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GENOMIC ANALYSES OF ANOPHELINE MOSQUITOES: MICRO- AND MACRO-

GEOGRAPHIC POPULATION STRUCTURE OF TWO IMPORTANT MALARIA VECTORS 

 

Abstract 

 

by 

 

Rachel M. Wiltshire 

Malaria continues to be a major public health issue. 219 million cases and 

435,000 deaths were estimated to have occurred in 2017. Disease transmission is a 

complex epidemiological interaction comprising causal factors that are dependent 

on local conditions; however, the host-vector-parasite association remains constant. 

This dissertation explored how the genetic and bionomic behaviors of two 

important anophelines might respond to alternative control interventions in 

attempts to interrupt sustained malaria transmission. 

Genetically modified (GM) mosquitoes have been demonstrated as a form of 

innovative vector control. To advance into field trials, a genetic assessment of the 

target population must be conducted. Six Anopheles gambiae populations were 

sampled from the Lake Victoria basin and sequenced. 5,175 single nucleotide 

polymorphism (SNP) markers were analyzed. Principal components analysis (PCA) 

illustrated individuals clustered according to geography with some intersection. 

Genetic differentiation (FST) was variable with inter-island comparisons having the 
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highest values (0.0480-0.0846). Estimates of effective size were small (124.2-

1920.3). These results indicated that three island populations could be candidates 

for small-scale field testing of GM mosquitoes. 

A genome-wide approach to the analysis of population structure has the 

power to identify genetic processes (such as restricted gene flow or an insecticide-

resistant genotype) and the genomic regions that regulate them, providing greater 

insight into how these mechanisms will impact upon control interventions. A 

preliminary analysis of 17,757 SNPs across four An. farauti populations in the 

southwest Pacific confirmed their geographic isolation from each other but also 

detected a previously unidentified genetic association between, and lack of diversity 

within, Queensland (Australia) and Vanuatu (PCA, ADMIXTURE). Further detailed 

analysis of the SNPs contributing to this relationship is recommended. 

In Western Province, Solomon Islands, a proportion of An. farauti 

mosquitoes, which may be contributing to residual transmission, avoid lethal doses 

of insecticide from long-lasting insecticidal nets. Sugar-fermented yeast was 

evaluated as an organic source of carbon dioxide (CO2) trap attractant to host-

seeking and resting mosquitoes alongside human-produced CO2 and a control. 

Although the human attracted the greatest numbers (n=349), sugar-fermented yeast 

(n=210) demonstrated attractiveness, and improvements to the source design i.e.  

plume composition and delivery, could further enhance its appeal. 
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CHAPTER 1:  

 

MALARIA: A MOST PERSISTENT PARASITIC PROBLEM 

1.1 Biology, transmission, disease 

Contrary to popular belief—that malaria is transmitted by mosquitoes—

malaria is actually the status of being infected with apicomplexan parasites of the 

genus Plasmodium, which are transmitted to humans by the bite of anopheline 

mosquitoes. It is against both of these organisms that control interventions are 

targeted. 

Malaria is a complex disease. The five Plasmodium species (spp.), which 

infect humans (Homo sapiens) have demonstrated extraordinary ability in 

manipulating their mosquito hosts to maximize transmission i.e. P. falciparum-

infected Anopheles gambiae sensu lato mosquitoes demonstrated larger, and more 

frequent, blood meals than uninfected, thus allowing the parasite to be transmitted 

more rapidly among human hosts (Koella, Sørensen, and Anderson 1998). 

Additionally, there are approximately 41 dominant species of Anopheles mosquitoes 

(Sinka et al. 2012) with the vectorial competence (intrinsic ability to support 

successful parasite replication and transmission) to transmit Plasmodium species, 

each with discrete bionomic behaviors that allow them to fully exploit their 
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ecological niche. Transmission is further complicated by the differing 

epidemiological settings that are generated as a result of endemicity—the 

quantification of malarial risk (Hay, Smith, and Snow 2008). This measurement is 

reliant on human-vector interactions, which themselves can be variable and 

complex i.e. the ability of Anopheles gambiae to tolerate aridity through changing 

chromosomal inversion frequencies in seasonal patterns (Coluzzi et al. 1979) and 

latitudinal clines (Coluzzi et al. 1979; Cheng et al. 2011). It follows, therefore, that 

malaria programs must consider, and understand these complexities in the planning 

and implementation of their control strategies. 

1.2 A numbers game 

Malaria is an ancient malady that has plagued humans for centuries. (P. 

Russell 1955; Hoeppli 1959; Bruce-Chwatt 1965; Carter and Mendis 2002). 

Estimates have been made to assess its impact on humanity with six billion deaths 

being attributed to malaria-related mortalities in the last century alone (Carter and 

Mendis 2002). Today, malaria remains a major public health problem—especially in 

sub-Saharan Africa—with the World Health Organization (WHO) estimating that 

219 million cases of malaria and 435,000 deaths occurred in 2017 (World Health 

Organization 2018d). Infants under the age of five years are the most vulnerable 

individuals, and mortalities in this group (266,000) account for nearly two thirds 

(61%) of the total malaria deaths (World Health Organization 2018d), supporting 

the assertion that a child dies of the disease every two minutes (World Health 

Organization 2017e). However, mortality and morbidity figures have reduced 
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significantly over the past decade due to dedicated investment in the development, 

and expansion, of control interventions such as long-lasting insecticidal nets 

(LLINs), indoor residual spraying (IRS), artemisinin combination therapies (ACTs), 

and health education, and these hard-won gains must be sustained through the 

adoption of effective prevention and control management strategies that are 

appropriate to the malaria situation experienced by each country. 

Elimination (defined as reporting zero indigenous cases for three 

consecutive years) is possible—as demonstrated most recently by Kyrgyzstan 

(2016), Sri Lanka (2016), and Paraguay (2018)—and as the number of countries 

reporting fewer than 10,000 malaria cases has increased, the prospects of global 

elimination appear encouraging. However, it should be noted that none of these 

countries shoulder the burden like sub-Saharan Africa, who contributed an 

estimated 49% of global malaria-related mortality in 2017 (World Health 

Organization 2018d). 

1.3 Disease management: present day 

1.3.1 Asymptomatic infections 

Malaria as a disease can be defined as infection with Plasmodium parasites—

a condition known as parasitemia. Not all infections, however, produce clinical 

sequelae but these asymptomatic individuals are important in the community since 

their parasitemia acts as a reservoir of infection that enables malaria vectors to 
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maintain transmission. It is crucial, therefore, that these carriers are identified, and 

treated, especially in regions where elimination is the target outcome. 

1.3.2 Clinical malaria 

Symptomatic infections are managed according to the severity of clinical 

sequelae. Uncomplicated malaria is characterized by classical fever, which cycles in 

tertian (2-day) or quartan (3-day) patterns according to the Plasmodium species 

that caused the infection. If left untreated, hepato- and splenomegaly develop 

alongside anemia (due to schizont rupture and erythrocytic destruction) but the 

natural infection resolves itself after several weeks as long as the individual is not 

immunocompromised. Response to treatment is usually rapid with symptom 

resolution occurring within 3-days (N. White 2009). If the infection is caused by P. 

vivax or P .ovale, then an opportunity for recrudescence presents itself due to the 

parasites’ ability to remain latent as hypnozoite form in hepatocytes. Relapses are 

unpredictable and can occur months or even years after initial infection. These are, 

therefore, another important source of infection to malaria vectors since 

hypnozoites are parasite reservoirs. 

Complicated, or severe malaria is almost always caused by P. falciparum, 

which the literature also refers to as falciparum malaria. Major complications of 

severe malaria include cerebral malaria, pulmonary edema, acute renal failure, 

severe anemia, hemorrhaging, metabolic acidosis, and hypoglycemia. Any of these 

symptoms can rapidly develop together or in succession, leaving the patient at risk 

of death within the space of a few hours (Trampuz et al. 2003). Cerebral malaria is 



 

 5 

the most prominent feature of severe falciparum malaria. The parasite’s unique 

ability to express surface antigens, such as Plasmodium falciparum Erythrocyte 

Membrane Protein 1 (PfEMP1) on host P. falciparum-infected erythrocytes (Baruch 

et al. 1995), enables cytoadherence in the cerebral microvasculature causing 

obstruction of blood flow, which likely leads to hypoxia, cerebral edema, and raised 

intracranial pressure resulting in impaired consciousness, long-term neurological 

deficits, coma and death. Untreated, cerebral malaria is nearly always fatal. 

1.3.3 Strategy 

A renewed global commitment to malaria control was adopted at the 

beginning of the millennium after the previous two decades (1970-1998) had 

witnessed a deteriorating situation in which the number of annual malaria-related 

deaths had tripled to an estimated 1 million (World Health Organization 2010). 

Reasons for the lack of progress in research and control approaches that possibly 

contributed to these numbers include fragmented efforts that often undermined 

each other as a result of incoherency between development partners and malaria 

programs (Nabarro and Tayler 1998). A revised strategy—the Roll Back Malaria 

(RBM) initiative—was developed with the principal objective of strengthening 

national health services through the integration of malaria-related activities across 

the sector (World Health Organization 1993). The global strategy prioritized a 

reduction in morbidity and mortality rates through the adoption of four key 

technical components, which sought to: 
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1. Provide early diagnosis and prompt treatment 

2. Plan and implement selective and sustainable preventive measures, 
including vector control 

3. Prevent, or detect and contain epidemics early 

4. Strengthen local research capacities to permit and promote regular 
national assessment of a malaria situation in particular its ecological, 
social, and economic determinants 

Tangible gains were, and continue to be, realized as evidenced by a decline in 

the estimated numbers of annual malaria cases (262 million-219 million) and 

deaths (839,000-435,000) between 2000-2017 (World Health Organization 2015c, 

2018d). Additionally, intangible successes were quantified with an estimated 663 

million clinical cases averted through the increased coverage of malaria control 

interventions (Bhatt et al. 2015) further endorsing the RBM strategy. 

1.3.4 Prevention 

1.3.4.1 Intermittent preventive therapy (IPT) 

Antimalarial chemoprophylaxis is administered in endemic areas of sub-

Saharan Africa with sulfadoxine-pyrimethamine (SP) to suppress erythrocytic 

stages thus, protecting the most vulnerable individuals from the pathophysiological 

effects of P. falciparum infection. However, in spite of evidence that supports a 

reduction in the severity of clinical sequelae (Conteh et al. 2010; Kayentao et al. 

2013) together with endorsement as a standard anti-malarial health practice 

(World Health Organization 2017d, 2018b), adoption of IPT-SP for pregnant women 
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(IPTp) (Yaya et al. 2018) and infants (IPTi) (World Health Organization 2017c) has 

been disappointing. 

1.3.4.2 Seasonal malaria chemoprevention (SMC) 

SMC is a specialized program targeted at infants aged between 3-59 months 

who are exposed to the high seasonal transmission rates encountered in the 

ecoclimatic Sahel region of northern Africa. Implementation of therapy with SP + 

amodiaquine (AQ) commences at the beginning of the transmission season and 

continues intermittently throughout—up to a maximum of four doses—on the basis 

that both antimalarial drugs retain sufficient efficacy against P. falciparum (World 

Health Organization 2013). SMC was scaled-up in 2016-2017 reaching an estimated 

15.7 million infants from a target population of approximately 29.3 million. 

Financial constraints was provided as an explanation for lack of coverage (13.6 

million) (World Health Organization 2018d). 

1.3.4.3 Vector control (adults) 

By far the most extensively implemented and effective preventive strategy—

as illustrated by the impact on the reduction of P. falciparum infections in Africa 

(Bhatt et al. 2015)—is control of the mosquito vector. A significant proportion of 

donor funding has been, and continues to be, allocated to the procurement of 

insecticides for indoor residual spraying (IRS) operations and the provision of long-

lasting insecticidal nets (LLINs), which is indicated by the percentage of budget 

expenditure e.g. 39% by the Global Fund to Fight AIDS, Tuberculosis and Malaria 
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(2009) and 59% of the President’s Malaria Initiative (2010) (Roll Back Malaria 

Partnership 2010). Improving coverage and use of these interventions (due to their 

high efficacy, relatively low cost, operational simplicity, and scalability) has been a 

key target of malaria control programs over the last 10-15 years, and this strategy 

has successfully contributed to 80% of the reduction in P. falciparum transmission 

across Africa but it has also intensified, and extended, the rate of pyrethroid 

resistance now present in malaria vector populations. This is a worrying situation 

that must be managed judiciously so as not to deteriorate it further since there is 

only a limited selection of approved insecticide classes currently available for use 

with IRS and LLINs (World Health Organization 2012; The Global Fund 2018; World 

Health Organization 2018a). To preserve the use of pyrethroids in LLINs, malaria 

programs with IRS operations have gradually switched to pirimiphos-methyl 

formulations (ActellicTM, Syngenta) in areas where vectors are susceptible to 

organophosphate (OP) insecticides (World Health Organization 2012; Oxborough 

2016). 

1.3.4.4 Supplemental techniques (juvenile stages) 

Larval control (microbial toxins, insecticide, predatory fish) and 

environmental management (drainage) target the mosquito’s oviposition sites and 

are recommended as supplementary to LLINs or IRS for implementation where 

larval habitats are few in number, fixed in location and easily accessible under 

specific transmission settings appropriate to the local situation in concert with 
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current interventions (i.e. IRS, LLINs) (Fillinger et al. 2009; World Health 

Organization 2015a). 

1.3.4.5 Communication and behavioral impact 

The RBM Global Strategy aimed to halve malaria-associated mortality by 

2010, and again by 2015 (World Health Organization 1993). Achieving those targets 

required a critical interplay between the malaria program and the individuals that 

they served. Communication is a key intervention, whose purpose is to effectively 

disseminate information that increases knowledge, and motivates households to be 

proactive in their own malaria prevention and treatment thus, reducing the risk of 

clinical disease. However, strategies must be well-planned and appropriate to local 

settings, including the involvement of community leaders. They should also be 

sustainable to ensure the continued acceptance of malaria interventions and 

services so that communities are playing an active role in protecting their own 

health. Process indicators (such as attitude to, and correct use of, interventions) 

should be assessed regularly to determine the effectiveness of the message, and 

ensure that the strategy has not deviated from the program (Roll Back Malaria 

Partnership 2008). 

1.3.5 Treatment 

It is recommended that all suspected malaria cases be confirmed with a 

parasitological diagnosis (light microscopy or rapid diagnostic test (RDT)) prior to 

treatment (except infants under 5 years in areas of high, stable transmission who 
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should be treated as if clinically diagnosed due to the high probability of their fever 

being malarial), which should be dispensed within 24-hours of the onset of 

symptoms (World Health Organization 2015b). 

A 3-day treatment of artemisinin-based combination therapies (ACTs) is the 

currently recommended practice for uncomplicated P. falciparum infections in 

adults and infants. 

Artemisinin is the active principle compound of Artemisia annua (Qinghao)—

a common herbaceous plant native to temperate China—whose antimalarial 

properties derive from its antioxidant activity, which rapidly attacks both asexual 

and sexual parasite stages. Combination therapy includes an artemisinin derivative 

i.e. artemether (AM), artesunate (AS), dihydroartemisinin (DHA) together with a 

longer-acting partner drug, whose inclusion is three-fold: (i) it clears any remaining 

parasites from the blood, (ii) it prevents the development of resistance to 

artemisinin, which would most certainly occur if it was administered as a 

monotherapy, and (iii) it provides a degree of prophylaxis due to its longer half-life 

(Aweeka and German 2008). Currently recommended ACTs for uncomplicated P. 

falciparum infections are: AM + lumefantrine (AL), AS + amodiaquine (AQ), AS + 

mefloquine (MQ), AS + SP, and DHA + piperaquine (PPQ) (World Health 

Organization 2015b). 

Pregnant women in their first trimester should be treated for 7-days with 

quinine (QN) + clindamycin due to concerns for the potential teratogenic effects of 

ACT on organogenesis; however, no adverse effects on the mother or fetus have 
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been reported during the second or third trimesters, and it is recommended that 

ACTs should be administered during this period. 

Blood stage P. vivax, P. ovale, P. malariae, and P. knowlesi infections should be 

treated as for uncomplicated P. falciparum malaria if the species is not known with 

certainty. Chloroquine (CQ) can also be administered in areas that remain sensitive. 

Radical cure of P. vivax and P. ovale hypnozoites (whose latency and unpredictable 

recrudescence act as a parasite reservoir) is treated with primaquine (PQ). Its 

administration, however, must be closely supervised for potentially adverse 

hematological effects especially in individuals that carry genetic variants, which 

predispose them to acute hemolytic anemia (AHA). 

Severe falciparum malaria is treated with parenteral AS for a minimum of 24-

hours until oral therapy can be tolerated. Treatment is completed with 3-days of 

ACT and clinical symptoms management. This recommendation applies to adults, 

infants, pregnancy in all trimesters, and lactating women. 

Individuals categorized as special risk i.e. first trimester of pregnancy, 

lactating women, infants < 5 kg body weight, patients with human 

immunodeficiency virus (HIV) co-infections, non-immune travelers, or those 

demonstrating hyperparasitemia have altered pharmacokinetics that prevent them 

from receiving optimal doses of recommended antimalarial treatments. The rate of 

treatment failure in these groups is substantially higher and these individuals 

should be managed appropriate to their status (World Health Organization 2015b). 
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1.4 Vector control 

Previous malaria control programs operated on the basis of reducing 

morbidity and mortality yet the disease remains a major global public health issue. 

The last decade has seen a move away from this archetypical strategy with a 

motivation towards interruption of transmission, elimination, and eventually, 

eradication (Alonso et al. 2011). In order to achieve this outcome, the basic 

reproductive rate—R0 (the number of secondary malaria infections arising from the 

same single infection)—must be reduced to less than one (R0 < 1), and research has 

shown that this is unlikely to be attained with current vector control methods in 

regions with the highest malaria burden i.e. sub-Saharan Africa, which experiences 

intense, perennial transmission (Shaukat, Breman, and McKenzie 2010; The malERA 

Consultative Group on Vector Control 2011). 

The Malaria Eradication Research Agenda (malERA) Consultative Group on 

Vector Control (2011) identified three development challenges considered critical 

to achieve interruption of transmission: 

1. Preservation, and improvement of the utility of existing insecticide-based 
interventions 

2. Interventions that affect vector species not effectively targeted by current 
tools 

3. Innovative approaches that will permanently reduce the very high 
vectorial capacities of the dominant malaria vectors in sub-Saharan Africa 

Without compromising the progress and achievements gained by the RBM 

program, the paradigm shift that has been introduced to the global strategy through 

these development challenges, focuses on improving current vector control 
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interventions while supplementing them with novel and innovative approaches. It is 

hoped that both strategies in parallel will have an integrated effect on disease 

transmission reducing it below the threshold at which it is sustained i.e. R0 < 1. 

1.4.1 Preservation and improvement of the utility of existing insecticide-

based interventions 

Of the three challenges, the first is considered to be the most urgent since 

resistance mechanisms against the four main insecticide classes licensed for public 

health use (pyrethroids, carbamates, organophosphates (OPs), and organochlorines 

(OCs)) are now commonplace as a result of their universal application in vector 

control operations (Oxborough 2016; Ranson and Lissenden 2016). 

The two most frequently identified forms of resistance are target site 

insensitivity, where mutations in neural pathways have evolved that reduce binding 

of the insecticide, and metabolic in which quantitative and qualitative modifications 

of key enzymes detoxify the insecticide before it can exert a lethal effect upon the 

vector. Cuticular resistance (Balabanidou et al. 2016) and behavioral adaptations 

(Gatton et al. 2013; Carrasco et al. 2019) have also been reported but their impact 

on malaria transmission rates in response to vector control interventions has not 

been quantified. 

1.4.1.1 Target site insensitivity 

Examples of target site insensitivity are: (i) kdr (knock-down resistance), a 

mutation in the voltage-gated sodium channel gene, which is the target of 
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pyrethroids and dichloro-diphenyl-trichloroethane (DDT) (Ranson et al. 2000), (ii) 

AChE (acetylcholinesterase), an enzyme that hydrolyzes the neurotransmitter, 

acetylcholine, which terminates nerve impulses and is the target site of OPs and 

carbamates (Ayad and Georghiou 1979), and (iii) Rdl (resistance to dieldrin), a 

mutation in one of the five -butyric acid (GABA) receptor subunits (also a 

neurotransmitter) that is the target of the cyclodiene insecticides i.e. OCs such as 

chlordane and dieldrin (Du et al. 2005). 

1.4.1.2 Metabolic resistance 

Metabolic resistance is based on enzyme systems that insects apply to 

detoxify naturally occurring exogenous compounds by over-expression or 

conformational modification of enzymes that metabolize insecticides. Over-

expression of detoxification enzymes is the most common cause of metabolic 

resistance in mosquitoes and occurs through gene duplication (Bass and Field 2011) 

or as changes in the regulatory elements (Ingham et al. 2017) or promotor region 

(Ding et al. 2005) of the gene. Increased enzymatic production allows rapid 

degradation of the insecticide reducing the effective dose before toxicity is exerted 

upon the insect. Three major enzyme families have been identified as conferring 

resistance to insecticides in malaria vectors but are less well characterized than 

target site mutations due to the complexity of their interactions in metabolic 

pathways. 

Carboxylesterases, which hydrolyze ester bonds, have mostly been 

associated with resistance to OPs where conformational changes in the enzymes of 
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resistant Anopheles mosquitoes have been identified as notably increasing 

malathion hydrolysis in comparison to susceptible individuals (Hemingway 1982, 

1983). 

Cytochrome P450-dependent monooxygenases (P450s) are a diverse 

superfamily of enzymes, which as hemeproteins can oxidize xenobiotic substrates 

producing water-soluble molecules for elimination (Mathews, van Holde, and Ahern 

2000). P450s have been consistently associated with pyrethroid resistance and 

several genes from pyrethroid-resistant phenotypes have been functionally 

characterized as a result of over-expression i.e. CYP6P3 (Müller et al. 2008), CYP6P9 

(Amenya et al. 2008). 

The final group—glutathione S-transferases (GSTs)—are a cytosolic 

superprotein family, which exist in virtually all living organisms. GSTs are 

categorized into classes according to the composition of amino acid residues found 

in the N-terminal domain of their highly conserved G binding sites. Delta and epsilon 

are the two insect-specific classes, and have extensive representation in the major 

African malaria vector Anopheles gambiae, where 5/8 of the epsilon GSTs were 

demonstrated to be overexpressed in a DDT-resistant phenotype (Ding et al. 2003). 

In addition to these mechanisms, cross-resistance can also occur through 

shared mutations in target sites (Ranson et al. 2000; Essandoh, Yawson, and 

Weetman 2013) and metabolic detoxification pathways (Edi et al. 2014) thus, the 

requirement to develop and approve insecticides with differing modes of actions is 

now vital. Novel insecticidal compounds recently sanctioned for public health use by 

the WHO Prequalification Team-Vector Control Products (PQT-VC) include 
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chlorfenapyr (a pyrrole that disrupts mitochondrial respiration pathways) (World 

Health Organization 2017b) and clothianidin (a neonicotinoid that acts as a post-

synaptic nicotine acetylcholine receptor antagonist) (World Health Organization 

2017a) but continued research is a priority. 

1.4.2 Interventions that affect vector species not effectively targeted by 

current tools 

The second challenge requires high quality entomological surveillance data 

that are specific to the local area as this will inform on the most suitable strategy 

and intervention with which to interrupt transmission. In the first instance, if there 

are current control interventions in operation—and transmission rates are high— 

then the reason for the failure must first be established. If this is determined to be 

ineffective targeting of the vector then local bionomic studies must commence. 

Likewise, if there are currently no vector control interventions in place. 

Longitudinal vector surveys (larval and adult) are fundamental to identifying 

behavioral patterns and incrimination if there are multiple mosquito species 

present. Once a vector and its behaviors have been determined an intervention that 

targets those behaviors can be developed, tested, and implemented (if effective) i.e. 

barrier screens exploited the exophilic resting behavior of blood-fed and host-

seeking Anopheles mosquitoes, and although this was developed as a sampling 

method (T. Burkot et al. 2013), an application of insecticide to the netting material 

could transform this technique into a lethal intervention. 
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1.4.3 Innovative approaches that will permanently reduce the very high 

vectorial capacities of the dominant malaria vectors in sub-Saharan Africa 

The third, and final, challenge is the most adventurous. A permanent 

reduction of vectorial capacity—defined as the “the average number of inoculations 

with a specified parasite, originating from one case of malaria in unit time, that the 

population would distribute to man if all the vector females biting the case became 

infected” (Garrett-Jones 1964)—is necessary for local malaria elimination in sub-

Saharan Africa, since residual vectorial capacities of mosquito populations will be 

capable of perpetuating epidemics if Plasmodium parasites are reintroduced to a 

human population, which has lost partial immunity (The malERA Consultative 

Group on Vector Control 2011). The majority of research in this area has been 

focused on genetic control programs—in particular the manipulation of mosquito 

vectors—that will yield long-term sustained population reduction through either 

suppression or replacement. However, the required investment in this technology is 

extensive and the development of other novel approaches must also be encouraged. 

1.5 Integration of current trial products into future programs 

Vaccine development has been a challenging, yet active, area of research 

producing a number of potential candidates but only one—RTS,S/AS01 

(MosquirixTM) (GSK) (The PATH Malaria Vaccine Initiative 2016)—has reached the 

required protective efficacy and safety standards in clinical trials. RTS,S/AS01 is a 

recombinant protein vaccine, which targets the circumsporozoite protein expressed 

by P. falciparum at the pre-erythrocytic stage of infection to induce an immune 
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response that elicits a protective effect against the development of severe clinical 

disease. 

Between the period 2009-2014, infants in two cohorts—aged 6-12 weeks 

(n=6,537) and 5-17 months (n=8,922)—received four doses of vaccine as part of a 

phase 3 clinical trial conducted in seven African countries with differing malaria 

transmission intensities. In older children, the vaccine prevented approximately 

39% of malaria cases and 29% of severe disease (RTS,S Clinical Trials Partnership 

2015). After review of these results by independent advisory groups, RTS,S/AS01 

was recommended by the WHO as part of a pilot immunization program for young 

children in selected areas of Ghana, Kenya, and Malawi. Vaccinations are to be 

assessed over a three-year period (2019-2022) to determine their value as a 

complementary chemoprophylactic of severe disease in vulnerable groups, which is 

intended to supplement (not replace) the current core preventive, diagnostic, and 

treatment measures (World Health Organization 2018c) Beyond this pilot program, 

however, there is no policy recommendation for the large-scale use of the 

RTS,S/AS01 vaccine. 

1.6 An extended research agenda 

The purpose of these dissertation studies is to conduct research that 

contributes expertise to the extended research agenda (Alonso et al. 2011); in 

particular, the second and third developmental challenges identified as critical for 

the maintained interruption of malaria transmission by the malERA Consultative 

Group on Vector Control (2011). 
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Chapter two considers the genetic structure and differentiation in natural 

populations of the malaria vector Anopheles gambiae in a micro-geographic setting. 

It narrows an information gap related to the third challenge once a permanent 

reduction strategy is developed as it informs on: (a) whether these populations 

would be appropriate for field testing entomological efficacy of genetically modified 

(GM) malaria vectors, and (b) understanding how heritable strategies would behave 

in, and move through, a targeted population. 

Chapters three and four present research that can be related to the second 

challenge (interventions that affect vector species not effectively targeted by current 

tools) since they address different biological attributes of Anopheles farauti, the 

principal malaria vector in the southwest Pacific. In certain areas of the region,  An. 

farauti exhibits exophagic and exophilic behaviors meaning it demonstrates a 

propensity for outdoors feeding and resting, respectively, thus avoiding contact with 

a lethal dose of insecticide from existing indoors-based control tools. While the 

application of IRS and distribution of LLINs has been successful at reducing annual 

parasite incidences by killing the proportion of populations that enter domiciles, the 

mosquitoes that continue to feed outdoors maintain residual transmission, 

necessitating the development of a novel approach for their control. 

Vectorial capacity is underpinned by genetic components that contribute to 

key biological traits, such as behavior and susceptibility to Plasmodium infection, 

which vary between vectors. Understanding how these factors interact at the 

genomic level can provide greater insight into how they may be manipulated as 

targets of control. A genome-wide approach in the analysis of population structure 
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also provides power to identify genetic processes (such as restricted gene flow or an 

insecticide-resistant genotype) and the genomic regions that regulate them thus, 

creating an understanding of how these mechanisms will impact upon control 

interventions. Chapter three generates SNP-based data that lays the foundation for 

future studies, which can be leveraged to develop innovative approaches towards 

targeted interventions. 

Finally, chapter four explores the credibility of sugar-fermented yeast as an 

organic source of carbon dioxide (CO2) trap attractant to host-seeking and resting 

An. farauti mosquitoes, which may be contributing to residual transmission in 

Western Province, Solomon Islands. 

1.7 Going global 

The dissertation is concluded in Chapter five with a brief summary of the 

investigations conducted, an explanation as to how they have contributed expertise 

to the research agenda and, finally, their applicability to malaria vector control 

approaches. 
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CHAPTER 2:  

 

DETERMINING THE POPULATION GENETIC STRUCTURE OF ANOPHELES GAMBIAE 

IN THE NORTHWESTERN LAKE VICTORIA BASIN BY REDUCED-REPRESENTATION 

SEQUENCING 

This chapter appears in part in the published manuscript “Reduced-

representation sequencing identifies small effective population sizes of Anopheles 

gambiae in the north-western Lake Victoria basin, Uganda” by Wiltshire et al. 

(2018) with modifications. Its purpose is to introduce the reader to research that 

contributes expertise towards the third developmental challenge identified by the 

malERA Consultative Group on Vector Control: innovative approaches that will 

permanently reduce the very high vectorial capacities of the dominant malaria 

vectors in sub-Saharan Africa. 

Given that the favored vector-targeted interventions—imagociding through 

LLINs and IRS— are reaching the limits of their effectiveness, advanced techniques 

that complement current control strategies are being explored for the purpose of 

attaining R0 < 1 and the interruption of transmission. There are many technical 

approaches by which mosquitoes can be genetically modified (GM) but they are all 

designed to realize one of two outcomes for the target population into which they 
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will be released: (i) suppression, which reduces the number of competent vectors, 

and (ii) replacement where vectorial capacity is diminished. Once successful genetic 

modifications have been demonstrated in the laboratory environment they must 

then be translated to field applications through a series of phased testing pathways 

if they are to be endorsed by national authorities as a malaria control intervention. 

This chapter focuses on a genome-wide population genetic assessment of the 

principal African malaria vector, An. gambiae Giles, 1902 (hereafter, An. gambiae) 

using single nucleotide polymorphism (SNP) markers in the northwestern Lake 

Victoria basin for the purpose of identifying and characterizing natural populations 

that may be appropriate for small-scale ecologically-confined releases of GM 

mosquitoes. 

Three island populations (Bukasa, Nsadzi, Sserinya) demonstrated low to 

moderate genetic differentiation with small effective sizes (Ne) implying limited 

migration and susceptibility to genetic drift. In conclusion, this chapter identifies 

candidate field sites for small-scale evaluation of entomological efficacy of GM An. 

gambiae mosquitoes. 

2.1 Abstract 

Malaria is the leading cause of global pediatric mortality in children below 

five years of age. The number of fatalities has reduced significantly due to an 

expansion of control interventions but the development of novel technologies 

remains essential in the effort to pursue elimination and eradication. Recent 

attention has been focused on the release of GM mosquitoes into natural vector 
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populations as a mechanism of interrupting parasite transmission but despite 

successful in vivo laboratory studies, a detailed population genetic assessment—

which must first precede any proposed field trial—has yet to be undertaken 

systematically. In this chapter, the genetic structure of An. gambiae populations in 

the northwestern Lake Victoria basin is explored to assess whether their 

characteristics are suitable for testing entomological efficacy of GM mosquitoes in a 

pilot field release. 488 An. gambiae mosquitoes were collected from six locations 

and a subset (N=96) was selected for restriction site-associated DNA sequencing 

(RADseq). The resulting SNP marker set was analyzed for effective size (Ne), 

connectivity, and population structure (PCA, FST). 5,175 high-quality genome-wide 

SNPs were identified. A principal components analysis (PCA) of the collinear 

genomic regions illustrated that individuals clustered in concordance with 

geographic origin and with some overlap between sites. Genetic differentiation 

between populations was varied with inter-island comparisons having the highest 

values (median FST: 0.0480-0.0846). Ne estimates were generally small (124.2-

1920.3). Island populations demonstrated low to moderate genetic differentiation 

and greater structure suggesting some limitation to migration. The smaller 

estimates of Ne indicate that an introduced effector transgene will be more 

susceptible to genetic drift but to ensure that it is driven to fixation (rather than 

loss) a robust gene drive mechanism will likely be needed. These findings, together 

with their favorable geography and suitability for frequent monitoring, demonstrate 

that the Ssese Islands contain several locations where the An. gambiae populations 

merit further evaluation as candidates for a GM mosquito pilot release. 
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2.2 Introduction 

2.2.1 Global burden 

The World Health Organization (WHO) estimated that 219 million cases of 

malaria occurred globally in 2017 resulting in approximately 435,000 deaths 

(World Health Organization 2018d). Infants under the age of five years are the most 

vulnerable individuals since malaria is the leading cause of pediatric mortality in 

that age group. 

2.2.2 Insecticide-based vector control tools 

Although existing malaria control interventions such as: (i) the increased 

distribution of LLINs, (ii) consistent applications of IRS, and (iii) improved access to 

RDTs and ACTs have significantly reduced the number of cases and deaths in the 

last decade (World Health Organization 2018d), the development of innovative 

mosquito vector (The malERA Consultative Group on Vector Control 2011) and 

Plasmodium parasite control technologies (The malERA Consultative Group on 

Drugs 2011; The malERA Consultative Group on Vaccines 2011) will be required to 

reduce incidence rates below the critical threshold that sustains transmission if the 

ultimate objective is elimination, a target difficult or impossible to achieve using 

traditional control tools in regions with intense malaria transmission (Shaukat, 

Breman, and McKenzie 2010; Alonso et al. 2011). 

Increasing coverage of the current vector control methods (LLINs and IRS) 

has contributed greatly to the reduction in morbidity and mortality; however, these 

interventions are only effective against populations of indoor-feeding and/or 
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resting adult female mosquitoes, which remain susceptible to exposure with the 

four major insecticide classes currently implemented in malaria control programs: 

pyrethroids in LLINs (and limited IRS applications), and carbamates, 

organophosphates, and organochlorines for IRS in high transmission areas where 

the efficacy of pyrethroids must be preserved for LLIN use. Over-reliance on these 

insecticides over many decades has now resulted in resistance, which has become 

established across the African continent (Oxborough 2016; Ranson and Lissenden 

2016) necessitating the development of new classes as a matter of urgency. Much 

research in this area is being undertaken, and the recent approval of chlorfenapyr 

(BASF SE) and clothianidin (Sumitomo Chemical Co. Ltd.) by the WHO PQT-VC 

(World Health Organization 2017b; The Global Fund 2018) is encouraging since 

both exhibit different modes of action to those currently in use meaning that cross-

resistance is unlikely, especially if applied in combination as recommended by the 

Global Plan for Insecticide Resistance Management (World Health Organization 

2012). While the development of new insecticides improves the utility of existing 

indoors-based vector control tools, this strategy on its own is insufficient to reduce 

R0 < 1 because it fails to effectively target the mosquito vectors that do not enter 

domiciles, which are responsible for maintaining residual transmission. 

2.2.3 GM mosquitoes as a vector control solution 

 Innovative vector control strategies (such as genetic modification (Curtis 

1968)) were first considered in response to failure of the Global Malaria Eradication 

Program (1955-1969) whose early successes were negatively impacted as a result 
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of insecticide resistance to DDT and the accumulation of residues within the 

environment (it has been argued, however, that indiscriminate agricultural 

operations were largely responsible for both) (Busvine and Pal 1969; Busvine 

1978). Although challenging, and technically complex to construct, genetically 

modified (GM) mosquitoes as an alternative form of vector control has increasingly 

gained attention in recent years in parallel with the advancement of next-generation 

sequencing efforts of the major Anopheles malaria vector genomes (Holt et al. 2002; 

Lawniczak et al. 2010; Neafsey et al. 2015). 

The principal objective of generating GM Anopheles mosquitoes is to decrease 

their vectorial capacity to transmit Plasmodium parasites—through population 

suppression or replacement (Burt 2014)—by rendering them refractory to infection 

(Christophides 2005; S. Wang and Jacobs-Lorena 2013) and examples of successful 

Anopheles genetic constructs and drive systems have been demonstrated (Bian et al. 

2013; Gantz et al. 2015; Hammond et al. 2016). If GM Anopheles mosquitoes are to 

be established as part of a malaria control intervention then these novel 

achievements must be successfully translated from bench to field. The first step in 

realizing this strategy is to obtain a detailed understanding of the genetic structure 

of the natural populations into which the transgenic construct and gene drive 

system will be introduced as identifying levels of gene flow (genetic exchange), and 

the effective population size (Ne) will be critical in predicting the dispersal and 

maintenance of a transgene. 
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2.2.4 An. gambiae species complex 

In sub-Saharan Africa, An. gambiae is an important mosquito vector of the 

Plasmodium malaria parasite species that infect humans. It exists as one member of 

a cryptic species complex describing the taxonomic grouping of Afrotropical 

mosquitoes that were first identified as the species An. gambiae Giles, 1902. During 

the early 1960s, behavioral differences first alerted researchers to the notion that, 

despite appearing morphologically identical, these different forms were probably 

multiple species that co-existed sympatrically: a fact confirmed through a series of 

genetic backcrosses, which yielded universally sterile male hybrids that 

demonstrated the existence of five mating-types and, thus, a species complex 

(Davidson 1962, 1964). The complex currently comprises eight members with 

varying vectorial competencies: An. amharicus Hunt, Wilkerson & Coetzee, 2013 

(non-vector); An. arabiensis Patton, 1905 (vector); An. bwambae White, 1985 (minor 

vector due to limited distribution); An. coluzzii Coetzee & Wilkerson, 2013 (vector); 

An. gambiae (vector); An. melus Theobald, 1903 (vector); An. merus Dönitz, 1902 

(vector); An. quadriannulatus Theobald, 1911 (non-vector) (VectorBase 2017). 

2.2.5 An. gambiae population structure across the African continent 

An. gambiae population structure across the African continent has been 

extensively studied and was determined to be unexpectedly shallow (Lehmann et al. 

1996; Besansky et al. 1997; Lehmann et al. 1999, 2000). Comparison of allozymes 

(mean FST: 0.036) and microsatellites (mean FST: 0.016) revealed extensive inter-

population gene flow over a 6,000 km distance (Lehmann et al. 1996) that 
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contrasted sharply with those across the Kenyan Rift Valley Complex (KRVC) (mean 

microsatellite FST: 0.104: mean mitochondrial DNA (mtDNA) FST: 0.176), a much 

shorter distance of 700 km, which was attributed to the KRVC acting as a physical 

barrier to gene flow (Lehmann et al. 1999, 2000). Oceanic island studies of An. 

gambiae population structure have also demonstrated varying degrees of 

differentiation that range from considerable genetic exchange in the Bijagós 

archipelago of Guinea-Bissau (FST: 0-0.019) to restricted gene flow between the 

Comoros Islands (FST: 0.093-0.126) (Marsden et al. 2013). Despite the desirable 

genetic characteristics observed in An. gambiae populations of the Comoros, they 

are not well suited to the frequent monitoring that transgenic field studies require 

being nearly 1,000 km offshore. A comparably appropriate alternative site would be 

a lacustrine setting with multiple islands in a malarious region: Lake Victoria. 

2.2.6 Previous Lake Victoria An. gambiae population genetic studies 

There have been two previous An. gambiae population genetic studies in 

Lake Victoria. Chen et al. (2004) developed six microsatellites from five island and 

six mainland populations in western Kenya, which showed low but statistically 

significant genetic structure (mean FST: 0.0010-0.019, p < 0.001) that also supported 

a significant correlation between geographic distance and genetic differentiation 

(Mantel: p < 0.001). Kayondo et al. (2005) examined genetic structure in An. 

gambiae populations in the Ssese Islands, the focus of the present study, using 

microsatellite markers with temporal sampling that also demonstrated low but 

statistically significant genetic differentiation (mean FST: 0.014-0.105, p < 0.05). In 
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contrast with Chen et al. (2004), however, that study found no support for the 

isolation-by-distance model (Mantel: p = 0.787) and concluded that the Ssese 

populations varied as a result of: (i) restricted gene flow (due to separation from the 

mainland by water), (ii) small effective size, and (iii) temporal instability, which 

combined had provided these mosquitoes with the opportunity to differentiate 

genetically. 

2.2.7 Current objective 

The study aimed to follow up the research of Kayondo et al. (2005) by 

determining the current genetic structure in the same An. gambiae populations 

using recent advances in next-generation sequencing technologies. SNP markers 

were selected to capture high-density sequence variation due to their: abundance in 

the An. gambiae genome (VectorBase 2017), lower mutation and genotyping error 

rates, adaptability to high-throughput assays, utility in generating an informative 

marker panel applicable to future discovery, and population genetic research 

enquiries. A restriction site-associated DNA sequencing (RADseq) (Miller et al. 

2007; Baird et al. 2008) approach was applied as the most economical high-

resolution technique to generate a genome-wide SNP marker set for this important 

malaria vector in the Lake Victoria region. 
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2.3 Materials and methods 

2.3.1 Study area 

The study area is located in the Ssese Islands, an archipelago in the 

northwestern division of the Lake Victoria basin, southern Uganda (Figure 2.1). 

Each of the 84 islands varies in size i.e. the largest—Bugala—is 105 km2 while some 

are merely islets of rock, creating a total land coverage area of 454.8 km2. The 

islands share a general topographical characteristic in that they rise as gentle slopes 

from lake level (1,220 m above sea level (ASL)) to central flat-topped ridges at a 

maximum elevation of 1,260 m ASL (Kalangala Town, Bugala) (Thomas 1941; 

Ssegawa and Nkuutu 2006). 

The climate is equatorial. There are two wet seasons: a main one from 

March-May, and a lesser one in November-December but rainfall occurs monthly 

(mean 140 mm), which is reflected by the highest recorded annual precipitation 

rates (2,000 mm +) in Uganda (Thomas 1941; National Environment Management 

Authority (NEMA) 2005; Ssegawa and Nkuutu 2006). Annual temperatures range 

from 18.3°C (February) to 27.2°C (August) with relative humidity being lowest in 

February (68%) but highest in November (> 94%) during the warmer rainy season. 

These climatic conditions are ideal for the generation and maintenance of Anopheles’ 

oviposition sites, thus allowing for stable, perennial malaria transmission. 
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Figure 2.1 Sampling locations in northwestern Lake Victoria and the southern 
Uganda peninsular. Inset top left: Uganda is highlighted in black to illustrate its 
location within continental Africa. Inset bottom left: Legend lists entomological 

sampling sites corresponding to numbered black crosses in the main schematic. The 
black star marks Kampala, the capital city. 
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The Ssese Islands fall under the administrative jurisdiction of the Kalangala 

District (Kalangala) local government. The most recent census (2014) lists the 

population as 54,293: a 56% increase from the previous official figure of 34,800 

(2002) (Uganda Bureau of Statistics 2016), which is most likely attributable to the 

palm oil production and tourism industries that have recently been established on 

Bugala. Populations tend to be clustered in small communities along the shoreline 

since fishing is the major economic activity. Kalangala has some of the highest 

malaria incidence rates in Uganda with 208 cases per 1000 population having 

laboratory confirmed and/or clinically diagnosed malaria infections (Uganda 

Ministry of Health 2016). In the most vulnerable group—infants under the age of 5 

years—annual prevalence (44%) also indicates one of the highest national 

transmission rates (Uganda Bureau of Statistics 2016), which is most likely a 

reflection on the lack of vector control activities in the region. There has never been 

an organized IRS campaign as part of a government-supported malaria control 

effort, and the first distribution of LLINs (to pregnant women and infants less than 5 

years of age) did not occur until 2009/2010 (National Malaria Control Program 

2018). A dedicated National Universal Coverage campaign has since distributed 

nearly 50 million LLINs nationwide with Kalangala receiving their allocation in 

November 2017 (National Malaria Control Program 2018). Prior to the mass net 

distributions, 61% of households in Kalangala were recorded as owning at least one 

LLIN but usage by all groups was approximately half (household population: 44%, 

pregnant women: 56%, and infants less than 5 years of age: 50%) (Uganda Bureau 

of Statistics 2016). 
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Anopheles gambiae sensu lato (s. l.) mosquitoes were collected from seven 

sites: (1) Kansambwe, Nsadzi, (2) Lutoboka, Bugala, (3) Kafuna, Sserinya, (4) Bbosa, 

Sserinya and (5) Nakibanga, Bukasa from the islands and (6) Lunnyo, Entebbe, and 

(7) Naama, Wamala from the mainland, reflecting the microsatellite populations 

analyzed by Kayondo et al. (2005). The villages in the Ssese Islands are inhabited by 

human populations that vary in size from hundreds (i.e. Kafuna, Bbosa) to 

thousands (i.e. Kansambwe, Lutoboka) of individuals. In addition to the continuous 

fishing traffic that is typically seen at the boat-landing sites, there is notable marine 

transportation between the mainland and Lutoboka (BL) via an official ferry route, 

and also the smaller water-taxi type services that frequently traverse the lake i.e. 

Entebbe-Kansambwe (NZ). Entebbe sits on a southern peninsular extending into 

Lake Victoria. It differs from the other sampling sites in that it is highly populated 

(2014 census: 69,430) (Uganda Bureau of Statistics 2016) and urbanized. Naama, 

located by the shores of the inland Lake Wamala (64 km northwest of Entebbe), is 

an agricultural village of similar size to Kafuna and Bbosa (SY). The geographic 

distances between all of the sampling sites are, however, outside of the known flight 

range of An. gambiae s. l. (Gillies 1961) meaning that migration between populations 

under the mosquitoes’ own power, while possible if wind-assisted, is unlikely. 

Details of global positioning system coordinates listing longitude, latitude, and 

distances between entomological sampling sites are included in APPENDIX A: . 



 

 34 

2.3.2 Entomological sampling 

Collections were made at random intervals between July and October 2012. 

Indoor-resting adult females were collected from houses or common buildings 

within a 3 km radius of the boat-landing site for each island and the Entebbe 

locations. Sampling at Wamala was conducted with the same criteria but used 

Naama village as a center point. Buildings were constructed from a combination of 

mud and/or wooden walls and thatched/plastic/corrugated sheet metal roofs 

(Figure 2.2). Specimens were captured between 06:00-10:00 am via battery-

powered mechanical aspirators. If insufficient numbers of indoor-resting adult 

females were collected then aquatic larval sampling was conducted from 5-10 

surrounding breeding sites (type varied by location but generally small pools, 

puddles or abandoned boats), taken back to the laboratory and reared into adults in 

the water that they were collected in. This water was supplemented with mice feed 

pellets as required. 
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Figure 2.2 Typical housing associated with villages, and small towns in the 
Ssese Islands. Walls are constructed from wooden boards and roofs are corrugated 
sheet metal (left), which are sometimes covered with a combination of plastic and 

thatched materials (right). Adult female Anopheles mosquitoes can be found resting 
indoors on walls and objects i.e. bed nets (usually near children) after taking a blood 
meal. They can also be seen higher up in the eaves of the property where the size of 
the gaps between the walls and roof are extensive allowing for frequent entry and 

exit to the exterior. 

 

 



 

 36 

2.3.3 Species identification and preservation 

Anopheles gambiae s. l. mosquitoes were morphologically identified from 

other anopheline species based on the taxonomic keys of Gillies & de Meillon 

(1968). Female specimens were individually preserved in 80% ethanol prior to 

transportation to the University of Notre Dame (USA). Molecular identification of An. 

gambiae and Anopheles arabiensis (the other important malaria vector in the An. 

gambiae complex) was determined by Scott et al. (1993) using legs and/or wings. 

Any specimens that did not amplify with this method were processed with the 

polymerase chain reaction (PCR) assays of Koekemoer et al. (2002), which identifies 

five of the eight formally recognized members of the Funestus Group, and Beebe & 

Saul (1995) whose technique (although initially developed to discriminate between 

members of the An. punctulatus complex) facilitates molecular identification of 

many species through variation in the nucleotide sequences of the second internal 

transcribed spacer (ITS2) region that separates the 5.8S and 28S rDNA subunits 

(Paskewitz, Wesson, and Collins 1994; Collins and Paskewitz 1996). A minor 

modification to the rDNA-ITS2 amplification step of Beebe & Saul (1995) was a 1°C  

increase in the annealing phase to 52°C, and product visualization with both 

protocols using 1.5% agarose gels stained with SYBR Safe (Life Technologies Corp.). 

Only specimens that were molecularly identified as An. gambiae were processed 

further i.e. genomically. 
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2.3.4 Genomic DNA extraction 

Genomic DNA was extracted from individual mosquitoes using a laboratory 

stock solution of 2% cetyltrimethyl ammonium bromide (CTAB). Each specimen 

was placed in an Eppendorf tube containing 200 μl of CTAB and electrically 

homogenized with a sterile conical Teflon pestle. RNA was removed from the 

homogenate by adding 20 μl RNAse A (10 mg/ml) (laboratory stock) and leaving it 

to incubate at room temperature (RT) for 5 minutes. Proteins were removed with 

the addition of 20 μl of Proteinase K (20 mg/ml) (Qiagen GmbH, Germany). The 

solution was briefly vortexed (1-2 seconds) on a low setting (3-4) to encourage 

maximum digestion and incubated at 56°C for 1 hour. Exoskeleton and other cellular 

detritus were pelleted by RT centrifugation at 14,000 rpm for 5 minutes. The 

supernatant was transferred to a Phase Lock Gel tube (5 Prime GmbH, Germany) 

with 250 μl of UltraPure™ Phenol:Chloroform:Isoamyl alcohol (25:24:1, v/v) 

(Invitrogen Corp.) for extraction via the standard Phenol:Choloroform method. To 

ensure thorough mixing, the tube was manually inverted (x10) and the resulting 

organic layer was removed by centrifugation on maximum speed (14,000 rpm) at 

RT for 5 minutes. The supernatant was then transferred to a new tube containing 

200 μl ice-cold isopropanol, manually inverted x10 again to ensure thorough mixing 

and centrifuged on maximum speed at 4°C for 15 minutes. The isopropanol was 

discarded and the DNA pellet rinsed with 200 μl ice-cold 70% ethanol followed by 

centrifugation on maximum speed at 4°C for 5 minutes. This process was repeated 

using ice-cold 95% ethanol, which was discarded after a final centrifugation step. 

Tubes were air-dried for 5 minutes to remove any remaining trace ethanol and the 
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DNA pellet re-suspended in 50 μl sterile 1x TE buffer (Tris-HCl, EDTA, pH 8.0) (TE) 

by incubation at 56°C for 5 minutes. DNA was stored at -20°C until further required. 

Samples were quantified with the QuantiFluor dsDNA System (Promega Corp.) to 

ensure accuracy. This step was important for the RADseq technique, which required 

a minimum DNA concentration of 20 ng/μl for restriction enzyme digestion. Sixteen 

samples of the highest concentration from each of the six locations were selected for 

analysis to comprise one 96-well plate. 27 samples had DNA concentrations of less 

than 20 ng/μl. 19 samples (<16.99 ng/μl) were concentrated to 20 ng/μl through 30 

minutes of evaporation at 45°C using a heated centrifuge and re-suspended in sterile 

1x TE in a heat block for 20 minutes at 55°C. Eight samples (16.99-19.78 ng/μl) were 

not concentrated on the basis that they were close enough to the recommended 

minimum concentration and further pipetting may have caused a reduction in DNA 

quantity. 6 μl of each sample was pipetted into a 96-well plate for RADseq library 

construction. 

2.3.5 RADseq library construction and sequencing 

RADseq libraries were prepared as per Parchman et al. (2012), which was 

modified to incorporate paired-end (PE) chemistry. All samples were digested with 

EcoRI and MseI restriction enzymes (NEB, Inc.) and incubated at 37°C for 2 hours, 

then 65°C for 20 minutes with the heated thermal cycler lid (Eppendorf AG) at 105°C 

followed by a 4°C hold without the lid. The digested DNA fragments were then 

ligated to the EcoRI and MseI adapters with T4 DNA Ligase (NEB, Inc.). 
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The EcoRI adapter sequences consisted of Illumina adapters and primer 

sequences, a unique 8-10 nucleotide (nt) barcode created by a Python script (Max 

Planck Institute Bioinformatics Group 2010) that permits identification of the origin 

of each sequencing read, a protector base to prevent further restriction site cutting, 

and additional bases to match the sticky ends of the cut sites: (EcoRI adapter 

sequences: 5’-CTCTTTCCCTACACGACGCTCTTCCGATCT + 8-10 nt barcode + C-3’, 

and 3’-TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA + 8-10 nt barcode + G-5’). The 

MseI adapter sequences were modified from the original protocol to facilitate PE 

sequencing strategy and also consisted of Illumina adapters and primer sequences, a 

protector base, and additional sticky end-matching bases: (JT-MseI1: 5’-

GCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC

-3’, and JT-MseI2: 5’-

TAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCT

GCTTG-3’). The DNA plate was incubated in a thermal cycler at 16°C for 2 hours with 

the heated lid at 20°C followed by a 4°C hold without the lid. Each reaction was then 

diluted with 90 μl 0.1x TE (pH 7.5) to prevent any further cut reactions, and prepare 

the product for polymerase chain reaction (PCR) amplification. 

Adapter-ligated fragments were amplified using Illumina PCR primers, which 

were designed to amplify only those DNA sequences with the EcoRI- and MseI-

ligated adapters. Modifying the MseI adapter to facilitate PE sequencing necessitated 

modification of the reverse Illumina PCR primer, accordingly: (Illpcr1 – 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’; 

JT-Illpcr2 – 5’-CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTG-3’). This step 
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was performed running two separate 20 μl PCR amplification reactions for each 

adapter-ligated DNA sequence to ameliorate stochastic differences in the resulting 

reaction products. Both PCR plates were incubated in a thermal cycler using the 

following profile: 98°C for 30 seconds; 30 cycles of 98°C for 20 seconds; 60°C for 30 

seconds; 72°C for 40 seconds, and a final extension at 72°C for 10 minutes with the 

heated lid at 105°C followed by a 4°C hold without the heated lid. 

Reaction products were pooled and purified with Agencourt AMPure XP 

(Beckman Coulter, Inc.) magnetic beads then size-selected using the automated 

BluePippin (Sage Science, Inc.) system, which recovered eluted DNA fractions 

between 400-500 base pairs (bp). Sequencing was accomplished in a single lane run 

on an Illumina HiSeq 2000 (v.1.5 encoding) machine at the University of California-

Davis, Sacramento, USA via the Beijing Genomics Institute. 

2.3.6 Determination of 2L chromosomal karyotypes 

Molecular karyotyping of the 2La inversion was conducted as per White et al. 

(2007) with a modified thermal cycler profile as follows: 94°C for 2 minutes; 30 

cycles of 94°C for 30 seconds; 58°C for 30 seconds; 72°C for 45 seconds; a final 

extension at 72°C for 5 minutes, and a 4°C hold. The resulting products were 

analyzed on 1.5% agarose gels stained with SYBR Safe (Life Technologies Corp.). 

2.3.7 Bioinformatics processing 

Each read from the Illumina HiSeq 2000 was 100 nt in length beginning with 

the individual barcode (8-10 nt) ligated to the EcoRI end of the amplified fragments 

plus the single protector base (C or G), and the six bases corresponding to the cut 
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site (GAATTC) followed by 83-85 potentially variable bases. After quality checking 

of the sequence data in FastQC v.0.10.1 (Babraham Institute 2011), Illumina 

sequencing adapters were removed using Trimmomatic v.0.30 (Bolger, Lohse, and 

Usadel 2014). RAD barcodes were stripped from the reads and replaced by unique 

identifiers specific to each individual mosquito by a custom Python script, Trimmer 

(Notre Dame Bioinformatics Lab 2014). Sequence reads were then aligned against 

the AgamP4 reference genome (VectorBase 2014) using Burrows-Wheeler 

Alignment (BWA) v.0.6.2 (Li and Durbin 2009) prior to variant calling and 

annotation with UnifiedGenotyper in GenomeAnalysisToolKit (GATK) v.3.3.0 (Van 

der Auwera et al. 2013). High quality SNP calls used in downstream analysis were 

obtained firstly through the application of the hard-filtering parameters as 

described in Alternate Protocol 2 of the GATK best practices pipeline (Van der 

Auwera et al. 2013) followed by high quality streaming of the dataset as per 

Fontaine et al. (2015) using VCFtools v.0.1.15 (Danecek et al. 2011). A detailed 

description of the bioinformatics pipeline, including parameters, is listed in 

APPENDIX B: . 

Individuals were pruned from the dataset on the basis of kinship and/or 

missing data. Familial relationships were assessed by pairwise comparison of 

kinship coefficients estimated using the [--relatedness] (Yang et al. 2010) and [--

relatedness2] (Manichaikul et al. 2010) parameters in VCFtools v.0.1.15 (Danecek et 

al. 2011). Relationships that identified individuals as full- or half-siblings resulted in 

their removal from the dataset. Missing genotypes were assessed on an individual 
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basis using the [--missing-indv] parameter in VCFtools v.0.1.15 (Danecek et al. 

2011). Any found to have > 80% missing data were also discarded. 

2.3.8 Population genetics 

Population structure was visualized with two methods: (1) principal 

components analysis (PCA) using the software packages PLINK v.1.9 (Chang et al. 

2015) and R v.3.2.1 (R Core Team 2014), which reduces noise and redundancy thus, 

maximizing the signal due to variance, and (2) ancestry fractions computed from 

maximum-likelihood estimates using population allele frequencies and genotype 

probabilities as parameters of a statistical model in the program ADMIXTURE v.1.23 

(Alexander, Novembre, and Lange 2009). The number of ancestral populations (K) 

with which to run the model was chosen by a cross-validation (CV) procedure that 

identified the lowest error value for which the model had the best predictive 

accuracy. 

Genetic differentiation between populations was quantified by Wright’s 

fixation indices (pairwise FST) (Wright 1978) using Weir-Cockerham weighted 

multiallelic estimates (Weir and Cockerham 1984) in VCFtools v.0.1.15 (Danecek et 

al. 2011). FST is the fixation index, which is used as a measurement of population 

differentiation due to a reduction in heterozygosity in the total population caused by 

subpopulation structure. A value of 0 indicates that the population is in complete 

panmixis (i.e. no population structure or subdivision), and 1 implies that all of the 

genetic variation within the population can be explained by its structure (i.e. there is 

no sharing of genetic material between populations). 
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Individuals with > 80% missing data were removed to ensure accuracy since 

simulations have shown that restricting loci to those with complete genotypes 

results in a near true FST distribution (Arnold et al. 2013). To test whether variation 

was attributable to isolation-by-distance (Wright 1943), a linear regression model 

of pairwise population differentiations (FST/(1-FST)) against logarithmic 

transformed geographical distances (Rousset 1997) was created in R v.3.2.1 (R Core 

Team 2014) using a generalized linear model (GLM) function. Statistical significance 

between the spatial and genetic sets of distances was measured by the Mantel test 

with 9,999 permutations (Mantel 1967). Estimates of contemporary effective 

population size (Ne) were obtained using the linkage disequilibrium (LD)-based 

method LDNe (Waples and Do 2008) of NeEstimator v.2.01 (Do et al. 2014) with a 

minor allele frequency screen of 5%. 

2.4 Results 

2.4.1 Species identification and dataset composition 

594 female An. gambiae s. l. mosquitoes were morphologically identified 

from the other anophelines that were captured across all sites. 488 individuals were 

molecularly identified as An. gambiae and one as An. arabiensis (from the Entebbe 

collection site). 100 specimens did not amplify any product in the An. gambiae 

species identification assay despite repeated attempts. These individuals were also 

processed through the An. funestus cocktail PCR to determine whether any of the 

sampling locations had mixed populations of major malaria vectors; however, no 
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amplification product (704 bp) was recorded for these specimens. In a final attempt 

to identify further An. gambiae individuals, the rDNA-ITS2 PCR method of Beebe & 

Saul (1995) was performed. This assay differs from that of Scott et al. (1993) as it 

utilizes the species-specific variation in the ITS2 sequences of the rDNA rather than 

the non-transcribed IGS regions. No amplification product (426 bp) was observed 

using tissue (e.g. legs and/or wings) directly without first performing a CTAB 

extraction, and with this method only one further individual was identified as An. 

gambiae. It was concluded that the unknown specimens could not be identified to 

species because they were too badly degraded possibly as a result of their physical 

condition during collection, transportation, and preservation. Five individuals from 

the Nsadzi collection (sampled as larvae) were not processed due to error. Species 

identification results are available as a supplementary file through CurateND. 

A total of 373,099,980 reads were generated by the Illumina HiSeq 2000 

platform. After demultiplexing the raw data of sequencing adapters, barcodes, EcoRI 

and MseI restriction cut sites, and protector bases, a total of 172 million reads 

averaging 1.6 million per mosquito (N=96) were retained for genomic alignment. 

103 million forward reads (86.2%), approximately 83 bases in length, successfully 

mapped to the AgamP4 reference genome (VectorBase 2014), which were then used 

in downstream analyses. 

Examination of kinship identified a large number of familial relationships 

between individuals in the Sserinya (SY) and Bugala (BL) populations. Eleven 

individuals from SY and three individuals from BL were excluded from further 

analysis on the basis that their full- and half-kinship could confound the data at each 
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site and in comparison, with others. Three individuals from the Bukasa (BK) 

population with > 80% missing genotype information were also removed from the 

dataset (N=79). Kinship coefficient estimates and percentage missing data values 

per individual are listed in Table S3 of the published supplementary material that 

supports this research. It can also be downloaded from CurateND as an attachment 

accompanying this dissertation. 

2.4.2 Chromosomal mapping and distribution of SNPs 

After high quality SNP calling, application of hard filters to, and pruning from, 

the dataset, a total of 5,175 SNPs were identified and mapped to the AgamP4 

chromosomes (VectorBase 2014) as follows: X (n=347), 2L (n=1,078), 2R (n=1,514), 

3L (n=936), 3R (n=1,204), and mitochondrial (n=1). 95 SNPs were unable to be 

assigned to any chromosome (UNKN) but were included in a population genetic 

analysis when the collinear genome was being explored. The UNKN SNPs are most 

likely physically located in the highly repetitive pericentromeric regions 

(Sharakhova et al. 2007), which are challenging genomic positions to assemble and 

map. 

2.4.3 Population structure 

Visualization of population structure by PCA illustrated how the SNPs 

genetically clustered within and between collection sites. Genome-wide analysis 

(n=5,175) showed individuals clustering into three discrete groups on the first 

principal component (PC1) in a non-geographical configuration (Figure 2.3), which 

was also observed in the chromosome 2L (n=1,078) PCA (Figure 2.4), a pattern 
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likely driven by polymorphism with respect to the 2La inversion (APPENDIX C: ) 

(O’Loughlin et al. 2014). When 2L SNPs were removed from the dataset, or when 

other chromosome arms were analyzed individually, genetic structure showed 

individuals generally clustering in concordance with their geographic origin (Figure 

2.5; Figure S1 of the published supplementary material supporting this research, 

which can also be downloaded from CurateND as an attachment accompanying this 

dissertation). Since the 2La inversion is known to confound population genetic 

structure (O’Loughlin et al. 2014; Neafsey et al. 2015), chromosome 2L SNPs were 

removed from the dataset (n=4,097) for further downstream analysis. 
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Figure 2.3 Principal components analysis (PCA) plot of the 5,175 
genome-wide SNPs shared between the six An. gambiae populations 

(N=79). Each circle represents an individual mosquito. Entomological 
sampling sites are color-coded according to the legend (Site) as follows: BK 

(Bukasa); BL (Bugala); EB (Entebbe); NZ (Nsadzi); SY (Sserinya), and WL 
(Wamala). The first principal component (PC1) and its percentage variance 
are represented by the y-axis, and likewise, the x-axis represents the second 

principal component (PC2) and its percentage variance. 
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Figure 2.4 PCA plot of the 1,078 chromosome 2L SNPs in the six An. 
gambiae populations (N=79). Plot descriptors and legend are the same as 

for Figure 2.3. 
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Figure 2.5 PCA plot of the 4,097 SNPs in the six An. gambiae 
populations (N=79) after removal of the chromosome 2L SNPs 

(n=1,078) suspected of confounding genetic structure. Plot descriptors 
and legend are the same as for Figure 2.3. Here, polygonal code was applied 

to better illustrate geographic rather than karyotypic clustering. 
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Population structure was additionally tested by model-based estimation of 

ancestry using the software program ADMIXTURE v.1.23 (Alexander, Novembre, 

and Lange 2009). CV testing for each chromosome produced error estimates that 

indicated the populations shared only one ancestry except for 2L where K=2 was the 

most likely number of fractions (Error! Reference source not found.). This was in l

ine with the expectation that the populations would cluster into their chromosomal 

inversion arrangements (2L+a/+a, 2La/a, and 2L+a/a) rather than geographic 

locations for this region of the genome (APPENDIX C: ). 



5
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Figure 2.6 ADMIXTURE plot of chromosome 2L SNPs showing probable ancestry fractions (K=2) of the six 
An. gambiae populations (N=79) based on the 2La inversion. Vertical bars represent individual mosquitoes, 

which are stacked from left to right in groups of 16 (except: Bugala (N=13), Bukasa (N=13), and Sserinya (SY) 
(N=5)) according to their alphabetical sampling site. Populations are listed on the x-axis. Ancestry fractions (K=2) 

are assigned according to maximum likelihood probabilities. Each fraction represents a karyotype of different 
color: blue = inverted (2La/a), yellow = standard (2L+a/2L+a), and blue/yellow = heterozygote (2La/+a). 
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2.4.4 Genetic differentiation 

Pairwise FST comparisons between the populations were computed for all 

mapped SNPs according to Weir & Cockerham (1984) weighted estimates. Median 

values were used in the analysis since a null distribution histogram showed that they 

were not normally distributed. Moderate amounts of genetic differentiation were 

observed between most of the populations (median FST: 0.0342–0.0903) for the 4,097 

SNPs across the collinear genome after removal of the SNPs on chromosome 2L (TABLE 

2.1). Generally, inter-island comparisons generated the greatest differences between 

populations with the strongest signals of genetic differentiation being observed in the 

comparisons with Sserinya (median FST > 0.08). 

TABLE 2.1 

GENETIC DIFFERENTIATION BETWEEN POPULATIONS AS MEASURED BY MEDIAN 

WEIR-COCKERHAM WEIGHTED FST ESTIMATES 

Population Wamala a Bukasa Bugala Sserinya Nsadzi 
Entebbe a 0.0342 0.0503 0.0457 0.0100 0.0444 
Wamala a - 0.0446 0.0412 0.0903 0.0389 
 Bukasa - - 0.0532 0.0800 0.0520 
 Bugala - - - 0.0826 0.0480 

 Sserinya - - - - 0.0846 
NOTE: 
a Denotes mainland population 
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Geographical distance between populations is often the primary force driving 

genetic differentiation, therefore, isolation-by-distance as the model explaining the 

variation between the populations was tested by simple linear regression of median 

FST/(1-median FST) against a natural logarithm transformation of geographic distance 

(Rousset 1997). The resulting GLM plot showed no evidence of a correlation between 

the two variables (y = 0.104975-0.012853x; R2 =0.05; Mantel: p=0.2) meaning that 

geographic distance alone could not explain the variation observed between the 

populations (Figure 2.7). 
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Figure 2.7 Generalized linear model (GLM) plot of genetic 
differentiation against log geographic distance based on median 
FST. The regression equation (y=0.104975-0.012853x) describes the 

statistical relationship between the predictor ln(geographic distance) 
and response (Median FST/(1-Median FST)) variables. The line of best 

fit is represented by the red dotted line. 



2.4.5 Effective population size 

 Estimations of Ne were obtained using the LDNe (Waples and Do 2008) method 

in NeEstimator v.2.01 (Do et al. 2014) on the basis of superior performance compared 

to other single-sample estimators (Do et al. 2014; Gilbert and Whitlock 2015; J. Wang 

2016). Generally, smaller estimates of Ne were observed for all populations (TABLE 2.2) 

compared to those recorded for other continental populations of An. gambiae i.e. 6,689 

(Kenya) (Lehmann et al. 1998); 13,200 (Equatorial Guinea) (Athrey et al. 2012); 2 

million (East Africa) (O’Loughlin et al. 2014). The largest estimates were seen in Bugala 

(1,098.3) and Wamala (1,920.3), which were substantially higher than the other 

populations. The infinity estimates recorded for the Sserinya populations were derived 

from negative points, which implied that variation was due to sampling error alone and 

not genetic drift (allelic frequency changes due to random sampling). This was 

unsurprising given the high levels of kinship observed in both populations as a result of 

the unrepresentative entomological sampling that necessitated the removal of eleven 

individuals from the dataset. The coefficient of variation is a measurement of genetic 

drift specific to the LDNe method of NeEstimator v.2.01 (Do et al. 2014) and is 

calculated as the inverse of Ne. The lower estimates of 0.001 observed for Bugala and 

Wamala indicated that these populations would be more resistant to the effects of 

genetic drift compared to the higher coefficients of variation recorded for Bukasa 

(0.005), Entebbe (0.005), and Nsadzi (0.008), which implied vulnerability to allelic 

dropout or fixation.
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TABLE 2.2 

ESTIMATES OF EFFECTIVE POPULATION SIZE (NE) ADOPTING A MINOR ALLELE FREQUENCY FILTER OF 5% 

Population Bukasa Bugala Entebbe a Nsadzi Sserinya Wamala a 
Sample size     13.0      13.0  16.0  16.0  5.0  16.0 

Xh b       8.0       9.4  13.8  14.6  4.7  15.0 
LD (r2) c     0.17      0.14  0.09  0.09  0.37   0.08 

Estimated Ne   211.7 1,098.3    213.5   124.2 ∞       1,920.3 
95% CIs d 180.6-255.4 637.6-3913.7 195.8-234.6 118.4-130.7 ∞ 1124.2-6523.8 

CV e   0.005    0.001   0.005   0.008 ∞    0.001 
NOTE: 
a Denotes mainland population 
b Xh is the harmonic mean of the six sample sizes defined as the reciprocal of the arithmetic mean of the reciprocals of the sample sizes. See (Clark-Carter 
2005) for details 
c r2 is an indication of linkage disequilibrium (LD) 
d Parametric confidence intervals for estimated Ne 

e CV is the coefficient of variation, which is calculated by 1/Ne 
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2.5 Discussion 

2.5.1 There are limited malaria vector species in the Ssese Islands 

The majority of the dataset comprised of An. gambiae mosquitoes. Only 1 of 481 

female anophelines was molecularly identified as An. arabiensis and this was from the 

mainland (Entebbe) population. Kayondo et al. (2005) reported approximately 20% of 

the second year Bukasa collection (N=47) as An. arabiensis, which was attributed to 

asynchronous entomological sampling. This observation highlights the importance of 

systematic population sampling to establish changes in (a) species composition, (b) 

vector abundance, and (c) seasonality, which are some of the factors that can influence 

the genetic structure and effective size of a population. It is also interesting to note that 

in this study no An. arabiensis or An. funestus were collected in the islands inferring a 

limited malaria vector species distribution here: a key component of a GM mosquito 

control effort (World Health Organization 2014). In the event that entomological 

surveillance demonstrates the presence of additional An. gambiae s. l. or An. funestus 

vectors, a GM release would still be valuable in monitoring gene drive efficacy since the 

potential for transference of the genetic construct to sibling species could be assessed. 

2.5.2 The 2La inversion confounds population genetic structure 

Previous studies have demonstrated a strong association between the frequency 

of the 2La inversion and aridity, which shifts seasonally according to climate (Coluzzi et 

al. 1979; Touré et al. 1998) but there are no prior published data about its distribution 
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in the Ssese Islands. This is, therefore, the first reported 2La karyotypic distribution of 

An. gambiae mosquitoes in the Ssese Islands. 

Principal components analysis (PCA) illustrated that the 2La inversion 

confounded population genetic structure (Figure 2.3, Figure 2.4) thus, chromosome 2L 

SNPs were removed from the dataset to disclose the underlying population structure of 

the collinear genome (Figure 2.5). 

2.5.3 Moderate but significant genetic differentiation is observed in island 

populations 

Genetic differentiation among the Ssese islands was moderate in magnitude 

(median FST: 0.0480–0.0846) but significantly greater than the very low differentiation 

between An. gambiae populations observed across opposite sides of continental Africa 

(mean FST: 0.016) (Lehmann et al. 1996) and comparable in magnitude to populations 

separated by the KRVC (mean FST: 0.104), which acts as a physical barrier to gene flow 

(Lehmann et al. 1999). It would seem reasonable to suggest that water also acts as a 

physical barrier to gene flow in locations where it separates populations—just as the 

KRVC does further inland—since higher differentiation and low amounts of gene flow 

were identified in oceanic island studies of An. gambiae in the Comoros (mean FST: 

0.199–0.250) (Marsden et al. 2013), and of An. arabiensis in Madagascar, Reunion, and 

Mauritius (mean FST: 0.169) (Simard et al. 1999). Kayondo et al. (2005) reported mean 

FST values of 0.014-0.105 in the same An. gambiae populations sampled here, which are 

of a lower magnitude than those in the oceanic island studies but not unexpected given 

the smaller distances involved that allowed for frequent human-marine transportation 
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routes or even wind-borne diffusion, which might have passively dispersed mosquitoes. 

This would suggest that water is not an absolute physical barrier to gene flow in this 

region as supported here by the evidence indicating limited migration between 

populations (TABLE 2.1; Figure 2.5) and greater genetic structure that is present in the 

islands. This was also observed in the PCA plot (Figure 2.5) where individuals clustered 

in concordance with their geographic origin. The two mainland sites, Entebbe and 

Wamala, also showed signs of population differentiation (median FST: 0.0342) (Figure 

2.5 polygons: green-Entebbe; pink-Wamala). Neither of these locations is separated by 

water but the sampling point in Entebbe—Lunnyo—sits on the edge of a small harbor, 

which is separate from the rest of the town. There are no other obvious geographical 

barriers to gene flow between these sites so the explanation as to why the two 

mainland An. gambiae populations appear somewhat differentiated from each other 

must be due to other unknown factors of demographic, ecological, and/or 

anthropogenic origin. 

An array of molecular markers have been used to explore genetic differentiation 

in continental populations including microsatellites, mtDNA, allozymes and, more 

recently, SNPs (O’Loughlin et al. 2014; The Anopheles gambiae 1000 Genomes 

Consortium 2017). That all of these marker systems identify the same pattern of low 

genetic differentiation on the continent suggests that the heightened differentiation 

estimated in this study is real, and not attributable to differences in the genetic markers 

themselves: an assertion strengthened by the previous Ssese Islands studies of Kayondo 

et al. (2005) and Lukindu et al. (2018) using microsatellites and mtDNA, respectively. 
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2.5.4 Island populations have small effective sizes 

Higher levels of genetic differentiation could also be explained to some extent by 

the small estimates of effective population size (Ne) that were obtained through the LD 

method of NeEstimator v.2.01 (Do et al. 2014). Ne determines how random genetic drift 

affects the stability of allelic frequencies, which are more variable in small populations 

i.e. there is a greater probability that an allele will become either fixed (f=1.0) or lost

(f=0.0) in a smaller population since fewer individuals may or may not be carrying f. It 

follows, therefore, that Ne will have a greater influence on genetic variation in these 

populations. 

Kayondo et al. (2005) estimated that the island populations consisted of smaller 

demes in the hundreds (397-677) compared to the mainland populations that were in 

the thousands (8,810-8,935). This was anticipated since An. gambiae is usually found in 

close proximity to human habitation (Coluzzi et al. 1979) and the collection sites in the 

islands are less intensely populated than those on the mainland. The estimates in this 

study are generally smaller but comparable to those of Kayondo et al. (2005) (< 397) 

with the exception of Bugala, which has increased to 1,098. Over the last few years, the 

human population size on Bugala has grown substantially (2002: 34,800 - 2016: 

54,293) (Uganda Bureau of Statistics 2016) as a result of: (i) economic development 

arising out of the expansion of a 10,000 hectares oil palm plantation and related mill 

facility (Carmody and Taylor 2016), and (ii) tourism. Coupled with increased boat 

traffic to/from the mainland, human population growth may have also led to the 

concomitant population growth of An. gambiae. 
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One of the key components of a population genetic analysis is the temporal 

stability of the population. A limitation of this study is that there is only one time point 

to estimate Ne, which can fluctuate in accordance with climatic changes. It is 

recommended, therefore, that future research should focus on multi-year, and multi-

season longitudinal sampling to account for variances in malaria vector abundance 

(Mukiama and Mwangi 1989; Kabbale et al. 2013) to mitigate any impact on the timing 

of a proposed GM mosquito release, which may adversely affect effective population 

sizes. 

2.6 Conclusion 

This is the first genome-wide SNP-based study of An. gambiae population 

connectivity and effective size in the Lake Victoria region. The island populations 

comprise of a dominant malaria vector species (An. gambiae) with low to moderate 

genetic differentiation and greater structure suggesting some limitation to migration 

between them. Smaller estimates of effective population size indicate that an 

introduced effector transgene should be susceptible to genetic drift but to ensure that it 

is driven to fixation instead of loss the construct would have to be paired with a robust 

gene drive mechanism. 

Taking these findings into consideration, together with their favorable location 

and suitability for frequent monitoring, the Ssese Islands contain several candidate An. 

gambiae populations, which merit further evaluation in regard of a potential GM 

mosquito pilot release.

61  



 

 62 

CHAPTER 3:  

 

IDENTIFYING THE GEOGRAPHIC STRUCTURE OF ANOPHELES FARAUTI 

POPULATIONS IN THE SOUTHWEST PACIFIC USING SINGLE NUCLEOTIDE 

POLYMORPHISM MARKERS 

The purpose of this chapter is to present the reader with research, which 

contributes expertise towards the second developmental challenge identified by the 

malERA Consultative Group on Vector Control: interventions that affect vector 

species not effectively targeted by current tools. Prior to the development and 

distribution of LLINs, IRS with DDT was the primary vector control tool in the 

southwest Pacific malaria programs of the 1970s. Huge reductions in Anopheles. 

punctulatus and An. koliensis populations were achieved (because of their high 

anthropophilic affinity), and also in the An. farauti populations that demonstrated 

(what is considered to be) classic late night indoor-biting behavior. A key 

entomological outcome, which developed in the Solomon Islands as a result of DDT 

selection pressure, concerned a proportion of the An. farauti population that were 

observed to feed outdoors and earlier in the evening—behavioral adaptations, most 

commonly referred to as resistance (Taylor 1975a, 1975b). These mosquitoes, as a 

consequence of failing to enter domiciles where lethal doses of insecticide had been 
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applied, failed to come into contact with the control intervention thus, maintaining 

residual transmission, and it is these populations that novel interventions must 

target in order to supplement LLINs and larval source management. 

Malaria vector behavior is variable and most likely results from complex 

genetic and environmental interactions, which develop in response to exogenous 

cues that differ between species, and populations within species. Vectorial capacity 

is determined by genetic components that contribute to key biological traits, such as 

behavior and susceptibility to Plasmodium infection, which are also variable 

between vectors. Understanding how these factors interact at the genomic level can 

provide greater insight into disease transmission since it permits the detailed 

analysis of functional characteristics—such as gene turnover in cuticular proteins 

and their role in insecticide resistance—that can be manipulated as targets for 

malaria vector control. 

A genome-wide approach in the analysis of population structure also 

provides power to identify genetic processes (such as restricted gene flow or an 

insecticide-resistant genotype) and the genomic regions that regulate them thus, 

creating an understanding of how these mechanisms will impact upon control 

interventions. 

Entomological sampling of natural Anopheles farauti populations was 

conducted in four locations (Australia, Papua New Guinea, Solomon Islands, and 

Vanuatu) across its geographic distribution. Four individuals from each site (N=16) 

were sequenced with a whole genome shotgun approach. Single nucleotide 

polymorphism (SNP) markers confirmed geographic population structure and also 
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identified genetic similarity between the populations in Australia and Vanuatu as 

well as a lack of diversity within each. In conclusion, the research in this chapter 

enhances prior An. farauti population genetic studies by adopting a SNP-based 

approach, which permitted high resolution genome-wide analysis that detected a 

previously unidentified geographic relationship in this important malaria vector. 

3.1 Systematics of malaria vectors in the southwest Pacific 

The anopheline mosquitoes in this region have been previously well 

described (D. Lee 1987). Members of the Anopheles punctulatus group—a complex 

consisting of 13 species—are the primary vectors responsible for transmitting 

malaria in the southwestern Pacific region (TABLE 3.1). Although not formally 

incriminated as a vector, certain members of the Anopheles lungae complex have 

recently been recorded as man-biting species (T. Burkot et al. 2018) and are 

presented here for completeness.  
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TABLE 3.1 

 

DISTRIBUTION AND VECTOR STATUS OF THE ANOPHELES LUNGAE COMPLEX AND 

AN. PUNCTULATUS GROUP * 

Group/complex-species Distribution Vector status 
An. lungae complex   

An. lungae Belkin & Schlosser, 1944 Solomon Islands Unresolved a 
An. nataliae Belkin, 1945 Solomon Islands    Unresolved 

An. solomonis Belkin, Knight & 
Rozeboom, 1945 

Solomon Islands Unresolved a 

An. punctulatus Group   
An. punctulatus Dönitz, 1901 New Guinea 

Solomon Islands 
Primary 

An. koliensis Owen, 1945 New Guinea 
Solomon Islands 

Primary 

An. clowi Rozeboom & Knight, 1946 New Guinea Non-vector 
An. rennellensis Taylor & Maffi, 1991  Solomon Islands Non-vector 

An. sp. near punctulatus Foley, Cooper & 
Bryan,1995 

New Guinea Non-vector 

      An. farauti complex   
An. farauti Laveran, 1902 Australia 

New Guinea 
Solomon Islands 

Vanuatu 

Primary 

An. hinesorum Schmidt, 2001 Australia 
New Guinea 

Solomon Islands 

Secondary 

An. torresiensis Schmidt, 2001 Australia Unresolved 
An. farauti 4 New Guinea Secondary 
An. farauti 5 New Guinea Non-vector 
An. farauti 6 New Guinea Secondary 

An. irenicus Schmidt, 2003 Solomon Islands Non-vector 
An. farauti 8 New Guinea Secondary 

NOTE: 
* Adapted from Beebe et al. (2013) 

a An. lungae and An. solomonis were identified as biting humans in Western Province, Solomon 
Islands but no Plasmodium DNA was detected in heads or thoraces as an indicator of malaria 
sporozoite transmission (T. Burkot et al. 2018) 
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Anopheles punctulatus was the first species to be described from the Madang 

area of Papua New Guinea (Dönitz 1901) followed by An. farauti in Vanuatu 

(Laveran 1902). Further species were not identified until the extensive 

entomological studies carried out during World War II recognized An. koliensis and  

An. clowi as closely related members in what became known as the Punctulatus 

Complex (Rozeboom and Knight 1946). 

The distinguishing morphological feature used to identify a specimen to 

species was the unique coloration and markings of the proboscis, which Rozeboom 

& Knight (1946) designated as type A (all black-scaled labium with a pale apical ring 

at the basal tip: An. farauti), type B (apical half of the labium extensively or 

completely covered in white scales: An. punctulatus), and type C (apical half of the 

labium has a ventral patch of white scales: An. koliensis) (Figure 3.1); however, 

polymorphism within types B and C generated confusion in the literature and this 

form of identification was eventually considered unreliable.  
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Figure 3.1 Schematic drawing illustrating different proboscis 
coloration patterns in the Punctulatus Complex. Top down: type A 

(An. farauti), B (An. punctulatus), and C (An. koliensis). Note the 
polymorphism within types B, and C. From Rozeboom & Knight 

(1946). 
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Cytogenetics became a more informative method of species identification 

after the discovery of two further species (An. hinesorum and An. torresiensis) due to 

post-mating barriers (Bryan and Coluzzi 1971; Mahon and Miethke 1982; Mahon 

1983). This was followed by advanced molecular techniques, which used allozyme 

markers that determined the species An. farauti 4, 5, and 6 in Papua New Guinea 

(Foley et al. 1993), An. irenicus in the Solomon Islands (Foley, Meek, and Bryan 

1994), and An. sp. near punctulatus (an uncommon non-vector ) from the Papua 

New Guinea highlands (Foley, Cooper, and Bryan 1995). 

The An. farauti species complex shares an extensive distribution, which is 

demarcated in southeastern Indonesia—by the hypothetical zoogeographical 

boundaries (separating Asia and Australia) first described by Wallace (1863) then 

Weber (1902)—and in the southwest Pacific Ocean as far south as Vanuatu, which is 

the naturally occurring limit of Anopheles mosquito vectors (Buxton Line 170E, 

20S). Figure 3.2 shows the predicted geographic distribution of the complex as 

estimated with likelihood probabilities derived from Boosted Regression Tree 

modelling (Sinka et al. 2011) Likelihood of occurrence is indicated by either high 

(red) or low (blue) probability of locating a species within the complex. 
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Figure 3.2 Predicted geographic distribution of the Anopheles farauti species complex. Entomological 
sampling sites (Australia-Yorkeys Knob; Papua New Guinea-Madang; Solomon Islands-Haleta; Vanuatu-

Tanna) are detailed in black open-framed rectangles. Adapted from the Malaria Atlas Project (2019). 
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The southwest Pacific experiences the second highest rates of malaria 

transmission globally following those of sub-Saharan Africa (World Health 

Organization 2018d) despite the application of IRS operations and distribution of 

LLINs by the Pacific Community (SPC) member states. This is most likely due to the 

primary malaria vector An. farauti having the widest geographic range of any 

species in the complex due to its preference for coastal habitats resulting from a 

physiological ability to tolerate increased levels of salinity. Previous population 

genetic studies have revealed distinct geographically structured populations using 

single locus markers i.e. mtDNA cytochrome oxidase I (COI) and the ribosomal 

intragenic transcribed spacer regions (ITS1 and ITS2) (Beebe et al. 2000; Bower et 

al. 2008; Ambrose et al. 2012, 2014) demonstrating sufficient sensitivity to detect 

barriers to gene flow. 

3.2 Current objective 

Motivation for this study developed from the research objectives of the 

Anopheles 16 Genomes (An16G) Project (Neafsey et al. 2013). Sequencing of An. 

gambiae—the major sub-Saharan malaria vector (Holt et al. 2002)—generated a 

genome-wide resource, with the capacity to support an array of genetic studies that 

facilitated a greater understanding of the biological traits they underpinned (Touré, 

Oduola, and Morel 2004). For many years following the An. gambiae sequencing 

effort (mainly as a result of the high costs associated with reagent chemistry and the 

availability of high-throughput sequencers), the equivalent genomic resources were 

not available for other important malaria vectors and research was limited to the 
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application of specific genes or genetic marker sets such as microsatellites and 

mtDNA. The majority of biological processes are coordinated by complex multigene 

interactions as opposed to a single gene. It follows, therefore, that single locus or 

minimal markers will most probably be insufficient to elucidate the genetic 

mechanisms that underlie these processes. 

Of the approximately 535 Anopheles species identified to date, only 41 are 

considered to be malaria vectors of major importance (Sinka et al. 2012; The 

Malaria Atlas Project 2019) and, within that subset, their ability to transmit malaria 

(vector competence) differs leaving researchers to consider the biological basis of 

such variability. The An16G Project was conceived to generate genomic and 

transcriptomic resources of 16 anopheline species that would facilitate a 

comparative framework to enable greater comprehension of vectorial capacity, its 

biological components (i.e. physiology, molecular architecture, and behavior), and 

how these could possibly be manipulated with the aim of reducing malaria 

transmission. The current objective of this study was to apply the newly available 

An. farauti genomic resources to wild-type individuals from natural populations 

across its ecological range, and identify any patterns of genetic structure. 

3.3 Materials and methods 

3.3.1 Entomological sampling 

Anopheles farauti s. l. mosquitoes were sampled from natural populations in 

2012 as part of the An16G Project (Neafsey et al. 2013, 2015) by oral aspiration 
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(barrier screen and human landing catch (HLC) collections) or as dead specimens 

(CDC light trap) (TABLE 3.2). 

TABLE 3.2 

 

GEOGRAPHIC METADATA FOR ENTOMOLOGICAL COLLECTIONS OF ANOPHELES 

FARAUTI S. L. MOSQUITOES SAMPLED FROM NATURAL POPULATIONS ACROSS ITS 

ECOLOGICAL DISTRIBUTION 

Country Location 
Collection 

method 
GPS co-ordinates 

Papua New Guinea Madang, (Mirap) Barrier screen a -4°45’10”S, 145°40’0”E b 
    

Australia 
Queensland, 

(Yorkeys Knob) 
CDC light trap -16°49’24”S, 145°42’57”E 

    
Solomon Islands Central, (Haleta) HLC c -9°5’56”S, 160°6’56”E 

    
Vanuatu Tanna, (Uiak) HLC c -19°26’3”S, 169°13’38”E d 

NOTE: 
a (T. Burkot et al. 2013) 
b Converted from decimal degrees (-4.7527, 145.6667) (National Geodetic Survey 2018) 
c Human landing catch 
d Converted from decimal degrees (-19.434193, 169.227215) (National Geodetic Survey 2018) 

3.3.2 Species identification and preservation 

An. farauti specimens were morphologically identified to species complex 

under field conditions using the taxonomic keys of Belkin (1962a, 1962b). After 

preservation on silica beads (Papa New Guinea) or in ethanol (Australia, Solomon 

Islands, Vanuatu) specimens were transferred to the laboratory where a single leg 
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was dissected as source material for molecular species identification by the ITS2 

assay of Beebe and Saul (1995). Confirmed An. farauti specimens were transported 

to the University of Notre Dame, USA where a subsequent ITS2 assay was conducted 

to validate initial results. Subsets from each collection were then selected for 

genomic sequencing at the Broad Institute of MIT and Harvard, USA. All shipments 

were completed as whole animals on silica beads. 

3.3.3 Whole genome library construction and sequencing 

Sequences were generated using an Illumina whole genome shotgun 

approach, which is detailed in the supplementary pages of Neafsey et al (2015). A 

brief summary follows, however, for introduction and ease of reference. 

3.3.3.1 Reference genome 

The An. farauti reference genome (AfarF1 assembly) was generated using 

individuals of the FAR1 strain (AfarF1) (source: Papua New Guinea, isofemale, 

subcolony, Malaria Research and Reference Reagent Resource Center (MR4)) from 

three sequencing libraries with different insert sizes on an Illumina MiSeq platform 

in a single run: 

1. 180 bp ‘fragment’: created from a single individual to minimize 
heterozygosity 

2. 1.5 kb ‘jump’: generated from the same individual as for the fragment 
library and created to circumvent difficult to align regions such as 
repetitive DNA 

3. 38 kb ‘Fosill’: (Fosmid-scale Illumina-compatible jump library) 
constructed of high molecular weight DNA from several hundred 
individuals to improve scaffolding 
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3.3.3.2 Samples from natural populations 

Four individuals were randomly selected from each natural population (wild-

type) (N=16) and each sequenced for four runs on an Illumina HiSeq2000 platform 

with v.1.9 encoding. 

3.3.4 Bioinformatics processing 

3.3.4.1 AfarF1 assembly 

AfarF1 genomic sequences were assembled using the ALLPATHS-LG 

algorithm (Gnerre et al. 2011). Specific parameters applied to the AfarF1 reads were 

“HAPLOIDIFY=True” to further minimize heterozygosity and 

“ReadFilterByKmerFreq=0.6”, a K-mer (sequence of K consecutive bases) 

normalization tool that down-samples high coverage data. Scaffolding gaps and 

errors were identified post-assembly by Pilon (Broad Institute 2012b) and a manual 

analysis for quality was conducted with GAEMR (Broad Institute 2012a). Assembly 

contigs (set of contiguous, overlapping reads) were screened for sequence 

contamination in the National Center for Biotechnology Information (NCBI) 

mitochondrial and nucleotide databases. Any significant alignments to 

mitochondrial, host, and/or bacterial sequences were identified and removed. 

AfarF1 assembly data is available in the NCBI-Sequence Read Archive under 

experiment ID SRX349764 (2013) and the VectorBase repository (2013). 
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3.3.4.2 Wild-type sequence data 

Read length and sequence quality of wild-type data were assessed in FastQC 

v.0.10.1 (Babraham Institute 2011). Illumina sequencing adapters and sequences 

that did not meet quality parameters were removed with Trimmomatic v.0.30 

(Bolger, Lohse, and Usadel 2014). Reads were then mapped to the AfarF1 assembly 

(VectorBase 2013) using Burrows-Wheeler Alignment (BWA) v.0.7.5 (Li and Durbin 

2009) and pre-processed with SAMtools v.0.1.18 (Li et al. 2009) and Picard v.1.92 

(2013) to ensure compatibility with downstream software. HaplotypeCaller in 

GenomeAnalysisToolkit (GATK) v.2.5.2 (Van der Auwera et al. 2013) was selected 

for variant discovery and annotation on the basis of technical sophistication and 

superiority at recognizing insertion-deletion events (indels). 

High quality SNP calls used in population structure analysis were generated 

by merging the 16 individual datasets and applying filtering parameters to remove 

variants that did not meet quality criteria, were indels, or were multiallelic SNPs. 

Using VCFtools v.0.1.15 (Danecek et al. 2011), higher quality filters were applied to 

the dataset so that only SNPs with a minimum genotype quality of 30, minor allele 

frequency of 5%, and that were present in every individual were retained. A 

detailed description of the bioinformatics pipeline, including parameters, is listed in 

APPENDIX D: . 

3.3.5 Population structure 

Principal components analysis (PCA) was selected to visualize population 

structure because of its capacity to transform complex multidimensional data onto a 
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reduced 2-dimensional feature, which represents the data with the most 

information about its distribution. Principal components (PCs) are also known as 

eigenvectors and determine the direction of the reduced dimensional space. 

Eigenvalues, which explain the variance of the data, determine the magnitude. The 

merged dataset was first pre-processed through PLINK v.1.9 (Chang et al. 2015) to 

produce a data format suitable for eigenanalysis in R v.3.2.1 (R Core Team 2014). 

Genomic ancestry was computed from maximum-likelihood estimates of 

population allele frequencies and genotype probabilities in ADMIXTURE v.1.23 

(Alexander, Novembre, and Lange 2009). A cross-validation (CV) procedure—that 

identified the lowest error value for which the model had the best predictive 

accuracy—was applied prior to selecting the most probable number of ancestral 

populations (K) with which to run the statistical model. 

3.4 Results 

3.4.1 Species identification 

All specimens identified in the field as anopheline mosquitoes were 

molecularly confirmed as An. farauti using the described rDNA markers in Beebe 

and Saul (1995) with the exception of those collected in Tanna. Since An. farauti is 

the sole anopheline species existing in Vanuatu—as identified by previous 

entomological and genetic surveys (Foley, Meek, and Bryan 1994; Beebe and Saul 

1995; Beebe et al. 2000; Beebe and Cooper 2002; Reiff et al. 2007)—field 



identification through proboscis morphology (Rozeboom and Knight 1946) was 

sufficient to confirm specimens to species. 

3.4.2 An. farauti reference genome assembly 

The new AfarF1 genome was 180,984,331 bp in size, assembled into 550 

scaffolds with an N50 of 1,196,527 bp (VectorBase 2013). In comparison to other 

species sequenced as part of the An16G project, this assembly was neither the most 

contiguous (An. albimanus: 204 scaffolds, N50=18,068,499 bp) nor fragmented (An. 

maculatus: 47,797 scaffolds, N50=3,841 bp) (Neafsey et al. 2015). 

3.4.3 Wild-type An. farauti samples 

 The 16 wild-type samples were mapped to the newly assembled AfarF1 

reference genome prior to variant calling, then merged globally to generate a final 

high quality SNP dataset (n=17,757). Summary variant counts for each individual 

and the global dataset are presented in  

TABLE 3.3. Prior to any quality assessment (unfiltered), the Australian 

samples appear to have the greatest number of variants per individual averaging 

~2.3 million, followed by Papua New Guinea (~2.0 million), and the Solomon 

Islands (~1.5 million). In contrast, Vanuatu samples demonstrated almost 50% less 

variants per individual (~1.25 million) than Australia. It should be noted here, 

however, that variants identified by HaplotypeCaller (GATK) do not immediately 

translate into polymorphisms with biological rationalization. Variant calls can be 

true SNPs but they can also be structural variants, multiallelic SNPs, insertion-
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deletions (indels), and even incorrect base calls, although pre-processing of the data 

prior to application of HaplotypeCaller should have removed most of the latter. 

When first combined the global dataset contained 7,329,580 variants but 

after the application of filtering parameters that identify lower quality, and 

redundant (for this study) variants, almost 47% of these were removed generating a 

new quality assessed SNP dataset (n=3,440,489). SNPs that appeared only once in 

the dataset (n=883,857) and, therefore, were not representative of a population 

were removed using the [--maf 0.05] function in VCFtools v.1.15 (Danecek et al. 

2011). A final genotype filter (sharedVariantsAllSamples.py) to include only those 

SNPs present in every individual was applied to ensure completeness (Wiltshire 

2019). 



 79 

TABLE 3.3 

VARIANT CALL SUMMARY COUNTS OF RAW AND FILTERED DATASETS FOR THE 

16 WILD-TYPE ANOPHELES FARAUTI INDIVIDUALS 

Individual Population Unfiltered 
Quality 
filtered 

+maf005 * +noMissing †

HALETA Solomon Islands 1,526,693 
HALETA2 Solomon Islands 1,490,287 
HALETA3 Solomon Islands 1,515,197 
HALETA4 Solomon Islands 1,528,798 
MADANG1 PNG ‡ 2,056,435 
MADANG3 PNG ‡ 2,074,106 
MADANG4 PNG ‡ 2,094,455 
MADANG6 PNG ‡ 1,987,973 

QLD2 Australia 2,328,473 
QLD3 Australia 2,345,038 
QLD5 Australia 2,347,530 
QLD6 Australia 2,363,182 

TANNA2 Vanuatu 1,552,574 
TANNA3 Vanuatu 1,242,834 
TANNA4 Vanuatu 1,253,126 
TANNA6 Vanuatu 1,253,295 

ALL Global 7,329,580 3,440,489 2,556,632 17,757 
NOTE: 
* maf005 is the minor allele frequency filter and refers to the parameter in VCFtools v.0.1.15 (Danecek
et al. 2011), which removes rare and infrequently occurring SNPs (< 5% of a population) from the
dataset
† noMissing refers to the filter that removes SNPs, which are not present in every individual of the
dataset using the custom Python script sharedVariantsAllSamples.py (Wiltshire 2019)
‡ PNG is an abbreviation of Papua New Guinea
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3.4.4 Population structure 

Principal components analysis (PCA) demonstrated that each population 

(N=4) clustered in concordance with its geographic location (Figure 3.3) as would 

be expected in sampling sites separated by distances of thousands of kilometers 

where the presumed barrier to gene flow is an ocean gap. There was a distinct 

separation between each population with no overlap suggesting that they are 

genetically isolated. However, the Australia (pink) and Vanuatu (purple) 

populations are closer together in magnitude implying genetic similarity. 
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Figure 3.3 Principal components analysis illustrating genetic variance 
observed in 17,757 SNPs shared between the wild-type An. farauti 

individuals (N=16) across the four geographical sampling sites. The y-
axis represents the first principal component (PC1) and its percentage 

variance, and likewise, the x-axis represents the second principal component 
(PC2) and its percentage variance. 

Separation between individuals can be seen as discrete discs in each of the 

Papua New Guinea (green) and Solomon Islands (blue) groups implying greater 

variation within these populations than those of Australia and Vanuatu, which in 

direct contrast appear as single samples with similar eigenvalues. 

Population stratification was additionally tested by model-based estimation 

of global ancestry using the software program ADMIXTURE v.1.23 (Alexander, 
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Novembre, and Lange 2009). On the assumption that the individuals originated 

from the same geographical populations in which they were collected (K=4), 

ADMIXTURE assigned four ancestry fractions to the dataset but the resulting 

distribution was not based on geographical location (Figure 3.4). Instead, 

individuals from Australia and Vanuatu (black) were observed as one population, 

Papua New Guinea (sand) as another, and the Solomon Islands (brick and mauve) as 

two populations. This analysis appears to corroborate that of the PCA, therefore, in 

which the genetic similarity between the Australia and Vanuatu populations is 

supported. 

Figure 3.4 Admixture plot of the 17,757 SNPs illustrating probable 
ancestry fractions (K=4) of wild-type An. farauti individuals 

(N=16). Vertical bars represent individual mosquitoes as listed on the 
x-axis. Ancestry fractions are assigned according to maximum

likelihood probabilities. 

Applying (K=5) to the model re-stratified the populations geographically 

(Figure 3.5). Australia (brick) and Vanuatu (grey) demonstrated clear separation as 
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did Papua New Guinea. The Solomon Islands, however, remained divided into two 

populations (mauve and black) but with different assigned ancestry fractions to 

those when K=4. It should be noted that the palette applied to the admixture plot by 

R (R Core Team 2014) is arbitrary and there is no qualitative significance to color 

allocation of populations. 

Figure 3.5 Admixture plot of the 17,757 SNPs illustrating probable 
ancestry fractions (K=5) of the wild-type An. farauti individuals 

(N=16). Vertical bars represent individual mosquitoes as listed on the 
x-axis. Ancestry fractions are assigned according to maximum

likelihood probabilities. 

3.5 Discussion 

The purpose of this study was to identify genetic structure in An. farauti 

populations across its geographic distribution using a genome-wide approach. SNP-

based analyses confirmed geographic structuring between populations, and 

detected a genetic relationship between Australian and Vanuatu populations. 
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Greater structure identified within the Solomon Islands population implied some 

limitation to migration. These findings are discussed below. 

3.5.1 Australia and Vanuatu populations are genetically similar 

PCA (Figure 3.3) and global ancestry assignment (Figure 3.4) inferred that 

the An. farauti populations in Australia and Vanuatu were genetically more similar 

to each other than to either of the Papua New Guinea and Solomon Islands 

populations. This relatedness was unexpected since it is likely that physical barriers 

to gene flow exist between the two sampling sites (Australia: Yorkeys Knob—

Vanuatu: Tanna) namely, geographic distance (2,503 km) and the ocean channel 

across which it extends. It is, therefore, challenging to provide an explanation as to 

where the similarities arose. 

Recent assessments of An. farauti population structure in the southwestern 

Pacific have used mitochondrial DNA (mtDNA) cytochrome oxidase I (COI), and 

nuclear (ribosomal protein S9 (rpS9) and microsatellite) markers to explain genetic 

relatedness (Ambrose et al. 2012, 2014) but neither found evidence for an 

Australia-Vanuatu relationship. Ambrose et al. (2012) identified four distinct 

geographical groups of An. farauti populations based on mtDNA COI haplotypes, one 

of which being the Solomon Islands together with Vanuatu; however, there were no 

available ribosomal protein S9 (rpS9) markers from the Queensland (Australia) or 

Vanuatu samples to enable a nuclear DNA comparison with the SNP data in this 

study. Further to their 2012 study, Ambrose et al. (2014) again generated a mtDNA 

COI haplotype network for An. farauti populations in the Solomon Islands and 
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Vanuatu, which identified Tanna (Vanuatu) as being more genetically similar to the 

northern archipelago populations in Choiseul and Bougainville in addition to the 

eastern population in Santa Cruz. In contrast, microsatellite analyses with PCA and 

STRUCTURE (Pritchard, Stephens, and Donnelly 2000) identified Tanna as an 

unconnected population that was genetically distinct from any of the others 

sampled across the Solomon Islands archipelago. This finding indirectly lends 

support to the results of this study with the inference that nuclear markers have 

sufficiently differentiated the Solomon Islands and Vanuatu populations to exclude 

the suggestion of a southern migration when exploring the mechanism by which An. 

farauti populated the islands of Vanuatu. 

An. farauti is highly anthropophagic (T. Russell, Beebe, et al. 2016; T. Russell, 

Burkot, et al. 2016b) in the absence of alternative hosts and it would be reasonable 

to propose that its existence in such a remote island group is due to human 

population expansion especially since there is a lack of indigenous land mammals 

save for a few species of bats (Flannery 1995). The general consensus amongst 

anthropologists is that migration and colonization of Remote Oceania during the 

mid-Holocene occurred in the direction of island Southeast Asia, New Guinea, and 

the Bismark archipelago approximately 3,400 years ago (Anderson and O’Connor 

2008; Kayser 2010) mediated, most likely, by voyaging canoe (Anderson and 

O’Connor 2008), a vehicle more than capable of transporting juvenile stages 

between landmasses. Although mechanical dispersal is more commonly observed in 

Aedes species (Failloux et al. 1997; Fonzi et al. 2015) than Anopheles, this method of 

distribution provides a mechanism that rationalizes how An. farauti migration 
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across the southwest Pacific could have been achieved. However, on the assumption 

that certain mosquitoes and humans share a close evolutionary relationship (B. 

White, Collins, and Besansky 2011) due to the former’s blood meal preferences, the 

proposed human migration route into Remote Oceania does not explain the genetic 

similarity between the Australia and Vanuatu populations identified in this study. 

Long distance wind-borne dispersal may be another mechanism by which migration 

occurs but whose components have yet to be explored in detail. 

3.5.2 Australia and Vanuatu individuals demonstrate little genomic variation 

in the generated SNP dataset 

PCA (Figure 3.3) clearly demonstrated that the four individuals in each of the 

Australia (red) and Vanuatu (purple) populations lacked diversity across the 17,757 

SNPs. Each cluster appeared as a single disc indicating that the eigenvalues, which 

provide a measure of variance quantitatively, were virtually identical for PC1, and 

PC2. It could be that there is more variation in the lower scoring principal 

components (i.e. PC3-PC20) for these individuals, or if PCA was run again with only 

these two populations then variation might be differently distributed due to less 

noise. To further explore population structure of these individuals, an upstream 

analysis of each genome could test for relatedness (heterozygosity/runs of 

homozygosity) in the first instance, which would provide an indication of whether 

they were truly representative of the population or a sampling bias. Since 

entomological collections were HLC (Tanna) and CDC light trap (Yorkeys Knob), 

specimens were adults meaning they were less likely to be immediately related 
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although, of course, it is entirely possible that they could be. This is in comparison to 

larval collections where the dipping technique groups larvae, which have developed 

from eggs most probably laid by a single female and, hence, the resulting adults are 

related as was the case for the majority of individuals in the Sserinya population 

discussed in Chapter two. To mitigate sampling bias, additional entomological 

sampling should be conducted. 

3.5.3 Greater structure is observed in the Solomon Islands population 

Individuals in the Solomon Islands and Papua New Guinea showed greater 

variation within each population (Figure 3.3). Global ancestry analysis corroborated 

PCA and identified further structure in the Solomon Islands as illustrated by the 

assignment of ancestry fractions in both the K=4 (Figure 3.4) and K=5 (Figure 3.5) 

models: the latter separating individuals into two discrete populations. A previous 

MTC entomological survey identified a simple transmission setting at the Haleta 

sampling location, which is localized since mosquitoes traversed between their 

oviposition site (a lagoon located at the base of steep-walled volcano) and the 

village positioned near the shoreline (where they feed) (Neil Lobo, personal 

communication). It would appear, therefore, that there is limited opportunity for the 

introduction of genetic material through migration from neighboring populations (if 

they exist) but this could be supplied via mechanical dispersal across the travel 

routes between Haleta-Tualagi (the regional hub) in the Nggela Islands and Haleta-

Guadalcanal, which have become more frequent. 
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3.6 Conclusion 

This is the first genomic assessment of An. farauti population structure 

across the southwest Pacific. Application of a SNP-based approach detected a 

previously unidentified genetic relationship between populations in Queensland 

(Australia) and Vanuatu, and also a lack of diversity between individuals within 

those populations suggesting isolation. Greater structure was identified within the 

Solomon Islands and Papua New Guinea populations, with the Solomon Islands 

individuals being separated into two discrete populations by ancestry fraction 

assignment. In conclusion, the research in this chapter has enhanced previous An. 

farauti population genetic studies with SNP-based approaches that permit high 

resolution genome-wide analysis. 
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CHAPTER 4: 

FIELD EVALUATION OF SUGAR-FERMENTED YEAST AS AN ORGANIC SOURCE OF 

CARBON DIOXIDE TO ATTRACT ANOPHELES FARAUTI MOSQUITOES IN WESTERN 

PROVINCE, SOLOMON ISLANDS 

The purpose of this chapter is to present the reader with research, which 

contributes expertise towards the second developmental challenge identified by the 

malERA Consultative Group on Vector Control: interventions that affect vector 

species not effectively targeted by current tools. 

In Western Province, Solomon Islands, a proportion of An. farauti mosquitoes 

demonstrate early evening outdoor-feeding behaviors meaning that they avoid 

entering domiciles where existing indoors-based control tools i.e. LLINs (since IRS 

operations ceased in 2015) are concentrated thus, avoiding contact with lethal 

doses of insecticide. These mosquitoes are, therefore, most probably responsible for 

sustaining residual malaria transmission, which necessitates the development of an 

outdoors-based intervention that targets the vector through its host-seeking and/or 

resting behavior. 

Carbon dioxide (CO2) has often been added to surveillance traps to enhance 

catch numbers in its role as a chemosensory cue, which the mosquito uses to direct 
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it towards a source of protein for vitellogenesis. Obtaining an artificial source of CO2 

in the tropics is challenging due to logistical and physical constraints; however, 

examples of sugar-fermented yeast as an organic source of CO2 have been 

successfully demonstrated. 

This chapter sought to explore the credibility of sugar-fermented yeast as an 

organic source of carbon dioxide (CO2) trap attractant to host-seeking and resting 

An. farauti mosquitoes in comparison with human-generated CO2 and a control over 

a 12-night period in Jack Harbour, Western Province. 653 An. farauti mosquitoes 

were collected in total with the human-generated CO2 attracting the greatest 

numbers (n=349) followed by sugar-fermented yeast (n=210), and control (n=94). 

In conclusion, the research in this chapter illustrated that sugar-fermented 

yeast as an organic source of CO2 was attractive to An. farauti mosquitoes in Jack 

Harbour but improvements to the source design i.e. CO2 plume composition and 

delivery could further enhance its appeal. 

4.1 Malaria in the Solomon Islands archipelago 

The study presented in this chapter was nested within a larger project, The 

Malaria Transmission Consortium (MTC): Improved Methods to Design and 

Evaluate Malaria Control Programs, (Bill and Melinda Gates Foundation, grant no. 

45114). A long-term goal of the MTC was to develop effective vector control 

interventions that specifically target the exophagic behavior of malaria-transmitting 

mosquitoes, which complement the existing indoors-based tools—LLINs, 

insecticide-treated nets (ITNs), and IRS—that are the recommended national, and 
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international policy worldwide (Solomon Islands National Malaria Control Program 

2007; World Health Organization 2017e). The term exophagic is derived from the 

Ancient Greek suffixes -ἔξω (-éxō) meaning “outer, external”, and -φαγία (-phagía) 

“the consumption of” or “feeding on”; therefore, exophagic mosquitoes demonstrate 

a propensity for feeding outdoors, a behavior not targeted by LLINs, ITNs, or IRS, 

meaning that the MTC’s objective was also in alignment with that of the malERA 

Consultative Group on Vector Control (2011)’s second development challenge. 

The application of LLINs and IRS via the Solomon Islands’ control programs 

of the 1970s was effective in reducing the abundance of An. punctulatus, and An. 

koliensis to the point where their contribution to malaria transmission was 

negligible. During this period, however, An. farauti had shifted its peak biting 

activity from nocturnal and endophagic to crepuscular and exophagic thus, 

establishing itself as the principle malaria vector of the Solomon Islands (Avery 

1973; Paik and Avery 1973; Taylor 1975a, 1975b). The previous long-term reliance 

on LLINs and IRS as primary vector control tools has had two major effects on 

malaria transmission in the Solomon Islands: (1) they have selected for a population 

of exophagic An. farauti through pressure on endophagic mosquitoes, which has 

probably contributed to stable malaria transmission, and (2) their effectiveness in 

further vector control is now limited since they are unable to reduce An. farauti 

populations below the threshold required to sustain malaria parasite transmission. 

Therefore, an alternative form of control must be developed that targets their 

exophagic and exophilic tendencies. 
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4.1.1 Site selection 

The Solomon Islands was selected as an experimental site by the MTC on the 

basis of: (1) its commitment to strong working relationships with development 

partners such as the Japan International Cooperation Agency (JICA), the Pacific 

Community (SPC), and the Australian government (Australian Agency for 

International Development (AusAID); Department of Foreign Affairs and Trade 

(DFAT)), who also acted as a key donor providing major economic support with the 

Global Fund to Fight AIDS, Tuberculosis, and Malaria (Global Fund) (C. Burkot and 

Gilbert 2017); (2) cumulatively lower malaria transmission rates (National Vector 

Borne Disease Control Programme 2013) resulting from the increased distribution 

of LLINs, and IRS campaigns facilitated by the renewed international assistance, 

and, (3) preliminary research already conducted in Haleta, Central Province (Figure 

3.2) that identified a simple transmission setting whereby a single vector species 

(An. farauti) would traverse between its oviposition site at the base of a volcano, 

and the village where it blood fed thus, limiting its local distribution. 

4.1.2 Physical geography 

The Solomon Islands is a scattered archipelago in the southwest Pacific 

Ocean, which stretches over 1,700 km between 5-12°S and 152-163°E from the 

eastern-most point of Papua New Guinea to the northern-most boundary of 

Vanuatu. The six largest islands (Choiseul, Santa Isabel, New Georgia, Guadalcanal, 

Malaita, and Makira) form a central double-chain but nearly 1,000 islands comprise 
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a total land area of 30,407 km2 located within a greater oceanic region of 

approximately 1,500,000 km2 (Cook, McMeniman, and O’Neill 2008) (Figure 4.1). 

 

 

Figure 4.1 Map of the Solomon Islands archipelago. Inset top right: the black-
framed rectangle illustrates the location of the Solomon Islands within the 

southwestern Pacific region, and has been magnified to provide detail as shown in 
the main picture. Ontong Java (circled in red) is a coral atoll with approximately 

2,000 inhabitants that is administrated by the Solomon Islands government through 
Malaita Province. 

4.1.3 Climate 

The climate of the Solomon Islands is relatively stable with tropical features 

that rarely fluctuate. The mean daily temperature is 27°C (range: 23-31°C), and 

humidity is high (74-92%) (Rural Development Division 2001; Solomon Islands 
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National Statistical Office 2009; Bennett et al. 2014). There are two distinct seasons; 

however, the austral warm (wet), and cool (dry), which are driven primarily by the 

changing motions of convective, and baroclinic activities in the two atmospheric 

circulation features positioned in the region: the Intertropical Convergence Zone 

(ITCZ), and the South Pacific Convergence Zone (SPCZ) (Rural Development Division 

2001; Solomon Islands National Statistical Office 2009; Bennett et al. 2014). The 

SPCZ is oriented in a northwest to southeast direction across the southwest Pacific 

landmasses (Figure 4.2). It contains a vast convective cloud band (Vincent 1994) 

that channels latent heat, and ocean surface moisture to higher latitudes, which 

influences the low pressure systems, and high precipitation rates that control much 

of the climate patterns observed in many of the South Pacific islands. The warm 

season (November-April) occurs when the physical characteristics of the SPCZ are 

fully developed, and it reaches its spatial maximum (140°W) (Lorrey et al. 2012). 

This leads to increased convective activity, which generates stormy, west-to-

northwesterly monsoonal winds, and heavy rainfall that continue until the cool 

season begins (May-October) when the SPCZ loses convective strength (as it 

contracts towards Papua New Guinea), and southeasterly trade winds prevail 

creating stable airstreams with reduced precipitation (Lorrey et al. 2012). 
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Figure 4.2 Approximate positions of the Intertropical and South Pacific 
Convergence Zones during the austral warm season (November-April). 

Black arrows depict near surface winds. The green circle illustrates the 
Solomon Islands. Papua New Guinea is described as PNG. Colored areas 

represent landmasses (yellow), bands of rainfall (dark blue), and the Western 
Pacific Warm Pool (WPWP) (red), which is a unique climatic feature with a 

permanent sea surface temperature > 28°C giving it the capability to modify 
heating and cooling of the tropical Pacific Ocean. The y-axis depicts latitude in 
degrees, and the x-axis, likewise, longitude. Adapted from Jaffrés et al. 2018. 

4.1.4 Sociodemography 

Politically, the Solomon Islands is a sovereign state having gained 

independence from British administration in 1978. The most recent census data 

(2009) recorded the total population as 515,870 (1999: 409,042)—an estimated 

annual growth rate of 2.3% (1999: 2.8%)—living in mostly rural residences 

(80.2%) (1999: 84.4%) on the periphery of islands (TABLE 4.1) (Solomon Islands 

National Statistical Office 2009). Governance is decentralized at the national level, 

and administered locally in nine provinces: (1) Central; (2) Choiseul; (3) 

Guadalcanal; (4) Isabel; (5) Makira-Ulawa; (6) Malaita; (7) Rennell and Bellona; (8) 
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Temotu; (9) Western, plus a tenth administrative area, (10) Honiara town council 

(Figure 4.3;). Local governments are responsible for municipal, and provincial 

services while executive authority remains with the national government holding 

office who oversees state legislation on key development matters such as education, 

health, and law etc. 

 

 

Figure 4.3 Map of the Solomon Islands’ administrative provinces. Areas are 
demarcated by grey dotted lines. Honiara (marked by the black star), is also an 

administrative province but too small to mark as such at this magnification. 
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TABLE 4.1 

 

HUMAN POPULATION SIZE, DENSITY, DISTRIBUTION, AND MEAN ANNUAL GROWTH RATES FOR THE TEN ADMINISTRATIVE 

PROVINCES OF THE SOLOMON ISLANDS (2009) 

Province 
Total  

population 
Land area  

(km2) 
Population 

density * 
Population distribution 

(%) 
Mean growth rate  

(% p.a.) § 
Solomon Islands 515,870 30,407 17                    100 2.3 

Central   26,051       615 42   5 1.9 
Choiseul   26,379    3,837   7   5 2.8 

Guadalcanal   93,613    5,336 18 18 4.4 
Isabel   26,158    4,136   6   5 2.5 

Makira-Ulawa   40,419    3,188 13   8 2.6 
Malaita 137,596    4,225 33 27 1.2 

Rennell-Bellona      3,041       671   5   1 2.5 
Temotu   21,362       868 25   4 1.2 
Western   76,649    7,509 10 15 2.0 
Honiara   64,602          22 25 12 2.7 

SOURCE: (Solomon Islands National Statistical Office 2009) 
* Population density is measured as individuals/km2 
§ Mean growth rate refers to the average percentage population increase per annum (p.a.) across the 10-year period in between national census surveys 
1999-2009 
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The economy is based largely on subsistence agriculture supplemented by 

cash cropping (e.g. cocoa; palm oil; copra; betel nut; and vegetables), fishing, 

forestry, and mining. The reliance on unsustainable logging together with 

international aid, however, leave little prospect for inclusive economic growth 

threatening the government’s ability to maintain the above average level of 

healthcare that it has been delivering to its population, and, ultimately, attempts to 

eliminate malaria. 

Malaria control in the Solomon Islands is implemented by the National 

Vector Borne Disease Programme (NVBDP), which was integrated into the Ministry 

of Health and Medical Services in 1992 (National Vector Borne Disease Control 

Programme 2013). Key intervention strategies are targeted against the (i) vector 

through the distribution of LLINs/ITNs (IRS having been discontinued in 2015 due 

to limited resources and technical challenges) (National Vector Borne Disease 

Control Programme 2016), and (ii) parasite through the administration of Coartem® 

(Novartis, Switzerland)—an artemether-lumefantrine (AL) antimalarial drug—

prescribed as the first line course of treatment for uncomplicated and severe P. 

falciparum infections. Parenteral artesunate (AS) is also administered as a first line 

treatment for severe malaria while 7-day quinine (QN) monotherapy is a second 

line. P. falciparum infections in pregnancy are treated with a weekly dose (5 mg/kg 

body weight) of chloroquine (CQ). AL is also the recommended course of treatment 

for vivax malaria together with a 14-day radical cure of primaquine (PQ) (National 

Vector Borne Disease Control Programme 2013, 2016; World Health Organization 

2018d). 
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4.1.5 Plasmodium species prevalence 

The four major Plasmodium species that cause pathogenicity in humans—P. 

falciparum, P. vivax, P. ovale, and P. malariae—are present in the Solomon Islands 

but P. knowlesi has never been reported, most probably because the country is 

beyond the range of the parasite’s reservoir host (macaque monkeys) (K.-S. Lee et 

al. 2011), and its competent vectors, An. latens (Vythilingam et al. 2006), and An. 

cracens (Vythilingam et al. 2008). 

As P. vivax (2017: 30,169) has now surpassed P. falciparum (2017: 15,400) as 

the prevalent malaria species in the Solomon Islands (World Health Organization 

2018d), a strategic change is required (due to differences between the parasites’ cell 

biology) in the approach to control taken by the NVBDP, and the Ministry of Health 

and Medical Services as they attempt to advance towards elimination. While it is 

important to maintain adoption and practice of the currently recommended malaria 

control policies (National Vector Borne Disease Control Programme 2013; World 

Health Organization 2018d), it is crucial to supplement these activities with active 

case detection and surveillance of the P. vivax hypnozoite reservoir. This is because 

of its ability to remain quiescent within host hepatocytes then spontaneously 

recrudesce presenting a new parasite population for ingestion by Anopheles 

mosquitoes thus, maintaining Plasmodium transmission. Radical treatment for P. 

vivax infections is the 8-aminoquinolone compound, primaquine (PQ). However, this 

must be prescribed by a physician since the consequences of indiscriminate 

administration can be catastrophic due to the presence of a genetic variant in the 

population, which can cause acute hemolytic anemia (AHA) if the individual is a 
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carrier of the variant, and their PQ dosing schedule is not managed correctly. At 

present, national services for providing radical vivax malaria treatment are limited 

due to the lack of an accessible, cost-effective, rapid diagnostic test, which identifies 

variant carriers prior to treatment (National Vector Borne Disease Control 

Programme 2016). 

4.1.6 Glucose-6-phosphate dehydrogenase deficiency 

As a result of P. vivax becoming the dominant malaria species in the Solomon 

Islands, and also its radical treatment acting as an exogenous trigger of AHA in 

certain individuals, it is important to introduce a common hemoglobinopathy that 

has the capacity to seriously interfere with attempts to eliminate malaria. 

Hemoglobinopathies are a congenital group of blood disorders resulting from 

genetic mutations in globin genes, which affect hemoglobin (Hb) production by one 

of two mechanisms: (1) downregulation of protein expression during globin chain 

synthesis, leading to a quantitative reduction in Hb that usually presents clinically as 

anemia (thalassemias), and (2) more serious qualitative reductions that arise from 

malformations in the polypeptide subunits of the Hb tetramer itself (structural 

variants) since they affect molecular function according to the chemical, and 

physical properties of the nucleic acid modification. 

Glucose-6-phosphate dehydrogenase deficiency is a structural variant 

hemoglobinopathy caused by polymorphic point mutations in the glucose-6-

phosphate dehydrogenase (G6PD) gene. G6PD is a critical enzyme in the 

erythrocytic environment that catalyzes the first, and rate-limiting, step in the 
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pentose phosphate pathway (PPP), an alternative metabolic process for glucose 

catabolism. As G6PD oxidizes glucose-6-phosphate to 6-phosphogluconolactone, the 

reduced form of nicotinamide adenine dinucleotide phosphate (NADP+)—NADPH + 

H+—is generated. The primary function of NADPH is to protect the cell from 

oxidative stress through the reduction of glutathione (GSH), which becomes 

oxidized (GSSG) when glutathione peroxidase utilizes it as a substrate while 

reducing peroxides to water. NADPH is then required by glutathione reductase to 

replenish functional cellular levels of GSH through the reduction of GSSG (Mathews, 

van Holde, and Ahern 2000). Since erythrocytes lack mitochondria, the PPP is their 

only source of NADPH for reductive biosynthesis, and a deficiency of G6PD levels or 

functionality will result in catastrophic rupture (hemolytic crisis) due to the 

increasing concentrations of free radicals, and peroxides accumulating in the 

cytosol. 

G6PD-deficient (G6PDd) individuals present a wide range of clinical 

symptoms according to the level of enzymatic activity that the variant allele confers 

on the protein (TABLE 4.2). Hemolyzing triggers include certain foods, chemicals, 

infection, and pharmacological compounds such as the antimalarial drugs, 

primaquine (PQ) and chloroquine (CQ) whose antioxidant activities can induce AHA. 

G6PDd individuals exposed to PQ (and to a lesser extent CQ, which is a weak anti-

oxidant) are, therefore, at greater risk of provoking AHA depending on their G6PD 

variant classification. Since hemolytic severity is unpredictable, it is essential that an 

individual suspected of carrying a G6PDd variant be screened prior to PQ or CQ 

administration. 
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TABLE 4.2 

 

PHENOTYPIC CLASSIFICATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE 

VARIANTS BASED ON ERYTHROCYTE ENZYMATIC ACTIVITY AND ASSOCIATED 

CLINICAL OUTCOMES 

Phenotype Enzyme activity (%) Type of hemolytic anemia 
     I—Chronic     0 Non-spherocytic 
    II—Severe   1-10 Intermittent 

III—Moderate 10-60 Stressor-induced 
   IV—Normal   60-150 None 

  V—Increased       >150 None 
SOURCE: (WHO Working Group 1989) 

More than 222 G6PD variants have been identified globally (Minucci et al. 

2012; Capoluongo 2018) with the Solomon Islands estimated as having one of the 

highest national allele frequencies (22.3%) (Howes et al. 2012). 

4.2 Mosquito sensory physiology 

Mosquitoes use a range of mechanical, and sensory stimuli including visual 

cues, moisture, heat, carbon dioxide (CO2), and volatile organic compounds (VOCs) 

to locate a source of protein for vitellogenesis. Olfaction is the primary sense 

perception, which facilitates host-seeking behavior in response to the detection of 

low levels of CO2 (4-5%) (Gillies 1980) in exhaled human breath. Advanced 

electrophysiological studies incorporating neuronal recordings established that 

olfactory receptor neurons (ORNs) (positioned on the peg sensilla of the maxillary 
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palps (Figure 4.4)) modulated highly-specialized excitatory responses when 

stimulated by increasing concentrations of CO2 (Kellogg 1970; Grant et al. 1995). 

 

 

Figure 4.4 Scanning electron micrographs of Culex quinquefasciatus head, and 
olfactory structures. (a) Maxillary palps are circled in white. (b: arrows) and (c: 

asterisks) illustrate individual peg sensilla at different magnifications. Scale bars: (a) 
250 μm, (b) 100 μm, and (c) 5 μm. From (Syed and Leal 2007). 

Reeves (1951) first demonstrated the attractiveness of CO2 to female 

mosquitoes under field conditions. As a result of its influence on the host-seeking 

response in mosquitoes, CO2 has often been added to traps to enhance their 

attractiveness to, and increase catch sizes during surveillance and/or sampling 

programs. Several studies have compared the attractiveness of CO2 derived from 

different sources such as sugar (Saitoh et al. 2004; Smallgange et al. 2010), and 

molasses (Mweresa et al. 2014). While results vary between the attractiveness of 

industrial CO2, dry ice, and varying combinations of sugar-fermented yeast and 

molasses-fermented yeast, all demonstrated that CO2-enhanced traps collected 

greater numbers of mosquitoes than traps that did not contain CO2. 
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4.3 CO2 plume structure and dynamics 

 The spatial, and temporal distributions of the CO2 plume are critical when 

generating a credible attractant to mosquitoes. Studies exploring how the 

concentration, and fine-scale plume structure of host odors (including CO2) 

influenced upwind flight of Aedes aegypti (Geier, Bosch, and Boeckh 1999), and An. 

gambiae (Dekker, Takken, and Cardé 2001) showed a distinct preference by both 

species for the increasing fluctuations in concentration that occur in turbulent, and 

filamentous odor plumes. 

Figure 4.5 Visualization of odor plumes using TiCl4 smoke. The picture on the 
left illustrates the different types of plume that can be generated from an odorant 

stimulus. Voltage outputs on the right measured changes in smoke density as a 
demonstration of how plume type could influence mosquito flight choice towards an 

odorant stimulus during upwind flight. From (Geier, Bosch, and Boeckh 1999). 

4.4 Current objective 

The objective of this study was to provide preliminary data for the MTC’s 

long-term goal of developing effective vector control interventions—which 
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specifically target the exophagic behavior of malaria vectors—by evaluating sugar-

fermented yeast as an organic source of CO2 to attract An. farauti mosquitoes under 

field conditions in Western Province, Solomon Islands. Although the study did not 

target exophagic behavior directly (since it did not measure biting density), it did so 

indirectly by exploiting the host-seeking route, which mosquitoes took between 

their assumed oviposition/resting sites and the domiciles where human hosts were 

active (indoors and outdoors). 

4.5 Materials and methods: study site 

4.5.1 Physical geography 

The study was performed in the village of Jack Harbour (8°03’35”S, 

157°11’45”E) on Kolombangara in the New Georgia island group, Western Province 

(Figure 4.6) (T. Russell, Burkot, et al. 2016a). Alternate names for Jack Harbour that 

can be found in the literature are Bambari Harbour, Bamberi Harbour, and 

Mbambare Harbour. GPS coordinates were originally recorded in decimal degrees as 

-8.059792, 157.195782 (T. Russell, Burkot, et al. 2016a) and converted into 

degrees-minutes-seconds using the NGS Coordinate Conversion and Transformation 

Tool (National Geodetic Survey 2018). 
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Figure 4.6 Map of the New Georgia group of islands. Inset top right: The thick red-
framed rectangle illustrates Western Province’s location within the Solomon Islands 

archipelago. 
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Geologically, Kolombangara is a dormant Pleistocene stratovolcano 

(Smithsonian Institution 2018), Mount Veve, measuring 15 km2 in diameter, which 

gently increases in elevation from the shoreline across a flat coastal plain to a height 

of 700 m ASL at the base of the central cone where the topology abruptly steepens 

to 1,760 m ASL at the crater rim (Katovai 2016; Smithsonian Institution 2018). 

Much of the island’s low-lying landscape (0-400 m ASL), which was once the domain 

of tropical rainforests, has now been fragmented by human-mediated activities such 

as logging and agricultural practices i.e. coconut plantations (Katovai, Burley, and 

Mayfield 2012). It is in these areas around the circumference of Mount Veve where 

the majority of the island’s inhabitants reside in intermittently located settlements . 

4.5.2 Climate 

Climate on Kolombangara is similar to that of the Solomon Islands generally 

with annual mean temperatures of 26.8-28.0C recorded monthly (Munda: 8.33°S, 

157.27°E) between 2000-2013 (Australian Government Bureau of Meteorology 

2018). Kolombangara translates as “Water King” in the local Kolei language, which is 

evident by the mean annual rainfall of 2,900-4,250 mm/year (Aldrick 1993; Rural 

Development Division 2001; Australian Government Bureau of Meteorology 2018) 

that is distributed bimodally in two rainy seasons from November-March, and July-

August (Figure 4.7) (Wairiu and Lal 2003). 
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Figure 4.7 Monthly rainfall data recorded at Munda, Western 
Province, Solomon Islands (8.33S, 157.27E) from 2000-2013. 

Mean rainfall is recorded in mm, and represented by the blue bars. A 
red seasonality trend line has been fitted to the data to illustrate the 

two rainy seasons, November-March and July-August, which are 
marked by the black arrows above the graph. Rainfall data was 
obtained from the Pacific-Australia Climate Change Science and 

Adaptation Planning Program (Australian Government Bureau of 
Meteorology 2018). 

The magnitude by which the SPCZ influences seasonal climatic activity over 

the region cannot be understated. Mean precipitation rates generated during the 

warm (rainy) season in the period 2000-2013 were recorded at 150-300 

mm/month, which drastically reduced to 20-145 mm/month once the SPCZ 

contracted signaling the start of the cool (dry) season (Australian Government 
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Bureau of Meteorology 2018). Transitions in climatic activity also influence seasonal 

patterns in malaria transmission. The peak biting season (April-June) identified for 

An. farauti populations in Jack Harbour (T. Burkot et al. 2018) immediately followed 

retraction of the SPCZ (March) from its physical and spatial maximum. It is 

suggested that a reduction in convective activity allowed transient rainfall-

dependent oviposition sites to form (such as vehicle tracks, footprints, pig wallows, 

and ground pools), which increased vector abundance due to the absence of flow 

intensity that usually arrests development through the destruction of eggs and 

immature stages via flooding. 

4.5.3 Sociodemography 

Western Province is the largest of the ten provinces extending across a 

fragmented landmass with an area of 7,509 km2 (Figure 4.6). Its primary 

municipality is Gizo Town, which acts as a regional hub for major health, trading, 

tourist, and transport services. The total population of Western Province is 76,649 

(TABLE 4.1) living in 13,762 households (Solomon Islands National Statistical Office 

2009). 

Distribution of LLINs is the primary vector control intervention across the 

Solomon Islands. By the end of 2016, Western Province had received 88% 

(n=56,411) of its planned allocation covering 15,663 households (National Vector 

Borne Disease Control Programme 2016). Despite long-term education and 

communication efforts (National Vector Borne Disease Control Programme 2013, 

2016), LLIN/ITN use is still incomplete. In a recent entomological survey conducted 
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in Western Province, only 68% of study residents self-reported sleeping under 

LLINs/ITNs (2018). 

4.5.4 Malaria vectors 

MTC entomological surveys conducted between March 2014 and August 

2016 captured four anopheline species—An. farauti, An. hinesorum, An. lungae, and 

An. solomonis—across 11 sites in Western Province with An. farauti identified as the 

exclusive spatio-temporal species in Jack Harbour. The two surveys conducted prior 

to this study (June and September 2014), and the seven subsequent surveys that 

followed (December 2014, February 2015, August 2015, December 2015, January 

2016, May 2016, and August 2016) also supported this finding (T. Burkot et al. 

2018). Further evidence documenting An. farauti as the sole anopheline species in 

Jack Harbour was obtained from larval habitat surveys (T. Russell, Burkot, et al. 

2016b). Neither An. punctulatus nor An. koliensis were identified from the 

collections conducted during the MTC entomological surveys of Western Province. 

4.5.5 Transmission setting 

The transmission setting was similar to that identified by a previous MTC 

study conducted in Haleta, Central Province (Figure 3.2, Figure 4.3) whereby 

mosquitoes simply traversed between their oviposition and blood-feeding sites 

while seeking hosts. Previously observed exophagic behavior in the Jack Harbour 

An. farauti populations (Neil Lobo, personal communication) identified two swamps 

as probable oviposition sites (Figure 4.8). It was theorized that mosquitoes would 

traverse an open grassed area (green rectangle) in between the large swamp 
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(yellow outline) and main village (orange outline) as part of their host-seeking 

route. To maximize catch numbers this was the proposed trap placement. 

 

 

Figure 4.8 Satellite image of Jack Harbour village illustrating major 
entomological and demographic features of the transmission setting. The 

yellow outlines highlight swamp areas assumed to be An. farauti oviposition sites. 
The orange area encompasses the main village. In between the large swamp, and 

main village is a wide expanse of open grassed area (green rectangle) used mostly 
by the villagers for leisure activities such as soccer. The red-dashed rectangle 

demarcates the proposed placement of the carbon dioxide baited-traps. Notable 
structures are described accordingly. Map data: Google, 2018. 
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4.6 Materials and methods: trap structure 

4.6.1 CO2 sources 

The selection of CO2 source for the non-human bait was limited by the 

location of the study site. As part of the Solomon Islands archipelago, Western 

Province is accessible by air (daily flights to the capital city, Honiara, located 380 km 

east-southeast on the island of Guadalcanal) and water (weekly passenger boat 

service between Gizo and Honiara via Marovo) (Figure 4.6) (Visit Solomons 2018). 

Jack Harbour can only be reached by private boats running outboard motors. It 

would be unfeasible and cost-prohibitive to transport, recharge, and maintain the 

artificial sources of CO2 (i.e. dry ice, pressurized gas cylinders or propane), which 

are routinely applied as trap attractants in usual experimental circumstances. 

Previous reports evaluating the efficacy of organically produced carbon 

dioxide-baited traps using sugar (Smallgange et al. 2010; Meyer Steiger, Ritchie, and 

Laurance 2014) or molasses (Mweresa et al. 2014) as a yeast-fermenting substrate 

were reviewed for baseline information to select the most appropriate values for a 

reference treatment. The mean output (ml/minute) that most closely mimicked 

human CO2 release (250 ml/minute) (Mboera and Takken 1997) was produced by 

Smallgange et al. (2010) who combined 17.5 grams (g) dry yeast with 500 g of 

refined household sugar and 2.5 liters (L) of water. This solution generated a mean 

CO2 production rate of 242.3 ml/minute at 22-25C, which endured for a collection 

period beyond that required for this study. CO2 flow ceased 51 hours post-mixing 

with catches recorded up to 48 hours although rates decreased over time. 
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CO2 was generated by one of two sources: (1) combining 500 g of sugar 

(refined white table sugar sourced locally in Gizo) + 17.5 g of Saccharomyces 

cerevisiae (Fleischmann’s Instant Dry Yeast, Canada) + 2.5 L of water (sourced 

locally from the river spring, which the Jack Harbour residents used for drinking), or 

(2) a human volunteer who was protected from potential bite activity within the 

trap by an untreated portable mosquito tent (Figure 4.9). It was important for the 

net material to be untreated to eliminate the possibility of an excito-repellent 

response occurring, which might have confounded the study. Excito-repellency is 

defined as a kinetic motion elicited in response to a chemical that causes insects to 

disperse away from the area of the chemical more rapidly than if the area did not 

contain the chemical (Dethier, Browne, and Smith 1960), and its effects in malaria 

vectors have previously been demonstrated (Kawada et al. 2014). 

4.6.1.1 Control 

Traps that acted as a control were devoid of any CO2 source i.e. Figure 4.9 

without the portable mosquito tent that protected the human volunteer. 
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Figure 4.9 Portable mosquito tent used by the human volunteer to protect 
against potential bite activity during the experiment. Entry and exit are 

accessed through the zippered door on the lateral aspect. 

4.6.2 Trap design and assembly 

A 1.8 m (length) x 1.8 m (width) x 0.9 m (height) trap was constructed from 

commercially available untreated tulle netting in a square configuration (Figure 

4.10). Each corner was wrapped around a wooden pole fixed into the ground and 

secured with binder clips. At the top of the trap around the entire perimeter, an 

excess piece of netting measuring 15 cm in height was elevated to a fixed 45° angle 

to create an eave that captured the mosquitoes as they flew upwards. By creating 

eaves on each lateral aspect of the trap, the cardinal direction of the mosquitoes’ 
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flight path could be identified, which would potentially identify the type of behavior 

that was being stimulated by the CO2 cue i.e. host-seeking or resting after a blood 

meal since the transmission setting was anticipated to be a simple traversal 

between the known positions of the oviposition and feeding sites (Figure 4.8). The 

ends of the eaves were sealed with the same netting to: (1) enable identification of 

cardinal flight direction, and (2) prevent mosquitoes from leaving prior to collection 

although they do not appear to initiate downward flight once inside an eave. 



 

 

1
1

6
 

 

 

Figure 4.10 Schematic diagrams of the trap design. Length and width measurements presented from (a) aerial, and (b) 
lateral aspects, which also demonstrates entomological rationale. Female mosquitoes sense a CO2 source (yellow square), 
and are guided by its plume to a potential blood meal. (1) Upward flight is initiated upon encountering the net material, 

which ceases upon (2) capture by the eave structures. 
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The top of the trap remained open where mosquitoes were free to enter and 

leave (Figure 4.11). 

 

 

 

Figure 4.11 Mosquito collectors assembling a trap. Visible are the four corner 
poles used to frame the netting that formed the trap construct, which was held in 
place at a height of 0.9 m by mason line as indicated by the orange arrow. In the 

foreground is excess material, which when extended upwards 45 formed the eaves. 
These were secured in place using Velcro, and mason line for stability. 
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4.7 Materials and methods: study design 

4.7.1 Experimental model 

Since a single treatment (CO2 bait) was being tested, a 3x3 Latin square 

experimental design was appropriate and allocated according to the blocking 

factors: (1) trap position, and (2) number of nights. Baits were rotated between trap 

positions each evening to control for serial bias. An experimental replicate was 

complete when each treatment (CO2 bait) had been measured at each trap position 

i.e. at the end of three nights. As the 3x3 Latin square produced only nine 

experimental units, the degrees of freedom were too few for error (because the 

number of treatments were small); therefore, each replicate was repeated four 

times to increase statistical power. This equated to twelve nights of collection for 

the study period. 

4.7.2 Statistical analysis 

The software package R v. 3.2.1 (R Core Team 2014) was used to analyze the 

dataset statistically. One-way analysis of variance (ANOVA) was selected as the most 

robust statistical test of significance with which to analyze the dataset as it allowed 

the simultaneous comparison of multiple group means i.e. (1) control, (2) sugar-

fermented yeast-CO2, and (3) human-generated CO2 with which to identify any 

effect. Tukey’s Honestly Significant Difference (HSD) post-hoc test was applied to 

detect the group(s) difference(s) contributing to that effect. 
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4.7.3 Entomological sampling 

Three collectors were recruited from a pool of village residents once the 

study protocol, and associated risks were explained. Each received basic training on 

the sampling technique of oral aspiration and cup collection followed by mosquito 

recognition (to discriminate from other entomological Orders i.e. Lepidoptera), and 

assignment to a particular baited-trap for the duration of the experiment. Collectors 

were instructed not to approach traps (except for aspirating) so as not to bias the 

study by attracting mosquitoes to themselves and hence, the traps. Residents, and 

other individuals not involved in the study, who gather outdoors to eat and socialize 

(as is the norm from approximately 17:00-21:00 hours in Jack Harbour) were also 

asked to remain clear of the traps, and the immediate area for the same reason. 

Collections began at 18:00 hours and ended at 00:00 hours to match the An. 

farauti outdoor biting profile identified by previous MTC entomological surveys (T. 

Burkot et al. 2018). At the beginning of the hour, a paper cup (with a waxed interior 

covered by netting, which was secured by an elastic band) that acted as a collecting 

vessel was placed at each cardinal direction (N, E, S, and W) around the trap, and 

also inside. Collectors inspected eaves, sides, and interior of the trap every fifteen 

minutes aspirating mosquitoes, and placing them in the appropriate collection cup. 

At the end of each hour, the cups were removed, and a new set positioned as before. 

Cups were identified by bait (color-coded: (1) control-blue, (2) yeast-yellow, and (3) 

human-red), and collection times (in hours: 6-7pm, 7-8pm, 8-9pm, 9-10pm, 10-

11pm, 11-12pm) to ensure accuracy during catch counts. 
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4.7.4 Species identification and preservation 

An. farauti mosquitoes were sexed, and morphologically identified to species 

based on the taxonomic keys of Belkin (1962a, 1962b), and Rozeboom and Knight 

(1946). External abdominal appearance i.e. unfed, blood-fed (full or partial), and 

sugar-fed was recorded by visual examination. Specimens were preserved on silica 

gel beads (Delta Enterprises, Inc., USA) in individual 1.5 ml Eppendorf tubes prior to 

transportation to the University of Notre Dame (USA) for further characterization. 

4.7.5 Climatic data 

Temperature, and humidity were measured on an hourly basis throughout 

the duration of the experiment using a hygrometer. These measurements were also 

recorded at the time of preparing the sugar-fermented yeast CO2 solution on 

experimental days 4-12 inclusive. Rainfall, wind, and moonlight were not measured 

scientifically but were observed and documented throughout the experiment. 

4.7.6 Ethics 

Ethical approval was not required by the University of Notre Dame 

Institutional Review Board as no human subjects participated in the study. As it was 

nested under the MTC, however, their ethical approval from the National Health 

Research & Ethics Committee (2011-05-02, HRE02/16) provided the necessary 

permissions to satisfy the requirements of the Solomon Islands government. 
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4.8 Results 

4.8.1 Trap placement 

According to observations noted during the MTC entomological surveys 

conducted prior to this study (Tom Burkot and Bob Cooper, personal 

communication), greater numbers of An. farauti mosquitoes were consistently 

sampled in HLCs near residences located on the elevated area in between the two 

swamps than those in the main village. It was decided, therefore, to reposition the 

traps to this location (Figure 4.12, sites 1-3: red solid rectangles) in order to 

maximize catch numbers. 
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Figure 4.12 Satellite image of Jack Harbour village illustrating re-placement of 
the experimental traps (red solid rectangles) to maximize An. farauti catch 

numbers. Residences hosting traps are labeled Site 1, 2, or 3, and were located at 
elevation in between the two major An. farauti oviposition sites (yellow outlined 

swamps). Map data: Google, 2018. 

 

Site 1 (Figure 4.13) consisted of a main residence that represents a typical 

rural structure, constructed of timber planks constructed on a stilt base with a 

corrugated iron roof. Stilts allow for a shaded area in which to avoid the tropical 

climate. Windows are styled as wooden or metal shutters, which are mostly 

propped open but closed during rainstorms, or covered with material. The structure 

to the right is used as a cooking area. The site illustrates that a typical rural 



 

 123 

residence allows for unimpeded transmission of malaria by populations of outdoor-

biting An. farauti mosquitoes, which take full advantage of their hosts’ early evening 

social activities in these areas. Sites 2 and 3 were similar structures constructed of 

the same materials thus, providing almost identical experimental conditions at each 

trap. As observed from the image, traps were placed approximately 10 m from the 

main residence to ensure that host-seeking/resting behavior was being captured. 

 

 

Figure 4.13 Location of the first trap (Site 1) after re-placement to the elevated 
area between the two suspected An. farauti oviposition sites. The main 

residence is situated in the background to the left, and cooking area to the right.  
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4.8.2 Sugar-fermented yeast CO2 preparation 

Initially (days 1-3 inclusive), the sugar-fermented yeast CO2 source was 

prepared later in the afternoon (TABLE 4.3) to optimize fermentation conditions in 

which to produce sufficient CO2 plumes that coincided with An. farauti peak biting 

activity. However, the study that the sugar-yeast mixture, and its proportions were 

based on (Smallgange et al. 2010) had been previously conducted with An. gambiae 

mosquitoes in Kenya, which demonstrate a later peak biting profile (20:30 hours) 

than the An. farauti populations in Jack Harbour (19:00-20:00 hours) (T. Burkot et 

al. 2018). To correct for the biting profile differences between the two species, the 

fermentation process was started earlier in the day (14:00 hours) for the duration 

of the experiment (days 4-12 inclusive). Laboratory gloves were worn while 

preparing the mixture to eliminate the possibility of erroneously contaminating the 

experiment with volatile organic compounds (VOCs). Confirmation of CO2 

production was visual through the production of bubbles.  
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TABLE 4.3 

 

DAILY CLIMATIC CONDITIONS RECORDED DURING SUGAR-FERMENTED YEAST 

CO2 PREPARATION 

Date 

(Sept 2014)  

Mixture 
start time * 

 

Temperature 
(°C) 

 

Humidity 
(%) 

 

Experiment 
start time * 

 

Fermentation 
time elapsed 

(hours) 
§ Rep 1   16 - a - - 18:00 - 

17 - a - - 18:09 - 
18 - a - - 18:03 - 

Rep 2   20 14:00 33.8 70.0 18:30 4.5 
21 14:05 28.4 83.3 18:00 3.9 
22 14:04 28.3 90.0 18:00 3.9 

Rep 3   23 14:00 30.1 89.4 18:00 4.0 
24 14:00 26.8 97.3 18:00 4.0 
25 14:00 29.5 88.3 18:14 4.2 

Rep 4   27 14:00 27.2 86.8 18:43 4.7 
28 14:00 25.0 86.9 18:41 4.7 
29 14:00 30.4 84.6 18:00 4.0 

NOTE: 
* Time is recorded using the 24-hour clock 
§ Replication numbers (1-4) in the Latin Square experimental design. Each replication lasts 3 days 
a Fermentation times and climatic conditions were not recorded until the second experimental 
replicate 

4.8.3 Climatic data 

There were a number of climatic conditions experienced during the 12-night 

experiment, which occurred over three periods: (1) Tuesday 16-Thursday 18 

September 2014, (2) Saturday 20-Thursday 25 September 2014, and (3) Saturday 2-

Monday 29 September 2014. These intervals were required to allow for two non-

collecting days due to the weekly Sabbath (Friday 18:00 hours-Saturday 18:00 
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hours) of the Seventh Day Adventists’ faith, which is the primary religious 

denomination practiced in Jack Harbour. 

Temperature, and humidity were recorded with a hygrometer, and are 

presented in TABLE 4.4. Additionally, observations on rainfall, wind, and moonlight 

are also included although none were measured scientifically.  
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TABLE 4.4 

 

OBSERVED CLIMATIC CONDITIONS RECORDED IN JACK HARBOUR DURING THE 

STUDY PERIOD, 16-29 SEPTEMBER 2014 

Date 
(Sep 2014) 

Temperature 
(°C) * 

Humidity 
(%) * 

Rainfall 
(hrs.) a 

Wind b Moonlight c 

  d Rep 1   16 26.1 98.1 0.5 - Present e 

17 27.1 95.6 0.0 - Present f 

18 25.2 99.4 6.4 - Present f 

Rep 2   20 28.0 90.4 0.0 Breeze 
 S  -> N 

Present f 

21 26.1 96.9 2.3 Breeze 
N -> S 

Present f 

22 26.7 95.5 6.0 Strong 
N -> S 

Present f 

Rep 3   23 25.3 96.6 2.6 Strong 
N -> S 

 Absent f 

24 24.0      100.0      17.5 -  Absent g 

25 21.8 99.9 6.0 -  Absent h 

Rep 4   27 21.9 98.3 0.0 - Present h 

28 19.2      100.0 4.8 Strong 
All directions 

Present h 

29 26.8 97.1 0.6 Strong 
E -> W 

Present h 

NOTE: 
* Temperature and humidity were recorded hourly from 18:00-00:00 hours but mean figures over 
the collecting period are listed here 
a Rainfall was recorded in minutes over the course of the day, which was usually an 18-hour period, 
but is presented in hours for ease of reference 
b Observations on wind patterns during the experiment are presented as either: (-) wind not 
observed during this collection period, or a description of the observation containing the strength, 
and cardinal directions (N-North; S-South; E-East; W-West) indicated by (->) 
c Moonlight is recorded as either present or absent. Different phases of the moon allow for differing 
illumination based on its orbital position around the earth. This, and how it could affect mosquito 
flight activity, is further considered in the discussion section of this chapter 
d This is the replication number (1-4) in the Latin Square study design. Each replication lasts 3 days 
e The moon entered its third quarter phase on September 16 (50.0% illumination) 
f Between September 17-23, the moon was in its waning crescent phase (0.1-49.9% illumination) 
g On September 24, a new moon appeared although it was not visible from earth (0.0% illumination) 
h Between September 25-29, the waxing crescent moon (0.1-49.9% illumination) was building up to 
its first quarter phase (50.0% illumination)  
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4.8.4 Morphological species identification 

An. farauti adult female mosquitoes were morphologically identified to sex 

and species in accordance with the proboscis banding, and color patterns described 

by Rozeboom and Knight (1946). All specimens demonstrated a Type A proboscis 

(Figure 3.1). Molecular identification was not considered necessary on the basis of 

recent evidence identifying An. farauti as the exclusive species in Jack Harbour (see 

Section 4.5.4 Malaria vectors). 

4.8.5 Attractiveness of CO2 sources 

653 anopheline mosquitoes were captured by the three baits (control, sugar-

fermented yeast, human) across the 12-night experimental period. The human-

generated CO2 bait caught a mean count of 29.1 mosquitoes (median=26.5) on any 

given night, followed by sugar-fermented yeast (17.5; median=13.0) and control 

(7.8; median=7.5). 

Figure 4.14 illustrates the distribution of the data. Initial observations, which 

could be stated about any given evening were: 

1. The human-generated CO2 bait attracted more mosquitoes than the 
control as there was a between-group difference 

2. There was no group difference between the sugar-fermented yeast CO2, 
and human-generated CO2 baits as there was intersection 

3. There was no group difference between the control and sugar-fermented 
yeast CO2 baits as there was intersection 
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Figure 4.14 Boxplot summarizing attractiveness of CO2 
source to outdoor-biting populations of An. farauti over the 

12-night experimental period. The x-axis identifies the 
different CO2 sources (control, yeast, human). Catch numbers are 

measured per night by the y-axis. Median values (solid black 
horizontal lines), quartiles (white boxes), variance (dashed black 

vertical lines), outliers (open circles), and error bars are 
indicated. 

87 of the 656 mosquitoes captured were graded as blood-fed (13.3%). These 

were collected per CO2 attractant in the following proportions: control (19.5%), 

sugar-fermented yeast (35.6%), and human-generated (44.8%). When analyzed as a 

percentage of the total catch per hour, blood-fed females comprised between 10.0% 

(20:00-21:00 hours) and 14.9% (21:00-22:00 hours) across all three trap baits. 



 

 130 

The analysis of variance (ANOVA) model identified a statistically significant 

effect between the trap baits (F=7.92, df=2, p<0.002) (TABLE 4.5), and Tukey’s HSD 

post-hoc test detected that this was due to differences between the mean number of 

mosquitoes captured by the control and human baits (diff=21.25, p<0.001) (TABLE 

4.6). 

TABLE 4.5 

 

SUMMARY ANALYSIS OF VARIANCE BETWEEN THE MEAN NUMBER OF 

MOSQUITOES CAPTURED IN THE THREE EXPERIMENTAL CONDITIONS 

(TRAPBAIT) 

Summary(anova) df Sum Sq Mean Sq F value Pr(>F) Significance 

TrapBait 2 2717 1358.4 7.92 0.00155 ** 
Residuals 33 5660 171.5 - - - 

NOTE: ** indicates statistical significance  
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TABLE 4.6 

 

COMPARISON OF GROUP MEANS ($TRAPBAIT) BY TUKEY’S HONESTLY 

SIGNIFICANT DIFFERENCE POST-HOC TEST WITH 95% FAMILY-WISE CONFIDENCE 

LEVEL 

$TrapBait diff lwr upr p adj 
human-control 21.25 8.13 34.37 0.001 
yeast-control 9.67 -3.45 22.79 0.183 
yeast-human -11.58 -24.70 1.54 0.092 

 

Statistical assumptions of normality (Shapiro-Wilk: p>0.005), and variance 

(Levene: F(2,33)=2.89, ns) about the distribution of the data were not violated. 

4.8.6 Host-seeking/resting patterns 

The number of mosquitoes captured per hour was analyzed to identify 

whether the An. farauti populations in the location between the two swamps 

exhibited any time-related host-seeking/resting patterns. Figure 4.15 illustrates 

that although catches began as early as 18:00 hours (n=46), the majority of 

mosquitoes were captured between 21:00-23:00 hours (n=308). 
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Figure 4.15 Bar chart illustrating total number of anopheline 
mosquitoes captured per hour over the 12-night experimental 

period. Mean temperature (C) (orange line), and humidity (%) (dark 
blue line) measurements for the period are also presented. Black 
numbers above the blue bars are the total number of mosquitoes 

captured in the one hour time period indicated on the x-axis (hours). y-
axes represent: left (temperature in C), and right (humidity in %, and 

mosquito count). 

4.9 Discussion 

The purpose of this study was to evaluate the effectiveness of sugar-

fermented yeast as a source of organic CO2 to attract outdoor-biting and/or resting 

populations of An. farauti in Jack Harbour, Western Province. Mosquitoes were 

Time (hours) 
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captured during a 12-night experimental procedure whereby three sources (control, 

sugar-fermented yeast CO2, human-generated CO2) were used as trap baits. A total 

of 653 An. farauti mosquitoes were caught with the human bait attracting the 

greatest numbers (n=349) followed by sugar-fermented yeast (n=210), and control 

(n=94). Statistical analysis found no evidence to support sugar-fermented yeast as 

an organic source of CO2 attracting greater numbers of An. farauti than human-

generated CO2 overall; however, there was overlap, which inferred that on any given 

evening there was no between-group difference. In conclusion, this study illustrated 

that sugar-fermented yeast as an organic source of CO2 was attractive to populations 

of An. farauti in Jack Harbour, Western Province, and improvements to the source 

design i.e. plume composition and delivery, could further enhance its attraction. 

4.9.1 Human-generated CO2 attracted greater numbers of An. farauti 

The human-generated CO2 bait attracted significantly more mosquitoes than 

the control and the sugar-fermented yeast CO2 but the latter was not statistically 

significant. The biological difference between these two sources is the human, who 

also produces VOCs that the mosquito detects to determine whether or not it will 

take a blood meal from that source. It does not sense VOCs, however, until after it 

has used CO2 to direct it towards the source of the VOCs. Therefore, the sugar-

fermented yeast CO2 source could be improved by enhancing the plume dynamics to 

make it more attractive to An. farauti. For example, the mixing vessel in this study 

comprised a 5 L carboy with a wide open neck that dispensed the CO2, which was 

probably not conducive to creating the turbulent, filamentous plume that the 



 

 134 

mosquitoes required as a sensing tool. Additionally, the carboy was placed on the 

ground in the center of the trap. As CO2 is denser than air, it should have been 

placed higher (1 m above the ground) to allow the CO2 to tumble to the ground, also 

creating a more turbulent plume (Zainulabeuddin Syed, personal communication). 

Ideally, the physiological and behavioral thresholds of detection of CO2 

sensitivity for An. farauti should first be determined in order to generate a source 

that closely mimics the naturally produced CO2 exhaled by a human. Following on 

from that it is necessary to study the composition, and structure of CO2 plumes with 

particular reference to An. farauti using wind tunnels, stimulus chambers and 

olfactometers in order to establish the most desirable configuration for field 

evaluation. 

4.9.2 Peak host-seeking/resting behavior occurred between 21:00-23:00 

hours 

The majority of mosquitoes were captured between 21:00-23:00 hours 

across the 12-night experiment suggesting peak host-seeking/resting behavior 

occurred during this period. The MTC entomological survey conducted immediately 

prior to this study (9-16 September 2014) identified peak biting activity of An. 

farauti to occur between 19:00-20:00 hours as measured by mean biting density 

(bites per person per hour) (T. Burkot et al. 2018). Captures occurring after peak 

biting could be explained as resting behavior—the net material that the traps were 

constructed from would certainly be sufficient to act as a resting site for mosquitoes 

returning to oviposit (T. Burkot et al. 2013)—especially since An. farauti is not 
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known to exhibit endophily after a blood meal but this was not tested for 

specifically. The number of blood-fed females captured during this period (n=44; 

50.6%) does not support either behavior. In fact, if blood-fed females were resting 

why were greater numbers captured in the traps baited with CO2 sources than the 

control trap when, presumably, their physiological need to obtain protein had been 

met? 

4.10 Conclusion 

This study illustrated that sugar-fermented yeast as an organic source of CO2 

was attractive to An. farauti mosquitoes in Jack Harbour, Western Province and 

improvements to the source design i.e. CO2 plume composition and delivery, could 

further enhance its appeal. 
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CHAPTER 5: 

CONCLUSIONS 

Chapters two, three, and four presented research that sought to explore how 

the genetic and bionomic behaviors of two important anopheline mosquitoes might 

respond to alternative vector control approaches, which the malERA Consultative 

Group on Vector Control (2011) had identified as critical developmental challenges 

in the effort to interrupt sustained malaria transmission. A brief summary of each 

chapter, together with comments that consider how the application of this research 

can be functional in the wider context of malaria vector control, concludes this 

dissertation. 

5.1 Research summary 

5.1.1 Micro-population structure of An. gambiae in the Ugandan Lake Victoria 

basin 

Natural populations of An. gambiae in the northwestern Lake Victoria basin 

were entomologically sampled and sequenced by a reduced-representation 

technique to enhance previously completed research as the genomic approach 

permitted resolution of genetic structure (eigenanalysis) at the nucleotide level. A 
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dataset of 5,175 SNPs was generated. Traditional population genetic measurements 

such as differentiation (FST) and effective size (Ne) also supported eigenanalysis 

stratification (PCA) based on geographic location. In conclusion, three island 

populations (Bukasa, Nsadzi, Sserinya) demonstrated greater structure, low to 

moderate genetic differentiation, and small effective sizes that combined, were 

indicative of limited migration with susceptibility to genetic drift. These sites would, 

therefore, be appropriate candidates for the evaluation of small-scale ecologically-

confined entomological efficacy of GM An. gambiae releases. 

5.1.2 Macro-population structure of An. farauti in the southwest Pacific region 

Natural populations of An. farauti were entomologically sampled from four 

geographically distant locations in the southwest Pacific (Australia, Papua New 

Guinea, Solomon Islands, Vanuatu) and whole genome sequenced via a shotgun 

approach. A dataset of 17,757 SNPs was generated. Population stratification analysis 

confirmed the four geographic populations genetically (PCA) and also identified 

similarity between the individuals in Australia and Vanuatu (PCA, ADMIXTURE). 

Variation was observed within populations from Papua New Guinea and the 

Solomon Islands, while Australia and Vanuatu were less diverse (PCA). Individuals 

in the Solomon Islands demonstrated greater structure with the ancestry 

assignment model (ADMIXTURE) separating them into two populations. This 

research enhanced preceding An. farauti population genetic studies with a SNP-

based approach, which permitted high resolution genome-wide analysis that 

detected a previously unknown genetic relationship. 
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5.1.3 Sugar-fermented yeast as a source of CO2 to attract An. farauti 

mosquitoes in Western Province, Solomon Islands 

653 An. farauti mosquitoes were collected over a 12-night period in an 

evaluation of effectiveness of sugar-fermented yeast as an organic source of CO2 to 

attract outdoor-biting and/or resting populations in Jack Harbour, Western 

Province. Human-generated CO2 attracted the greatest numbers (n=349) followed 

by sugar-fermented yeast (n=210), and control (n=94). There was no statistical 

evidence to support sugar-fermented yeast as an organic source of CO2 being more 

attractive to An. farauti mosquitoes than human-generated CO2 overall (ANOVA: 

F=7.92, df=2, p<0.002); however, intersection in the distribution of the data inferred 

there was no between-group difference on any given evening. This finding could be 

exploited to improve the source design i.e. CO2 plume composition and delivery, 

which would further enhance its attraction. 

5.2 Contribution that extends the research agenda 

SNP-based assessment of genetic structure in An. gambiae (Chapter two) and 

An. farauti (Chapter three) populations advances previously conducted research as 

these markers permit high resolution analysis across the genome. Although single 

locus markers i.e. mtDNA can adequately identify structure, multiple loci have 

greater power in detecting cryptic relationships that would otherwise remain latent, 

and genetic mechanisms, which underpin the key biological traits contributing to 

vectorial capacity. 
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Evaluation of sugar-fermented yeast as an organic source of CO2 trap 

attractant to An. farauti mosquitoes has generated further insight into the bionomic 

behavior of these populations in Jack Harbour, Western Province, Solomon Islands. 

5.3 Application to malaria vector control approaches 

The An. gambiae research presented in Chapter two is part of a suite of 

publications (Kayondo et al. 2005; Lukindu et al. 2018; Wiltshire et al. 2018; Bergey 

et al. 2019) that, combined, lend support to sites in the Ssese Islands, Lake Victoria 

being candidates for small-scale, ecologically confined field testing of GM 

mosquitoes. This is the next step in the pathway, which moves Anopheles GM 

mosquito research forward from the recent technical advances in the lab (Gantz et 

al. 2015; Hammond et al. 2016; Kyrou et al. 2018) to the field (World Health 

Organization 2014; James et al. 2018) in an effort to make GM vector control real. 

Chapter four generated preliminary data, which suggested that sugar-

fermented yeast as a source of organic CO2 could be an effective attractant to An. 

farauti mosquitoes. This could be added to traps for use in either: (i) surveillance, or 

(ii) as an intervention if it incorporates insecticide into its design.



 140 

APPENDIX A: 

GLOBAL POSITIONING SYSTEM (GPS) COORDINATES FOR AND DISTANCES 

BETWEEN THE SIX ANOPHELES GAMBIAE ENTOMOLOGICAL SAMPLING SITES IN 

THE NORTHWESTERN LAKE VICTORIA BASIN 



1
4

1
 

TABLE A.1 

GPS COORDINATES FOR AND DISTANCES BETWEEN THE SIX ANOPHELES GAMBIAE ENTOMOLOGICAL SAMPLING SITES IN 

THE NORTHWESTERN LAKE VICTORIA BASIN 

From a 

Longitude Latitude 

To a 

Longitude Latitude 

D
is

ta
n

ce
 

 (
k

m
) 

‡  

Decimal 

degrees § 

Degrees, 
minutes, 
seconds 

Decimal 
degrees § 

Degrees, 
minutes, 
seconds 

Decimal 
degrees § 

Degrees, 
minutes, 
seconds 

Decimal 
degrees § 

Degrees, 
minutes, 
seconds 

EB * 32.4604 32°27'37"E 0.0676 0°04'03”N WL * 31.9971 31°59'50"E 0.4096 0°24'35"N 64.0 
BL 32.2939 32°17'38"E -0.3090 0°18'32"S 45.6 
BK 32.4483 32°26'54"E -0.4878 0°29'16"S 61.4 
SY 32.3641 32°21'51"E -0.2523 0°15'08"S 31.9 
NZ 32.5856 32°35'08"E -0.0860 0°05'10"S 22.0 

WL * 31.9971 31°59'50"E 0.4096 0°24'34”N BL 32.2939 32°17'38"E -0.3090 0°18'32"S 86.1 
BK 32.4483 32°26'54"E -0.4879 0°29'16"S 111.2 
SY 32.3641 32°21'51"E -0.2523 0°15'08"S 74.5 
NZ 32.5857 32°35'08"E -0.0860 0°05'10"S 85.4 

BL 32.2939 32°17'38"E -0.3090 0°18'32"S BK 32.4483 32°26'54"E -0.4879 0°29'16"S 26.2 
SY 32.3641 32°22'18"E -0.2523 0°15'08"S 9.4 
NZ 32.5857 32°35'08"E -0.0860 0°05'10"S 38.6 

BK 32.4483 32°26'54"E -0.4879 0°29'16"S SY 32.3641 32°21'51"E -0.2523 0°15'08"S 24.1 
NZ 32.5857 32°35'08"E -0.0860 0°05'10"S 47.0 

SY 32.3641 32°21'51"E -0.2523 0°15'08"S NZ 32.5857 32°35'08"E -0.0860 0°05'10"S 29.1 
SYK 32.3717 32°22'18"E -0.2638 0°15'50"S 
SYB 32.3564 32°21'23"E -0.2407 0°14'27"S 
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1
4

2
 

NOTE: 
a Towns and villages are abbreviated as follows: EB (Entebbe), WL (Lake Wamala), BL (Bugala), BK (Bukasa), SY (Sserinya), SYK (Sserinya-Kafuna), SYB 
(Sserinya-Bbosa), and NZ (Nsadzi). Also refer to Figure 2.1 for further details 
* Denotes mainland site
§ GPS coordinates were recorded in decimal degrees and converted into degrees, minutes, and seconds at https://www.ngs.noaa.gov/NCAT/ (National 
Geodetic Survey 2018)
‡ Distances calculated at: http://boulter.com/gps/distance/

https://www.ngs.noaa.gov/NCAT/
http://boulter.com/gps/distance/
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APPENDIX B: 

BIOINFORMATICS PIPELINE DETAILING SOFTWARE PROGRAMS AND 

PARAMETERS IMPLEMENTED IN THE ANALYSIS OF THE ANOPHELES GAMBIAE 

RADSEQ DATASET 



1
4

4
 

TABLE B.1 

SOFTWARE AND PARAMETERS APPLIED IN THE BIOINFORMATICS ANALYSIS OF 96 WILD-TYPE ANOPHELES GAMBIAE 

INDIVIDUALS SEQUENCED USING AN ECORI AND MSERI RESTRICTION SITE-ASSOCIATED DIGEST 

Software Version Function Parameters Reference 
FastQC 

0.10.1 Sequencing quality check 
(Babraham Institute 

2011) 

Trimmomatic 0.30 
Remove Illumina 
sequencing adapters 

ILLUMINACLIP:TRUSEQ3-PE.FA:2:30:10 
LEADING:5 TRAILING:5 
SLIDINGWINDOW:4:15 MINLEN:50 

(Bolger, Lohse, and 
Usadel 2014) 

Trimmer.py Custom 

RAD barcode, cut site, 
protector base removal; 
addition of unique IDs 
matching barcodes to 
individuals 

(Notre Dame 
Bioinformatics Lab 

2014) 

Burrows-Wheeler 
Alignment (BWA) 

0.6.2 
Alignment of reads to 
AgamP4 reference 
genome 

-t 12 -q 5 -l 32 -k 3 -n 9 -o 1 (Li and Durbin 2009) 

sampToSam.pl Custom 
Addition of read groups 
(unique to sample IDs) to 

(Ragland 2017) 



TABLE B.1 (CONTINUED) 

Software Version Function Parameters Reference 

SAM files; change overall 
quality score for GATK 
compatibility 

Picard 1.119 
Pre-processing of reads 
in format required by 
GATK 

CleanSam 
-VALIDATION_STRINGENCY =LENIENT
SortSam
-SO=COORDINATE
-VALIDATION_STRINGENCY =LENIENT
BuildBamIndex
-VALIDATION_STRINGENCY =LENIENT
CreateSequenceDictionary

(Broad Institute 
2017) 

GenomeAnalysis 
ToolKit (GATK) 

3.3.0 Variant calling 

-T UnifiedGenotyper
--downsampling type NONE
--downsample_to_coverage 1000
--genotype_likelihoods_model BOTH
--computeSLOD
-rf BadCigar
--fix_misencoded_quality_scores

(Van der Auwera et al. 
2013) 

GATK 3.3.0 

Quality filtering of variant 
calls; selects SNPs 
passing filters, which are 
biallelic only 

-T VariantFiltration
--filterExpression
“QD<5.0||FS>60.0||MQ<40.0||Haplotype
Score>13.0||MappingQualityRankSum<8.0”
--missingValuesInExpressionsShould
EvaluateAsFailing
-T SelectVariants
--selectexpressions “vc.isNotFiltered() &&

(Van der Auwera et al. 
2013) 
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Software Version Function Parameters Reference 

vc.isSNP()” 
--selectTypeToExclude INDEL 
--restrictAllelesTo BIALLELIC 

VCFtools 0.1.15 Dataset pruning 

--mac 7 (at least 4 diploid individuals called 
at locus) 
--minGQ 30.0 (Genotype (GT) Quality of at 
least 30) 
--minDP 30.0 (at least 30 reads support GT) 
--singletons 
--max-missing 0.2 (exclude SNPs where 
missing data across populations > 80%) 

(Danecek et al. 2011) 

PLINK 1.9 
Format data for PCA and 
global ancestry analysis 

--allow-extra-chr 
--pca 
--recode 12 

(Chang et al. 2015) 

R 3.2.1 
Apply plot functions to 
visualize data 

(R Core Team 2014) 

ADMIXTURE 1.2.3 Global ancestry analysis 
(Alexander, 

Novembre, and Lange 
2009) 
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APPENDIX C: 

DETERMINATION OF THE 2LA INVERSION KARYOTYPE IN NATURAL 

POPULATIONS OF ANOPHELES GAMBIAE MOSQUITOES SAMPLED FROM THE 

NORTHWESTERN LAKE VICTORIA BASIN 
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TABLE C.1 

2LA INVERSION KARYOTYPING RESULTS FOR ANOPHELES GAMBIAE MOSQUITOES 

SAMPLED FROM SIX NATURAL POPULATIONS IN THE NORTHWESTERN LAKE 

VICTORIA BASIN 

PCA 
group * 

Sample ID ‡ 
Allele length 

(bp) § 
PCR result a 

Sample 
karyotype b 

Sample 
phenotype c 

1 BK.IR.003 492 Correct-call 2La/a Inverted 
1 BL.IR.003 492 Correct-call 2La/a Inverted 
1 BL.IR.009 492 Correct-call 2La/a Inverted 
1 EB.IR.001 492 Correct-call 2La/a Inverted 
1 EB.IR.003 492 Correct-call 2La/a Inverted 
1 EB.IR.004 492 Correct-call 2La/a Inverted 
1 EB.IR.007 492 Correct-call 2La/a Inverted 
1 EB.IR.008 492 Correct-call 2La/a Inverted 
1 EB.IR.009 492 Correct-call 2La/a Inverted 
1 EB.LC.006 492 Correct-call 2La/a Inverted 
1 EB.LC.008 492 Correct-call 2La/a Inverted 
1 NZ.IR.002 492 Correct-call 2La/a Inverted 
1 NZ.IR.004 492 Correct-call 2La/a Inverted 
1 NZ.IR.007 492 Correct-call 2La/a Inverted 
1 NZ.IR.008 492 Correct-call 2La/a Inverted 
1 NZ.IR.011 492 Correct-call 2La/a Inverted 
1 NZ.LC.M+1.007 492 Correct-call 2La/a Inverted 
1 NZ.LC.M+1.009 492 Correct-call 2La/a Inverted 
1 NZ.LC.M+1.011 492 Correct-call 2La/a Inverted 
1 SY.IR.2.003 492 Correct-call 2La/a Inverted 
1 SY.IR.2.004 492 Correct-call 2La/a Inverted 
1 SY.LC.1.001 492 Correct-call 2La/a Inverted 
1 SY.LC.1.003 492 Correct-call 2La/a Inverted 
1 SY.LC.1.015 492 Correct-call 2La/a Inverted 
1 SY.LC.2.001 492 Correct-call 2La/a Inverted 
1 SY.LC.2.002 492 Correct-call 2La/a Inverted 
1 SY.LC.2.003 492 Correct-call 2La/a Inverted 
1 SY.LC.2.004 492 Correct-call 2La/a Inverted 
1 SY.LC.2.005 492 Correct-call 2La/a Inverted 
1 SY.LC.2.006 492 Correct-call 2La/a Inverted 
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PCA 
group * 

Sample ID ‡ 
Allele length 

(bp) § 
PCR result a 

Sample 
karyotype b 

Sample 
phenotype c 

1 SY.LC.2.007 492 Correct-call 2La/a Inverted 
1 WL.IR.002 492 Correct-call 2La/a Inverted 
1 WL.IR.005 492 Correct-call 2La/a Inverted 
1 WL.IR.015 492 Correct-call 2La/a Inverted 
1 WL.IR.017 492 Correct-call 2La/a Inverted 
2 BK.IR.001 207/492 Correct-call     2La+/a  Hetero- 
2 BK.IR.007 207/492 Correct-call     2La+/a  Hetero- 
2 BK.IR.010 207/492 Correct-call     2La+/a  Hetero- 
2 BK.IR.012 207/492 Correct-call    2La+/a  Hetero- 
2 BK.IR.015 207/492 Correct-call     2La+/a  Hetero- 
2 BL.IR.001 207/492 Correct-call     2La+/a  Hetero- 
2 BL.IR.003 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.012   492/650 d      False-call 2La/a Inverted 
2 BL.IR.014 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.015 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.018 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.023 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.030 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.032 207/492 Correct-call   2La+/a  Hetero- 
2 BL.IR.033 207/492 Correct-call   2La+/a  Hetero- 
2 EB.IR.002 207/492 Correct-call   2La+/a  Hetero- 
2 EB.IR.005 207/492 Correct-call   2La+/a  Hetero- 
2 EB.IR.006 207/492 Correct-call   2La+/a  Hetero- 
2 EB.LC.001 207/492 Correct-call   2La+/a  Hetero- 
2 EB.LC.002 492 d     False-call   2La/a Inverted 
2 EB.LC.003 207/492 Correct-call   2La+/a  Hetero- 
2 EB.LC.010 207/492 Correct-call   2La+/a  Hetero- 
2 NZ.IR.005 207/492 Correct-call   2La+/a  Hetero- 
2 NZ.IR.006 492 d      False-call   2La/a Inverted 
2 NZ.LC.001 207/492 Correct-call   2La+/a  Hetero- 
2 NZ.LC.002 207/492 Correct-call   2La+/a  Hetero- 
2 NZ.LC.006 207/492 Correct-call   2La+/a  Hetero- 
2 NZ.LC.M+1.010 492 d     False-call  2La/a Inverted 
2 SY.IR.2.001 492 d     False-call   2La/a Inverted 
2 SY.IR.2.002 492 d     False-call   2La/a Inverted 
2 SY.IR.2.005 207/492 Correct-call   2La+/a  Hetero- 
2 SY.LC.1.011 492 d     False-call  2La/a Inverted 
2 WL.IR.001    492/650 d     False-call  2La/a Inverted 
2 WL.IR.003 207/492 Correct-call   2La+/a  Hetero- 
2 WL.IR.011 207/492 Correct-call   2La+/a  Hetero- 
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PCA 
group * 

Sample ID ‡ 
Allele length 

(bp) § 
PCR result a 

Sample 
karyotype b 

Sample 
phenotype c

2 WL.IR.012    492/650 d  False-call   2La/a Inverted 
2 WL.IR.018 207/492 Correct-call  2La+/a  Hetero- 
2 WL.IR.020 207/492 Correct-call  2La+/a  Hetero- 
2 WL.IR.022 207 d  False-call  2La+/a+ Standard 
2 WL.IR.024 207/492 Correct-call  2La+/a  Hetero- 
2 WL.IR.025 207/492 Correct-call  2La+/a  Hetero- 

3 BK.IR.002 207 Correct-call  2La+/a+ Standard 
3 BK.IR.005 207 Correct-call   2La+/a+ Standard 
3 BK.IR.006 207 Correct-call   2La+/a+ Standard 
3 BK.IR.008 207 Correct-call   2La+/a+ Standard 
3 BK.IR.013 207 Correct-call   2La+/a+ Standard 
3 BK.IR.018 207 Correct-call   2La+/a+ Standard 
3 BK.IR.020 207 Correct-call   2La+/a+ Standard 
3 BL.IR.011    650 e      False-call Unknown  Unknown 
3 BL.IR.013 207 Correct-call   2La+/a+ Standard 
3 BL.IR.016 207 Correct-call   2La+/a+ Standard 
3 BL.IR.031 207 Correct-call   2La+/a+ Standard 
3 BL.IR.034 207 Correct-call   2La+/a+ Standard 
3 EB.LC.004 207 Correct-call   2La+/a+ Standard 
3 NZ.LC.005 207 Correct-call   2La+/a+ Standard 
3 WL.IR.014 207 Correct-call   2La+/a+ Standard 
3 WL.IR.016 207 Correct-call   2La+/a+ Standard 
3 WL.IR.021 207 Correct-call   2La+/a+ Standard 
2 BK.IR.009 f - - - - 
3 BK.IR.014 f - - - - 
3 BK.IR.019 f - - - - 
2 NZ.IR.009 f - - - - 

NOTES 
* PCA group refers to the linear arrangements (numbered 1-3) as observed from top to bottom in a
PCA plot of the 1,078 SNP loci on chromosome 2L in the six An. gambiae populations prior to dataset
pruning (N=96)
‡ Each mosquito is individually labeled (sample ID) according to entomological sampling site;
collection method; other information i.e. village number (1/2) or date (M+1, which refers to a second
collection one month after the first), and sample number in the collection. Entomological sampling
sites are as follows: Bukasa (BK), Bugala (BL), Entebbe (EB), Nsadzi (NZ), Sserinya (SY), and Lake
Wamala (WL). Collection methods refer to indoor resting (IR) or larval collection (LC)
§ Allele length identifies 2La karyotypes by molecular weight of the DNA fragment in base pairs (bp)
(B. White et al. 2007) through visualization of electrophoretic band sizes using the following
diagnostic criteria: 207 bp (a+), 492 bp (a), and 207/492 bp (a+/a)
a PCR results were categorized as: no-calls (no band produced), false-calls (bands produced but
inconsistent with karyotype), and correct-calls (bands produced consistent with karyotype) 
b Sample karyotype: 2L refers to the left arm of the second chromosome; a is the four subdivisions
(23-26 inclusive) length of the inversion (George, Sharakhova, and Sharakhov 2010)
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c Sample phenotype: 2La phenotypes are categorized according to karyotype arrangements as described 
in allele length above. The homokaryotypic standard arrangement produces a single electrophoretic 
band at 207 bp (2La+/a+); heterokaryotypes produce two bands at 207, and 492 bp (2La+/a), while 
homokaryotypic inverted arrangements produce a single band at 492 bp (2La/a) 
d Samples generating false-call PCR results amplified identical results upon repeat assay. The 650 
bp product was classified as a PCR artifact 
e Despite repeated attempts an unidentified 650 bp product was produced for sample BL.IR.011, which 
was inconsistent with any karyotype, and classified as a PCR artifact 
f These samples were not physically processed due to human error
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APPENDIX D: 

BIOINFORMATICS PIPELINE DETAILING SOFTWARE PROGRAMS AND PARAMETERS 

IMPLEMENTED IN THE ANALYSIS OF THE ANOPHELES FARAUTI WHOLE GENOME 

SEQUENCED DATASET 



 

 

1
5

3
 

 

TABLE D.1 

 

SOFTWARE AND PARAMETERS APPLIED IN THE BIOINFORMATICS ANALYSIS OF 16 WILD-TYPE ANOPHELES FARAUTI 

INDIVIDUALS SEQUENCED BY A WHOLE GENOME SHOTGUN APPROACH 

Software Version Function Parameters Reference 

FastQC 0.10.1 
Sequencing quality 
check 

 
(Babraham 

Institute 2011) 

Trimmomatic 0.30 
Remove Illumina 
sequencing adapters 

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 
LEADING:5 TRAILING:5 
SLIDINGWINDOW:4:15 MINLEN:50 

(Bolger, Lohse, and 
Usadel 2014) 

Burrows-
Wheeler 

Alignment  
(BWA) 

0.7.5 
Alignment of reads 
to AfarF1 reference 
genome 

-t 12 -q 5 -l 32 -k 3 -n 9 -o 1 
(Li and Durbin 

2009) 

SAMtools 0.1.18 
Pre-processing of 
reads  

 (Li et al. 2009) 

Picard Tools 1.92 
Pre-processing of 
reads  

CleanSam 
-VALIDATION_STRINGENCY=LENIENT 
SortSam 
-SO=coordinate 
-VALIDATION_STRINGENCY=LENIENT 

(Broad Institute 
2013) 
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Software Version Function Parameters Reference 

BuildBamIndex 
-VALIDATION_STRINGENCY=LENIENT 
CreateSequenceDictionary 

GenomeAnalysis 
ToolKit 
(GATK) 

2.5.2 Variant calling 

-T HaplotypeCaller 
--downsampling_type BY_SAMPLE 
--downsample_to_coverage 250 
--genotyping_mode DISCOVERY 
--min_mapping_quality_score 20 

(Van der Auwera et 
al. 2013) 

GATK 2.5.2 

Quality filtering of 
variant calls; selects 
SNPs passing filters, 
which are biallelic 
only 

-T VariantFiltration 
--filterExpression 
“QD<2.0||MQ<40.0||FS>60.0||MQRankSum 
<12.5||ReadPosRankSum<-8.0” 
“QD<2.0||FS>200.0||ReadPosRankSum 
<20.0” 
-T SelectVariants 
--selectType SNP 
--excludeFiltered 
--restrictAllelesTo BIALLELIC  

(Van der Auwera et 
al. 2013) 

VCFtools 0.1.15 Dataset pruning 
--minGQ 30.0 (Genotype Quality of at least 
30) 
--maf 0.05 (Minor Allele Frequency of 5%) 

(Danecek et al. 
2011) 

sharedVariants 
AllSamples.py  

Custom 
Selects SNPs 
present in all 
samples 

 (Wiltshire 2019) 

PLINK 1.9 
Formats data for 
PCA and global 

--allow-extra-chr 
--pca 

(Chang et al. 2015) 
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Software Version Function Parameters Reference 

ancestry analysis --recode 12 

R 3.2.1 
Apply plot functions 
to visualize data 

 
(R Core Team 

2014) 

ADMIXTURE 1.2.3 
Global ancestry 
analysis 

 
(Alexander, Novembre, 

and Lange 2009) 
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