.

3.7.2 New Types of Data for the MT Tip Region

After the new version of the model and code were established, the code had to be

re-run to generate new simulation output. In addition to the extra structural states

being observed in an exact bio-chemical trajectory of states, the code was modified

so that the simulation output included additional data about the MT tip structure

that was previously not reported. The previous code created an output file that

was mostly limited to the simulation step times and the total MT lengths. The new

code output now includes the number of GTP-bound subunits (to help estimate the

GTP-cap size), the height of each lateral bond, the nucleotide bound states of the G-

and AG-subunits, and the length of each PF. In addition to all of this, an indexing

system took advantage of the the binary representation of the subunits to track the

actual configurations of PF tips that extend beyond their surrounding lateral bonds.

The PF tip configuration indices help in defining the MT tip as a whole, and serves
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to be beneficial for extracting additional information pertaining to specific sequences

of subunits that appear in the tip region. For this reason, the new code had to

be used to generate new information about the 13-PF model that was previously

unavailable. By doing so, a more detailed study of the MT tip structural features

during significant moments in DI behavior is possible.

Figure 3.2 displays one hour long length history plots of a single MT for various

tubulin concentration levels generated from simulations using the parameter values in

Table 3.1. The behavior is consistent with the results of the previous approximated

version of the detailed 13-PF MT model simulations in [34, 47, 55, 56]. Note that

Figures 3.2(a-c) display the near nucleation behavior for lower tubulin concentration

levels, where the MT is rarely longer than 100 subunit; Figures 3.2(g-i) display the

behavior regime resembling unbounded growth, and the MT rarely encounters catas-

trophe events; and Figures 3.2(d-f) display DI behavior as it is classically understood,

where significantly long MTs are observed, yet frequent catastrophe events return the

biopolymer structure to near seed levels. Furthermore, it is interesting to note that

the 10µM tubulin concentration level is the one that generates MT length sufficiently

long (i.e. > 1000 subunits long), while providing a rich number of catastrophe and

rescue events. In contrast, 11µM tubulin concentration levels generate MT that are

much longer, and this results in far fewer catastrophe and rescue events occurring in

a given time frame, which provides less of a variety of data surrounding these key

events to study. This was also the case in [34, 47, 55, 56], and the reason why those

studies in the past, as well as the study conducted here, make use of 10µM as the

preferred tubulin concentration level to simulate data displaying DI behavior. The

data analysis administered in Chapters 4 will only make use of simulations for 10µM

tubulin concentration in the 13-PF MT cases.
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(a) 6µM (b) 7µM (c) 8µM

(d) 9µM (e) 10µM (f) 11µM

(g) 12µM (h) 13µM (i) 14µM

Figure 3.2. Length history plots for tubulin concentration levels ranging
from 6-14µM in (a)-(i), from one hour simulations of the extended 13-PF
MT model, and the parameter values defined in Table 3.1. The horizontal
axis represents time in minutes, and the vertical axis is the length of the

MT measured in number of subunits.
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3.8 The Simplified 2-PF MT Model

The Gillespie stochastic simulation algorithm extension to the latest version of

the computaional model was important to extract the detailed level structural tra-

jectory and features of the tip region of a 13-PF MT. However, the 13-PF MT has an

inherent caveat dealing with the complexity of the tip region structure. The variety

of combinations of PF tips and differing lateral bond heights creates a very large

number of possible tip configurations. Without even considering the complexity of

where to define the cutoff for the tip region, individual PF tips can extend above the

MT structure, or even groups of neighboring PFs structures that resemble sheets can

form as different components of the MT tip structure. Additionally, the 13 lateral

bonds between PFs can make it difficult to have a uniform row of subunits above

which the tip region can be defined. However, the interplay between PFs and lateral

bonds is part of the tip structure that requires a better understanding, and the 13-PF

MT model is challenging to tackle as is. For this reason, a 2-PF simplification which

includes lateral bond interactions is proposed in this section, such that it creates a

more suitable situation for studying the tip structure of MT biopolymers.

This 2-PF model can be thought of as representing a generic two-PF polymer, or it

can be thought of as two neighboring PFs embedded within a 13-PF MT lattice. The

simplification from 13-PFs to 2-PFs provides a feasible setting to demonstrate a novel

approach of simulating MT dynamics using mathematical and numerical methods,

while analyzing data with statistical tools, including machine learning techniques,

connect micro-level structural features to macro-level phases identified from a length

history evolution of a MT. The 2-PF model presented in this section will be used

in Chapters 4 and 5 to develop the predictive models that bridges the gap between

the dynamics occurring at different scales, and potentially inspire the development

of methods to study the MT structure at the 13-PF level.
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3.8.1 Novelty of the 2-PF MT Model

When considering a MT formed of 13-PFs, which would have 13 lateral bonds

between them, the tip region definition takes on many variations depending on where

one decides to separate the tip from the rest of the MT structure. For example, if the

cutoff is chosen as the shortest lateral bonds height position, then the tip may include

a substantial section of PFs that are laterally bound to their neighbors, a relatively

stagnant section of structure when compared to the laterally unbonded parts that

are more inclined to change from the MT dynamics. This classical representation

of a 13-PF MT serves too complex a scenario for tackling the tip structure study

as is. In the effort to tackled the issues associated with the structural complexities

inherent to the 13-PF MT model, it is important to recall the importance of lateral

interactions in MTs [4, 5, 8, 12, 27, 34, 47, 55, 56, 76, 77, 82] as the need for a simpler

representation of the MT tip configurations.

To this end, a 2-PF MT is presented: 2-PFs with a single lateral bond between the

adjacent subunit pairs. Modeling the MT as a 2-PF polymer with one column of lat-

eral bonds between two PFs is the simplest scenario that explicitly models the lateral

bond dynamics, and also relaxes the complexities of the MT tip structure found in

the full 13-PF case. This representation can be perceived as an arbitrary 2-PF poly-

mer, or as a pair of neighboring PFs embedded within a larger 13-PF MT. Although

this offers a less complicated scenario than the 13-PF case, it is worth recognizing

that the proposed 2-PF case is relevant to actual two-stranded filaments that exhibit

dynamic instability behavior, such as a protein called ParM [28]. However, since the

scope of the study is making reference to model parameters associated with prior

MT studies, the 2-PF structure and its behavior will be referred to as a special case

MT. As is shown later in Section 3.8.5, the proposed 2-PF MT model is successful in

simulating DI behavior using model parameters comparable to the 13-PF MT model.

In doing so, attention can also be turned to the MT tip region while allowing for
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the lateral interactions in dynamic instability to be more tractable. Thus, the 2-PF

model provides a more manageable number of tip configurations to consider, and

therefore more favorable conditions to study the most dynamic structural features of

MT during DI behavior.

Effectively, in the 2-PF case, the single lateral bond allows for a single crack

between the two PFs to be considered, and thus renders a strict “laterally unbonded”

definition of the tip region to be applicable. Particularly, the tip configurations stored

from the computational simulation output will refer to the top sections of both PFs

lacking a lateral bond. For example, assuming that any PF-tip can have a maximum

of L = 10 laterally unbonded subunits in it, and the MT tip configuration is defined as

the collection of PF tip configurations (ordered sequence of GTP- and GDP-bounds

subunits) protruding above its neighboring lateral bonds, then the number of unique

MT tip configurations that are possible for each variations is as follows:

• 2-PF MT Tip Configurations:(
L∑
j=0

2j

)2

=
(
2L+1 − 1

)2
= 4, 190, 209 for L = 10 (3.8)

• 13-PF MT Tip Configurations:(
L∑
j=0

2j

)13

≈ 1.108× 1043 for L = 10 (3.9)

Note that the latter value corresponding to the 13-PF MT tip configurations is larger

than Avogadro’s number, which makes an obvious case for the reduction in complexity

offered by the 2-PF MT model. So, the 2-PF MT model allows for this tip region

concept to be developed more easily, such that the Gillespie stochastic simulation

algorithm can be used to simulate an exact trajectory of MT structural features,

particularly focusing on the tip. This will be the model that is used in Chapter 5 to
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test how well the structural features of the tip region from a micro-level can predict

the significant dynamic changes that are detectable from a macro-level perspective.

In other words, the goal of this complete study is to capture the exact structural

configurations that lead to interesting DI events like catastrophes and rescues.

3.8.2 Model Structure

The simplified structure of the 2-PF MT utilizes a single sequence of lateral bonds

between two neighboring PFs as illustrated in Figure 3.3. When compared to the

13-PF model, the fundamental differences that arise in the 2-PF case are embedded

in the fact it lacks a helical tube form. Since the lattice of PFs does not wrap around

and connect the first PF to the last one, the seam is not present. Without a seam,

there does not exist a set of lateral bonds that deserve special treatment in terms of

lateral bond formation/breakage dynamics. This is a simplification in the sense that

a subset of kinetic rate constants are omitted from the 13-PF case, as well as not

having to deal with the shift in neighboring subunit associations that occur there.

Additionally, the 2-PF structure without a helical alignment means that the MT seed

does not need to accommodate for the shift at the seam. Instead, the 2-PF MT seed

is symmetrical, mean that the indestructible subunits in the seed corresponding to

each PF, and the lateral bonds between them, have the same height. Otherwise, the

seed structure plays the same role in either MT case, meaning that it acts as a typical

initial condition, as well as the minimal structure to which a shortening MT can be

reduced.

With the 2-PF conformation, the single lateral bond makes it simpler to define

some of the other components for the 13-PF MT that have already been introduced

earlier in Section 3.2. The most significant simplification, by design, is for the tip

region which is most affected by the molecular dynamics. First, having a single se-

quence of lateral bonds limits the lateral bond height as the sole interface between
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the laterally bonded portion of the structure and the cracked portion lacking lat-

eral bonds. This creates a scenario where there is only a single pair for each of the

neighboring G- and AG-subunits surrounding this gate or interface. Second, with

limited complexity, the tip region can be defined using the pair of PF tips. A poly-

merization would add a single laterally unbonded GTP-bound subunit to a PF tip,

while a depolymerization reaction events would target those subunits that lack a

lateral bond already in the PF tips. Even lateral bond formation deals with only

those subunits at the bottom of PF tips, the AG-subunits. However, the lateral bond

breaking events depend on the subunits surrounding the top-most lateral bonds, the

G-subunits. For this reason, the combination of just the PF tips that surround the

crack are referred to as the cracked tip, while the more complete combination of

PF tips and the G-subunits together is referred to as the gated tip (see Figure 3.3).

As far as hydrolysis changing the structure, the uni-directional reaction that changes

GTP-bound subunits to a GDP-bound state still manifests into the formation of a

GTP-cap. However, the random selection of subunits to hydrolyze makes it difficult

to clearly define the hazy boundary between a GTP-cap and the rest of the MT struc-

ture predominantly consisting of GDP-bound subunits. In Chapter 5, an estimate

for measuring the GTP-cap is used to make up for this shortcoming.

3.8.3 Model Dynamics

Another difference arising from the simplifications of the 2-PF MT affects the

dynamics of the lateral bonds. Recall that in the 13-PF MT case, the likelihood of

a lateral bond breaking is reduced by a factor of πbreak = 1000 when there already

exist lateral bonds on the opposite sides of the subunits connected by the bond in

question. However, the PFs in the 2-PF MT model only have a single sequence of

lateral bonds. In order to utilize model parameters within a similar range of values as

those found to create DI behavior in the 13-PF case, a modification is necessary. For
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Figure 3.3. An arbitrary example of a 2-PF MT structure and its
components. The red and green boxes represent GTP- and GDP-bound
subunits respectively. The vertical sequence of subunits create the two
parallel PFs in the structure. The gray boxes are the single sequence of

lateral bonds allowed to form between PFs. The seed is the indestructible
portion at the very bottom of the 2-PF MT structure. The gate and

above-gate subunits (G- and AG-subunits respectively) are located near the
interface of the top-most lateral bond, and the cracked portion of missing

lateral bonds between PFs. The crack depth is measured by the number of
subunits in the shorter PF tip. The gated tip is the combination of the

individual laterally unbonded PF tips and the G-subunits together.

this, reference is made to effective breaking rate of a randomly picked lateral bond

in [55], which is approximated as follows:

kbreak,eff = (1− q)kbreak + q
kbreak
πbreak

(3.10)

where q is the probability that a randomly picked lateral bond height will be connect-

ing two PFs, such that the lateral bond heights on their opposite sides are not lower

than the later bond height in question. In other words, if X, Y , and Z were discrete
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random variables representing neighboring lateral bond heights in a 13-PF MT such

that Y was the lateral bond height in the middle, then q = P (X ≥ Y, Z ≥ Y ). A sce-

nario that satisfies the conditions of probability q represents a lateral bond that has

additional support in the PF lattice, it is less likely to break, which in turn reduces

its effective rate of breaking by the factor πbreak. Furthermore, [55] used q = 1/3 in

the mean-field approximations assuming that X, Y , and Z were independently and

identically distributed, however knowing that they may be dependent yields that

1/3 ≤ q < 1 in a 13-PF MT with a shifted seam.

Figure 3.4. The five possible dynamic events that can change the 2-PF
structure. Polymerization can lengthen a PF tip by one GTP-subunit.

Depolymerization can remove a consecutive sequence of laterally unbonded
subunits in a PF tip. The top-most lateral bond can break. A new lateral

bond can form immediately above the top-most lateral bond, given that the
space between two laterally neighboring subunits exists. Hydrolysis can

irreversibly change a GTP-bound subunit into a GDP-bound state
(adapted from [46]).
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In an effort to use the same values for the remaining kinetic rates of the parameter

set that delivered DI behavior with a similar range of tubulin concentration that was

comparable to the 13-PF case, a non-exhaustive sweep of appropriate values for q

revealed that q = 2/3 was a good choice. Separately, it can be shown that q = 2/3 is a

good choice if it were assumed that the likelihood that the height of a lateral bond was

the same height as the neighboring lateral bonds to the left and right of it followed a

two-dimensional Gaussian distribution, and the probability formulas reported in [55]

were used to calculate q. So, the resulting effective breaking rate calculated from

Equation 3.10 is utilized in the 2-PF MT simulations, and the lateral bond breaking

rate constants are reduced by a factor of (1 − q) = 1/3. More specifically, using

tubulin concentrations near 10µM are the preferred levels for delivering DI behavior

in the 13-PF MT models, as discussed in the previous section. When using q values

below 2/3, tubulin concentrations well above 10µM were needed to simulate the DI

behavior regime. Conversely, for q values above 2/3, tubulin concentration levels near

10µM were already near the persistent growth regime, where polymerization rates

easily overtake the simulated dynamics, and MTs grow very long due to catastrophe

events being very rare; clearly this is not the desired DI behavior regime. However,

when using q = 2/3, tubulin concentrations near 11 − 12µM generate simulated

length history plots that certainly display DI behavior, rich with catastrophe and

rescue events (see Figure 3.5).

Aside from this modification, the remaining features of the dynamic events that

can alter the 2-PF MT structure remain the same as the 13-PF case, without having

to make considerations for the seam. As illustrated in Figure 3.4, polymerization,

depolymerization, lateral bond formation and breakage, and hydrolysis all obey the

same rules as before. The corresponding kinetic rates constants for these events are

listed in Table 3.2, where the modification for the effective lateral bond breaking
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TABLE 3.2

PARAMETER VALUES FOR KINETIC RATE CONSTANTS USED IN

THE 2-PF COMPUTATIONAL MODEL

Polymerization kGTPpoly = 1.25

Depolymerization kGTPdepoly = 0.02

kGDPdepoly = 20

Lateral Bond Forming kTTbond = 100

kTDbond = 100

kDTbond = 100

kDDbond = 100

Lateral Bond Breaking kTTbreak = 23.333

kTDbreak = 30

kDTbreak = 30

kDDbreak = 133.333

Hydrolysis kh = 0.7

Compared to Table 3.1, there are no lateral bond kinetic rates for a seam, and the break-
ing rates have been modified to allow for the effective breaking rates, which are reduced
by a factor of 1/3. All rates have units sec−1, and are proportional to probabilities of
occurrence per unit time.

rates have already been applied.

3.8.4 State Space and Master Equation

Now that the MT model has been simplified, the structural states recognized

through the Markov chain have changed along with the model. Let S̃ = {all the

2-PF MT structural configurations} be the state space for the Markov chain in the

simplified 2-PF MT model. The minimum structure in S̃ would still be the MT seed,
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and the rest of S̃ would contain any sequence of GTP- or GDP-bound subunits that

construct different PFs on top of the MT seed, with a consecutive sequence of lateral

bonds between them, given that the lateral bond height has a position at the same

height or below the height of the surrounding PFs. This is similar to the general MT

case, however the simplified 2-PF MT structure creates a state space S̃ far smaller

than the space S for 13-PF MTs. To describe the probability of a MT structure

attaining any one configuration, the master equation for this Markov process is also

developed.

The possible reaction events that would transition a 2-PF MT from one configura-

tion in S̃ to another, along with their kinetic rates, were listed earlier in this section.

By the nature of a Markov process, the possible reactions that can occur depends on

the likelihood of being able to transition into that state. Let a random variable X̃

represent any MT configuration in the set S̃. Let p(x̃) = p(X̃ = x̃) be the occurrence

probability of an arbitrary 2-PF MT configuration x̃ ∈ S̃. Then, the following master

equation can be formulated:

d

dt
p(x̃) =

∑
ỹ∈Ỹpoly(x̃)

p(ỹ)kGTPpoly

(
cc1/2
c+ c1/2

)
+

+
∑

ỹ∈Ỹ GTP
depoly(x̃)

p(y)kGTPdepoly +
∑

ỹ∈Ỹ GDP
depoly(x̃)

p(ỹ)kGDPdepoly +

+ p
(
X̃ = ỹTTbreak(x̃)

)
kTTbreak +p

(
X̃ = ỹTDbreak(x̃)

)
kTDbreak +

+ p
(
X̃ = ỹDTbreak(x̃)

)
kDTbreak +p

(
X̃ = ỹDDbreak(x̃)

)
kDDbreak +

+ p
(
X̃ = ỹTTbond(x̃)

)
kTTbond +p

(
X̃ = ỹTDbond(x̃)

)
kTDbondß +

+ p
(
X̃ = ỹDTbond(x̃)

)
kDTbond +p

(
X̃ = ỹDDbond(x̃)

)
kDDbond +

+
∑

ỹ∈Ỹh(x̃)

p(ỹ)kh − p(x̃)
∑

k∗ (3.11)
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where the configurations ỹ in each summation term belong to the following subsets

of S̃:

Ỹpoly(x̃) = {ỹ ∈ S̃| y can polymerize a GTP-bound subunit to form x̃}

Ỹ GTP
depoly(x̃) = {ỹ ∈ S̃| y can break a longitudinal bond above

a GTP-bound subunit to form x̃}

Ỹ GDP
depoly(x̃) = {ỹ ∈ S̃| y can break a longitudinal bond above

a GDP-bound subunit to form x̃}

Ỹh(x̃) = {ỹ ∈ S̃| y can hydrolyze a GTP-bound subunit to form x̃}

Also, each ỹijbreak/bond(x̃) configuration corresponds to the individual configurations

in S̃ that can transition into x̃ through a lateral bond breaking/bonding reaction

event, subject to the AG/G-subunits pairs being ij ∈ {TT, TD,DT,DD} nucleotide

bound states. The kinetic rate constant notations the same as those defined for the

13-PF MT case in Section 3.4.2, except the last term in Equation 3.11, which uses

the following interpretation:

∑
k∗ =

∑
{kinetic rates for all the events that x can undergo}.

3.8.5 Model Simulations

Figure 3.5 displays one hour long length history plots of a single 2-PF MT for

various tubulin concentration levels generated from simulations using the parameter

values in Table 3.1. The modification from the effective lateral bond breaking rates

helped to make the 2-PF MT model output consistent with the results of the 13-PF

case, though there are some inevitable differences between the full MT model and the

simplified version. Note that Figures 3.5(a-c) display the near nucleation behavior for

lower tubulin concentration levels, where the MT is rarely longer than 100 subunit;
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in Figures 3.5(g-i) display the behavior regime resembling unbounded growth, and

the MT rarely encounters catastrophe events; and in Figures 3.5(d-f) display DI

behavior as it is classically understood, where significantly long MTs are observed,

yet frequent catastrophe events unravel the biopolymer structure back to near seed

levels. However, in the 2-PF MT case, it is the 12µM tubulin concentration level the

one that generates MT length sufficiently long with a rich number of catastrophe and

rescue events, prior to entering the persistent growth regime (seen with the 13µM

tubulin concentration level).

Some minor adjustments to the probability q in Equation 3.10 could help line

up the two concentration levels more perfectly, but the stochastic nature, and the

inherent differences between the two computational models would make this a difficult

task, and doing so is beyond the scope of this study. Recall that the goal is to create

a simplified MT model that generates simulations with DI behavior in order to study

the structural features near key moments of phase transitions. At this point, the 2-PF

meets the qualifications, however it is interesting to note some of the characteristic

differences in the length history profiles created by the two models. Specifically, the

MT length is more sensitive to changes in the 2-PF MT, because the MT length is

measured as an average over the PF lengths. Since fewer reaction events are required

to alter the average measurements of the 2-PF MT, the length history profiles in

Figure 3.5 tend to be more sporadic, with more fluctuations in the length during

a given time duration. In contrast, the 13-PF MT length history plots in Figure

3.2 tend to be more steady, since changes to MT length are averaged over 13 PFs.

Particularly the growth to shortening profiles before and after a catastrophe event

tend to be broader at the preferred 10µM tubulin concentration level for the 13-PF

MT model, whereas the growth to shortening profiles in the 12µM counterpart for

the 2-PF MT model tend to last shorter periods of time, and tend to have more

interruptions. In any case, 12µM is the preferred choice of tubulin concentration
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levels for the 2-PF MT simulations displaying DI behavior, and will be used for the

data analysis administered in Chapters 4 and 5 for its rich variety in catastrophe and

rescue transitions.
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(a) 7µM (b) 8µM (c) 9µM

(d) 10µM (e) 11µM (f) 12µM

(g) 13µM (h) 14µM (i) 15µM

Figure 3.5. Length history plots for tubulin concentrations ranging from
6-14µM in (a)-(i), from one hour simulations of the simplified 2-PF MT

model, and the parameter values defined in Table 3.2. The horizontal axis
represents time in minutes, and the vertical axis is the length of the MT

measured in number of subunits.
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CHAPTER 4

DATA ANALYSIS I: A NOVEL METHOD TO IDENTIFY MACRO-LEVEL

PHASES AND DETERMINE DYNAMIC INSTABILITY PROPERTIES

Dynamic instability (DI) behavior is observed in the length history plots of MTs,

and they are characterized by the sporadic and sudden switches from sustained peri-

ods of growth to much more rapid shortening (catastrophe), and the rare switch back

to sustained growth (rescues). Length history data is considered to be the macro-

scopic level measurements in this study since this perspective is concerned with the

length of the entire MT, and not the detailed structural configurations. Measure-

ments that describe dynamic instability include growth and shortening rates, and the

frequency of catastrophe and rescue occurrences. The appropriateness of these mea-

surement come into question as data acquisition methods have improved with finer

resolutions, thanks to advancements in lab experimental conditions and detailed-level

simulations. The unpredictable and high-frequency nature of recent MT length data

now challenges the accuracy of pinpointing the location of dynamic changes of prior

methods that have been used to make dynamic instability measurements. To ac-

commodate this recent data, an improved approach is desired to help characterize

the dynamic instability behavior, and in doing so, expose any new features that had

previously been overlooked in the coarser resolution data from the past. In this chap-

ter, a computational tool is presented to apply an automated approach to segment

periods of consistent dynamic behavior with a continuous piece-wise linear approxi-

mation, and to classify these segments into dynamic phases in order to facilitate the

respective DI measurements.
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The development of this tool took into consideration any data displaying dynam-

ical instability, regardless of its source being lab experiments or simulations. An

adaptive approach accommodates the stochastic data by first identifying periods of

consistent behavior, and then classifying the possible phases using an unsupervised

method, K-means clustering. Using this tool on simulated data from the detailed

MT model developed in Chapter 3 revealed the existence of a phase class consist-

ing of segments with attenuated dynamic behavior, called “stutters”, which were

different from and intermediate to the classically recognized growth and shortening

phases. The term stutter is used, because the MT structure changes that occur dur-

ing these periods create short fluctuations to MT length, but the total affect on MT

length throughout this period is small, especially compared to the the total change

in length made during growth and shortening periods. Finally, the possible dynamic

phase change patterns were analyzed considering all possible combinations of these

classes. The results showed that a significant number of stutter phases occur be-

tween the switch from growth to shortening, hence characterizing their transitional

role during the catastrophe phenomena. In past experimental studies, “slow-down”

periods were detected before the onset of shortening periods, however they were not

separated and quantified as a different class of behavior [21]. Instead, what are re-

ferred to as stutters were lumped together with the growth periods, leading to not

only overlook a possible third phase of DI behavior, but also introducing errors to

measuring growth rates. Thus, the DI phase classification method introduced in this

chapter not only improves upon the accuracy for measuring DI rates, but also allows

for the separate treatment of a third phase of DI.

It should be noted that these stutter phases are a different type of third phase class

in MT dynamics than the “pause” periods identified in previous biological studies

[21, 70]. In fact, those “pauses” have been attributed to different circumstances,

including affects from MT binding proteins (MTBPs) in both in vivo and in vitro
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experiments, as well as situations where the MT becomes stuck to the glass surface

substrate in in vitro experiments. These situations give rises to a stall or pause in

MT dynamics where little to no structural changes take place. They can last on the

order of 30 seconds to several minutes, and are rarely observed in experiments with

pure tubulin, which is the scenario being considered in this study. Pauses have been

studied, and their role as a third phase has been identified more as a period of no MT

structural change, typically occurring after the MT has depolymerized to nucleation

levels and cannot regain growth easily[72, 83, 84]. In contrast, the stutter phases are

more limited in their duration, lasting a few seconds at most, and they capture periods

of MT dynamics where the MT structure is actively changing without contributing

significant changes to the MT length as a whole. The stutters identified in this study

were all detected from MT lengths well above nucleation levels. Dilution induced

experiments do show stutter-like delay periods of attenuated dynamics emerging as

in the length history plots prior to the onset of a rapid depolymerization period,

however they were not studied a separate phase [56, 79, 81]. Additionally, they

have been overlooked completely in other studies by only assuming that growth and

shortening phases make up the DI behavior regimes [51].

The term “stutter” being used in this dissertation should be distinguished from

the terminology used in studies associated with protein structure sequences [7, 13].

The nano-scale studies of protein structure sequences utilized the terms skip, stutter,

and stammer to describe different patterns of discontinuities that occur in sequences

of protein structures, where stutters specifically refer to the deletion of three residues

in the heptad repeats of α-helical coiled-coil sequences [7]. This is different than

the terminology used in this dissertation, where the term stutters describe the new

macro-level phase in DI behavior found in the MT length history plots.

The computational tool presented in this chapter does not make any assumptions

that restrict the number of possible phases that can exist in DI. Thus, this approach
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not only makes it possible to detect and accurately measure DI parameters, but also

consistently provides the precise moments for when major dynamic changes occur, a

key feature that opens up future work dealing with the detailed level MT structures

associated with catastrophe and rescue events. Being able to conduct the macro-level

data analysis provided by this DI phase classification tool is a necessary step to study

the micro-level mechanisms that lead to DI phase transitions.

4.1 Motivation for an Improved Phase Classification Method

Dynamic instability in MTs has classically been studied from a macro-level per-

spective with regards to the MT structure by utilizing the length history profile, or

the evolution of a single biopolymer’s length in time. After all, it is in the length his-

tory data plots where catastrophe and rescue events are labeled. Recent technological

advancements in the lab have provided more detail with respect to finer time and

space resolution in data collected for MT lengths, and this has generated the need for

developing automated tools to measure this data more accurately [15]. Additionally,

novel computational models simulate individual molecular level reactions involved in

the polymerization dynamics, and thus provide a very rich set of detailed level data

on the evolution of the MT length, including the models in [34, 47, 56, 85], and the

computational models presented in Chapter 3. However, when it comes to measuring

the dynamic instability parameters that describe the characteristic behaviors seen in

the data, it becomes increasingly challenging to sort periods of consistent behavior

into just growth or shortening phases. Prior methods were admittedly inaccurate in

measuring shortening rates. They further assumed that all behavior followed a near

constant positive value for growth, and a near constant negative value for shortening.

This assumption is especially invalid when considering different tubulin concentra-

tion levels. With increasing detailed level data comes the revelation of another class

of behavioral periods, or consistent behavior with dynamics with smaller magnitude
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rates of change to MT length than what is expected from the classical growth and

shortening phases [31]. These periods of attenuated dynamics may indicate an unsta-

ble steady-state, during which relevant structural changes may make the MT more

prone to either grow or shorten [31, 55]. Also, the stochastic nature of dynamic insta-

bility makes it difficult to pinpoint an exact moment in the detailed level data when

the irregular changes between phases occurs. As a result, current methods tend to

underestimate shortening rates, as well as overlook the role of periods with subtle

changes to MT length during transitions between growth and shortening phases (see

Figure 4.1a). These periods are observed in high frequency data show that they are

indeed dynamically active, and that structural changes to the MT do not stop. These

segments that are not considered either growth or shortening phases, have small net

height change, but they still capture a significant sequence of molecular level reac-

tions that alter the MT structure. For this reason, this study refers to these periods

with attenuated length changes as stutters, especially since a large part of the data

segments different from growth or shortening have some non-zero net height change,

though minor fluctuations in MT length persistent throughout their duration. Any

behavior in the data displaying halted dynamics to structural changes would still be

captured first as a stutter by the proposed methodology here, though further analysis

would be necessary to segregate them as periods that exhibit a true pause in dynamic

behavior.

In this chapter, a semi-automated procedure is presented in order to address the

need for making more accurate parameter measurements for data resembling dynamic

instability behavior. The corresponding algorithm accepts the input data from any

source, simulation or experimental based, and calculates rates and frequencies with-

out any a priori assumptions on the possible number of phases present in the data.

The procedure operates in three stages: segmentation, classification, and pattern

analysis. The segmentation adaptively creates a continuous piece-wise linear approx-
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(a) (b)

Figure 4.1. A comparison between the (a) old approximation methods,
which identifies strictly growth or shortening periods by seeking changes in

dynamic directionality (i.e. positive to negative slope, or vice versa) and
(b) the new proposed approximation method, which seeks any significant

changes in dynamic rates, and thus captures more subtle behaviors
regardless of the prior segments directionality.

imation to the given time dependent data. The classification procedure categorizes

linear segments into phases using an unsupervised clustering method based on the

measurable features of those segments. The pattern analysis considers the possible

changes between phases, which include but are not limited to catastrophe and rescue

events. This procedure is applicable to any scenario that can benefit from accurate

measurements of stochastic dynamic behavior, including MT length history from in

vivo, in vitro, or in silico sources. The demonstrations here uses simulated data rep-

resenting the classically understood dynamic stability scenario of MTs. In particular,

to extract any possible phases or patterns that can exists in the data, the 13-PF MT

model simulations using 10µM tubulin concentrations were utilized for its ability to

generate DI behavior rich with catastrophe and rescue events. Additionally, the sim-

ulated output represents 10 hours of MT activity, a long time run to ensure a large

number of possible outcomes in the stochastic process being modeled. The method is

executed in MATLAB with minimal user input and human intervention in order to

facilitate ease of use considering the various scientific backgrounds that would benefit

from this method. The user-defined values are as follows:
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• Nucleation height threshold: this separates the shorter MT lengths that are too
close to the seed structure to ensure undistorted information on the dynamic
behavior.

• Minimum time duration of a linear segment: this limits the time duration of a
segment so that a macroscopic measurement with a large number of molecular
reaction events is ensured.

• Maximum height error tolerance: this value dictates the accuracy of the linear
segmentation by restricting the largest allowable point-wise error with respect
to the height measurements to the given data.

• Maximum slope magnitude for near-zero slope segments: this helps identify the
stutter segments with net height change near zero, which separate positive slope
segments form negative ones.

• The K-value (i.e. the number of centroids in the collection of segments) for
positive and negative slopes, respectively: these classification relevant values
are tuned as part of a diagnostic mode. The ideal number is suggested to the
user, who then chooses it for the remainder of the classification stage process.

The remaining sections of this chapter describe the details of the segmentation, clas-

sification, and analysis procedures, and how these user-defined values are used during

each stage of the process.

4.2 Segmentation

The purpose of this stage is to identify the starting and ending points of periods

with consistent behavior in the MT length history data. Ideally, each linear seg-

ment would accurately identify the exact moments a MT switches from one phase

into another, effectively marking the instance of a significant dynamic change. Fur-

thermore, the slope of a well-approximated linear segment would measure the rate

of change in MT length for that period, which is already relevant for measuring

dynamic instability parameters. Previously, a bi-phase assumption only considered

periods that were strictly growth or shortening, along with a minimum height change

threshold to help identify switches between the two phases. Additionally, the growth
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and shortening rates were assumed to be near constant, thus justifying of a linear

approximation. However, the challenge has been to identify the correct moment that

separates growth and shortening phases from each other, especially in the presence of

attenuated dynamic periods that stray from the bi-phase assumption. These periods

create errors in the DI parameter measurements, as well as challenges the constant

linear rate assumption. So, the method developed here does away with the bi-phase

assumption in order to capture all periods of consistent behavior that may be present

in the stochastic data. Thus, an adaptive approach is sought, such that points of sig-

nificant dynamic changes are iteratively included to create a continuous piece-wise

linear approximation, i.e. a sequence of line segments accurately resembling the input

data.

It should be noted that there may be other methods of approximating the length

history plot, but the nature of dynamic instability data renders those approaches

inappropriate. For example, higher order spline methods would reduce the approxi-

mation error, but would not help in identifying an exact instance of dynamic change,

while adding complexity to measuring dynamic instability parameters. For this rea-

son, the linear approximation is preferred. Another option would attempt to fit a

sequence of linear regressions, which would maintain the consistency with the rate

parameters, but that would already require the number and location of dynamic

phase changes that is unavailable due to the stochastic nature of the data. Rather,

an approach that is adaptive to the sporadically varying rates, time durations, and

height changes of these consistent periods is required, while delivering a continuous

piece-wise approximation.

At the heart of the segmentation process is the search for the points in the data

where significant dynamic changes occur. Each of these points can be considered a

vertex between line segments, which resemble “elbow points”, such that if one where

to connect all of them, an approximation to the length history data is created. In
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other words, these vertices and the line segments between them collectively create the

continuous piece-wise approximation that is desired. The following steps summarize

the algorithm that finds these vertices in data resembling dynamic instability:

• Step 0: Read-in raw length history data of MT length vs. time. Include the
first and last data points into the vertex list.

• Step 1: Identify local extrema (peaks and valleys) in the data above the nucle-
ation range, and add them to the vertex list.

• Step 2: Identify data points where the MT length enters/exits the nucleation
height, and add them to the vertex list.

• Step 3: Use each consecutive pair of vertices as endpoints to create a linear
segment that approximates the corresponding portion of the data.

• Step 4: Identify the data point where the maximum point-wise error for the MT
length occurs, and add it to the vertex list (adjust as needed to obey minimum
threshold for time duration between vertices).

• Step 5: Repeat Steps 3-4 until the maximum point-wise error of each linear
segment approximation in Step 4 is not greater than the user-defined maximum
height error tolerance.

Note that if the data resembles a persistent growth regime illustrated in Figure3.2

(i), then only the starting and ending points included in the vertex list from Step

0 would be necessary to identify the sole growth phase. Similarly, if the data was

generated from conditions with too little tubulin concentration that does not allow

for MT lengths above a nucleation threshold (see Figure 3.2(a) ), then only the start-

ing and ending points included in the vertex list from Step 0 would be necessary to

identify the sole nucleation phase. The rest of the steps in the algorithm are good for

identifying the vertex points in DI data that displays dynamic changes in MT lengths

above the user-defined nucleation threshold. Step 1 in the segmentation procedure

begins with first identifying local extrema that stand out with a certain prominence

with respect to the surround data values, which are in effect instances of very signifi-
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cant dynamic change. Using the findpeaks function in MATLAB (a common tool for

initial signal processing procedures) on the raw data identifies the local peaks (local

maxima), and using it on the negative values of the raw data identifies the local val-

leys (local minima). The prominence of these extrema is defined by the user-defined

maximum error tolerance, meaning how high a peak stands up with respect to the

nearest valleys on either side of the peak. Additionally, an option in findpeaks keeps

only the local maxima that occur above the user-defined nucleation height threshold.

At this time, the user-defined minimum time duration criteria is used to omit any

peaks or valleys occurring too close to each other, as well as removing redundant

peaks or valleys that were identified in excess by findpeaks. What remain are peaks

(purple diamond) and valleys (gold squares) illustrated in Figure 4.2. In Step 2, the

maximum nucleation height threshold is used to identify points entering and exit-

ing the nucleation region in order to prevent spending computational resources on

moments of dynamic behavior bearing no relevance to the study. The demonstra-

tive example uses 75 subunits for its nucleation threshold, and can be seen clearly

as the sequence of blue points at the same height in Figure 4.2. This treatment is

synonymous to the range of short MT lengths too difficult to measure accurately in

experimental conditions. In the event that behavior in the nucleation region is rele-

vant, the user-defined value can be set to zero (or some small number) to effectively

include all the behavior available from the given data into the approximation.

The continuous piece-wise linear approximation defined only by the points in-

cluded in the vertex list so far provide a good starting point, although the point-wise

errors prevent this segmentation from being satisfactory yet. Steps 3-4 improve this

approximation, by putting each linear segment is through an iterative process that

identifies instances of significant dynamic change during the corresponding time du-

ration. For two consecutive peak or valley points in the vertex list, say points A and

B, the data point where the maximum point-wise error made by the line segment
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approximation AB occurs, call it point C, is identified and included into the ver-

tex list as a refinement. Now, the data point where the maximum point-wise error

made by the line segment approximation AC occurs is identified and included into

the vertex list. This iterative step is repeated until the maximum point-wise error of

any of the line segment approximations formed by newly incorporated vertex points

are less than or equal to the user-defined maximum error tolerance. Once the error

criteria is satisfied, the process moves on to the segment defined by next consecutive

pair of vertices between which the iterative process has not yet been applied. This is

repeated for until the maximum error criteria is satisfied for the entire approximation

formed of all the segments with consecutive vertices as endpoints. The collection of

linear segments created between consecutive points in the final vertex list provides

the segmentation that defines the continuous piece-wise linear approximation, such

that each linear segment represents consistent behavior, and the segment endpoints

indicate significant changes in the MT’s dynamic behavior.

The accuracy of the approximation created during the segmentation procedure is

especially sensitive to two of the user-defined values: the minimum time duration of

a linear segment, and the maximum height error tolerance. The latter of the two has

an obviously direct impact in dictating the point-wise errors used for the stopping

criteria of finding vertex points. However the minimum time duration of each segment

is less obvious, in that it can prevent in the incorporation of a data point into the

list of vertices. More specifically, in the event that the highest point-wise error is

identified near an existing vertex, and the time difference between them is less than

the user-defined minimum, then another data point is chosen instead, close to the

desired location, but satisfying the minimum time criteria. This means that if a user

chooses minimum time durations that are too large for a given error tolerance, there

may be unintended errors created in the approximation that cannot be reconciled

due to the conflicting criterion. This is demonstrated in Table 4.1, which displays
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the the number of irreconcilable errors, and the maximum errors that occur (above

the nucleation threshold), and how many of them were greater than 50 subunits

in the approximation created when using 25 subunits as the maximum height error

tolerance for different minimum time duration values.

TABLE 4.1

LENGTH HISTORY APPROXIMATION ERRORS

Min Time Step: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

# of Irreconcilable Pts: 0 0 0 0 3 4 12 22 45 77

Max Error: 25 25 25 25 26 27 36 56 56 72

# of Errors > 50: 0 0 0 0 0 0 0 1 4 13

These approximation results are from using a tolerance of 25 subunits for different min-
imum time steps to process the data. The irreconcilable points refer to those errors
greater than the minimum error tolerance and that could not be resolved due to the
conflict with the minimum time step criteria. These were generated from the segmen-
tation procedure for the 10 hour 13-PF MT model simulation data. Time units are in
seconds, and the error values are in number of subunits. Using minimum time steps
much larger than 1.0 seconds did not produce meaningful approximations, so those
results were not included here.

Note that using smaller time duration criteria makes it easier to avoid irrecon-

cilable error points, whereas the larger time steps would require raising the height

change error tolerance to resolve any conflicts. For this reason, the demonstrative ex-

ample in this chapter uses 25 subunits for the maximum height change error tolerance,

and 100ms for the maximum time duration of each segment. The time duration crite-

ria does deliver at least 70 micro-level reaction events during each segment period, and
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the 25 subunit error is in agreement with spatial resolutions available in experimental

data. The performance of these criterion are demonstrated in with approximation

in Figure 4.2 using the length history plot from a 13-PF model simulation, where

the blue dots are the vertices separating segments of consistent behavior. Setting a

lower minimum height error threshold would have identified additional points with

smaller differences between the actual MT length (red line) and the approximation

(blue line). However, since macro-level behavior is being measured, this level of

approximation is satisfactory.

4.3 Classification

The linear segments provided by the accepted continuous piece-wise linear approx-

imation represent periods of consistent behavior, and thus is appropriate to label each

as being in a particular phase corresponding to the segment properties that can be

measured. The three measurements available for each linear segment are the time

duration (run), the height change (rise), and the rate of change (slope = rise/run).

All of the points reside on the surface manifold defined by z(x, y) = y/x as illus-

trated in Figure 4.3. It can be argued that only two of these measurements are

needed, however, as evident in the characteristics of z(x, y), the combinations of the

run, rise, and slope values that would capture the greatest variance in data points

on this curved surface depends on the region of the surface being considered. At

this time, no assumptions are being made with regards to which measurement con-

tributes more to separate particular classes. For completeness, any combination of

the three measurements is considered, which allows for the more complex case where

each measurement has similar weights determining the phase class separation, as well

as simpler cases where only one or two of the measurements contribute nothing.

Initial attempts to use these measurements separately to establish rules for clas-

sification were fruitless, and indicated that indeed combinations of the three mea-
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(a)

(b)

Figure 4.2. A 1,000 second excerpt from (a) the simulated length history
plot, and (b) the resulting piece-wise linear approximation for a portion of
MT length history output from a 10hr simulation of the 13-PF MT model,
using a minimum height error threshold of 25 subunits. The red plot is the

raw output, and tends to be very noisy at a finer scale. The purple
diamonds and gold squares are the significant local maxima (peaks) and
local minima (valleys) respectively, used to initiate the iterative process.
The blue line segments are the resulting piece-wise linear approximation

segments. The blue dots represent the segment endpoint vertices, which are
separated by at least the user-defined minimum time duration for each

segment. Note the additional points at height = 75 that identify moments
of nucleation phase entry/exit.
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Figure 4.3. The z(x, y) = y/x surface manifold on which the points
representing the linear segment characteristics reside.

surements may be necessary to characterize each segment into different phases. To

consider all three measurements together, each segment is assigned a 3D-point, such

that the relationships between different segment characteristics can be observed. Each

point plotted in Figure 4.4 represents the individual segments identified from the same

13-PF MT used for the segmentation demonstration in the previous section. Doing

so revealed that the data points organized into more complex subgroups than the

previously used bi-phase growth and shortening phases had assumed. In order to

separate these data clusters, an unsupervised clustering method is utilized such that

no a priori assumptions about the number of possible phases are made, and each seg-

ment can be classified into a phase according only to its relation to other segments

with similar characteristics.

To assist the unsupervised classification procedure, there is enough information at

this time to separate the nucleation phases based on the user-defined criteria for the
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Figure 4.4. The data points for each segment obtained from the linear
segmentation on the MT length history for a 10hr simulation of a 13-PF

MT, such as those segments identified in Figure 4.2(b). Different
perspectives are shown here to aid the visualization of the 3D plot.

maximum nucleation height threshold. Also, those stutter segments with near zero

slope or height change, which are called flat stutters, can also be classified according

to the user-defined maximum values for height change and slope. By removing these

instances from the data that needs to be classified, the region now separating the

points for segments with positive slopes and those with negative slopes becomes

a clearer and better separated. Furthermore, for the data set being used in this

demonstration, the points for positive sloped segments lie on a relatively flat portion

of the z = y/x surface, which is not parallel to the relatively flat region corresponding

to the negative slope points. This provides the first indication that the developed

classification procedure should treat the segments with positive and negative slopes

separately.
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4.3.1 K-means Clustering

At the heart of this stage lies the K-means clustering method, an unsupervised

classification method that will separate the given data into K-many clusters, which

are defined by Voronoi cells, and can be representative of different classes present

in the data [49, 50]. The algorithm for K-means begins by randomly selecting K-

many points as cluster centroids in the data set, and defining a cluster including

the data points closest to each respective cluster. Then, the true centroid of each

cluster is measured, and the cluster is refined by including the data points closest

to these refined centroids. This is centroid selection is recursively repeated until the

cluster composition converges, and the centroids after convergences are stored. For

irregularly shaped data sets, the resulting centroids after convergence may depend

on the random points in the initialization step. To overcome this, the entire process

from the random initialization to cluster convergence is repeated many times, and

the most popular centroids are used to define the final Voronoi cells that define the

separations between clusters.

The desired methodology being developed here needs to consider the possibility of

any number of clusters, since we are ultimately looking to identify those segments that

are clearly growth and shortening, as well as any other unknown phases. However,

this approach works best when the K-value is known, but it can still be used to

investigate the number of centers that the data naturally clusters around [36, 37,

42, 49]. To address this, the search for the K-value that best separates the data

refers to the gap statistic measured from the resulting clusters for different K-values.

The gap statistic considers the changes in the dispersion within clusters compared

to a randomized distribution for reference [74]. In practice, the K-means clustering

procedures are repeated for a range of K-values, the gap statistic in each clustering

result is measured, and the first local maximum is sought [74]. The corresponding

K-value of the first local maximum gap statistic corresponds to the lowest number
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of values that shows an improvement in separating the data compared to nearby

K-values. For purposes of identifying the K-value that best separates the data in

the method being developed here, only 100 random starts are used to compare the

results from different K-values and measure the corresponding gap statistics, but 500

starts are used when creating the final clusters in the classification procedures.

Finally, the large range and variance in the measured linear segment values make

it challenging to classify the raw data points as is. Since K-means is a distance

based metric, and the linear segment data set has various elongated features, it is

important to first pre-condition the data points so that the resulting shape of the data

set is more favorable for classification. Therefore, the method begins by applying a

natural logarithmic transformation to the data, and then standardizing the points

so that the measured differences would be more comparable. This helps make the

separations between resulting clusters more apparent, and also helps the classification

procedure being utilized, since K-means has a tendency to identify similarly sized

clusters regardless of the different shapes possible.

4.3.2 Clustering the Entire Data Set at Once

Attempting to classify the complete collection of the segment points together re-

turns the gap statistic plot displayed in Figure 4.5. In this case, the gap statistic

values are monotonically increasing with the K-values. The increasing gap values

suggests that there may exist more substructures of the data that create better clus-

tering results [74]. If there was a clear separation established between positive and

negative slope segment points, it is expected that K=2 should stand out at least as a

possibility for a good result. This leads to the conclusion that separating the data into

just two classes, such as only growth and shortening, does not divide the data points

along the natural separations. Additionally, the chosen boundaries between clusters

are unsatisfactory, particular on the positive slope side. The poor results from the
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gap statistic analysis here is the second indication that the data with positive slopes

should undergo classification separately from the negative slope data.

Figure 4.5. (Left) Gap statistic plot for data representing segments with
both positive and negative slopes. The monotonically increasing plot

indicates no good clustering results for the given data set. (Right)
Clustering results using K = 6 for the data representing segments with

both positive and negative slopes, which do not create satisfactory
boundaries to separate the anticipated substructures in the data.

4.3.3 Clustering Positive- and Negative-Slope Data Separately

In the data used for the demonstration, the previously mentioned flat regions for

the positive and negative sloped segments display the respective data as a cloud of

points in 2D separately, though it may depend on some combination of the 3D di-

mensions derived from line segment properties. This condition helps the applications

of K-means, which work best with data resembling a Gaussian distribution [42]. Al-

though the flat region is embedded in three dimensions, the Euclidean distances used

in K-means will be unaffected, and therefore reducing the dimensionality is unnec-
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(a)

(b)

Figure 4.6. The classification results for (a) positive slope segment data,
and (b) negative slope segment data generated from 10hr simulation of the

13-PF MT model. (Left) Gap statistics when clustering for different
K-values. In both cases, the first local maximum appears at K = 3.

(Right) The K-means clustering results on the log scaled and standardized
positive slope data points for K = 3, displayed with different colors and

markers. A black × marks the center of each cluster.
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essary since it would not change the classification results. Therefore, the K-means

procedure is implemented twice; the positive and negative slope segment data sets

are each processed separately. In each case, the raw data values are first scaled using

a logarithmic transformation. The negative slope data are multiplied by −1 to distin-

guish them from the positive slope data. Then, each group of points are standardized

according to the mean and standard deviation of their respective transformed data

values. The respective mean and standard deviation for the positive and negative

slope segment points are stored for future use. This is one beneficial aspect of this

method that can help classify different length history data in the future without hav-

ing to repeat this process. Upon transforming and standardizing the data, K-means

and the corresponding gap statistics are measured to test the separation of the data

points into relevant phases. Executing this procedure for the positive and negative

slope segment data separately delivers gap statistic plots that are more easily inter-

pretable when compared to the trying to process the entire data set all together. As a

result the separations between clusters that are more satisfactory, as seen in Figures

4.6a and 4.6b.

4.3.4 The Classification Algorithm

The latter process that treated positive and negative slope segments separately is

the preferred approach for classification, since the boundaries between data clusters

was more satisfactory, and because the corresponding gap statistics revealed a clear

indication for confidently choosing a K-value. So, the classification algorithm can be

summarized using the following steps:

• Step 0: Retrieve the segmentation results for a length history data set.

• Step 1: For each segment, assign a point in 3D, such that each dimension
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represents the following line segment features:

x = Time Duration (run)

y = Height Change (rise)

z = Rate of Length Change (slope)

• Step 2: Identify, remove, and set aside those points with near zero height change
and slope values according to the user-defined thresholds.

• Step 3: Scale the data using a logarithmic transformation for each point ~Xraw =
(xraw, yraw, zraw) using the following formula that preserves zeros:

~Xtransformed = sign(zraw) · log(| ~Xraw|+ 1)

• Step 4: Perform K-means clustering on the positive slope data points and
compute the corresponding gap statistics for different K-values

• Step 5: Identify the K-value corresponding to first local maximum in the gap
statistic values

• Step 6: Repeat the K-means clustering results using the K-value from Step 5,
and using more starts to achieve better results.

• Step 7: Repeat Steps 4-6 for the negative slope data points.

• Step 8: Label the raw data points according to the classes identified.

4.3.5 Diagnostic and Fully Automated Modes

Until this point, the methodology being implemented in MATLAB allows for

the user to modify the input parameters, and to test for various outcomes. In other

words, the modification of the user-defined thresholds are part of a diagnostic process,

which delivers the gap statistic results and a suggestion for the best choice for the

K-value to be used for the positive- and negative-slope data sets. After receiving

the suggestion, the user can decide the K-values to be used for the remainder of

the classification and resulting pattern analysis. Once the number of centroids is

decided upon, the remainder of the method presented in this chapter is completed
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automatically. The thresholds leading to the segmentation results earlier in this

section, and the criteria needed to select out the near-zero slope segments have already

been discussed. All that remains to continue to the next step are the K-values for

the positive and negative slope segments, which have clearly indications to be 3 for

both cases. The complete list of the user-defined threshold values utilized in the

demonstrated procedures are listed in Table 4.2, unless otherwise specified.

TABLE 4.2

USER-DEFINED THRESHOLDS AND VALUES FOR THE

DEMONSTRATED DI PHASE SEGMENTATION, CLASSIFICATION,

AND PATTERN ANALYSIS METHOD APPLIED TO THE 13-PF MT

MODEL LENGTH HISTORY PLOT

Nucleation height threshold: 75 subunits

Minimum time duration of a linear segment: 100 ms

Maximum height error tolerance: 25 subunits

Maximum height change for near-zero slope segments: 3 subunits

Maximum slope magnitude for near-zero slope segments: 2 subunits/sec

Number of centroids for positive slope segments: 3

Number of centroids for negative slope segments: 3
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4.3.6 Distinguishing Stutters from Growth and Shortening

In both the positive and negative slope data subsets, closer observation of Figures

4.6a and 4.6b reveals that two of the cluster centers (those surrounded by filled and

hollow circles) share similar slope values. Additionally, their respective cluster points

seem to be distributed around the line connecting the cluster centers. However,

the third cluster center (surrounded by asterisk) has a slope certainly smaller in

magnitude than the other two cluster centers, and the respective cluster points are

closer to the origin than the other points (labeled with circles). For this reason, the

points corresponding to cluster centers with a smaller magnitude slope value (labeled

with asterisk) are referred to as stutters, since they represent dynamic instability

segments with smaller MT length changes than their counterparts. This distinguishes

them from the other two clusters that display more classically expected behavior of

growth or shortening, when they have positive or negative slopes respectively. In

fact, in both the positive and negative slope cases, the major factor separating the

non-stutter clusters is the time duration component. This means that using the K-

means clustering has helped identify long growth (light green), brief growth (dark

green), and up stutter (light blue) phases within the positive slope segments, and

long shortening (light red), brief shortening (dark red), and down stutter (purple)

phases within the negative slope segments (see the color legend in Figure 4.7).

By combining these results for the running demonstrative example, and including

the near-zero slope segments separated before the classification process as flat stutters

(dark blue), a more complete classification is presented of the dynamic instability

segments into appropriate phases. In other words, the points in Figure 4.4 have

now been classified into appropriate DI phases, and they they are labeled using color

legend listed in Figure 4.7. The resulting the labeled length history plot is presented

in Figure 4.8.

With each segment labeled as being within a particular phase, the overall phase
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Figure 4.7. The color legend used to identify the different DI phases that
have been classified.

Figure 4.8. Phase classification results on the data set displayed in Figure
4.4. Different classes are labeled according to the legend in Figure 4.7.

classes can be compared using average measurements and corresponding box plots,

which are calculated and displayed in Figure 4.9. These measured values reveal the

similarity within the slope values shared by both long and brief growth classes, and

by both long and brief shortening classes. Meanwhile, the three stutter classes have

slope values certainly smaller than their counterparts. The case is more drastic for
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the negative slope segments, mostly because events corresponding to the shortening

of a MT’s length can involve the loss of multiple subunits at a time, compared to

the single subunit addition during polymerization. Details of this were also discussed

in the rate of subunit addition and loss in Section 3.3.3. The differences between

the stutter phases and the other two classes is further evidence that indeed macro-

level behavior detected during these periods are different, and that the bi-phase

assumption cannot be valid one, especially at this level of detail for MT activity.

Also, the boxplots in Figure 4.9 illustrate how there is an overlap of measurements

between segment classes, thus justifying the need to consider all three variables when

conducting the classification procedures, rather than attempting to separate the data

by using any one variable independently.

Figure 4.9. (Top) Mean and standard deviation for the time duration,
height change, and slope measurements for each dynamic instability

segment phase identified in the 13-PF MT model simulations. (Bottom)
Box plots of the time duration, height change, and slope measurements for

each phase class. The red crosses represent line segment data that are
outliers in their respective phase class.
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4.4 Phase and Pattern Analysis

At this time, the linear segments identified from the segmentation stage are now

classified as one of the following 7 phases: Long Growth, Brief Growth, Up Stutters,

Flat Stutters, Down Stutters, Brief Shortening, or Long Shortening. In addition, the

segmentation procedure identified the periods with shorter MT lengths as nucleation

phases. To help visualize these phases in terms of the MT dynamics, the line seg-

ments illustrated in Figure 4.2 can be labeled using the color code defined in Figure

4.8. This provides the color labeled plot in Figure 4.10, where the grey segments rep-

resent nucleation phases. Now that each segment has been allocated to a particular

phase class, more detailed measurements can be taken to compare the phases to each

other, as well analyzing the chronological orders in which phases appear to study the

transitions between phases. The remainder of this section deals with these type of

measurements and the associated plots that help visualize them.

Using this classification, properties of the phases can be quantified for the entire

length of the simulated data. Figure 4.11 shows these measurements made for the

10hr simulated data, which includes the following measurements associated with each

phase: frequency (total number of occurrences), percent of simulation time spent,

percent of total height changes, and various slope averages (the mean (grey yellow)

and medians (dull yellow) of the segment slopes for each phase, and the weighted

slope = (total height changes of a phase)
(total time spent in a phase)

(bright yellow).) Note that the slope averages

are quite similar for all three methods of measurement, suggesting an agreement in

measuring the average rates using either formula. It is worth noting the number of

nucleation segments encountered, and this is indicative of choosing a good tubulin

concentration level that delivers MT behavior rich in dynamic instability, because of

the balance between the large MT heights achieved along with plenty of catastrophe

events that cause the MT to return to nucleation levels. A tubulin concentration

level that is too low would create a simulation that spends far too much time in
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(a)

(b)

Figure 4.10. (a) Color labeled representation of line segments that have
been classified from a portion of length history data from the 13-PF MT
model 10hr simulation. Each segment is labeled using the color legend in
Figure 4.7, in addition to periods of Nucleation (gray). (b) A zoomed in

excerpt from the same plot.

nucleation, and a level that is too high would create infrequent catastrophe events

and rarely return to nucleation levels, if at all. This is additional indication that the

10µM tubulin concentration level delivered an appropriate amount of DI behavior to

conduct this study.

Further pattern analysis can be conducted on the chronological sequences in which

the phases occur. For simplicity, the phases that are strongly related to each other

are bundled together, so that the need for sub-classes is omitted, and effectively

reduced the sheer number of different types of phase transitions that can occur (see
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Figure 4.11. Different properties measured for each DI phase identified in
the 13-PF MT model’s 10hr simulation.

Figure 4.12). This is strongly motivated and supported by the fact that many of the

slope measurements for Long and Brief Growth phases are close in value, especially

when compared to other phases. Similarly, the Long and Brief Shortening slope

measurements stand apart from the other phases also. For this reason, a simpler set

of only four bundled phase classes are introduced, and used for the remainder of this

study:

a Growth Phases: long and brief in time duration, steeper positive slopes and
higher height gains than other segments

b Shortening Phases: long and brief in time duration, steeper negative slopes and
higher height losses than other segments

c Stutter Phases: brief in time duration, smaller magnitude of slopes and height
changes than other segments

d Nucleation Phases: segments with MT lengths too short for dynamic relevance,
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and thus ignored from analysis

Figure 4.12. The color legend used to identify the different DI phases that
have been classified.

Using these bundled class labels, the transitions between growth, shortening, stut-

ter, and nucleation phases can be studied. Additionally, since the nucleation phase by

design contains MT structures that are relatively close to the seed, they are omitted

from dynamic analysis with respect to the possible permutations in phase transitions.

In doing so, it should be noted that the stutter phase class creates a new variety of

dynamic transition events when switching the bundled phase classes.

• Catastrophes: possible ways of changing from growth to shortening

– Abrupt Catastrophe: Growth-Shortening

– Transitional Catastrophe: Growth-Stutter-Shortening

• Rescues: possible ways of changing from shortening to growth

– Abrupt Rescue: Shortening-Growth
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– Transitional Rescue: Shortening-Stutter-Growth

• Interruptions: involving stutters without changing dynamic directionality

– Interrupted Growth: Growth-Stutter-Growth

– Interrupted Shortening: Shortening-Stutter-Shortening

The abrupt catastrophe and abrupt rescue transitions are the classically under-

stood catastrophe and rescue events respectively. The bi-phase assumption resulted

in those definitions, and the abrupt variety of these phase transitions allows for

the continuity of that understanding. Additionally, the role of nucleation segments

present in the form of phase transitions, but is utilized in preventing moments of MT

dynamics being categorized as a rescue if the MT length reaches nucleation levels

during that time period. In those cases, the MT length reaches very short levels,

where a significant amount of the MT structure has been lost, and thus is disqual-

ified from being considered a rescue. Frequencies of these phase transitions can be

calculated using the following:

• Catastrophe Frequency (Abrupt or Transitional) = (# of catastrophes)
(total time in growth)

• Rescue Frequency (Abrupt or Transitional) = (# of rescues)
(total time in shortening)

• Interruption Frequency (Growth or Shortening) = (# of interruptions)
(total time in interrupted phase)

This proposed formulation is an improvement to prior methods of DI parameter

measurements, because the segmentation process was based on identifying vertex

points that marked moments of significant dynamic change better than the course-

grained bi-phase approach used in the past. Additionally, the methods presented

here takes into consideration the variety of dynamic change occurring. If a direct

comparison between older methods and the formulation presented here is desired,
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then a simple summation of the abrupt and transitional varieties can be performed to

combine frequency values together, a valid approach since they share a denominator.

Figure 4.13. Measurements of possible dynamic transition events generated
by the perturbations created from growth, shortening, stutter, and

nucleation phases found in the 10 hour long 13-PF MT model simulations.

Figure 4.13 shows the measurements made considering these dynamic transitions

identified from the length history plot for the 13-PF MT model 10 hour simulation,

including the measured phase change occurrence and frequency values listed in the

bottom left table. It is interesting to note that a large fraction of catastrophes

occur in the transitional manner, where the MT first enters a stutter phase prior

to rapidly losing its polymer structure during shortening. Conversely, rescues tend
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to occur in an abrupt fashion, where the switch from shortening to growth is more

sudden. Additionally, a significant number of stutters occur during interruptions

of growth and shortening, but far more of them appear during catastrophes. This

further supports the idea that stutter phases predominantly play a transitional role

during catastrophes, during which a MT undergoes structural changes involving little

subunit exchange, but leading to a more unstable structure more prone to enter a

shortening phase. Finally, the bottom right pie chart in Figure 4.13 considers pair-

wise combinations dynamic events. The 10 hour long 13-PF MT simulation that

was analyzed indicates that the most popular dynamic patterns (without entering

nucleation) include the following three combinations of phase transitions:

1. Interrupted Growth + Transitional Catastrophe: 32 instances

2. Transitional Catastrophe + Interrupted Shortening: 25 instances

3. Transitional Catastrophe + Abrupt Rescue: 25 instances

Two out of these three patterns of dynamic change involve the MT entering a stutter

phase twice. It’s interesting to see the active presence that stutter phases have in

common MT dynamics being simulated, especially considering the fact that they

were overlooked in course-grained methods used in the past. However, the number of

occurrences and the amount of time spent during stutter phases is on the same order

of shortening phases, as indicated in the values listed in Figure 4.11. Combine with

the common role that stutters have during phase transitions, it should be clear that

stutter phases are an important facet of MT dynamics that should be focused on.

4.5 Phase Classification for the Simplified 2-PF MT Model

In Section 3.8, the simplified 2-PF MT model was introduced in an effort to to

study the micro-level MT tip structures during significant events in DI behavior.

However, prior to zooming into arbitrary micro-level tip structures, a measured ap-
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proach requires knowing where the significant changes in the DI behavior are located.

For this, the method laid out in this chapter can be utilized to conduct the DI phase

segmentation, classification, and analysis in simulated data generated from the 2-PF

MT model. Similar to the 13-PF MT model example that was demonstrated, a long

time simulation displaying a rich variety of DI behavior is desired in order to cap-

ture a robust range of the possible dynamics that can be observed in this system.

The 12µM tubulin concentration level is used to create a 10 hour long simulated

length history data of the 2-PF MT model, which is analogous to the 10µM tubulin

concentration levels that provided the rich variety of DI behavior measured in the

13-PF MT case. This section goes through the process and reports the results when

segmenting, classifying, and analyzing the DI phases identified in the length history

data for the 2-PF MT case.

The process begins with the length history data representing 10 hours of DI

behavior from the 2-PF MT model using a tubulin concentration of 12µM plotted

in Figure 4.14a. When compared to the 13-PF MT model, the 2-PF MT model

generates length history data with far more fluctuations on a finer scale, possible due

to the fact that structural changes to only two PFs can more easily change the length

of the MT structure. This scenario actually creates more of the periods that challenge

the bi-phase assumption, where more instances of intermediate dynamics are visible.

However, the segmentation step using the same minimum time duration threshold

as the 13-PF MT model case is small enough to satisfy the same maximum height

change error tolerance of 25 subunits, which creates the continuous linear piece-wise

approximation displayed in Figure 4.14b.

The next step in the process is to gather the 3D data from the time duration,

height change, and slope of each linear segment identified from the segmentation step.

The segment data from the 2-PF MT model simulation is displayed in Figure 4.15.

The structures in the scatter plot are qualitatively similar to the 13-PF MT segment
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(a)

(b)

Figure 4.14. A 800 second excerpt from (a) the simulated length history
plot, and (b) the resulting piece-wise linear approximation for a portion of
MT length history output from a 10hr simulation of the 2-PF MT model,

using a minimum height error threshold of 25 subunits. The red plot is the
raw output, and tends to be very noisy at a finer scale. The purple

diamonds and gold squares are the significant local maxima (peaks) and
local minima (valleys) respectively, used to initiate the iterative process.
The blue line segments are the resulting piece-wise linear approximation

segments. The blue dots represent the segment endpoint vertices, which are
separated by at least the user-defined minimum time duration for each

segment. Note the additional points at height = 75 that identify moments
of nucleation phase entry/exit.
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data. In contrast, the 2-PF MT model segments have a wider variance in values,

though the time durations do not extend as far out as the positive slope segments

found in the 13-PF MT model simulations.

Figure 4.15. The data points for each segment obtained from the linear
segmentation on the MT length history for a 10hr simulation of a 2-PF

MT, such as those segments identified in Figure 4.14(b). Different
perspectives are shown here to aid the visualization of the 3D plot.

Once the 3D segment data is available, the nucleation phase segments can be

separated using the near zero height change and slope criteria. The same near-

zero segment criteria is used to separate the positive- and negative-slope segment

for both the 2- and 13-PF MT model segment data. After removing the near-zero

slope segments, the K-means clustering step can be performed on the positive- and

negative-slope segments separately. Figure 4.16 shows that the gap statistics clearly
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indicate K = 3 to be the best number of clusters to used in each portion of the data.

In fact, the first local maxima are more drastic than the 13-PF MT clustering results.

The better separation measured can be a result of the larger variance in values in the

2-PF MT segment data.

The gap statistic results verifying the choice for K = 3 completes the diagnostic

portion of the classification process, as well as the list of the threshold and criteria

values needed to finish the classification step. The diagnostic portion results indicated

the same values listed in 4.2 to work for the 2-PF MT segment data as well. Moving

forward with the classification procedure results in the labeled segment plot displayed

in Figure 4.17. With the phase classes separated, the average measurements can be

made, which are displayed in the table and box plots in Figure 4.18. Compared to

the 13-PF MT model phase segment measurements, the 2-PF MT model phases are

certainly shorter with respect to the time duration and height changes, especially for

growth and shortening segments. However the growth segments tend to have steeper

slopes in the 2-PF MT case, and nearly the same slope for the other phases with

a wider variance in values. Additionally, the brief growth phase achieves average

slope values higher than the long growth phases, mostly because the Voronoi cell

corresponding to the brief growth phase covers a portion of the z(x, y) = y/x manifold

that protrudes higher in the z-direction than the rest of the surface on which the data

segment points lie.

With each segment classified as one of the seven phases, it is possible to visualize

each period of consistent behavior with phase labels, as displayed in Figure 4.19.

Further analysis on the phases with respect to their contribution to the simulation is

measured and shows in the plots of Figure 4.20. Due the higher rate of fluctuations

that appear in the 2-PF length history data, the shear number of segments identified

is larger than the 13-PF MT model case. However, the relative number for most

phases, especially nucleation, is similar in both of the MT models. Additionally, the
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(a)

(b)

Figure 4.16. The classification results for (a) positive slope segment data,
and (b)negative slope segment data generated from 10hr simulation of the

2-PF MT model. (Left) Gap statistics when clustering for different
K-values. In both cases, the first local maximum appears at K = 3.

(Right) The K-means clustering results on the log scaled and standardized
positive slope data points for K = 3, displayed with different colors and

markers. A black × marks the center of each cluster.
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Figure 4.17. Phase classification results on the data set displayed in Figure
4.15. Different classes are labeled according to the legend in Figure 4.7.

Figure 4.18. (Top) Mean and standard deviation for the time duration,
height change, and slope measurements for each dynamic instability

segment phase identified in the 2-PF MT model simulations. (Bottom) Box
plots of the time duration, height change, and slope measurements for each
phase class. The red crosses represent line segment data that are outliers in

their respective phase class.
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higher fluctuation rate meant that the 2-PF MT spent less time in growth phases,

leading to shorter MTs, and more time spent closer to the MT seed, leading to more

time spent in nucleation phases. Despite a disagreement in the percent of time spent

in each phase between the 13- and 2-PF MT model simulations, in should be noted

that the level of tubulin concentration in both cases indicates a balance of phase time

durations for displaying a variety of DI behaviors. Similar to the 10µM levels used in

the 13-PF MT model simulations, using less than 12µM tubulin concentration levels

would have produce length history data that spent too much time in nucleation, and

any more than 12µM would bias the data to have have much more growth. So, these

plots are also useful for verifying that indeed an appropriate tubulin concentration

level is being used to generate the desired DI behavior.

Additionally, a comparison of the different slope measurements shows a good

separation between phases. The percent height change for each phase chart also

provides support of how the stutter phases truly make up for a more subtle portion

of length changes that occur in the simulated data. Qualitatively, the overall phase

measurements shown in Figure 4.20 are in agreement with the results for the 13-PF

MT model simulations in Figure 4.11, and the fact that the stutter phases cannot be

ignored remains to be the case.

The next step is to consider the chronological order in which the phases appear,

and analyze the emerging patterns in the phase transition. Recall that, in order to

ease the number of permutations of phase transitions possible, only bundled phases

are considered for this part of the analysis. This means that phases lose their sub-

phase labels, and are only part of either growth, stutter, or shortening phases. For

the 2-PF MT model case, the results displayed in Figure 4.21 again indicate that

the onset of a shortening phases is more common to be a transitional catastrophe,

such that it first goes through a stutter phase before rapidly losing its polymer mass.

In contrast, abrupt rescues are more common when switching from a shortening to
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(a)

(b)

Figure 4.19. (a) Color labeled representation of line segments that have
been classified from a portion of length history data from the 2-PF MT

model 10hr simulation. Each segment is labeled using the color legend in
Figure 4.7, in addition to periods of Nucleation (gray). (b) A zoomed in

excerpt from the same plot.

a growth phase, indicating that less structural changes are necessary for a MT to

suddenly change back to polymerization after a period of sustained subunit loss.

Also, related to the more frequent fluctuations in the 2-PF MT model length history

data, the frequencies and shear number of phase transitions is more than for the

13-PF MT case. Even so, the role of stutter phases remains to predominantly be

more during transitional catastrophes, and certainly less for rescues. Finally, when

considering pair-wise combinations of phase transitions, the 2-PF MT model shows

somewhat different patterns than those observed in the 13-PF MT model case. The
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Figure 4.20. Different properties measured for each DI phase identified in
the 2-PF MT model 10hr simulation.

most commonly observed phase transition combinations are the following:

1. Transitional Catastrophe + Abrupt Rescue: 231 instances

2. Interrupted Growth + Transitional Catastrophe: 114 instances

3. Abrupt Catastrophe + Abrupt Rescue: 111 instances

4. Transitional Catastrophe + Interrupted Shortening: 95 instances

Aside from having many more transitions to consider, it is interesting to see that the

most frequent pattern is the Transitional Catastrophe + Abrupt Rescue combination.

Additionally, the Abrupt Catastrophe + Abrupt Rescue combination is a frequent

pattern that was not commonly observed in the 13-PF MT model case.

It is important to note that a large number of different patterns of phase transi-

tions are successfully captured in the 10 hour long simulations of the 2-PF MT model,

at the 12µM tubulin concentration level, satisfying the intended result of using the
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Figure 4.21. Measurements of possible dynamic transition events generated
by the perturbations created from growth, shortening, stutter, and

nucleation phases found in the 10 hour long 2-PF MT model simulations.

model parameters that delivered this variety of DI behaviors, which is part of the

goal of this study. Also, the aim of the 2-PF MT model by design was to simplify

the tip region structure, so that focus can be placed on the most dynamic part of

the MT structure. The results of this section provided the phase classes identified

from periods of consistent behavior, separated by moments of significant dynamic

changes in MT length. This information will be used in the next chapter, which

makes connections between the structural features of the MT tip region, and the DI

phases during which they occur.
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CHAPTER 5

DATA ANALYSIS II: PREDICTING DI PHASES FROM THE TIP

STRUCTURES IN THE 2-PF MT MODEL

In Chapter 2, the biological importance of the MT tip region was discussed,

since that is the portion of the MT structure that contains the subunits and bonds

targeted by the molecular dynamic events. In Chapter 3, a computational model

representing the MT structure and dynamics was presented, such that it simulated

an exact trajectory of bio-chemical exact MT structural states. The simplified 2-PF

MT model was also presented to ease the study of the tip region, while maintaining

the DI behavior that is characteristic to MTs. In Chapter 4, a method was presented

to segment, classify, and analyze any possible macro-level phases that exist in length

history data resembling DI behavior. The contents of this chapter combine the focus

and results from all of the previous chapters together in order to connect the micro-

level MT tip structures from simulations to the macro-level DI phases and phase

transitions during which they are observed. The Random Forest machine learning

method is utilized to treat the different measurements of individual 2-PF MT tip

features as predictor variables in order to predict the response variables, represented

by the DI phase labels identified in Chapter 4. Different arrangements of this data

set allows the learning approach to predict phases by only looking at tip structures,

and to forecast upcoming phase transitions. An added benefit is the ability of these

approaches to rank the importance of the MT tip features used in making these

predictions and forecasts. This chapter presents the development of these predictive

models, and the resulting knowledge providing deeper insight into the mechanisms
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that lead to the sporadically occurring changes in MT dynamics.

5.1 Motivation for Developing Predictive Models

The ultimate goal of this study is to develop a deeper insight into the mechanisms

of MT dynamics that lead to significant phase transitions in DI. The knowledge ac-

quired in the past provided information about general expectations of the MT struc-

ture during growth and shortening phases exclusively. This included generalizations

of a healthy GTP-cap being present during growth, and the lack of one during short-

ening, which exposed less stable MT structures vulnerable to rapid loss of subunits.

Verifying these conclusions is possible through experimental observations, however

laboratory conditions limit these confirmations from reaching the smaller tip struc-

tures known to be most dynamic portions of the MT. Additionally, the time scale

at which dynamic changes alter the MT tip region are very quick, and the speed at

which experimental data can be observed is also limited. For this reason, the com-

putational models representing MT structures and dynamics are an invaluable tool,

such that simulated data provides a scope that is unattainable in current laboratory

settings.

The exact method implementation of the detailed MT computational model pre-

sented in Chapter 3 simulates the trajectory of MT structure states that are bio-

chemically realistic. Doing so exposes the information about the MT structure at a

very fine time resolution. The simplified 2-PF MT model reduces the number of vari-

ous tip structures possible to create a feasible scenario for studying the most dynamic

part of the MT. The simulations provide micro-level structures that can be calculated

with respect to various properties that are bio-chemically relevant, or to distinguish

similar tip configurations from each other. The same 2-PF MT model simulations

also generates length history data, for which macro-level DI phase information is ex-

tracted, as demonstrated in Chapter 4. These DI phase assignments are applied as
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labels to each observation in the simulation that occurs during the time duration of

the corresponding phase segment. To connect these two forms of data extracted from

different time scales, a machine learning method is sought to associate the structural

properties of the MT tip structures to the DI phases during which they occur.

Considering the large number of possible tip configurations, the numerous features

that describe a tip structure configuration, and the unknown micro-level character-

istics that distinguish stutters from growth and shortening phases, a simple and

effective approach is provided by the Random Forest learning method. This machine

learning approach helps to test the ability for tip structure features to predict DI

phases, and thus delivers a deeper understanding of how the tip structures relate

to the macro-level dynamics. Also, reconfiguring the data to consider each phase

separately can test the ability of structural features to forecast future changes out

of DI phases. The remainder of this chapter covers the organization of the simu-

lated 2-PF MT model data, and how the Random Forest approach is used to gain a

deeper understanding on the role MT tip structures play in regards to the macro-level

dynamics seen in DI behavior.

5.2 2-PF MT Tip Data

The 2-PF MT model was introduced to help simplify the tip configurations, so

that the micro-level structural information about the MT is created at a level un-

available in laboratory settings. Using the DI phase classification methods presented

in Chapter 3, each micro-level observation is now matched with a macro-level phase.

In this section, the measurements that describe the individual micro-level structural

features are presented. Additionally, since the DI phase labels are also available, an

initial exploration into how the individual feature measurements relate to DI phase

is provided with visualized comparisons.
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5.2.1 Simulating Tip Data from the 2-PF MT Model

The output from these 2-PF MT model simulations supplied provided over 4.6

million observations, such that the data is relevant to the distinguishing different

features of individual structural configurations. More specifically, the simulation

output included the actual configuration of the 2-PF MT’s gated tip, such that the

exact ordering of GTP- and GDP-bound subunits was known for the G-subunits,

and the PF tips above them. Early data explorations revealed that the information

about the gated tip region alone, however relevant, was not sufficient to distinguish DI

phases. It turns out that similar tip configurations were commonly observed amongst

all of the DI phases. For this reason, additional information about the number of

GTP-bound subunits in the entire MT was utilized to approximate the size of a

GTP-cap near the MT tip region.

Though previous studies have indicated some expectations on the size of a GTP-

cap, tracking the actual configurations of subunits that would guarantee containing

the entire GTP-cap structure would require far more configurations than the 4 mil-

lion gated tip configurations possible in the 2-PF model (see Equation 3.8). As a first

attempt for studying the specific tip configurations, estimates for the GTP-cap size

are sufficient at this time. Additionally, it should be noted that many of the gated

tip configurations were tracked on the fly during the simulation run, and any mea-

surements on the features were calculated in post-processing. Trying to make these

measurements beyond the gated tip region are possible during the simulation, how-

ever this would greatly add to the computational cost of making these calculations

for each MT state encountered during each simulation step.

Using the DI phase classification, over 7,500 phases were identified, and each ob-

servation was additionally labeled with the corresponding bundled DI phase (growth,

stutters, and shortening). Measurements of 2-PF MT tip structural features were

made for each observation independently, and some insight to their relation between
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individual features and DI phases was provided in the form of box plots and his-

togram plots in Section 5.2.2. The rates of reaction events were also included in these

measurements, because they too depend on the tips structure, and provide some addi-

tional information by weighting GTP- and GDP-bound subunits differently. Though

many of these measurements have a poor separation in regards to DI phases, these tip

structure measurements still carry a bio-chemical relevance to the possible molecular

dynamics, as well as help uniquely describe individual tip configurations. Even so,

many of these measurements do provide evidence that stutter phases behave as a

transition between growth and shortening phases. These tip structure features will

be used as the predictor variables in the predictive models developed later in this

chapter. The Random Forest method offers variable importance rankings that will

help determine which of these features are most relevant to identifying the DI phases

to which they correspond.

5.2.2 Calculating Tip Structure Features

Below is a description of the measurements for simulated 2-PF MT tip structures

and the corresponding box plots and histogram plots split by the three bundled DI

phases being considered (shortening phases are in red, stutter phases are in blue,

and growth phases are in green). Histogram plots also display a comparison for the

distribution of the measured values across the entire data set of simulated MT tip

structures (shown in black). It should be noted that in any tip configuration, left

and right PF assignments are not used, and instead, to take advantage of the simpli-

fication offered by symmetry, measurements are made for the longer or shorter PFs

accordingly. Some measurements deal exclusively with individual PFs, while others

consolidate measurements across both PFs to reference the entire MT tip. Recall that

the term “gated tip” refers to the cracked (or laterally unbonded section) of the ei-

ther PF or MT tip plus the G-subunits (the top-most laterally bonded subunits) (see
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Figure 3.3 for details). This simple gated tip definition is unique to the simplification

offered by the 2-PF MT model. For future work, similar types of measurements could

inspire means for measuring 13-PF MT tip structures.

1. Length of the Longer PF Tip: measures the number of laterally unbounded
subunits in the longer PF (see Figure 5.1).

2. Length of Shorter PF Tip / Equivalent to Crack Depth: measures the number
of laterally unbounded subunits located in the shorter PF, which also defines
the depth of the crack between the two PFs (see Figure 5.2).

3. Ratio of the Shorter PF tip Length to the Longer PF tip Length: compares the
lengths of the two PF tips, such that a value of 1 indicates the same length, and
a value of 0 indicates that shorter PF tip has no laterally unbonded subunits
(i.e. it has the null configuration) (see Figure 5.3).

4. Total number of GTP-bound subunits in the entire MT: this measures all of
the GTP-bound subunits throughout the entire MT structure, including those
in the seed (see Figure 5.4).

5. Total number of GTP-bound subunits in the gated MT tip: considers the num-
ber of GTP-bound subunits in the gated tip region (see Figure 5.5).

6. Percentage of all the GTP-bound subunits located in the gated MT tip region:
compares measurements 4 and 5, as the percentage of the total GTP-bound
content found only within the gated tip region (see Figure 5.6).

7. Percentage of the Longer PF gated tip comprised of GTP-bound subunits:
measures the percentage of the subunits in the longer gated PF tip that are
GTP-bound (see Figure 5.7).

8. Percentage of the shorter PF gated tip comprised of GTP-bound subunits:
measures the percentage of the subunits in the shorter gated PF tip that are
GTP-bound (see Figure 5.8).

9. Percentage of the MT gated tip comprised of GTP-bound subunits: measures
the percentage of only the subunits in the gated MT tip that are GTP-bound
(see Figure 5.9).

10. Number of neighboring subunit pairs in the gated crack containing at least a
GTP-bound subunit: indicates the health of the cracked region, since neigh-
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boring subunit pairs across the crack dictate the likelihood of a lateral bond
breaking after future reaction events form bonds there (see Figure 5.10).

11. Number of G-subunits that are GTP-bound: helps determine how strong the
top most lateral bond is, since the state of those subunits determines the rate
of a lateral bond breaking (see Figure 5.11).

12. Number of AG-subunits available: the AG-subunits are located above the G-
subunits, the lowest subunits without a lateral bond at the bottom of the crack.
If they don’t exist, a new lateral bond can’t form. It’s interesting that there is
little difference across DI phases. (see Figure 5.12).

13. Number of AG-subunits that are GTP-bound: helps determine the likelihood
of a lateral bond forming, if there is the appropriate space for one to form (see
Figure 5.13).

14. The estimated GTP-cap size: measures an estimate for the GTP-cap assuming
all the GTP-bound subunits are adjacent and located in the MT tip (see Figure
5.14).

15. The estimate of the GTP-cap size below the crack depth: considers the estimate
for the GTP-cap size in measurement 14, and measures how far below the crack
it extends. Since this is a computed difference, negative values are allowed, and
they indicate that the crack penetrates deeper down the MT lattice than the
estimated GTP-cap (see Figure 5.15).

16. The ratio of the estimated GTP-cap size to the average PF Tip Lengths: com-
pares the size of the estimated GTP-cap size (measurement 14) to the gated
MT tip length (average of measurements 1 and 2). A value of zero indicates no
GTP-bound subunits are in the gated tip region (see Figure 5.16).

17. Dispersion of GTP-bound subunits in the Longer gated PF tip: measures the
dispersion of GTP-bound subunits in the longer PF’s gated tip region by con-
sidering the mean longitudinal distance between GTP-bound subunits. The
measurement includes “ghost” GTP-bound subunits above and below the gated
PF tip to take into account the sequence of GDP-bound subunits that would
otherwise go undetected. If no GTP-bound subunits are available, the value
of 25 is assigned since the longest MT tip lengths are near 20 subunits long.
Larger values indicate sparsely spaced GTP-bound subunits, and smaller values
near 0 indicate nearly adjacent GTP-bound subunits (see Figure 5.17).

18. Dispersion of GTP-bound subunits in the Shorter gated PF tip: measures the
dispersion of GTP-bound subunits in the shorter PF’s gated tip region by con-
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sidering the mean longitudinal distance between GTP-bound subunits. Addi-
tionally, the measurement includes “ghost” GTP-bound subunits above and be-
low the gated PF tip to take into account the sequence of GDP-bound subunits
that would otherwise go undetected in the measurement. If no GTP-bound
subunits are available, the value of 25 is assigned since the longest MT tip
length being observed above 20 subunits long. Larger values indicate sparsely
spaced GTP-bound subunits, and smaller values near 0 indicate nearly adjacent
GTP-bound subunits (see Figure 5.18).

19. Dispersion of GTP-bound subunits in the gated MT tip: measures the disper-
sion of GTP-bound subunits in the gated MT tip region by averaging all of the
individual distances identified in measurements 17 and 18 (see Figure 5.19).

20. Standard deviation of GTP-bound subunit positions in the gated MT tip: a
second measurement of dispersion of GTP-bound subunits. This was included
in case it provided more information that the mean distance between GTP-
bound subunits, but as the box plots indicate, there is little difference between
DI phases (see Figure 5.20).

21. Rate of Hydrolysis: a scalar multiple of the rate constant for hydrolysis and
the number of hydrolyzable GTP-bound subunits in the entire MT structure,
which does not include GTP-bound subunits in the MT seed or the top-most
position of PF-tips. This number is calculated at each step in the simulation
to determine the likelihood of a hydrolysis event to be the next one to occur in
the Markov process (see Figure 5.21).

22. Expected Rate of Subunit Loss as a function of Tip Configuration: this is a
weighted sum taking into consideration the possible rate of a particular longitu-
dinal bond breaking and the number of subunits that would be lost as a result
of that event taking place. This value strongly depends on the tip configura-
tion, i.e. the specific sequence of GTP- and GDP-bound subunits that define
the tip structure. The formula for this measurement is provided in Equation
3.4 (see Figure 5.22).

23. Rate of Lateral Bond Breaking: These values are calculated by taking a scalar
product of the rate constants for lateral bond breakage and the bounded state
of the G-subunits. It strongly depends on the number of G-subunits that are
GTP-bound measured earlier (see Figure 5.23).

24. Rate of Lateral Bond Forming: These values depend solely on the availability
of the AG-subunits from measurement 12. The consistency in the plots shown
here is an artifact of the parameters choices used in the simulation, and verifies
an expected outcome (the rate constants for lateral bond formation used to
simulate this data are uniform for all AG-subunit states) (see Figure 5.24).
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Figure 5.1. Comparison between different DI phases for the longer PF tip
length.

Figure 5.2. Comparison between different DI phases for the shorter PF tip
length.
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Figure 5.3. Comparison between different DI phases for the ratio of shorter
to longer PF tip lengths.

Figure 5.4. Comparison between different DI phases for the total number of
GTP-bound subunits in the entire MT.
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Figure 5.5. Comparison of the total number of GTP-bound subunits in the
gated MT tip between different DI phases.

Figure 5.6. Comparison between different DI phases for the percentage of
the GTP-bound subunits located in the gated MT tip.
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Figure 5.7. Comparison between different DI phases for the percentage of
the longer gated PF tip being comprised of GTP-bound subunits.

Figure 5.8. Comparison between different DI phases for the percentage of
the shorter gated PF tip being comprised of GTP-bound subunits.
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Figure 5.9. Comparison between different DI phases for the percentage of
the gated MT tip being comprised of GTP-bound subunits.

Figure 5.10. Comparison between different DI phases for the number of
subunit pairs in the gated crack containing at least a GTP-bound subunit.
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Figure 5.11. Comparison between different DI phases for the number of
G-subunits that are GTP-bound.

Figure 5.12. Comparison between different DI phases for the number of
AG-subunits available.
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Figure 5.13. Comparison between different DI phases for the number of
AG-subunits that are GTP-bound.

Figure 5.14. Comparison between different DI phases for the estimated
GTP-cap size.
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Figure 5.15. Comparison between different DI phases for the estimate of
how far below the GTP-cap is from the crack depth.

Figure 5.16. Comparison between different DI phases for the ratio of the
estimated GTP-cap size to the average PF tip lengths.
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Figure 5.17. Comparison between different DI phases for the mean
longitudinal distance between GTP-bound subunits in the longer gated PF

tip.

Figure 5.18. Comparison between different DI phases for the mean
longitudinal distance between GTP-bound subunits in the shorter gated

PF tip.
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Figure 5.19. Comparison between different DI phases for the mean
longitudinal distance between GTP-bound subunits in the gated MT tip.

Figure 5.20. Comparison between different DI phases for the standard
deviation of longitudinal positions of GTP-bound subunits in the gated MT

tip.
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Figure 5.21. Comparison between different DI phases for the expected rate
of a hydrolysis event.

Figure 5.22. Comparison between different DI phases for the expected rate
of subunit loss.
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Figure 5.23. Comparison between different DI phases for the expected rate
of breaking a lateral bond.

Figure 5.24. Comparison between different DI phases for the expected rate
of forming a lateral bond.
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5.3 Predictive Modeling Methodology

In order to connect the micro-level tip data calculated from individual MT struc-

tural observations to the macro-level DI phases identified from the classification pro-

cedures applied to the simulated data from the 2-PF MT model, a supervised machine

learning method to create a predictive classification model is desired. This data set

to be analyzed consists of a large number of observations with far fewer feature vari-

ables describing a tip structure. This eases the difficulty of the theoretical problem,

however the large data size may be a consideration for computational costs in train-

ing the predictive model. This section discusses the reasons for using a the Random

Forest approach for classification, and the different perspectives of insight it can offer

for various arrangements of the data.

5.3.1 Description of Random Forest Classification Algorithm

The micro-level tip structure data and the macro-level DI phase information pro-

vided good conditions for a supervised machine learning method to study the rela-

tionship within this data set. The Random Forest model is one such method that can

be used for classification, where the micro-level tip features can be used as the pre-

dictor variables, and the macro-level phase information can be used as the response

variable. The Random Forest is an ensemble method consisting of many decision

trees that can collectively form a classification model [6, 48]. It is easy to implement,

and appropriate for large data sets, such as the 24× 3.3 million tip feature data and

the corresponding DI phase labels collected from the 2-PF MT model simulations.

Out-of-Bag (OOB) errors are used to tune the predictive model, and are used to

calculate the misclassification rates when training the model [6, 48]. OOB refers

to the separation created in the existing data between training and testing subsets,

similar to cross-validation. Each tree in the Random Forest model sets 36% of the

observations aside to test the performance of the classification model being devel-
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oped. Bootstrap aggregation (BAG), or random sampling with replacement from the

remaining tip structure observations, is used to compensate for the testing data sam-

ples, and to create a training data with the equivalent size as the original data set.

After the Random Forest model is trained, the respective testing data (the “out of

BAG” observations) for each tree is used as the input for the model, and to calculate

OOB errors, which provide collective misclassification error rates that help assess

how well the different DI phases have been classified.

To create each branch of an individual decision tree in the Random Forest model

during the training process, a random sample of the tip structure feature variables

are selected, and the most important one of those is used to make the decision at that

branch [6, 48]. This process is repeated until each branch leads to a terminal node

where one of the classes of the response variable, the DI phase classes, is selected.

Since each decision trees to reaches this point, the Random Forest model classification

does not require pruning, and thus avoids further estimates based on a probabilistic

outcome. The tree training step is repeated until the desired number of trees are

created. When the entire “forest” is used, an input observation is put through each

decision tree separately, and a majority vote from all the predicted classes is used to

decide the resulting class from the entire model [6, 48].

Another benefit of the Random Forest model is that it offers information on

variable importance. During the training process, the mean decrease in the Gini

index compares the improvement to the data dispersion before and after that variable

is used, at each branch where that variable is used throughout the forest of decision

trees [6, 48]. Those variables that are attributed a larger mean decrease in Gini index

values are considered to be more important, since they do a better job at reducing the

dispersion of the data, which indicates a better separation between points associated

with different classes.
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5.3.2 Predictive Modeling with Random Forest

The data derived from the 10-hour long 2-PF MT model simulations are used

as the training data for developing the Random Forest model. In this study, the

2-PF MT tip feature data is the input, and associate DI phase classes are the desired

output. The Random Forest model parameters that can be adjusted include the

number of trees in the forest, and mtry, the number of variables sampled when

constructing each branch of a decision tree. For training the predictive models, 1000

tree and mtry = 8 were used.

The predictive models developed in this study fall into two categories. The first

is for predicting DI phases from tip structure features, which tests the relationship

between the micro-level information on the MT structure and the macro-level poly-

mer length behavior. The second is for forecasting upcoming phase transitions by

only observing tip structures, which tests the ability to sense changes in macro-level

dynamics by only observing a short period of tip structures. In order to properly test

each Random Forest model, the tip structures information from a new 1 hour long

simulation of the 2-PF MT model using 12µM tubulin concentration levels will be

used as a testing data set. The resulting classes will be compared to DI phases iden-

tified in this new data set using the same cluster centers for the DI phases identified

in the training data from the 10 hour long simulations.

Another issue that needed to be addressed was the large difference in observa-

tions for each class. For example, in the tip-to-phase predictive models, many more

observations come from growth phases, because their typical time duration is so long

compared to stutter or shortening phases. A second example, in the phase transition

forecasting models, far fewer observations come from the transition range at the end

of each phase, which are only 5, 10, or 20 observations out of the 75+ data points

available per phase period. For this reason, observations are randomly sampled from

larger portions of the data such that the number of data points associated to each
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class in the training data is roughly the same size. Since this does not use the entire

data available, the training results were repeated for the other fractions of the large

classes, and confirmed that the resulting misclassification rates and OOB errors were

in agreement. In fact, no issues were detected in any of the model training results,

so for simplicity, the results presented in the remainder of this chapter only showcase

the outcomes for one sub-sample that even out the number of observations per class

for each model case.

5.4 Prediction and Forecasting Model Results

In this section, the results are presented for the different predictive models. The

OOB samples from the data test the performance of how each model classifies the

different DI phases, and lists the results into confusion matrices, which reports the

number of actual observations that were predicted into each of the possible DI phase

classes. The OOB errors and the misclassification rates are calculated from the corre-

sponding confusion matrices, and help determine the success of any one model. The

confusion tables and the misclassification rates are particularly helpful in segregating

the success for the different classes separately.

5.4.1 Training Tip-to-Phase Predictive Models

Results indicating the relationship between MT tip structure and their corre-

sponding DI phase is listed here. For these data sets, the growth phase observations

were about three times more than observations from stutter or shortening phases.

Random Forest has a tendency to create bias towards classes that have a much larger

number of observations, so in practice its best to train these predictive models such

that the training data has similar sizes for each class. Since the number of observa-

tions in stutters and shortening were relatively close, random samples were taken only

from the growth phases, such that the tip-to-phase predictive models were trained
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using at least 635,000 observations per phase.

The confusion matrix when the raw data from the 10 hour long 2-PF MT model

simulations was used to train the model is presented in Table 5.1(a). For this predic-

tive model, the raw data was doing a fine job of predicting shortening phases, where

about 90% of the tip structures that came from shortening phases were classified

correctly. The incorrectly classified tip structures were mostly predicted as stutters,

indicating a clear separation of 2-PF MT tip characteristics for shortening and growth

phases. The misclassification rates for stutters and growth were 32.75% and 30.98%

respectively. Having misclassification rates less than 40% indicates that there exists

some separation in the data between those two phases [6, 48]. However, the near 30%

rates are not as satisfactory as hoped, and does imply that there the 2-PF MT tips

that come from stutters and growth share a great deal of structural properties. The

stutters sharing some features with the other two phases was anticipated, since the

DI phase analysis revealed the transitional role of stutter phases. The Random Forest

model results here shows that stutters are more similar to growth than shortening

phases.

In an attempt to improve the prediction error rates, the data set was restructured

to use different variations of the simulated data from the 2-PF MT model. First,

trailing moving average data was created by averaging each of the calculated tip

features over a sequence of observations. This newly creating data can be thought

of as “remembering” the last several tip structures. The moving average window

sizes that were considered were for 11 and 21 observations. The corresponding DI

phase labels were unchanged. Tables 5.1(b) and (c) display the confusion matrices

for the trailing moving average data using a window size of 11 and 21 respectively.

It is clear that using a wider averaging window size improves the prediction results

for the stutters and growth phases, and make continued improvements to predicting
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TABLE 5.1

CONFUSION MATRICES FOR TIP-TO-PHASE PREDICTIONS

(a)

Predicted Misclass.

Shortening Stutter Growth Rate
A

ct
u

al

Shortening 572949 64824 2826 10.56%

Stutter 48621 508289 198885 32.75%

Growth 3681 194336 441127 30.98%

(b)

Predicted Misclass.

Shortening Stutter Growth Rate

A
ct

u
al

Shortening 590881 46450 3268 7.76%

Stutter 34264 578310 143216 23.48%

Growth 3484 161435 474225 25.80%

(c)

Predicted Misclass.

Shortening Stutter Growth Rate

A
ct

u
al

Shortening 612680 25458 2461 4.36%

Stutter 22174 651662 81949 13.78%

Growth 3452 107412 528280 17.35%

(d)

Predicted Misclass.

Shortening Stutter Growth Rate

A
ct

u
al

Shortening 603355 35473 1771 5.81%

Stutter 26009 627953 101814 16.91%

Growth 1751 125592 511801 19.92%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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shortening phases. In fact, using a window size of 21 observations has misclassification

rates well below 20%. The results of these predictive models indicate that increasing

the temporal range of which tip structures are observed may be beneficial to detecting

the relationship between 2-PF MT tip structures and macro-level DI phases.

The final model trained for tip-to-phase predictions makes use of the multi-

resolution data that is comprised of all the previous three data sets together: the

raw data, and both 11 and 21 observations window sizes of the trailing moving aver-

age data sets. By combing the columns of these data sets, 72 tip structure features

are considered simultaneously as the predictor variables. This requires no additional

changes for utilizing the Random Forest methodology, which is another benefit of-

fered by this approach. The results showing in Table 5.1(d) are close to, but not

better than, the 21 observation window size trailing average data case.

Comparing the different tip-to-phase prediction models to each other, the first

and most obvious result is the OOB estimate error rates. These overall error rates

improved along with the misclassification rates as larger average window sizes were

used. Also, the multi-resolution OOB error rate was good but not better than using

just the trailing moving average data with a window size of 21 observations. Figure

5.25 plots the OOB errors as more trees are added into each predictive model, and

demonstrates a convergence of error rates well before the number of trees reaches

1000. It is also worth noting that the models sets using moving average data have a

smoother convergence compared to the raw data model.

Another comparison amongst the tip-to-phase predictive models is by variable

importance. Figure 5.26 displays the mean decrease in Gini index values for each tip

feature variable. The primary list of important variables, consisting of the five most

important variables shared by the predictive models using training data from raw

and trailing moving average tip features, are a follows:
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(a) (b)

(c) (d)

Figure 5.25. OOB errors as trees are added to the Random Forest model
for predictive models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and

(d) multi-resolution data from the 10 hour 2-PF MT model simulations.
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• The ratio of the estimated GTP-cap size to the average PF Tip Lengths (Vari-
able #16)

• Rate of Hydrolysis (Variable #21)

• The estimate for how far below the GTP-cap is from the crack depth (Variable
#15)

• Total number of GTP-bound subunits in the entire MT (Variable #4)

• The estimated GTP-cap size (Variable #14)

These variables have corresponding Gini index values that are clearly stand out from

the remaining variables. These all relate to the GTP-bound subunit content available

in the MT structure, which is used to estimate the size of the GTP-cap size. In fact,

Variable #21, #4, and #14 are close to being scalar multiples of each other. The

next five important variables, which are more closely related to the features of the

tip region, the secondary list of important variables, are the following:

• Expected Rate of Subunit Loss as a function of Tip Configuration (Variable
#22)

• Percentage of the MT gated tip comprised of GTP-bound subunits (Variable
#9)

• Dispersion of GTP-bound subunits in the gated MT tip (Variable #19)

• Number of G-subunits that are GTP-bound (Variable #11)

• Percentage of all the GTP-bound subunits located in the gated MT tip region
(Variable #6)

Compared to the GTP-cap estimates, this secondary list of variables has smaller

mean decrease of Gini index values. Although, in the trailing moving average data

cases, the importance of the primary list is less drastic in the calculated importance.

Also, when comparing all of the tip feature variables together in the multi-

resolution data set, the primary list of variables from the trailing moving average

149



data sets dominate the top ten mean decrease in Gini index values. It is not until

the 11th and 12th positions that the raw data variables contribute to the important

variables list, and those again are from the primary variable list.
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(a) (b)

(c) (d)

Figure 5.26. Variable importance via the mean decrease in the Gini index
for each tip feature for predictive models trained using (a) raw tip structure

data, (b) 11 observation trailing average, (c) 21 observation trailing
average, and (d) multi-resolution data from the 10 hour 2-PF MT model

simulations.
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5.4.2 Training Phase Transition Forecasting Models

The forecasting models developed here refer to attempting to predict future dy-

namics. In particular, these models test the ability for the MT tip structures to

detect those configurations associated with specific phase transitions. This is done

by creating a new set of class labels, such that the majority of the observations

in a phase keep the same phase label, however a small set of observations in a pre-

transition range are labeled with the phase they are in, and the phase they are headed

to. Several pre-transition ranges sizes are used to compare how quickly structural

changes can manifest into phase transitions. For example, if a stutter phase followed

by a shortening phase is considered, all but the last N -many observations would keep

their “Stutter” label, and the last N -many observations in the stutter phase would

be labeled as “Stutter-to-Shortening”. By doing so, the tip features are used as the

predictor variables, and these new class labels are the response variables.

These forecasting models are repeated for N = 5, 10, and 20 observations, and

trained using the same data sets from the tip-to-phase predictive models (raw data,

trailing moving average over 11 observations, trailing moving average over 21 obser-

vations, and multi-resolution data). This creates 12 models that forecast if the MT

will continue in a specific phase, or if will transition into one of the other two DI

phases. Again, the Random Forest approach faces a challenging scenario where the

main phase classes and the pre-transition classes all have different sample sizes. For

this reason, the smallest class is used to determine the number of samples to draw

from each class when training the forecasting model.

5.4.2.1 Forecasting Transitions out of Shortening Phases

Tables 5.2, 5.3, and 5.4 display the confusion tables when training forecasting

models for shortening phases using a pre-transition range 5, 10, and 20 observations

respectively. The most successful misclassification rate is attributed to “Shortening-
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to-Stutter”classes when using a pre-transition range of 5 observations, and the 21

observation trailing average data set to train the model. “Shortening-to-Growth”

classes when trained using moving average data are also worth mentioning, since

these were the only other cases to have mislassification rates below 30%.

Figures 5.27, 5.28, and 5.29 display the corresponding OOB error plots as more

trees are added into the Random Forest model. These plots display a bit of insta-

bility in converging OOB error values, and the most stable results come from the

21 observation trailing moving average data. Though the 5 observation long pre-

transition region delivers the lowest OOB errors when using 1000 trees, using 10 and

20 observation long pre-transition regions also deliver satisfactory, and somewhat

smooth convergence results. The multi-resolution data surprisingly delivers poor re-

sults, seeming oblivious to the advantages of the moving average data it has at is

disposal.

When considered the variable importance plots in Figures 5.30, 5.31, and 5.32,

the expected tip features involving GTP-cap estimates are at the top of the list.

Additionally, in forecasting pre-transition shortening regions, the PF tip lengths and

the ratio between them appear as important gated tip features that were not as

prevalent in predictive DI phases, especially with the moving average data. The

models trained with multi-resolution data were peculiar, in that they focused on

mostly raw data information, which degraded the forecasting success rates.
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TABLE 5.2

CONFUSION MATRICES FOR FORECASTING 5 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM SHORTENING

(a)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 457 521 318 64.74%

Short. to Gr. 262 703 328 45.63%

Short. to St. 234 604 458 64.66%

(b)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 652 364 280 49.69%

Short. to Gr. 252 778 263 39.82%

Short. to St. 183 209 904 30.27%

(c)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 772 308 216 40.43%

Short. to Gr. 172 1014 107 21.58%

Short. to St. 85 87 1124 13.27%

(d)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 568 387 341 56.17%

Short. to Gr. 259 627 407 51.51%

Short. to St. 270 513 513 60.42%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.3

CONFUSION MATRICES FOR FORECASTING 10 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM SHORTENING

(a)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 736 873 797 69.41%

Short. to Gr. 457 1118 825 53.42%

Short. to St. 427 904 1045 56.02%

(b)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 1204 646 556 49.96%

Short. to Gr. 471 1474 455 38.58%

Short. to St. 341 353 1682 29.21%

(c)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 1384 580 442 42.48%

Short. to Gr. 341 1892 167 21.17%

Short. to St. 191 155 2030 14.56%

(d)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 832 861 713 65.42%

Short. to Gr. 560 1061 779 55.79%

Short. to St. 468 871 1037 56.36%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.4

CONFUSION MATRICES FOR FORECASTING 20 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM SHORTENING

(a)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 1233 1469 1851 72.92%

Short. to Gr. 759 1828 1966 59.85%

Short. to St. 706 1419 2411 46.85%

(b)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 2120 1322 1111 53.44%

Short. to Gr. 972 2660 921 41.58%

Short. to St. 707 747 3082 32.05%

(c)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 2723 1086 744 40.19%

Short. to Gr. 676 3520 357 22.69%

Short. to St. 414 283 3839 15.37%

(d)

Predicted Misclass.

Short. Short. to Gr. Short. to St. Rate

A
ct

u
al

Short. 1341 1543 1669 70.55%

Short. to Gr. 853 1866 1834 59.02%

Short. to St. 727 1601 2208 51.32%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.27. OOB errors as trees are added to the Random Forest model
for forecasting 5 observation long regions of pre-transition shortening,
trained using (a) raw tip structure data, (b) 11 observation trailing

average, (c) 21 observation trailing average, and (d) multi-resolution data
from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.28. OOB errors as trees are added to the Random Forest model
for forecasting 10 observation long regions of pre-transition shortening,

trained using (a) raw tip structure data, (b) 11 observation trailing
average, (c) 21 observation trailing average, and (d) multi-resolution data

from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.29. OOB errors as trees are added to the Random Forest model
for forecasting 20 observation long regions of pre-transition shortening,

trained using (a) raw tip structure data, (b) 11 observation trailing
average, (c) 21 observation trailing average, and (d) multi-resolution data

from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.30. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 5 observation long regions before

transitioning out of shortening, trained using (a) raw tip structure data,
(b) 11 observation trailing average, (c) 21 observation trailing average, and

(d) multi-resolution data from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.31. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 10 observation long regions before
transitioning out of shortening, trained using (a) raw tip structure data,

(b) 11 observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.32. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 20 observation long regions before
transitioning out of shortening, trained using (a) raw tip structure data,

(b) 11 observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from the 10 hour 2-PF MT model simulations.
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5.4.2.2 Forecasting Transitions out of Stutter Phases

Tables 5.5, 5.6, and 5.7 display the confusion tables when training forecasting

models for stutter phases using a pre-transition range 5, 10, and 20 observations

respectively. Forecasting transitions out of stutter phases was the most successful out

of the three DI phases. The most successful misclassification rates are attributed to

“Stutter-to-Growth” classes when using a pre-transition range of 5 observations, and

the 21 observation trailing average data set to train the model, this phase transition

had misclassification rates less than 10%. “Stutter-to-Shortening” classes also had

good misclassification rates, especially when using the 21 observation trailing average

data set to train the model.

Figures 5.33, 5.34, and 5.35 display the corresponding OOB error plots as more

trees are added into the Random Forest model. These plots also display a bit of

instability in converging OOB error values, though much less than the other two

DI phases. Though the 20 observation long pre-transition region delivers the lowest

OOB errors when using 1000 trees, using 5 and 10 observation long pre-transition

regions also deliver satisfactory results with less than 20% error rates. The models

trained with 11 observation long average data also deliver good results, with error

rates near the 20% range.

When considered the variable importance plots in Figures 5.36, 5.37, and 5.38, the

tip features involving GTP-cap estimates dominate top of the list. The ratio between

PF tip lengths is present again, but the gated-tip features are far less present here

than when compared to the forecasting phase transitions out of shortening case. Once

again, the models trained with multi-resolution data was caught up focusing on raw

data information, which did not help the success rates.
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TABLE 5.5

CONFUSION MATRICES FOR FORECASTING 5 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM STUTTERS

(a)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 975 309 262 36.93%

Stut. to Gr. 186 1107 243 27.93%

Stut. to Sh. 241 285 955 35.52%

(b)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 1100 209 238 28.89%

Stut. to Gr. 32 1425 79 7.23%

Stut. to Sh. 192 179 1111 25.03%

(c)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 1139 164 245 26.42%

Stut. to Gr. 12 1499 25 2.41%

Stut. to Sh. 168 122 1190 19.59%

(d)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 1025 291 232 33.79%

Stut. to Gr. 187 1153 196 24.93%

Stut. to Sh. 229 222 1026 30.53%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.6

CONFUSION MATRICES FOR FORECASTING 10 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM STUTTERS

(a)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 1749 504 536 37.29%

Stut. to Gr. 314 1935 567 31.29%

Stut. to Sh. 512 688 1578 43.20%

(b)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 2010 357 422 27.93%

Stut. to Gr. 67 2593 156 7.92%

Stut. to Sh. 410 339 2029 26.97%

(c)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 2092 263 434 24.99%

Stut. to Gr. 21 2734 61 2.91%

Stut. to Sh. 305 185 2287 17.64%

(d)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 1818 474 497 34.82%

Stut. to Gr. 308 2017 491 28.37%

Stut. to Sh. 463 599 1714 38.26%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.7

CONFUSION MATRICES FOR FORECASTING 20 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM STUTTERS

(a)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 3436 962 1004 36.39%

Stut. to Gr. 618 3620 1138 32.66%

Stut. to Sh. 1087 1426 2803 47.27%

(b)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 3899 610 893 27.82%

Stut. to Gr. 161 4834 381 10.08%

Stut. to Sh. 775 700 3843 27.74%

(c)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 4109 434 859 23.94%

Stut. to Gr. 63 5206 107 3.16%

Stut. to Sh. 582 323 4412 17.03%

(d)

Predicted Misclass.

Stut. Stut. to Gr. Stut. to Sh. Rate

A
ct

u
al

Stut. 3447 940 1015 36.19%

Stut. to Gr. 651 3620 1105 32.66%

Stut. to Sh. 993 1391 2933 44.84%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.33. OOB errors as trees are added to the Random Forest model
for forecasting 5 observation long regions of pre-transition stutters, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.34. OOB errors as trees are added to the Random Forest model
for forecasting 10 observation long regions of pre-transition stutters, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.

168



(a) (b)

(c) (d)

Figure 5.35. OOB errors as trees are added to the Random Forest model
for forecasting 20 observation long regions of pre-transition stutters, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.36. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 5 observation long regions before
transitioning out of stutters, trained using (a) raw tip structure data,

(b) 11 observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.37. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 10 observation long regions before
transitioning out of stutters, trained using (a) raw tip structure data,

(b) 11 observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.38. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 20 observation long regions before
transitioning out of stutters, trained using (a) raw tip structure data,

(b) 11 observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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5.4.2.3 Forecasting Transitions out of Growth Phases

Tables 5.8, 5.9, and 5.10 display the confusion tables when training forecasting

models for growth phases using a pre-transition range 5, 10, and 20 observations

respectively. Forecasting transitions out of growth phases was better than the short-

ening cases. The most successful misclassification rates are attributed to “Growth-

to-Shortening” classes when using a pre-transition range of 10 observations, and the

21 observation trailing average data set to train the model. Even so, all cases trained

with averaged data had misclassification rates not much more than 10%. “Growth-to-

Stutter” classes also had good results when using the 21 observation trailing average

data set to train the model.

Figures 5.39, 5.40, and 5.41 display the corresponding OOB error plots as more

trees are added into the Random Forest model. These plots also display a bit of

instability in converging OOB error values, much less than the shortening case, but

not as stable as the stutters case. The 10 and 20 observation long pre-transition region

deliver similarly low OOB errors when using 1000 trees, though using 5 observation

long pre-transition regions also delivers satisfactory results with about 16% error

rates. The models trained with average data over 11 observations also deliver good

results, with error rates near 20%.

When considered the variable importance plots in Figures 5.42, 5.43, and 5.44,

the tip features involving GTP-cap estimates dominate top of the list again. The

ratio between PF tip lengths and the rate of subunit loss appear to be important for

forecasting transitions out of growth phases, and so do some details about the longer

PF tip, such as the dispersion of GTP-bound subunits and the percentage of subunits

in the PF tip being GTP-bound. Again, the models trained with multi-resolution

data did not have satisfactory results.
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TABLE 5.8

CONFUSION MATRICES FOR FORECASTING 5 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM GROWTH

(a)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1010 289 374 39.63%

Grow. to Sh. 341 1061 302 37.73%

Grow. to St. 496 382 784 52.83%

(b)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1011 241 421 39.57%

Grow. to Sh. 87 1534 83 9.98%

Grow. to St. 313 219 1130 32.01%

(c)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1075 217 381 35.74%

Grow. to Sh. 54 1625 25 4.64%

Grow. to St. 263 131 1268 23.71%

(d)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 973 289 411 41.84%

Grow. to Sh. 281 1133 290 33.51%

Grow. to St. 439 374 849 48.92%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.9

CONFUSION MATRICES FOR FORECASTING 10 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM GROWTH

(a)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1441 816 873 53.96%

Grow. to Sh. 527 2080 517 33.42%

Grow. to St. 762 784 1604 49.08%

(b)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1817 476 837 41.95%

Grow. to Sh. 169 2811 144 10.02%

Grow. to St. 589 315 2246 28.70%

(c)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1924 387 819 38.53%

Grow. to Sh. 69 3000 55 3.97%

Grow. to St. 447 160 2543 19.27%

(d)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 1528 726 876 51.18%

Grow. to Sh. 514 2070 540 33.74%

Grow. to St. 784 728 1638 48.00%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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TABLE 5.10

CONFUSION MATRICES FOR FORECASTING 20 OBSERVATION

LONG REGIONS BEFORE TRANSITIONING FROM GROWTH

(a)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 2549 1736 1620 56.83%

Grow. to Sh. 1157 3867 940 35.16%

Grow. to St. 1595 1549 2830 52.63%

(b)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 3299 972 1634 44.13%

Grow. to Sh. 390 5302 272 11.10%

Grow. to St. 1116 559 4299 28.04%

(c)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 3651 744 1510 38.17%

Grow. to Sh. 193 5680 91 4.76%

Grow. to St. 800 300 4874 18.41%

(d)

Predicted Misclass.

Grow. Grow. to Sh. Grow. to St. Rate

A
ct

u
al

Grow. 2611 1575 1719 55.78%

Grow. to Sh. 1121 3835 1008 35.70%

Grow. to St. 1553 1493 2928 50.99%

These results were obtained from models trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and (d) multi-resolution
data from the 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.39. OOB errors as trees are added to the Random Forest model
for forecasting 5 observation long regions of pre-transition growth, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.40. OOB errors as trees are added to the Random Forest model
for forecasting 10 observation long regions of pre-transition growth, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.41. OOB errors as trees are added to the Random Forest model
for forecasting 20 observation long regions of pre-transition growth, trained
using (a) raw tip structure data, (b) 11 observation trailing average, (c) 21
observation trailing average, and (d) multi-resolution data from the 10 hour

2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.42. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 5 observation long regions before

transitioning out of growth, trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.43. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 10 observation long regions before

transitioning out of growth, trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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(a) (b)

(c) (d)

Figure 5.44. Variable importance via the mean decrease in the Gini index
for each tip feature when forecasting 20 observation long regions before

transitioning out of growth, trained using (a) raw tip structure data, (b) 11
observation trailing average, (c) 21 observation trailing average, and
(d) multi-resolution data from 10 hour 2-PF MT model simulations.
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

A computational modeling approach was utilized in order to investigate how the

MT tip structure contributed to DI phase changes observed in length history data.

First, the previous version of the detailed 13-PF MT model was extended in order

to simulate all the MT structural states possible resulting from a realistic sequence

of molecular reaction events. The older detailed 13-PF MT model implemented an

approximation that allowed multiple hydrolysis events to occur at a given time, which

effectively skipped over MT structure states. This approximated implementation

searched through the entire MT structure to find hydrolyzable GTP-bound subunits,

and then sampled a different random number for each one to stochastically determine

if that subunit underwent hydrolysis. Simultaneous hydrolysis reactions was utilized

due to the high computational cost associated with finding hydrolyzable GTP-bound

subunits.

The extended 13-PF MT model presented in this dissertation removes this ap-

proximation and executes the Gillespie algorithm, which treats hydrolysis the same

as every other reaction event, only allows for one reaction to occur at a time, and

therefore delivers a bio-chemically exact trajectory of MT structural states. To re-

duce computational costs, the extended model tracks the hydroyzable GTP subunits

available in each PF at a given time, thus avoiding a search through the entire MT

structure. This allows for a faster computation of the hydrolysis rate used in the

Gillespie algorithm, and only requires two random numbers to be sampled: one to

select a PF, and another to select which GTP-bound subunit within that PF that will
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undergo hydrolysis. So, the extended 13-PF MT model is able to simulate the same

DI behavior as the previous detailed 13-PF MT model, without an approximation

requiring simultaneous hydrolysis reactions, and without additional computational

cost.

Additionally, different features describing the MT tip region were calculated from

the simulated MT structural states, and included as part of the simulation output in

order to take advantage of the perspective offered by computational models, which

are not currently available in the laboratory. However, the 13-PF MT model has

complex tip structures with a large number of possible tip configurations, which

make it difficult to conduct this study at this time. So, the 2-PF MT model was

developed as a simplified version of the extended 13-PF MT model to help make

studying the tip structure more tractable. The 2-PF MT structure uses only two

PFs, and allows for a single sequence of lateral bonds between them, which is the

minimum structure needed while still considering lateral bonds. Furthermore, the

2-PF MT structure does not have a seam, which removes the need for seam lateral

bond forming and breaking rates in the model parameter list.

Despite this simplification, the 2-PF MT model used the relevant model param-

eter values similar to that of the extended 13-PF MT model to successfully simulate

DI behavior. Moreover, the critical concentration of tubulin levels that deliver the

unbounded growth regime was in a similar range for both the 13- and 2-PF MT

models. So, a 10-hour long simulation of the 2-PF MT model using a tubulin con-

centration level of 12µM provided a statistically significant amount of length history

data with DI behavior. In addition the MT lengths, over 4.6 million reaction events

provided micro-level structural information, and from this 24 features of the tip re-

gion structure were calculated for each observation. This 4.6 million×24 matrix was

the micro-level MT tip structure data used for the analysis portions of this study.

A novel computational tool to identify, classify, and analyze DI phases was devel-
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oped to address the high frequency and low amplitude fluctuations in length history

data. This tool is applicable to data obtained by using the detailed leveled com-

putational model simulations in this study, as well as recent experimental data sets

that have been collected by using microscopy equipment with improved temporal

and spatial resolutions. This DI phase classification tool is an important part in

this study, since the ultimate goal is to establish the relationship between micro-level

structures and macro-level DI phases and transitions. Previous methods for identi-

fying DI phases cannot be applied for determining the exact moments when phase

transitions occur. Additionally, the resulting approximations of the rates of change

of the MT length are not good enough for our study, since periods with smaller rates

of change were observed at finer time resolutions, and they were not accounted for

as separate periods.

An unsupervised machine learning approach was used to develop an automated

method to identify, classify, and analyze macro-level phases using length history

data with DI behavior. This novel approach eliminated much of the inaccuracies

and inconsistencies of older, non-automated methods that were tainted with human

error. Application of the novel unsupervised method resulted in the discovery of

periods with rates of change of the MT length that were smaller in magnitude than

classically understood growth and shortening phases. These intermediate phase are

called stutters. Applying this new method to both 13- and 2-PF MT model simulated

data revealed that these stutters not only occur over time durations comparable to

the ones for shortening phases, but they also are present during catastrophe events

and provide transitions between growth and shortening. The bi-phase assumptions

of previous methods that only considered growth and shortening phases made them

overlook these stutters. This provides new insights to catastrophe events, which

are now understood to occur less suddenly than previously thought, and possibly

require some changes to the MT structure prior to beginning a rapid shortening
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period. Additionally, stutters observed as part of catastrophes are analogous to some

“slow-down” periods observed to occur before the shortening period starts as part

of catastrophe events in recent experimental data [21]. However, these findings have

only been part of a discussion without explicitly quantifying their rates or frequency

of occurrence, since the older methods for extrapolating DI parameters overlooked

a third possible phase. The new method for classifying and analyzing DI phases

presented in this dissertation does not make any assumptions about the number of

phases present in a length history data, and thus is appropriate to make accurate

calculations describing DI behavior in high frequency length history data. Also, this

method is applicable to any DI data set, sourced either from laboratories or from

simulations. The conclusions on stutters presented here were limited to simulations

from the 13- and 2-PF MT models. Experimental data is currently being collected

so that the presented DI phase analysis method can be applied to in vitro data using

pure tubulin experiments, and thus adding to the biological relevance of stutter phases

results found in this dissertation.

The DI phases identified in the 10 hour long 2-PF MT model simulations provided

macro-level DI phase classes for each of the tip structures in the 4.6 million micro-

level observations in the simulated data. To test the relationship between the micro-

and macro-level data, a supervised machine learning approach was used. First, the

micro-level tip structure features were treated as predictor variables, and the macro-

level phase classes were treated as response variables. The results indicated that the

2-PF MT tip structure features were indeed capable of predicting the corresponding

DI phase during which they occurred, as displayed the confusion matrices in Ta-

ble 5.1. However, these results were significantly improved when a moving average

window of the tip feature data was used as the predictor variables, resulting in the

misclassification rates being below 20%. It’s worth noting that the shortening phase

observations were far more successfully predicted (≤ 5%). The reduced success of
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the detection of growth and stutter phases indicated some overlap in the distribution

of tip structure features, which adds to the difficulty of distinguishing a separation

between the two phases. Nevertheless, those tip features involving the GTP-cap size

estimates were particularly capable of predicting DI phases.

Previous studies indicated that the cracked tip region and the tubulin subunits

near the bottom of the crack are important factors in determining DI phase transi-

tions like catastrophes [47]. The tip features calculated for the data set used here

was inspired by those results. The variable importance results for the tip-to-phase

predictive models in Figure 5.26 showed that the estimated size of the GTP-cap

plays an overwhelming role in determining DI phases when compared to the other

tip structure features. More specifically, the mean decrease in Gini index values drop

off after the top five most important tip structural features, which are listed in Sec-

tion 5.4.1. Future work should consider portions of the MT tip structure that go

farther below the cracked region so that more details of the GTP-rich portions of

the MT structure is collected. The GTP-cap information used in this study were

just estimates, and a better understanding can benefit from additional information.

This is admittedly a difficult task, especially considering the lack of a clear boundary

between the GTP-cap and the rest of the MT structure. Rather, information like the

location for the lowest GTP-bound subunit, local GTP-bound subunit density, and

general information of how the GTP-subunits are dispersed would be some ways of

calculating this information from simulated data.

Finally, the transitions between DI phases were studied. The last few observations

at the end of each phase period were labeled considering the future phase into which

the transition was to occur. The observations that were not in this transition range

had unchanged labels representing their corresponding DI phase. These phase transi-

tion labels were now used as the response variables for conducting predictive test for

the three DI phases separately. The overall results showed an improvement in mis-
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classification rates when using the moving average data as before. In some cases, an

interesting improvement was observed when the transition range was reduced. This

improvement could indicate that certain transitions between phases may be taking

places more rapidly than others, which require fewer structural modifications to ef-

fectively alter the macro-level rates of change to the MT length. Additionally, overall

results for transitions out of stutter phases were the most successfully predicted. The

specific phase transitions that had the lowest misclassification rates were “Stutter-

to-Growth” and “Growth-to-Shortening” classes. Detecting transitions successfully

between shortening and the other two phases was expected, since the tip-to-phase

predictive models indicated a good separation between shortening tip structures and

the rest of the data. However, the best results coming from transitions between

growth and stutters was quite unexpected due to the large overlap in the MT tip

features for those two phases.

In order to improve the limited success presented in the results of the forecasting

methods, a different approach can be taken for detecting upcoming phase transitions.

The approach used here considered a set number of observations at the end of a phase

as a pre-transition region, which may have inherited some dependencies between the

response variable observations. Instead, a forecasting model regressing upon each

observation individually to predict the future phase class of the very next observation

in a sequence can serve to be more appropriate. These newer forecasting models can

be constructed by including a varying number of observations for each sequence of

predictor variables. This would part of a first step required to reduce the number

of predictor variables by seeking the significance level of coefficients, and cutting off

the sequence at that point. Additionally, confidence intervals can be used to describe

the likelihood for predicting the phase classes for a number of subsequential states,

and not just one observation in the future. After the necessary number of past

observations has been determined, then variable reduction methods can be used to
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determine which of the MT tip structure features are most successful in dictating the

future DI phase. Similar to the conclusions made here, these important tip features

will provide insight to the mechanisms involved with different types of DI phase

transitions.

In the future, numerical experiments can be conducted to verify these phase tran-

sition results. By identifying specific structures associate with individual phase tran-

sitions and using them as initial conditions, multiple simulations can be run to calcu-

late the likelihood of phase transition that are anticipated for each MT tip structure.

Also, phase transition studies can be expanded to include more details in the forecast-

ing models. Instead of using the trailing moving average data, all of the tip features

from every past observations can be combined to create the predictor variables, and

the DI phase in the very next time step can be the response variable. This would cre-

ate a truer forecasting model that would test the prediction of future phase classes by

relying on past MT tip structure features. However, the difficulty in this task would

be to determine an appropriate time window for including past tip data. The insight

from this study would suggest that the past data window would be relatively short,

but using decaying weighting coefficients may also serve as a beneficial compromise

in using observations from past time steps.

Other future work could include repeating this study for MT tip features of 13-PF

MTs. In fact, many of the tip feature formulations used for the 2-PF MT case were

treated with care and knowledge so that they may be used to characterize 13-PF

MT tip structures as well. Some tip features only apply to individual PFs, some

apply to the crack region between PFs, and some are for the entire MT tip. To avoid

complications in cases where the lateral bond height is asymmetrical around a given

PF tip, structural features may be determined for neighboring pairs of PFs separately,

hence extending the 2-PF concepts directly. The 13-PF MT tip structures would

certainly yield a larger number of variables, however predictive modeling methodology
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can be repeated very easily, since the Random Forest approach is well suited for

handling large data.

Presence of the stutter phases have certainly exposed some interesting aspects of

the DI behavior overlooked in previous studies, such as rates of MT length change

being inconsistent with the assumption that only growth and shortening phases exist,

that growth and shortening occur with near uniform rates, and that catastrophe

events are sudden transitions. The transitional role of stutters during catastrophe

demonstrates the impact of the structural changes on the MT without altering it’s

length. Once a MT is in a stutter phase, the ability to detect an oncoming macro-

level change is far easier when observing the changes taking place in the MT tip

structure, mostly related to the GTP-cap size, but also to the dispersion of GTP-

bound subunits in the cracked tip region. As laboratory conditions improve, and finer

resolution images can be captured at specific instances during MT dynamics, future

experiments can be conducted to verify the structural characteristics that correspond

to different DI phases.

Also, the results on stutter phases can relate to future work dealing with MT

binding proteins that can alter MT dynamic behavior. It could be highly beneficial

to engineer binding proteins to detect and attach to the structures associated with

stutter phases. After all, MT binding proteins are known for their ability to encour-

age stabilizing bond formation to promote growth, or they can assist in destabilizing

bond breakage to promote shortening instead. After attaching to stutter-type MT

structures, a binding protein has an increased chance of success in altering MT be-

havior as it desires, because the results of this study indicate a higher success rate of

predicting transitions out of a stutter phase. Hopefully, this approach could inspire

treatments for combating diseases that affect MT dynamics, which can be used to

regain a healthy regime of DI behavior.
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APPENDIX A

GLOSSARY OF TERMS

• AG-subunit: the subunit positioned immediately above the G-subunit

• BAG = Bootstrap aggregate: a method for regaining the original training data
size by averaging over the variables of the observations that remain after removing
a subset to create a testing data set

• Catastrophe: the moment where a microtubule transitions from a growth to a
shortening period

• Crack: the space defined by the laterally unbonded section between protofilaments

• Crack-depth: the size of a crack defined by the shorter of the protofilament tips
that create the boundary of the crack

• Cracked MT-tip: the combination of protofilament tips

• DI = Dynamic instability: the characteristic behavior of microtubules, where the
microtubule length undergoes transitions between sustained periods of growth and
rapid shortening

• Gap statistic: a measurement of inter-cluster dispersion used to determine the ideal
number of clusters in conjunction with the k-means clustering method

• Gate: the interface between the sequence of lateral bonds and the crack

• Gated MT-tip: the cracked MT-tip combined with the G-subunits

• GDP-bound = Guanosine-diphosphate bound: the low energy nucleotide bound
state of a tubulin dimer subunit that promotes bond breaking

• GTP-bound = Guanosine-triphosphate bound: the energy carrying nucleotide
bound state of a tubulin dimer subunit that promotes stable bonds
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• GTP-cap: the region near the tip of a microtubule that has a high concentration
of GTP-bound subunits

• G-subunit: the subunit within a protofilament connected by the top-most lateral
bond located at the gate

• k-means: an unsupervised machine learning approach used clustering data

• Lateral bond height: the length of the consecutive sequence of lateral bonds be-
tween protofilaments

• MT = Microtubule: a helical tubelike biopolymer made of protofilaments held
together with lateral bonds

• PF = Protofilament: a sequence of tubulin dimer subunits held together by longi-
tudinal bonds

• PF-tip = Protofilament tip: the sequence of laterally unbonded subunits at the tip
of a protofilament, adjacent to the crack

• OOB-errors = Out-of-BAG-errors: misclassification errors used to assess a Random
Forest model prediction ability on the testing data left out of the BAG training
data

• Random Forest: a supervised machine learning method used for classification as
part of the predictive modeling

• Rescue: the rare moment where a microtubule transitions from a shortening to a
growth period

• Seam: the sequence of lateral bonds between the first and last protofilaments,
where the 1.5 dimer shift creates the helical pattern of a microtubule

• Stutter: an intermediate phase of dynamic instability, during which the overall
microtubule length changes are small and the rates of length change are smaller in
magnitude than those seen in classically observed growth and shortening phases

• Tip feature: a property of a microtubule tip structure used as a predictor variable
when constructing predictive models
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