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BEHAVIOR, DESIGN, AND ANALYSIS OF UNBONDED POST-TENSIONED

PRECAST CONCRETE COUPLING BEAMS

Abstract
by

Brad D. Weldon

This dissertation describes an experimental, analytical, and design investigation
on the nonlinear behavior of precast concrete coupling beams, where coupling of
reinforced concrete shear walls is achieved by post-tensioning the beams and the walls
together at the floor and roof levels. The new coupling system offers important
advantages over conventional systems with monolithic cast-in-place beams, such as
simpler detailing, reduced damage to the structure, and reduced residual lateral
displacements. Steel top and seat angles are used at the beam-to-wall joints to yield and
provide energy dissipation.

The results from eight half-scale experiments of unbonded post-tensioned precast
coupling beams under reversed-cyclic lateral loading are presented. Each test specimen
includes a coupling beam and the adjacent wall pier regions at a floor level. The test
parameters include the post-tensioning tendon area and initial stress, initial beam concrete
axial stress, angle strength, and beam depth. The results demonstrate excellent stiffness,
strength, and ductility of the specimens under cyclic loading, with considerable energy

dissipation concentrated in the angles. Compliance of the beams to established
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acceptance criteria is demonstrated, validating the use of these structures in seismic
regions. The critical components of the structure that can limit the desired performance
include the post-tensioning anchors as well as the top and seat angles and their
connections.

The experimental results are also used to validate the analysis and design of the
new coupling system. Two different analytical models, one using fiber elements and the
other using finite elements, are investigated. In addition, an idealized coupling beam end
moment versus chord rotation relationship is developed as a design tool following basic
principles of equilibrium, compatibility, and constitutive relationships. The comparisons
demonstrate that the analytical and design models are able to capture the nonlinear
behavior of the structure, including global parameters such as the beam lateral force
versus chord rotation behavior as well as local parameters such as the neutral axis depth
at the beam ends. Using these models, the effects of several structural properties (such as
beam length) on the behavior of unbonded post-tensioned precast coupling beams is

analytically investigated to expand the results from the experiments.
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CHAPTER 1

INTRODUCTION

This chapter provides an introduction for the dissertation as follows: (1) problem
statement; (2) research objectives; (3) research scope; (4) research significance; and (5)

overview of dissertation.

1.1 Problem Statement

Historically, concrete structural walls have performed extremely well as primary
lateral load resisting systems under earthquake loading. When coupled together,
structural walls demonstrate an increase in lateral strength and stiffness, allowing a
smaller length and/or number of walls to be used to achieve the required design lateral
strength and stiffness of a building. Coupling beams are used at the floor and roof levels
to transfer shear forces between the wall piers and to dissipate energy over the height of
the structure.

Previous research on coupled wall structural systems has focused on cast-in-place
reinforced concrete coupling beams monolithic with the wall piers and hybrid systems
using steel coupling beams embedded into the wall piers (e.g., Harries et al. 2000;

Harries 2001). More recent research at the University of Notre Dame (Shen and Kurama



2000, 2002a,b; Kurama and Shen 2004; Kurama et al. 2004, 2006; Shen et al. 2006) has
introduced a new type of hybrid coupled wall system using steel coupling beams that are
not embedded into the walls. In this system, coupling is achieved by post-tensioning the
beams and the wall piers together at the floor and roof levels using unbonded post-
tensioning strands. The application of similar methods has also been studied in precast
concrete moment frames (e.g., Cheok and Lew 1993; EI-Sheikh et al. 1999; Priestley et
al. 1999; Ertas et al. 2006) and steel moment frames (e.g., Ricles et al. 2002;
Christopoulos et al. 2002; Rojas et al. 2005; Garlock et al. 2008; Kim and Christopoulos
2009).

Unbonded post-tensioned coupling beams offer important advantages over
conventional systems with monolithic cast-in-place reinforced concrete beams and
embedded steel beams, such as simpler detailing for the beams and the wall piers,
reduced damage to the structure, and an ability to self-center, thus reducing the residual
lateral displacements of the structure after a large earthquake. The research described in
this dissertation extends the use of post-tensioning to precast concrete coupling beams.
The use of precast beams provides the following advantages over unbonded post-
tensioned steel beams: (1) central location for the post-tensioning strands, resulting in
reduced post-tensioning hardware and operations; (2) better fire and environmental
protection for the post-tensioning strands, provided by the surrounding concrete; (3)
higher concrete-against-concrete friction resistance to resist sliding shear at the beam
ends; (4) simpler construction due to the use of high performance grout instead of steel
shim plates at the beam-to-wall interfaces for construction tolerances and beam

alignment; and (5) single trade construction.



As an example, Figure 1.1 shows an eight-story coupled wall system and Figure
1.2 shows a post-tensioned coupling beam subassembly consisting of a precast concrete
coupling beam and the adjacent concrete wall regions at a floor level (the highlighted
region in Figure 1.1). High-strength multi-strand tendons run through the wall piers and
the beams providing the post-tensioning force to the system. The post-tensioning tendons
are unbonded over their entire length (by placing the tendons inside ungrouted ducts) and
are anchored to the structure only at the outer ends of the wall piers. The beam-to-wall
connection regions include steel top and seat angles. High-performance fiber-reinforced
grout is used at the beam-to-wall interfaces for construction tolerances and for alignment

purposes.
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Figure 1.1: Multi story coupled wall system.
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Figure 1.2: Coupled wall system floor-level subassembly.

If the coupled wall structure is displaced with lateral forces acting from left to
right, the expected exaggerated idealized deformed configuration of the subassembly is
shown in Figure 1.3. The non-linear deformations of the beam occur primarily due to the
opening of gaps at the beam-to-wall interfaces. The application of the post-tensioning
force develops a friction force at the beam-to-wall interfaces, supporting the beam. Under
large displacements, a properly designed subassembly is expected to experience yielding
in the top and seat angles. The angles provide redundancy in support of the beam as well
as energy dissipation during an earthquake. The angles, which are designed to be
sacrificial and can be replaced after the earthquake, also provide a part of the moment
resistance at the beam ends and prevent sliding of the beam against the wall piers
(together with friction induced by post-tensioning). Bonded longitudinal mild steel

reinforcement is used in the beam to transfer the angle forces into the beam. The bonded



mild steel reinforcement is not continuous across the beam-to-wall interfaces, and thus,

does not contribute to the coupling forces.
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Figure 1.3: Coupled wall system floor-level subassembly idealized exaggerated
deformed configuration.

As gaps open at the beam-to-wall interfaces, large compressive stresses due to the
post-tensioning force are pushed toward the corners of the beam forming a diagonal
compression strut. As shown in Figure 1.4, it is through the formation of this large
compression strut that the coupling shear force V,, is developed. The amount of coupling
between the wall piers and the energy dissipation of the subassembly can be controlled by
varying the total post-tensioning force P, (which controls the compression force in the
beam Cy), the tension and compression angle forces T, and C,, the beam depth hy, and the
beam length lp. To resist the compression stresses that develop in the coupling beam and
the wall piers due to the post-tensioning force, concrete confinement is provided in the

contact regions at the beam-to-wall interfaces.
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Figure 1.4: Coupling beam forces.

As compared with monolithic cast-in-place reinforced concrete coupling beams,
unbonded post-tensioned precast concrete beams provide: (1) better quality control due to
factory casting; (2) simpler detailing due to lack of mild steel reinforcement crossing the
beam-to-wall joints and significantly reduced shear reinforcement in the beams; and (3)
self-centering capability due to the restoring effect of the post-tensioning force.

Before the initiation of gap opening, the post-tensioning force creates an initial
lateral stiffness in the precast concrete coupling beam similar to the initial uncracked
stiffness of a comparable monolithic cast-in-place reinforced concrete beam. Gap
opening at the ends of the precast beam results in a reduction in the lateral stiffness,
allowing the system to soften and undergo large nonlinear rotations. The post-tensioning
force controls the size of the gaps and the contact depth between the wall piers and the
coupling beam. As the wall is displaced laterally, the tensile forces in the post-tensioning
strands increase, thus, resisting gap opening. Upon removal of the lateral loads, the post-

tensioning strands provide a restoring force that tends to close the gaps, thus returning the



beam and the wall piers towards their undeformed configuration, leaving little or no
residual displacements (i.e., self-centering capability). Unbonding of the post-tensioning
strands has two important advantages: (1) it results in a uniform strain distribution in the
strands, thus, delaying the nonlinear straining (i.e., yielding) of the steel; and (2) it
significantly reduces the amount of tensile stresses transferred to the concrete as the
strands elongate under lateral loading, thus reducing cracking in the wall piers and the

coupling beam.

1.2 Research Objectives

No previous research exists on unbonded post-tensioned precast concrete
coupling beams. In accordance with the research need in this area, the broad objective of
this dissertation is to investigate the behavior, design, and analysis of these structures
under lateral loading. This can be further broken into five specific objectives:

(1) To conduct a large-scale experimental evaluation on the nonlinear lateral load
behavior of floor-level coupled wall subassemblies with unbonded post-tensioned
precast concrete coupling beams;

(2) To validate the use of unbonded post-tensioned precast concrete coupling beams
in seismic regions based on the test results;

(3) To develop and validate nonlinear analytical models for floor-level coupled wall

subassemblies with unbonded post-tensioned precast concrete coupling beams;



(4) To conduct a parametric analytical investigation on the behavior of these
structures under lateral loads, thus expanding the results from the experiments;
and

(5) To develop seismic design guidelines, design tools and procedures, and practical
application recommendations based on the experimental and analytical tasks

conducted.

1.3  Research Scope

To achieve the objectives above, the lateral load behavior and design of
reinforced concrete coupled wall subassemblies that use unbonded post-tensioned precast
concrete coupling beams are investigated in this dissertation. The research is limited to
the coupling of two identical walls with rectangular cross-section. The coupling of more
than two walls or of non-rectangular walls is not within the scope of the dissertation.
Furthermore, the study is limited to floor-level coupled wall subassemblies. The behavior
and design of multi-story coupled wall structures is not investigated.

Four half-scale coupled wall subassemblies are constructed to conduct eight tests
with varied design parameters, such as: (1) beam depth; (2) amount of post-tensioning
steel; and (3) angle thickness. The experimental results are used to evaluate the nonlinear
behavior of the coupling system as well as to investigate practical design and
construction applications.

A two-dimensional (in the plane of the walls) analytical model for the coupling

system is developed using the DRAIN-2DX program (Prakash et al. 1993). The model is



verified by comparing the analytical results with results obtained from the experimental
program as well as with results from a finite element model developed using the
ABAQUS program (Hibbitt et al. 2002). It is assumed that the structure undergoes in-
plane deformations only (i.e., torsional and out-of-plane deformations are not
considered). Interactions between the coupled wall system and the rest of the building
(e.q., the floor system/diaphragm) are not included.

To expand the results from the experiments, the analytical models are used to
conduct parametric nonlinear static monotonic and reversed cyclic lateral load analyses
of isolated coupled wall subassemblies. The effects of selected structural design
parameters on the lateral load behavior of the system are investigated, including: (1)
beam dimensions; (2) wall dimensions; (3) post-tensioning properties; (4) angle
properties; and (5) concrete properties. The findings from the parametric investigation are
used to develop simplified procedures and tools for the seismic design and nonlinear

response evaluation of coupled wall structures that use precast concrete coupling beams.

1.4  Research Significance

The research described in this dissertation provides fundamental information on
the lateral load analysis, behavior, design, and construction of a new type of precast
concrete coupling system. Ultimately, this information is needed as background for the
development of codified seismic analysis, design, and construction specifications for the

structure, comparable to those available for conventional coupling systems.



15 Overview of Dissertation

The remainder of the dissertation is organized into the following 10 chapters
(Chapters 2 — 11):

Chapter 2 presents a review of the previous analytical and experimental research
on the seismic behavior and design of coupled wall structures as well as structures with
unbonded post-tensioning.

Chapter 3 provides an overview of the half-scale experimental program that was
conducted on floor-level unbonded post-tensioned coupled wall subassemblies. The test
set-up, specimen design, and test procedure are presented.

Chapter 4 describes the material testing procedures and measured properties of
the materials used in the coupled wall subassembly experiments.

Chapter 5 describes the data instrumentation and response parameters for the
subassembly experiments.

Chapter 6 presents the results from the four “virgin” beam subassembly
experiments.

Chapter 7 presents the results from the four “non-virgin” beam (i.e., previously
tested beam) subassembly experiments.

Chapter 8 summarizes and compares the results from all eight subassembly
experiments conducted as part of this dissertation (i.e., both “virgin” and “non-virgin”
beam tests).

Chapter 9 describes the analytical modeling of floor-level unbonded post-
tensioned coupled wall subassemblies. The verification of the analytical models based on

comparisons with the results from the experimental program is presented.

10



Chapter 10 presents a parametric analytical investigation on the design and
behavior of unbonded post-tensioned coupled wall subassemblies under lateral loading. A
simplified closed-form procedure to estimate the monotonic lateral load behavior of the
subassemblies is developed based on fundamental principles of equilibrium, kinematics,
and constitutive relationships.

Finally, Chapter 11 summarizes the findings from the research program, presents

the conclusions, and describes the future work needed.
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CHAPTER 2

BACKGROUND

This chapter provides an overview of background information on the following
topics related to the research described in this dissertation: (1) coupled wall structural
systems; (2) monolithic cast-in-place concrete coupled wall systems; (3) unbonded post-
tensioning; (4) unbonded post-tensioned hybrid coupled wall systems; (5) unbonded post-

tensioned precast concrete moment frames; and (6) behavior of top and seat angles.

2.1  Coupled Wall Structural Systems

Concrete structural walls can be designed as efficient primary lateral load
resisting systems particularly suited for ductile response with very good energy
dissipation characteristics when regular patterns of openings (e.g., windows, doors,
and/or mechanical penetrations) are arranged in a rational pattern (Park and Paulay 1975;
Paulay and Priestley 1992). Examples are shown in Figure 2.1 where wall piers are

interconnected or coupled to each other by beams at the floor and roof levels.
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Figure 2.1: Coupled wall structures.

The desired failure mechanism for a coupled wall structural system involves the
formation of plastic hinges in most or all of the coupling beams and also at the base of
each wall pier. In this manner, the dissipation of seismic input energy is distributed over
the height of the structure (rather than being concentrated in a few stories), similar to the
strong column-weak girder design philosophy for ductile moment resisting frames. The
behavior and mechanisms of lateral resistance of a single (i.e., uncoupled) wall and two
coupled wall systems are compared in Figure 2.2. The gravity loads acting on the walls
are ignored for this example and it is assumed that a lateral force in the plane of the walls
is applied at the top. The base moment resistance, My, unc Of the uncoupled wall [Figure
2.2(a)] is developed in the traditional form by flexural stresses, while axial forces as well
as moments are resisted in the coupled wall systems [Figures 2.2(b) and 2.2(c)]. When a
coupled wall system is pushed from left to right under lateral loads, tensile axial forces
(Nuwp) develop in the left wall pier and compressive axial forces (Ncu) develop in the

right wall pier due to the coupling effect. The magnitude of these wall axial forces is

13



equal to the sum of the shear forces of all the coupling beams at the upper floor and roof
levels; and thus, depends on the stiffness and strength of those beams.

As a result of the axial forces that develop in the walls, the lateral stiffness and
strength of a coupled wall system is significantly larger than the combined stiffness and
strength of the individual constituent walls (i.e., wall piers) with no coupling. The total
base moment, M,, of the coupled wall structures in Figures 2.2(b) and 2.2(c) can be
written as:

My =My + Moy + Newp Le (2.1)
where, My, and M, are the base moments in the tension and compression side walls,
respectively, Newo = Nuwb, and L is the distance between the centroids of the tension and
compression side walls. Then, the contribution of the wall axial forces from coupling to
the total lateral resistance of the system can be expressed by the coupling degree, CD as:

N_. L N_.L
— cwb —c — cwb —c (22)
M M, +M, +N,,L

w cwb —c

CD

The coupling degree, which can be controlled by changing the strength and
stiffness of the beams relative to the wall piers as shown in Figures 2.2(b) and 2.2(c), is
an important parameter for the seismic behavior and design of coupled wall structures.
Too little coupling (i.e., too small a coupling degree) yields a system with behavior
similar to uncoupled walls and the benefits due to coupling are minimal. Too much
coupling (i.e., too large a coupling degree) will add excessive stiffness to the system,
causing the coupled walls to perform as a single pierced wall with little or no energy

dissipation provided by the beams, and will result in large axial forces in the foundation.
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The desirable “range” for the amount of coupling lies in between these two extremes and

should be selected properly in seismic design as investigated by El-Tawil et al. (2002).
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Figure 2.2: Wall systems — (a) uncoupled wall; (b) coupled wall with strong beams;
(c) coupled wall with weak beams.

2.2 Monotonic Cast-in-Place Concrete Coupled Wall Systems

During the last few decades, an extensive amount of experimental and analytical
research has been conducted on monolithic cast-in-place reinforced concrete coupled wall
systems for seismic regions (e.g., Paulay 1971, 1977; Paulay and Binney 1974;
Srichatrapimuk 1976; Paulay and Santhakumar 1976; Fintel and Ghosh 1980, 1982;
Aktan and Bertero 1981, 1984, 1987; Aktan et al. 1982; Aristizabal-Ochoa 1987;

Saatcioglu et al. 1987; Pekau and Cistra 1989; Subedi 1991a, 1991b; Chaallal 1992;
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Chaallal and Gauthier 2000; Chaallal et al. 1996a, 1996b; Tassios et al. 1996; Harries et
al. 1998; Teshigawara 2000; Sugaya et al. 2000; Harries et al. 2000; Munshi and Ghosh
2000; Harries 2001; Cosenza and Pecce 2001; Paulay 2002; Lee and Watanabe 2003,
Canbolat et al. 2005; Wallace 2007; Baczkowski and Kuang 2008). The behavior and
design of the monolithic cast-in-place reinforced concrete coupling beams in these
systems are significantly different than the behavior and design of the unbonded post-
tensioned precast concrete coupling beams investigated in this research; and thus, a
complete review of the previous research listed above is beyond the scope of this
dissertation. However, some of the important findings and conclusions are summarized

below.

2.2.1 Behavior and Design of Cast-in-Place Concrete Coupling Beams

The primary role of coupling beams during an earthquake is the transfer of forces
from one wall pier to the other. In considering the seismic behavior and design of coupled
wall structures, it should be noted that significantly larger nonlinear deformations occur
in the coupling beams than in the wall piers that are coupled. The previous research has
shown that short monolithic cast-in-place reinforced concrete coupling beams with
conventional longitudinal and transverse steel reinforcement inevitably fail in diagonal

tension or sliding shear [Figures 2.3(a) and 2.3(b)], and have limited or no ductility
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capacity (Paulay and Priestley 1992). The displacement capacity of these systems is

often exceeded by the demand (Harries 2001). The consideration of large ductility demands
under many load reversalshas led to the development of a bracing mechanism that
utilizes diagonal steel reinforcement in concrete coupling beams as shown in Figure 2.3(c).
This allows for the transfer of diagonal tension and compression forces to the
reinforcement during the lateral displacements of the beam, resulting in a considerably ductile

behavior with good energy dissipation characteristics.

Figure 2.3: Reinforced concrete coupling beams [Paulay and Priestley
(1992)] — (a) diagonal tension failure; (b) sliding shear failure; (c) diagonal
reinforcement.

2.2.2 Current Code Requirements for Cast-in-Place Concrete Coupling Beams

For seismic design of cast-in-place concrete coupling beams, ACI 318-08 Section
21.9.7 specifies the required reinforcement to achieve adequate resistance and ductility.
Coupling beams with length to depth aspect ratios greater than 4 or less than 2 are outside
the typical range of coupling beams used in the U.S., and thus, are not discussed here.
Coupling beams with aspect ratios between 2 and 4 are provided with two design options.

In the first option, transverse and longitudinal reinforcement may be used according to

17



Sections 21.5.2 through 21.5.4. However, these sections are specific to flexural members
of special moment frames and it is stated in Section 21.5.1 of ACI 318-08 that:
Design rules derived from experience with relatively slender
members do not apply directly to members with length-to-depth ratios

less than 4, especially with respect to shear strength.

The second option allows the coupling beam to be reinforced with two interesting
groups of diagonal bars placed symmetrically about the midspan. Test results have shown
that diagonal reinforcement is effective only if the bars are placed at a large inclination
(indicated by a in Figure 2.4); and thus, the use of diagonally reinforced coupling beams
is limited to beams with length-to-depth aspect ratios smaller than 4. Due to the presence
of high shear demands under large nonlinear reversed-cyclic rotations, the most common
practice for cast-in-place coupling beams with length-to-depth aspect ratios similar to the
beams investigated in this dissertation (i.e., aspect ratio < 4) is the diagonally-reinforced
system. Thus, the diagonal reinforcement requirements in ACI 318-08 are discussed
further below.

To provide the required lateral strength and ductility in seismic regions, diagonal
bars in coupling beams are typically placed symmetrically in two or more layers. Each
group of bars must have a minimum of four bars in two layers. The bars are then confined
with one of two different options. The first option provides transverse reinforcement on
each group of diagonal bars. The second option confines the entire beam cross-section
instead of confining each group of bars. These two different design options are shown in
Figure 2.4.

The use of diagonal reinforcement creates coupling beam designs that are very

difficult to construct due to the difficulty in placing the diagonal bars, especially at the
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beam midspan regions where the two groups of bars intersect. The diagonal bars must
also extend into the wall piers, interfering with the construction of the walls and creating
a challenge for the placement of the reinforcement at the beam-to-wall interfaces. A

photograph of a typical diagonally reinforced coupling beam is shown in Figure 2.5.
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Figure 2.4: Diagonal reinforcement requirements for coupling beams
[from ACI 318 (2008)] — (a) confinement of each group of diagonal bars;
(b) confinement of entire beam cross-section.
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Figure 2.5: Diagonally reinforced coupling beam (from Magnusson
Klemencic Associates).

2.2.3 Analysis and Modeling of Cast-in-Place Concrete Coupled Wall Systems

As shown in Figure 2.6, previous research has often adopted an “equivalent
frame” analogy for the nonlinear inelastic hysteretic modeling and analysis of coupled
wall structural systems. The properties of the wall piers and the beams are concentrated at
the cetroid of each member. In the analytical model, rigid end zones (or kinematic
constraints) are typically necessary to model where the coupling beams frame into the
walls. Rigid end zones may also be needed in the wall piers depending on the stiffness of
the coupling beams. Nonlinear shear deformations in wall piers with aspect ratios, hy/ly

larger than 4 are often neglected (Paulay and Priestley 1992).
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Figure 2.6: Equivalent frame analytical models.

It is emphasized that the validity of the frame analogy used to model the behavior
of coupled wall structures can vary considerably depending on the stiffnesses assumed
for the members and the lengths of the rigid end zones. Furthermore, nonlinear shear
deformations in deep coupling beams and the axial “elongation” and “shortening” of the
tension and compression side wall piers due to axial-flexural interaction cannot be
represented using frame analogy. Nonlinear truss models have been used to predict the
nonlinear shear behavior of reinforced concrete members, including coupling beams
(Park and Eom 2007).

As described later in this dissertation, the nonlinear lateral load behavior of
unbonded post-tensioned coupling beams is governed by axial-flexural effects and gap

opening at the beam-to-wall interfaces rather than shear effects. Thus, the modeling of
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the coupled wall structures in this research is done using fiber beam-column elements. A
significant advantage of using fiber elements instead of frame elements is that a
reasonably accurate model can be constructed accounting for axial-flexural interaction
(including axial elongation and shortening) in the beam and wall members, inelastic
behavior of concrete and steel, and gap opening at the beam-to-wall interfaces based only
on the dimensions of the model structure and uniaxial stress-strain properties for the

materials.

2.2.4 Coupling Beam Database

ACI ITG-5.1 (ACI 2008) defines minimum seismic acceptance criteria for
unbonded post-tensioned precast structural walls, including coupled walls, based on
experimental evidence and analysis. For use in comparisons with the unbonded post-
tensioned coupling beam specimens tested in this dissertation, Figure 2.7 shows the
measured ultimate sustained rotations of monolithic cast-in-place reinforced concrete
coupling beam test specimens that the author was able to find in the literature. The
database in Figure 2.7 [adapted from Dr. Kent Harries of the University of Pittsburgh
(personal communication)] includes research conducted by Barney et al. 1978; Bristowe
2000; Canbolat et al. 2005; Galano and Vignoli 2000; and Tassios et al. 1996. Based on
ACI ITG-5.1 (ACI 2008), the ultimate “sustained” rotation is defined as the largest
rotation that a beam is able to reach with no more than 20% drop in shear resistance
during three fully reversed cycles. The ultimate sustained rotation in Figure 2.7 is plotted
against the beam length-to-depth aspect ratio. The vertical highlighted region in the

figure denotes the most typical range of beam length-to-depth aspect ratios (between 2.5
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and 4) used in the U.S., while the horizontal highlighted region depicts the FEMA 356
(2000) collapse prevention rotation level for monolithic cast-in-place coupling beams
with diagonal reinforcement. Note that, based on the ACI ITG-5.1 (ACI 2008) definition,
previous coupling beam tests under monotonic loading or under cyclic loading with fewer

than three repeated cycles at each displacement increment are not included in Figure 2.7.
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Figure 2.7: Measured ultimate sustained rotations for monolithic cast-in-place reinforced
concrete coupling beams.
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2.3  Unbonded Post-Tensioning

An unbonded post-tensioned concrete structure is different than a bonded post-
tensioned structure in that the bond between the post-tensioning steel and the concrete is
intentionally prevented. This allows independent movement of the post-tensioning tendon
relative to the concrete member (except for anchorage locations at the ends); and thus, an
assumption of strain compatibility between the tendon and the adjacent concrete cannot
be made. Instead, the tendon’s change in strain is constant (ignoring friction forces) over
the unbonded length of the tendon. The change in strain at any point in an unbonded post-
tensioning tendon is the average change in strain due to member deformations in the
concrete adjacent to the tendon over the total unbonded length of the tendon. Therefore,
the tendon strain (and thus, stress) depends on the total change in the length of the
concrete adjacent to the tendon over the unbonded length rather than section
deformations. As a result of the uniform distribution of strains, unbonded tendons reach
the nonlinear strain range at larger overall member deformations than bonded tendons,
which is the main reason why they are preferred for seismic applications.

Unlike the axial-flexural behavior of structural members constructed using
unbonded post-tensioning, for a bonded post-tensioned member, it is reasonable and
customary to assume that the change in the tendon strain is the same as the change in the
concrete strain adjacent to the tendon. In other words, after grouting, an assumption of
strain compatibility between the tendon and the adjacent concrete can be made. Thus, the
strain at any point of the tendon can be calculated from the deformation of the

corresponding section (i.e., curvature and average axial strain) by assuming that plane
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sections remain plane during axial-flexural deformations. Therefore, the change in strain
at any point in a bonded tendon depends only on the deformations at that section.

To achieve an unbonded post-tensioned system, tendons can be placed either
internal or external to the structural members (e.g., beams). Internal tendons are placed
inside ducts that, unlike the ducts in bonded construction, are not filled with grout.
Greased tendons and plastic sheathing may be used to reduce the friction forces that may
develop between the ducts and the tendons. Ducts may be oversized to ease the
placement of the tendons during construction and to prevent the tendons from coming
into contact with the ducts as the structure displaces. The elimination of the grouting
operation offers considerable advantages (i.e., reduced number of operations during
construction) in the application of post-tensioning. However, additional measures may be
needed for the corrosion protection of the tendons (e.g., the use of encapsulated anchors
and tendons).

Internal and external unbonded post-tensioned construction types differ in the
displaced shape of the tendon. The displaced shape of internal tendons follows the
displaced shape of the structural member, unless the ducts are sufficiently oversized. The
displaced shape of external tendons is generally different from that of the member except
at deviator or saddle point locations anchored to the concrete. The use of deviator points
in seismic applications is not common in order to achieve symmetric behavior under
reversed cyclic loading.

The application of unbonded post-tensioning in steel structural members is similar

to the application of external post-tensioning in concrete members. The post-tensioning
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tendons can be placed outside or inside (as in the case of hollow cross-sections) the steel

member.

2.4 Unbonded Post-Tensioned Hybrid Coupled Wall Systems

Recent research at the University of Notre Dame (Shen and Kurama 2000,
2002a,b; Kurama and Shen 2004; Kurama et al. 2004, 2006; Shen et al. 2006)
investigated the use of unbonded post-tensioning to couple reinforced concrete walls with
steel coupling beams that are not embedded into the walls. As shown in Figure 2.8 for a
floor-level subassembly, coupling is achieved by post-tensioning the beams and the wall
piers together at the floor and roof levels, similar to the development of coupling in the
precast concrete system investigated in this dissertation. The beam-to-wall joint regions
include concrete confinement reinforcement, embedded steel plates, shim plates, and top
and seat angles. The embedded steel plates are used to transfer the large compression
stresses in the beam flanges into the wall concrete. The shim plates at the beam-to-wall
interfaces serve two purposes: (1) to ensure contact between the beam flanges and the
wall piers during the nonlinear cyclic lateral displacements of the structure; and (2) to
accommodate construction tolerances and facilitate alignment of the beam. If necessary,
reinforcing cover plates may be used to strengthen and stiffen the flanges in the large

compression stress regions at the beam ends.
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Figure 2.8: Hybrid coupled wall subassembly
[from Shen and Kurama (2002b)].

Figure 2.9(a) shows the measured coupling beam shear force versus beam chord
rotation behavior of a half-scale steel coupling beam subassembly similar to the one in
Figure 2.8 (Shen et al. 2006). The hysteresis loops indicate desirable seismic
characteristics with stable behavior up to 8.0% rotation and significant energy
dissipation. Figure 2.9(b) shows a close-up view of the beam end at 7.0% rotation,
demonstrating that most of the nonlinear rotations of the beam occur through the opening
of gaps at the ends. The rotations of the beam with respect to the wall piers result in the
yielding of the top and seat angles in tension and compression.

As a result of post-tensioning, the initial stiffness of an unbonded post-tensioned
steel coupling beam before the initiation of gap opening is similar to the initial stiffness
of an embedded steel coupling beam with the same dimensions. The hysteresis loops in
Figure 2.9(a) indicate that the post-tensioning strands provide a restoring force such that
the gaps are closed upon unloading, thus pulling the beam towards its undeformed
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position with little residual displacements (i.e., upon unloading, the hysteresis loops go
towards the origin indicating a large self-centering capability). The initial stiffness of the
subassembly is preserved even after unloading from very large nonlinear rotations.

The sum of the coupling beam post-tensioning strand forces, P, measured during
the test is plotted in Figure 2.9(c). The post-tensioning force is normalized with respect to
the total design strength of the post-tensioning strands, Zappfopu, Where app is the beam
post-tensioning strand area and fyp, IS the ultimate design strength of the post-tensioning
strand. Before the initiation of gap opening, the forces in the post-tensioning strands are
similar to the initial post-tensioning forces. As the specimen is displaced further, the
strand forces increase, thus resisting gap opening. Due to the use of unbonded post-
tensioning strands, the strains in the strands remain small and the nonlinear straining (i.e.,
yielding) of the tendons is significantly delayed. Thus, most of the initial post-tensioning
force is maintained throughout the cyclic displacement history of the structure as long as

the anchorage regions for the tendons do not deteriorate.
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Figure 2.9: Hybrid coupled wall subassembly experiments [adapted from
Kurama et al. (2006)] — (a) measured coupling beam shear force versus chord
rotation behavior; (b) photograph of displaced shape at beam end; (c) measured

total beam post-tensioning force.
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Figure 2.9 continued.

The most typical failure mode for the unbonded post-tensioned coupling system
in Figure 2.8 is the low-cycle fatigue fracture of the top and seat angles. For the test
specimen in Figure 2.9, the initiation of low cycle fatigue cracks was observed in the
vertical legs of the tension angles at a coupling beam chord rotation of about 7.0%. The
cracks occurred at the critical section adjacent to the fillet. The specimen was able to
sustain three cycles at 8.0% rotation with a steady, but not excessively large, reduction in
strength [see Figure 2.9(a)]. This reduction in strength occurred due to increased cracking
and necking of the vertical legs of the tension angles. Failure of the specimen eventually
occurred as a result of the complete fracture of the vertical leg of the seat angle at the

right end of the beam when 9.0% rotation was reached for the first time. The resistance of
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the specimen at angle fracture was, approximately, 90% of the peak resistance. Figure
2.10 shows the fractured angle at 9.0% rotation. All four angles had sustained significant
damage at this stage resulting in a considerable amount of energy dissipation as shown in
Figure 2.9(a). The subassembly was unloaded and the test was terminated upon the

fracture of the first angle.

Figure 2.10: Low cycle fatigue fracture of top and seat angles.

To demonstrate the contribution of the top and seat angles to the coupling beam
behavior, Figure 2.11 shows the measured coupling beam shear force versus chord
rotation behavior of a subassembly similar to the one in Figure 2.9, but with no top and
seat angles. The behavior of the subassembly without angles is essentially bilinear-
elastic, caused mainly by gap opening at the beam ends. Comparing Figures 2.9(a) and
2.11, the significant increase in strength and energy dissipation occurs as a result of the

angles.
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Figure 2.11: Hybrid coupled wall subassembly with no angles
[from Kurama et al. (2006)].

The experimental research summarized above has shown that unbonded post-
tensioned hybrid coupled wall subassemblies can be designed to go through large
nonlinear reversed cyclic displacements without receiving significant damage in the wall
piers or the beams, and with most of the damage occurring in the top and seat angles at
the beam-to-wall connections. The beams do not need to be replaced after a large
earthquake as long as the damaged, yielded, or fractured angles and post-tensioning
strands are replaced. Damage in the coupling regions of the wall piers can also be
prevented, including cracking and/or spalling of the cover concrete [see Figure 2.9(b)].
The post-tensioning anchors and the angle-to-wall and angle-to-beam connections are
critical components that can affect the performance of the structure (Kurama et al. 2006).
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Analytical investigations of floor level unbonded post-tensioned hybrid coupling
beam subassemblies as well as of multi-story coupled wall systems were also conducted
by this previous research project. As an example, Figure 2.12(a) shows the predicted
coupling beam shear force versus chord rotation behavior and Figure 2.12(b) shows the
predicted coupling beam total post-tensioning force of the subassembly in Figures 2.9(a)
and 2.9(c), respectively, demonstrating the effectiveness of the analytical model in
capturing the measured response. A performance-based seismic design approach and
simplified design/analysis tools for the structure were also developed through the

investigation.
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Figure 2.12: Hybrid coupled wall subassembly predicted behavior [from Shen et al. (2006)]
— (a) coupling beam shear force versus chord rotation behavior; (b) total beam post-
tensioning force.
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25 Unbonded Post-Tensioned Precast Moment Frames

Precast concrete construction results in cost-effective structures that provide high
quality production and rapid erection. However, the use of precast concrete buildings in
seismic regions of the United States has been limited due to uncertainty about their
performance during earthquakes. Since the 1990s, a significant amount of research has
been conducted on the seismic behavior and design of these structures. One of the precast
concrete frame systems that has successfully emerged from these research efforts uses
unbonded post-tensioning between the precast beam and column members to achieve the
lateral load resistance needed in seismic regions (e.g., Cheok and Lew 1991, 1993; Cheok
et al. 1993; Priestley and Tao 1993; MacRae and Priestley 1994; Priestley and MacRae
1996; El-Sheikh et al. 1997, 1999, 2000).

As an example, Figure 2.13(a) shows a multi-story precast concrete frame
structure and Figure 2.13(b) shows an interior unbonded post-tensioned precast beam-
column subassembly. The lateral load behavior of these structures is governed by the
opening of gaps at the beam-to-column joints [Figure 2.13(c)], similar to the opening of
gaps at the beam-to-wall joints of unbonded post-tensioned coupling beams. Thus, the
previous research on unbonded post-tensioned precast concrete moment frames is
important for this dissertation. The major findings and conclusions from this previous
research, some of which are similar to the findings from the previous research on
unbonded post-tensioned steel coupling beams described above, are:

(1) As a result of post-tensioning, the initial linear-elastic lateral stiffness of an
unbonded post-tensioned precast concrete frame structure is similar to the initial stiffness

of a monolithic cast-in-place reinforced concrete frame structure.
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(2) Unbonded post-tensioned precast concrete frames can soften (indicating a
significant reduction in the lateral stiffness) and go through large nonlinear cyclic lateral
displacements without significant damage, and thus, without significant strength
degradation (as compared to precast concrete frames with bonded tendons or monolithic
cast-in-place reinforced concrete frames).

(3) Unbonding of the post-tensioning tendons significantly reduces the amount of
tensile stresses transferred to the concrete, thus reducing damage due to concrete
cracking.

(4) Large compression strains develop at the corners of the beams at the beam-to-
column interfaces due to the post-tensioning force. Therefore, transverse reinforcement
(e.g., spiral or closed hoop reinforcement) is necessary to confine the concrete at the
beam ends.

(5) Upon unloading from a large nonlinear lateral displacement, the post-
tensioning force provides a restoring effect (i.e., self-centering capability) that tends to
close the gaps and pull the frame back towards its original undeformed (i.e., plumb)
position without significant residual lateral displacements.

(6) The friction resistance that develops due to post-tensioning is sufficient to
transfer the shear forces from gravity and lateral loads without the need for corbels or
shear keys at the beam-to-column interfaces. As long as the post-tensioning force is
maintained, the shear slip resistance at the beam-to-column interfaces is maintained
during large cyclic lateral displacements of the structure.

(7) Unbonded post-tensioning alters the shear resistance mechanism in the beams

and in the beam-to-column joint panel regions (as compared with bonded post-tensioned
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and monolithic cast-in-place reinforced concrete structures), in which the shear force is
transferred by a large diagonal compression strut, greatly simplifying the design of the

beam and joint shear reinforcement, and reducing damage.
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Figure 2.13: Unbonded post-tensioned precast moment frames —
(@) structure; (b) interior beam-column subassembly; (c) idealized,
exaggerated subassembly displaced shape.

The previous research summarized above has shown that provided that the
unbonded length of the post-tensioning steel is sufficient to prevent the yielding of the
tendons, and the compression zones in the contact regions and anchor details for the

tendons are satisfactory, then unbonded post-tensioned structures can reach design level
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lateral displacements and beyond with little damage under cyclic loads. According to El-
Sheikh et al. (1999), the nonlinear moment versus rotation behavior of a typical
unbonded post-tensioned precast concrete beam-column joint subassembly can be
idealized using a trilinear relationship as shown in Figure 2.14(a). The five limit states
marked on the smooth moment-rotation relationship, which form the basis for the
idealized relationship, are as follows: Point (1) represents the initiation of gap opening
(i.e., decompression) at the beam-to-column interfaces; Point (2) represents a significant
reduction in the stiffness of the subassembly (i.e., softening), which occurs primarily due
to increased gap opening at the beam-to-column interfaces; Point (3) represents the
initiation of cover concrete spalling at the beam ends; Point (4) represents the initiation of
yielding (i.e., nonlinear straining) of the unbonded post-tensioning steel; and Point (5)
represents the axial-flexural failure of the subassembly due to the crushing of the
confined concrete at the beam ends.

Figure 2.14(b) shows the analytical model of an interior unbonded post-tensioned
precast concrete beam-column joint subassembly developed by El-Sheikh et al. (1999,
2000). This model was used to generate the smooth subassembly moment-rotation
relationship in Figure 2.14(a) and includes the following elements in the DRAIN-2DX
structural analysis program (Prakash et al. 1993): (1) fiber beam-column elements to
model the lengths of the beams with unbonded post-tensioning steel; (2) linear-elastic
frame beam-column elements to model the column as well as the lengths of the beams
with bonded post-tensioning steel (if any), where only linear-elastic deformations are
expected to occur; (3) truss elements to model the unbonded length of the post-tensioning

tendons; (4) a zero-length rotational spring element to model the joint panel zone shear
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deformations of the column member; (5) kinematic constraints (rigid links) for the beam
elements and rigid end zones for the column elements to model the axial and flexural
stiffnesses (assumed to be infinitely large) within the panel zone; and (6) kinematic
constraints to model the ends of the unbonded length of the post-tensioning tendons. The
gap opening behavior at the beam-to-column interfaces is modeled using compression-
only concrete stress-strain relationships for the fiber elements at the beam ends. The
results obtained from the analytical model were found to compare well with experimental

results reported by Cheok and Lew (1993).

LR Rip-in)

slermenis

(@) (b)

Figure 2.14: Analytical investigation of unbonded post-tensioned precast beam-column
subassemblies [from EI-Sheikh et al. (1999, 2000)] — (a) moment-rotation relationship;
(b) analytical model.

2.5.1 Frames with Supplemental Energy Dissipation

Figures 2.15(a) and 2.15(b) show the typical measured lateral force versus
displacement behavior of interior and exterior unbonded post-tensioned precast beam-

column subassemblies under reversed cyclic lateral loading. Since the structure
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experiences little damage, the behavior is essentially elastic through nonlinear
displacements (i.e., nonlinear-elastic) dominated by gap opening, with very little energy
dissipation. As a result of the small amount of energy dissipation, the peak lateral
displacements of unbonded post-tensioned precast frame structures under earthquakes
can be, on average, 1.40 times the peak displacements of comparable monolithic cast-in-
place reinforced concrete frames (Priestley and Tao 1993; Seo and Sause 2005). Thus,
the greatest setback to the use of these structures in seismic regions has been that their

lateral displacement demands during a severe earthquake may be larger than acceptable.

(@ (b)

Figure 2.15: Measured lateral force-displacement behavior [from Priestley and
MacRae (1996)] — (a) interior joint; (b) exterior joint.

In order to reduce the lateral displacement demands during a seismic event, the
use of bonded mild steel reinforcement (e.g., Grade 60 reinforcement) through the precast
beam-column joints, in addition to the unbonded post-tensioning steel, has been
investigated (Cheok and Stone 1994; Stone et al. 1995; Cheok et al. 1996, 1998; Stanton
et al. 1997; Nakaki et al. 1999; Priestley et al. 1999; Stanton and Nakaki 2002; Hawileh

et al. 2006; Rahman and Sritharan 2007). These partially prestressed systems are often
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referred to as “hybrid” precast concrete frame structures in the literature due to the mixed
use of mild steel and post-tensioning steel reinforcement across the beam-column joints
as shown in Figure 2.16. Properly designed and detailed mild steel reinforcement yields
in tension and compression during the cyclic gap opening rotations that occur at the
beam-to-column interfaces, thus dissipating energy. The bond between the mild steel bars
and the concrete is typically prevented over a short predetermined length at the ends of
the beams (by wrapping the bars) to ensure that the design lateral displacement can be
achieved without low-cycle fatigue fracture of the mild steel reinforcement and to reduce

the cracking of the concrete during the deformations of the bars in tension.
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Figure 2.16: “Hybrid” precast concrete frame beam-column joint
[adapted from Kurama (2002)].
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More recently, Morgen and Kurama (2005, 2007, 2008, 2009) developed a new
type of friction damper that can be used at the beam ends of unbonded post-tensioned
precast concrete frames. Figure 2.17(a) shows the test set-up schematic and Figure
2.17(b) shows a photograph of the test set-up, where the beam is oriented in the vertical
configuration due to space limitations in the laboratory. Figure 2.18 compares the beam
end moment versus chord rotation behavior of a test subassembly without friction
dampers and a test subassembly with friction dampers. The results from this 80% scale
experimental investigation and accompanying analytical investigations have shown that
the unique gap opening behavior between the beam and column members of these
structures allows for the development of innovative energy dissipation systems that can
be used to reduce the lateral displacements while maintaining the desirable self-centering

capability and the ability to undergo large nonlinear displacements with little damage.
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Figure 2.17: Friction-damped post-tensioned precast moment frames [from Morgen and
Kurama (2004)] - (a) test set-up schematic; (b) photograph of test set-up.
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Figure 2.18: Measured beam end moment versus chord rotation
behavior [from Morgen and Kurama (2004)] —
(a) without dampers; (b) with dampers.
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2.6 Behavior of Top and Seat Angles

Unbonded post-tensioned frame and wall structures can use supplemental passive
energy dissipation where gap opening occurs to reduce the lateral displacement demands
while maintaining their unique and desirable characteristics under seismic loads. Steel
top and seat angles offer an economical and readily available method for providing
energy dissipation and increasing structural redundancy at the beam-to-column or beam-

to-wall joints as shown in Figure 2.19.
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Figure 2.19: Top and seat angle connection [adapted from Shen et al. (2006)] -
(a) deformed configuration; (b) angle parameters.

The behavior of steel beam-to-column connections with top and seat angles has

been extensively studied (e.g., Azizinamini 1985; Aktan et al. 1989; Youssef-Agha et al.
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1989; Kishi and Chen 1990; Lorenz et al. 1993; Bernuzzi et al. 1994, 1997; Leon and
Shin 1994; Mander et al. 1994; Sarraf and Bruneau 1996; Bernuzzi 1998; Kasai et al.
1998; Kukreti and Abolmaali 1999; Swanson and Leon 1999; Shen and Astaneh-Asl
1999a, 1999b, 2000; Sims 2000; Ricles et al. 2001, 2002; Garlock 2002; Garlock et al.
2003, 2005). Figure 2.19(a) shows the idealized exaggerated deformed configuration of a
top-and-seat-angle steel frame connection, which is a semi-rigid connection comprised of
a pair of steel angles bolted to the flanges of the beam and the column. Figure 2.19(b)
shows some of the design parameters for an angle.

The flexural stiffness, strength, and ductility of a top-and-seat-angle beam-to-
column connection are influenced by many design parameters, including: (1) beam depth,
he; (2) angle length, I5; (3) angle leg thickness, ta; (4) angle steel yield strength, fa; (5)
angle-to-column connection gage length, Iy, measured from the heel of the angle to the
center of the innermost angle-to-column connectors; (6) angle-to-beam connection gage
length, Ign, measured from the heel of the angle to the centroid of the angle-to-beam
connector bolt group; (7) angle fillet length, k,, measured from the angle heel to the toe of
the angle fillet; (8) angle connector bolt type and diameter, dap; (9) bolt head/nut width
measured across flat sides, Wapw; and (10) number of bolts, ngp,.

The behavior of the top and seat angles in the precast concrete coupled wall
system investigated in this dissertation is similar to the behavior of the angles in the
hybrid coupled wall system investigated by Shen et al. (2006) and the angles in the post-
tensioned steel frame connections investigated by Kishi and Chen (1990), Lorenz et al.
(1993), Sims (2000), Garlock et al. (2003), and Ricles et al. (2001). Important findings

from Sims (2000), Ricles et al. (2001), Garlock et al. (2003), and Shen et al. (2006) are
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described below. The research conducted by Kishi and Chen (1990) and Lorenz et al.
(1993) is used in the modeling of the angles in this dissertation, and thus, is discussed in
more detail in Section 2.6.1.

(1) Sims (2000) identified five potential failure modes for the angles as follows:
(i) bolt thread failure; (ii) bolt/angle flexural mechanism; (iii) shear mechanism; (iv)
vertical-leg/horizontal-leg combination mechanism; and (v) vertical-leg mechanism.
According to Sims, the vertical leg mechanism represents an ideal mode with the lowest
maximum strain in the angle.

(2) After the formation of a plastic hinge mechanism, the angle stiffness in tension
greatly decreases but does not become zero. This post-yield stiffness is nearly linear and
is comprised of both geometric hardening and material hardening. The geometric
hardening accounts for slightly less than half of the total post-yield strength (Garlock et
al. 2003).

(3) The boundary conditions assumed for the horizontal leg (i.e., leg parallel to
the beam) are important in understanding the behavior of top and seat angles. Sims
(2000) found that for angle configurations with vertical leg mechanism failure modes, the
model developed by Kishi and Chen (1990) and Lorenz et al. (1993) can be used to
estimate the angle yield force, Tayx. However, the plastic deformations in the horizontal
leg and the effects of bolt response are neglected in this model, resulting in an
overestimation of the angle yield force for other failure modes, especially for angle
configurations with non-negligible bolt response (e.g., bolt elongation, slip, yielding,

fracture).
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(4) Sims (2000) also concluded that bolt response reduces the strength, stiffness,
and ductility of the angle system. Due to the smaller ductility of high strength bolts as
compared to angle sections, configurations with bolt fracture are less ductile than those
with angle fracture. Thus, bolt failure in top-and-seat angle connections should be
avoided. Furthermore, bolt slip in the angle horizontal leg is a cause of significant
stiffness reduction for the connection.

(5) Catenary effects at large angle deformations in tension play a very significant
role on the angle behavior. Inclusion of large deflections (i.e., second order geometric
effects) in the analytical modeling of top-and-seat angle connections is needed to
accurately capture these effects (Sims 2000).

(6) Both Sims (2000) and Garlock et al. (2003) found that an important
consideration in the behavior of top and seat angles is the angle vertical leg connection
gage length, lg, measured from the heel of the angle to the center of the innermost
connectors for the vertical leg. Sims (2000) found that for short “effective” gage length
lgo values, the maximum strain in the angle occurs along the innermost edge of the
vertical leg connection bolt heads/nuts. For long Iy values, the maximum strain occurs
along the toe of the fillet in the vertical leg. For intermediate Iy, values, the maximum
strain in the angle occurs along the toe of the fillet in the horizontal leg. Garlock et al.
(2003) noted that angles with smaller gage length to angle thickness ratio (lg/ts) dissipate
more energy for a given value of angle displacement and are stronger and stiffer than
angles with larger lgp/ty ratios. However, angles with smaller Ig/t, ratios have less

resistance to low-cycle fatigue. Thus, the angle gage length and thickness must be
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selected carefully considering the stiffness, strength, energy dissipation, and ductility
requirements of the connection.

(7) Ricles et al. (2001) successfully modeled the top and seat angles in a post-
tensioned steel beam-to-column connection using two parallel bilinear truss element
springs in the DRAIN-2DX program (Prakash et al. 1993). The truss element springs
represent the behavior of the angle when gap opening occurs at the beam-to-column
interface.

(8) The top and seat angles used in Shen et al. (2006) were shown to provide
adequate energy dissipation to unbonded post-tensioned hybrid coupled wall structures.

These angles typically failed due to low cycle fatigue fracture of the vertical legs.

2.6.1 Kishi and Chen (1990) and Lorenz et al. (1993)

A model developed by Kishi and Chen (1990) and Lorenz et al. (1993) is used to
describe the behavior of the top and seat angles at the beam-to-wall connections of the
coupled wall system investigated in this dissertation. The model, developed for the
analysis and design of steel top-and-seat-angle beam-to-column connections, is based on
equilibrium considerations with assumed internal force distributions and boundary
conditions for the angles. Other researchers (e.g., Goto et al. 1991; Matsuoka et al. 1993)
have also used this model to investigate the behavior of semi-rigid steel frame
connections. Several other similar top-and-seat-angle connection models exist (e.g.,
Sarraf and Bruneau 1996; Aktan et al. 1989); however, these are not used in this

dissertation.
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Note that the model developed by Kishi and Chen (1990) and Lorenz et al. (1993)
can only be used to estimate the initial stiffness and yield force capacity of the tension
angle in a top-and-seat-angle connection under monotonic loading. The post-yield
behavior of the tension angle, the behavior of the compression angle, or the behavior of

the connection under cyclic loading is not addressed in their investigation.

2.6.1.1 Tension Angle Initial Stiffness, Kaixt

The initial linear-elastic stiffness of the tension angle is determined by making the
following assumptions (see Figure 2.20):
(1) The vertical leg of the angle is fixed along the innermost (i.e., closest to the beam)
edge of the angle-to-column connection bolt head; and
(2) The horizontal leg of the angle moves horizontally when pulled by the beam
flange (i.e., the rotation of the horizontal leg with respect to the vertical leg, which
occurs due to the rotation of the beam with respect to the column, is ignored).
Based on these assumptions and considering the shear deformations of the vertical
leg, it can be shown that the initial linear-elastic stiffness of the angle, Kaix: IS given as:

T E,l
Kaixt = =0 = 23 aa 2 (2.3)
Oax lg1(Ig1 +0.78t3)

where, Tu is the force in the tension angle parallel to the beam, 6.« is the horizontal
displacement of the heel of the angle, E;l,is the flexural stiffness of the angle vertical leg
cross section, t, is the thickness of the angle leg, and lq; is the length of the vertical leg
that is assumed to act as a cantilever. Using centerline dimensions for the angle legs and

referring to Figure 2.20(a),
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w t
|glz|gv_%_?a (2.4)

where, Wapy IS the width (across flats) of the angle-to-column connector bolt head/nut and
lgv is the angle vertical leg connection gage length measured from the heel of the angle to

the center of the innermost angle-to-column connectors.
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Figure 2.20: Angle model [adapted from Kishi and Chen (1990) and Lorenz et al. (1993)]
— (a) cantilever model of tension angle; (b) assumed yield mechanism; (c) free body of
angle horizontal leg.
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2.6.1.2 Tension Angle Yield Force Capacity, Tayx

Based on the assumption of the formation of two plastic hinges in the vertical leg
of the angle as shown in Figure 2.20(b), the yield force capacity, Tayx Of the tension angle
can be determined. One of the plastic hinges is located along the innermost edge of the
angle-to-column connection bolt heads/nuts and the second plastic hinge is located along
the toe of the fillet. The work equation for the tension angle at this plastic mechanism

state is:
2M x =V, | x (2.5)

where, Mgy, is the plastic moment, Vg, is the plastic shear force in the vertical leg, and « is
the plastic hinge rotation. By using the free body diagram of the angle horizontal leg in
Figure 2.20(c), the tension angle yield force, Tayx is equal to the plastic shear force Vy, in
the vertical leg.

The distance lg; in Equation (2.5) is the “effective” gage length for the assumed

plastic hinge mechanism, and is equal to the distance between the two plastic hinges as:
—aw g (2.6)

where, kj is the distance from the angle heel to the toe of the fillet. This effective gage
length is usually a short distance; and thus, the effect of the shear force on the plastic

moment capacity is considered through a shear-flexure interaction equation as follows:

Mo (Vo)
+|—1 =1 (2.7)
MaO VaO

where, My and V4o are the plastic moment and plastic shear force, respectively, in the

vertical leg without considering shear-flexure interaction as:
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f L)

M, =22 (2.8)
faylata
Vo =—5— (2.9)

in which fa is the yield strength of the angle steel and |, is the length of the angle.

Substituting Equations (2.5), (2.8), and (2.9) into Equation (2.7), the angle yield force

1, (Vo) (Vo)
Tz Ve | Ve | g (2.10)
ta VaO VaO

Note that in Figure 2.20(c), the horizontal leg of the angle is cut along the

Tayx = Vap can be determined from:

innermost edge of the angle-to-beam connectors. The shear force, Tay in the horizontal
leg and the corresponding axial force, Ngy in the vertical leg are ignored in the above

formulation. The moment M, is also small, and thus, is ignored.

2.7  Chapter Summary

This chapter presents a summary of the previous research on coupled wall
structures and on unbonded post-tensioned systems for use in seismic regions. Important
findings from the literature are summarized below.

(1) Coupled wall structural systems are effective primary lateral load resisting
systems for seismic regions.

(2) Monolithic cast-in-place reinforced concrete coupling beams often require the
use of diagonal reinforcement to prevent premature failure modes due to diagonal tension
and sliding shear. However, this diagonal reinforcement is very difficult to construct and
place.
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(3) Unbonded post-tensioning has been successfully applied to different types of
building systems in seismic regions. In an unbonded post-tensioned structure, the
nonlinear behavior occurs primarily as a result of the opening of gaps along the joints
between the structural members, and not as a result of material nonlinearity. The gap
opening behavior enables these structures to undergo large lateral displacements with
little damage. The post-tensioning steel provides a significant restoring force resulting in
a large self-centering effect. Limited energy dissipation in unbonded post-tensioned
structures may result in larger than acceptable lateral displacement demands during a
severe earthquake.

(4) Post-tensioned steel coupling beams can provide stable levels of coupling
between concrete walls over large nonlinear reversed-cyclic deformations.

(5) Fiber beam-column elements have been successfully used to model the
nonlinear hysteretic behavior of different types of unbonded post-tensioned structures,
including the opening of gaps at the joints between the structural members.

(6) Steel top and seat angles are effective structural components that can be used
at the gap opening connections to provide energy dissipation and structural redundancy
during an earthquake. In a properly-designed post-tensioned top-and-seat-angle
connection, the only components to receive significant damage are the angles, which can

be replaced after the earthquake.
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CHAPTER 3

PRECAST COUPLING BEAM SUBASSEMBLY EXPERIMENTS

This chapter provides a description of the half-scale experimental program that
was conducted in the Structural Systems Laboratory at the University of Notre Dame to
investigate the nonlinear lateral load versus deformation behavior of unbonded post-
tensioned coupled wall subassemblies using precast concrete coupling beams. Please
refer to Chapter 10 for the description and details for the full-scale prototype.

Eight coupled wall subassemblies (Tests 1 — 4B) are tested using four coupling
beam specimens. Each subassembly includes a coupling beam and the adjacent concrete
wall regions at a floor level. The effects of the following parameters are investigated: (1)
beam post-tensioning tendon area and initial stress; (2) initial beam concrete stress; (3)
angle strength; and (4) beam depth. Tests 1, 2, 3B, and 4B are conducted using a
predetermined displacement loading history until failure of the specimen is achieved.
Tests 3, 3A, 4, and 4A are conducted under a similar displacement history but are stopped
prior to failure so that the beam specimen may be reused.

The experimental program has the following objectives: (1) to investigate the
nonlinear lateral load-deformation behavior of unbonded post-tensioned precast concrete
coupling beam subassemblies; (2) to verify the analytical models; (3) to verify the design

of the subassemblies; and (4) to develop practical application recommendations. The
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remainder of this chapter is divided into the following sections: (1) experiment setup; (2)

test subassembly components; and (3) testing procedure.

3.1  Experiment Setup

Figure 3.1(a) shows an eight-story coupled wall system under lateral loads and

Figure 3.1(b) shows the idealized exaggerated displaced shape of a floor level

subassembly. With respect to the “reference line” in Figure 3.1(b), it can be seen that the

same subassembly displaced shape can be achieved through the vertical displacements of

the right wall pier region as shown in Figure 3.1(c). This concept is used for the design of

the test setup for the experimental program. It is assumed that the left and right wall pier

regions in Figure 3.1(b) rotate by the same amount.
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Figure 3.1: Simulation of floor level coupled wall subassembly displacements —
(a) multi-story structure; (b) idealized displaced subassembly; (c) rotated subassembly.
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Note that the subassembly test setup does not model the wall pier shear forces that
develop in a multi-story structure; and thus, does not capture the effect of the wall piers
on the coupling beam axial forces during the application of lateral loads on the system.
The effect of the wall piers on the coupling beam axial forces may be significant in the
lower floor level beams; however, they are negligible for the coupling beams in the upper
floor and roof levels (Kurama and Shen 2004). Therefore, the subassembly configuration
used in the experimental program is more representative of mid to upper floor and roof
levels in a multi-story coupled wall structure.

As shown in Figures 3.2 — 3.4, each test subassembly consists of two concrete
wall pier regions, referred to as the reaction block and load block, that are connected, or
coupled using a precast concrete coupling beam in between. More details on the coupling
beam, reaction block, and load block components of the test subassembly can be found in
the next section. The subassembly components are connected together using an unbonded
post-tensioning tendon comprised of two, three, or four ASTM A416 low-relaxation
strands with a nominal strand diameter of ¢, = 0.6 in. (15.2 mm), cross-sectional area of
ap = 0.217 in (140 mm?), and design maximum strength of f,, = 270 ksi (1862 MPa). The
post-tensioning strands are placed inside a 1 in. by 3 in. (25 mm by 76 mm) nominal size
Dywidag® Spiro™ duct located at the beam centerline, and run the length of the test
subassembly through matching ducts inside the reaction block and load block. Bond is
prevented between the strands and the concrete by not placing grout in the post-
tensioning ducts over the entire length of the strands between the anchors. This is done to

delay or prevent the “yielding” of the post-tensioning steel [at an assumed design yield
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strain of g,y = 0.0086 and yield strength of f,y = 245 ksi (1689MPa), (PCI 2004)] during
the experiments.

High-strength [with 28-day compressive strength ranging from 8.0 to 12 ksi (55 —
83 MPa)] fiber-reinforced grout is used at the beam-to-wall interfaces to provide
alignment and good matching surfaces between the coupling beam and the wall fixtures.
A non-flowing grout mixture with a low water-to-cement ratio is designed for this
purpose as described in more detail in Chapter 4. Cresset® Crete-Lease 880-VOC or 20-
VOC release agent (bond breaker) is used between the fiber-reinforced grout and the wall
surfaces to help force the gap opening to occur between the grout and the wall face. Note
that despite the use of a bond breaker agent on the wall surfaces, during large rotations of
the beam in many of the tests, gaps occurred at both sides of the grout as described in

more detail in Chapter 6.
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Figure 3.2: Photograph of subassembly test setup.
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Figure 3.3: Elevation view of test subassembly.
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Figure 3.4: Plan view of test subassembly.

More details on the subassembly test setup, including the loading and bracing
frames, are shown in Figures 3.5 — 3.7. The reaction block is fixed to a 60 in. (1524 mm)
thick strong floor while the load block is connected to two hydraulic actuators [220 kip
(979 kN) Shore Western Model No. 924D-73.4/95.0-20-4-1348 (Serial Nos. 90711 and
90712) actuators] hanging from a stiff steel loading frame. The desired displaced shape in
Figure 3.1 is achieved by moving the load block vertically using the hydraulic actuators.
The load block is free to move in the horizontal (north-south) direction. In the vertical
direction, the actuators are moved to the same displacements (resulting in actuator forces
in opposite directions), thus restraining the load block from rotating in the vertical plane.

During each test, the subassembly is subjected to a quasi-static reversed cyclic
loading history based on the beam chord rotation. The actuators are operated in
displacement control at a rate of approximately 0.05 — 0.6 inches (1.2 - 15.2 mm) per
minute (more details on the applied displacement history can be found in Section 3.3). A

two-channel (axis) Instron 8800 controller (Serial No. 8800RK1566) is used to send the
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displacement command signal to the actuators near-simultaneously to prevent significant
lag between them.

An inner bracing frame is used to prevent out-of-plane displacements of the load
block at three brace points and of the coupling beam near midspan as shown in Figures
3.6 and 3.7. Grease is applied between matching bracing plates on the bracing frame, load
block, and beam to allow in-plane movements of the subassembly, while the out-of-plane

movements are prevented.
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Figure 3.5: East side view of loading frame.
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Figure 3.7: East side view of bracing frame and brace plate locations.

3.2  Test Subassembly Components

This section provides the design and construction details of the beam test
specimens and the wall pier regions (i.e., the load block and the reaction block) from the
subassembly experimental program. A 1/16 in. (1.5875 mm) tolerance was specified for
precast concrete production; however, this tolerance limit was not possible to hold for the
placement of the mild steel reinforcement due to dimensional variations in the bending of
the steel.

The test components were cast using concrete with a design strength of 6.0 ksi (41
MPa, see Appendix A for the mix design). Several different concrete mixes were tested
prior to the casting of the subassembly components to ensure that the 28-day strength was
as close to the design strength of 6.0 ksi (41 MPa) as possible.

Note that both the load block and the reaction block were designed to be re-used
in all of the experiments conducted as part of this dissertation. However, due to

unforeseen circumstances as described in Chapter 5, the reaction block was replaced after
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Test 1 and the replacement reaction block, which had identical design details as the
original block, was repaired a number of times throughout the remainder of the test

program. The load block did not receive any damage and was re-used in all eight tests.

3.2.1 Coupling Beam Specimens

Four precast concrete coupling beam specimens (Beams 1 — 4) were cast. Beams
1 through 3 have a depth of h, = 14 in. (356 mm). These beams, with typical details
shown in Figures 3.8 through 3.10, are half-scale models. The last specimen (Beam 4)
has an increased depth of h, = 18 in. (457 mm) for parameter variation. The beam length-
to-depth aspect ratio for Beams 1 — 3 is 3.21 and 2.5 for Beam 4. These aspect ratios are
within the range of typical beam aspect ratios for coupling beams used in U.S. practice

(ranging between 2.5 and 4.0).
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Figure 3.9: Photograph of beam end prior to casting (Beams 1 — 3).
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Figures 3.11 and 3.12 show the duct details for Test Beams 1 through 4. Note that
Beam 4 with the greater depth has the same duct placement as the shallower Beams 1 — 3.
In addition to the central 1 in. by 3 in. (25 mm by 76 mm) duct for the main post-
tensioning strands used for coupling, there are four 1.0 in. (25 mm) diameter vertical
ducts for the angle-to-beam connections at each beam end. Due to space constraints with
the half-scale modeling and the amount of reinforcement at the beam ends, the PVVC pipes
used for the ducts were removed after casting to allow for 7/8 in. (22 mm) diameter
threaded angle-to-beam connection bolts to be placed through the openings.

Each test beam includes bonded ASTM A615 Gr. 60 mild steel reinforcement as
follows: (1) two rectangular No. 6 reinforcement looping around the beam perimeter

along its length; (2) *“full-depth” No. 3 rectangular hoop transverse reinforcement at
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nominal spacing in the beam midspan region; and (3) “partial-depth” No. 3 rectangular
hoop concrete confining reinforcement closely spaced at the beam ends. The beam
reinforcement details are shown in Figures 3.13 through 3.15 and are tabulated in Table
3.1

Further beam design details are presented in the subsequent sections as follows:
(1) maximum moment capacity at beam-to-wall interfaces; (2) transverse reinforcement;
(3) longitudinal mild steel reinforcement; (4) confinement reinforcement; and (5) shear
slip at beam-to-wall interfaces. CAD drawings for the beam specimens can be found in

Appendix C.
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Figure 3.14: Mild steel reinforcement details for Beam 4.
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(b)

Figure 3.15: Photographs of mild steel reinforcement for Beams 1 — 3 — (a) No. 6 looping
reinforcement; (b) No. 3 full-depth transverse and partial-depth confining hoops.
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TABLE 3.1

BEAM MILD STEEL REINFORCEMENT DETAILS

Looping Hoop Reinforcement
Reinforcement| Full-depth Partial-depth
U.S. Grade 60 60 60
U.S. bar size No. 6 No. 3 No. 3
A
[in2 (mm?)] 0.44 (284) 0.11 (71) 0.11 (71)
2dh 12.275 (312) | 12.675 (322)
(shallow and deep beams) 4.375 (111)
[in. (mm)] 16.275 (413) | 16.675 (424)
by 43.5 (1105) | 6.125 (156 6.125 (156
fin. (mm)] 5(1105) | 6.125(156) |  6.125 (156)

A = reinforcing bar area.
%d,, = center-to-center depth.
%0y, = center-to-center width/length

3.2.1.1 Maximum Moment Capacity at Beam-to-Wall Interfaces

For the subassembly test setup, the maximum expected moment capacity, Mp max
at the beam-to-wall interfaces can be estimated from equilibrium of the beam end as
shown in Figure 3.16. It is assumed that the maximum moment capacity occurs when the
confined concrete crushes at the beam ends. To obtain an upper-bound estimate of Mp max
for capacity design purposes, it is assumed that the entire beam is confined (i.e., there is
no cover concrete). In addition, the following assumptions are made for the state when
the confined concrete crushes: (1) the bending moment and shear force in the horizontal
legs of the angles are ignored, with only the axial force in the horizontal legs considered

(more details on angle modeling can be found in Chapter 9); (2) the force in the tension
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angles is equal to Tas (see Figure 9.13), (3) the force in the compression angles is equal
to the angle-to-beam connection slip force, Cay (see Figure 9.13); (4) the compressive
stresses in the beam at the beam-to-wall interfaces have a uniform (i.e., rectangular)

distribution; and (5) the post-tensioning tendon is at the yield stress.

Cayx
) < y
Y compression [ < T
t a =Bc <<=—
X - angle b,max = Ch max :_f, Ch max
C = Olec
05hy "™t - hy
Np
| SR VARG I o
PT-tendon /,
grout — coupling Mb,max
tension peam
angle
IW ~
wall region  —
Tasx

Figure 3.16: Maximum moment capacity at beam end.

The parameters used in the design formulation are defined as: Ny = axial force in
the beam from the post-tensioning force; Py = post-tensioning tendon yield force; Apy =
post-tensioning tendon area; fyyy = post-tensioning tendon yield stress; h, = beam height;
bp = beam width; t, = angle thickness; Cpmax = compression stress resultant when Mp max
is reached; cpmax = neutral axis depth when Mpmax IS reached; apmax = concrete
compressive stress block depth; a and B = equivalent rectangular compressive stress
block factors for confined concrete (from Paulay and Priestley 1992); and f’¢. =

maximum compressive strength of the confined concrete.
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By definition, the confined concrete crushing state is reached when the extreme
confined concrete strain reaches the crushing strain, e.,. The assumed uniform stress
distribution is expected to provide a reasonable representation of the confined concrete
stress resultant at this state.

The compressive axial force at the beam-to-wall interface is assumed to be equal to:
Nb =Popy = Avp Topy (3.1)
Using the above assumptions, the maximum compression stress resultant, Cp max at the
beam end can be determined as:

=P, +T, -C (3.2)

b,max bpy asx asy

where:

Cb,max =a fc,cab,maxbb (33)

The depth of the compression (i.e., contact) region at the beam end is given as:

a‘b max
Cb,max = ' (34)

B

where, the equivalent rectangular stress block depth, ap max, can be solved by substituting
Equation 3.2 into Equation 3.3 to get:

I:)bpy + Tasx - Cas

a =
b,max '
af.b,

y (3.5)

Then, the maximum moment capacity, Mpmax Can be estimated by taking moments

about the beam centerline:

hb - a‘b,max j 1

M b,max = Cb,max( 2 +E(Casy +Tasx th+ta) (36)
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The equivalent rectangular stress block parameters for the confined concrete used in the
experimental program are close to 1.0 (ranging between approximately 0.95 — 1.0); and

thus, the above equations can be simplified by assuming a = 3 = 1.0.

3.2.1.2 Beam Transverse Reinforcement

To ensure that the beam test specimens do not fail in shear, it is required that:

V,, >V (3.7)

b,max
where, Vp max IS the maximum shear force demand and Vy, is the nominal shear strength
for the beam. The beam maximum shear force demand, Vpmax is determined based on
capacity design principles (see Figure 3.17) using the maximum expected moment

capacity, My max at the beam-to-wall interface as:

2M
Vb,max = Ib'max (38)
b
V
Mb,l’?x b,fTSX
Vb, max Iy Mp,max

Figure 3.17: Beam maximum shear force demand.

Due to gap opening at the beam ends and the formation of a large diagonal

compression strut as discussed in Chapter 2, the diagonal tension reinforcement
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requirements for unbonded post-tensioned precast coupling beams are significantly
reduced as compared with conventional reinforced concrete coupling beams where the
beam is cast monolithically with the wall piers. This assertion is validated later in the
dissertation based on the experimental results provided in Chapters 6 and 7, and the
analytical results using an ABAQUS finite element model in Chapter 9. The experimental
and analytical results show that concrete cracking does not occur in the midspan regions
of unbonded post-tensioned precast coupling beams even though the shear force is
constant over the beam length. As a result, ACI 318 (ACI 2005) minimum shear
reinforcement requirements are used to design the transverse reinforcement along the
length of the test beams, which is provided by a total of five full-depth No. 3 hoops
nominally-spaced at approximately 7.0 in. (178 mm) in between the partial-depth
confinement hoops at the beam ends.

The most critical locations for the design of the transverse reinforcement in
unbonded post-tensioned precast concrete coupling beams occur adjacent to the beam end
surfaces. In the vicinity of the gap tip at each beam end as shown in Figure 3.18, high
transverse tensile stresses significantly greater than the concrete cracking strength are
expected to develop as a result of the opening of a gap immediately adjacent to a contact
region. The design of the transverse reinforcement in these end regions of the test
specimens utilizes the ABAQUS finite element analysis results in Chapter 9. For this
purpose, the transverse tensile stresses in each row of finite elements at the beam ends are
integrated to determine the resultant tensile forces. These forces are then used to
determine the amount of transverse steel reinforcement needed at the beam ends, which is

provided by the vertical legs of the two No. 6 looping reinforcement in each beam.
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As described in Chapter 9, the beam is modeled at full-scale using 72 rows of
plane stress elements. In Figure 3.19, the transverse (i.e., y-direction) stresses (at a beam
chord rotation of 9.0%) are plotted over the beam length for element row 38, which has
the highest transverse stresses in the beam. Integrating the tensile stresses at each beam
end gives 114 kips as the maximum tension force and a required steel area [assuming 75
ksi (517 MPa) yield strength for the steel] of 1.5 in.? (968 mm?) for a full-scale beam.
Scaling this to half-scale for the design of the precast beam specimen gives a required
steel area of 0.38 in.? (323 mm?), much less than the area of the vertical legs of the two
No. 6 looping reinforcing bars [0.88 in.? (568 mm?)]. Note that the design of the two No.
6 bars was governed by the beam longitudinal bonded mild steel reinforcement
requirements described in the next section. Note also that the 9.0% beam chord rotation

used in Figure 3.19 is larger than what would be used in typical design practice.

high transverse
tensile stresses

coupling
beam

Figure 3.18: High transverse tensile stresses in the
vicinity of the gap tip.

80



1.0
(6.9)

transverse stress [ksi (KN)]

90
beam length, I, [in. (mm)] (2286)

Figure 3.19: Transverse (y-direction) stresses in element
row 38 of full scale finite element beam model.

3.2.1.3 Beam Longitudinal Mild Steel Reinforcement

Longitudinal bonded mild steel reinforcement is needed to transfer the tension
angle forces into the beam test specimens along the top and bottom surfaces. This
reinforcement is designed to remain linear elastic under the maximum angle forces
developed during the loading history. Due to the half-scale modeling of the test
specimens, there is not enough space to fully develop the longitudinal reinforcement
within the length and depth of the beam, including the use of hooks. Therefore, full hoops
that loop around the beam perimeter in the vertical direction are designed for the
longitudinal reinforcement. In full-scale design, each looping reinforcing bar could be
replaced with two U-shaped bars, making the placement of the reinforcement simpler.
The vertical legs of the looping reinforcement are used as transverse reinforcement at the

beam ends as described in the previous section.
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The critical section for the design of the longitudinal mild steel reinforcement is
assumed to be at the centroid of the angle-to-beam connection bolts. It must be ensured
that the mild steel reinforcement does not yield at the critical section, since this would
result in a large crack at the critical section and prevent the opening of a gap at the beam-
to-wall interface. The critical section is shown in Figure 3.20(a), and the effect of the
angle forces on the beam moment diagram can be seen in Figures 3.20(b) and 3.20(c).
There is a drop in the beam moment diagram at the location of the angles, where My, is
the moment contribution from the angle forces. The slopes of the beam moment diagram
to the left and right of the critical section are assumed to be the same since the vertical
(shear) force from the angles is ignored. Note that the end moment for a beam without
angles and My in Figure 3.18(c) are not the same because of the effect of the angle
forces on the axial force at the beam end.

It can be seen from Figure 3.18 that the beam moment demand at the critical

section is given as:

2 (3.9)
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Figure 3.20: Design of beam longitudinal mild steel reinforcement — (a) critical section;
(b) angle forces and beam moment at critical section; (c) beam moment diagram.
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For the design of the longitudinal reinforcement at the critical section, the following
assumptions are made: (1) the concrete in tension is cracked (i.e., concrete has no tensile

strength); and (2) the concrete at the critical section is linear elastic in compression.

critical
section

| ] st_r'ain_ stress
distribution resultants

Figure 3.21: Equilibrium at critical section.

Looking immediately to the right side of the critical section in Figure 3.21 and summing

the forces in the longitudinal direction while the compression reinforcement is ignored:

C.=N,+T, (3.10)

with:
C. :% f.ch, (3.11)
T, =Af, (3.12)

and,
Nb = Pbp = Abp fbp (313)

where, T, = tensile force in the beam longitudinal mild steel reinforcement; f. = stress of
the concrete at the extreme compression face; A, = area of the longitudinal mild steel

reinforcement in tension; d, = distance from the extreme concrete compression fiber to
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the centroid of the longitudinal mild steel reinforcement in tension; A, = longitudinal
reinforcement area; and f; = stress in the longitudinal mild steel reinforcement in tension.
Using strain compatibility, the strain, e and stress, f; at the extreme compression

face of the concrete can be calculated as:

C
= 3.14
8c 8I[db _Cj ( )
and
C E
f =f —= 3.15

where, g = strain in the longitudinal mild steel reinforcement in tension; and E. and E; =
Young’s moduli for concrete and longitudinal mild steel reinforcement, respectively.

Substituting Equations 3.11 — 3.15 into Equation 3.10 yields:

1 c’ E,
2 fl( bb]? = A, fbp +Af (3.16)
[

d, —c
The moments can also be summed about the location of C, to give:

h, c _c
Mb,cr = Abp fbp [? 3j + AI fl(db 3j (317)

where, My ¢ is the beam moment at the critical section as determined from Equation 3.9.
The required area of the longitudinal mild steel reinforcement, A, at the critical
section is determined by setting the stress in the reinforcement, f; equal to the design yield

strength, fi,. Rearranging Equation 3.17 for A, and substituting into Equation 3.16 gives:
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h, ¢
1 Cz E Mb,cr - Abp fbp[zb_gj
N A =N
A e o)
b

(3.18)
3

Then, Equation 3.18 is solved for ¢ based on the following two limiting conditions for the
stress in the post-tensioning steel: (1) fop = fopi (i.€., the post-tensioning steel stress is
equal to the initial stress); and (2) fop = fopy (i.€., the post-tensioning steel stress is equal to
the design yield strength). Finally, the calculated ¢ values are used in Equation 3.17 (with
fi = fiy) to determine the required longitudinal steel area, A, selecting the conservative

(i.e., larger) design.

3.2.1.4 Confinement Reinforcement

In addition to the transverse and longitudinal mild steel reinforcement,
confinement hoops are provided at the ends of the beam specimens in areas where large
concrete compressive stresses are expected to develop.

The compressive stress-strain relationship of the confined concrete was
determined using a model developed by Mander et al. (1988a) as shown in Figure 3.20.
The confined concrete compressive stress-strain parameters, which include the maximum
strength, f’c, strain at maximum strength, ., and ultimate strain, e, depend on the
properties of the confining reinforcement hoops, the longitudinal mild steel reinforcement
placed within the hoops (which was ignored for the confined concrete properties of the
test specimens), and the unconfined concrete. The diameter of the hoop bars, ¢, the
geometry of the hoops (i.e., width, by, and depth, dy), the hoop spacing, sn, the yield

strength of the hoop steel, fyy, the strain, enm, at the maximum strength of the hoop steel,
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and the maximum compressive strength of the unconfined concrete, f’¢ (assumed to be
reached at a strain of 0.002) are specified to determine the confined concrete model. The
ultimate confined concrete strain, e, IS assumed to be reached when the fracture of the
reinforcing hoops occurs, resulting in a loss of confinement and crushing of the confined

concrete.

confined concrete

confinement fracture

uncon/fined concrete

compressive stress, f;
—h
1
1
1
1

\4

0.002 SCC SCCU
compressive strain, €

Figure 3.22: Stress-strain model for confined concrete
(Mander et al. 1988a).

The hoop reinforcement in the test specimens is designed to confine the maximum
amount of concrete at the beam corners by minimizing the amount of cover concrete
outside the hoop bar bend locations. Due to the half-scale modeling of the test specimens,
the hoop bends require a smaller radius of curvature to fit in the small area and maximize
the amount of concrete that is confined (minimizing the cover concrete). To achieve this,
the confining hoops were manufactured in the Structural Systems Laboratory at the

University of Notre Dame and had bends that did not abide by the ACI 318 Section 7.2
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(ACI 2005) minimum bend criteria, which state that the diameter of bend measured on
the inside of the bar shall not be less than 6d, for No. 3 through No. 8 bars; where, dy is
the bar diameter. For No. 3 bars, this requires a bend diameter of 2.25 in. (57 mm);
whereas, the bend diameter for the No. 3 hoops manufactured at the University of Notre
Dame range between 1.0 — 1.25 in. (25 — 32 mm).

The amount of hoop reinforcement in the beam specimens is designed based on
the maximum confined concrete strain, e.max, reached at a beam chord rotation of 9.0%
using an analytical model in DRAIN-2DX (Prakash et al. 1993). This analytical model is
described in detail in Chapter 9. Using the analytical results, the maximum confined
concrete strain demand is estimated as €. max = 0.030. Then, an adequate amount of hoop
reinforcement is provided to result in a confined concrete ultimate strain, e, greater than
€cemax IN the beam-to-wall contact regions. The confinement reinforcement is terminated
after the compressive strain in the contact regions decreases to the design unconfined
concrete crushing strain of g, = 0.003.

Using the model by Mander et al. (1988a) as discussed above, the No. 3 steel
closed rectangular hoops confining the concrete above and below the post-tensioning
duct at each end of the test beam result in an estimated confined concrete compressive
strength of 12.5 ksi (86 MPa) with an ultimate strain at crushing of 0.035 (assumed to be

reached when the hoop steel fractures causing ultimate failure of the confined concrete).

3.2.1.5 Shear Slip at Beam-to-Wall Interfaces

An undesirable mode of failure for the test subassembly is shear slip of the beam

at the beam-to-wall interfaces. To prevent this failure mode, the nominal shear slip
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capacity provided by shear friction at each beam-to-wall interface must be greater than

the maximum shear force demand at the interface:

(3.19)

The maximum shear force demand, Vy, max is determined from Equation 3.8. To determine
the shear slip capacity, Vs, the shear friction capacity due to the beam post-tensioning
force, Vsyp and the shear slip capacity provided by the angles, Vs, must be determined as:

Vss :Vsbp +Vsa (320)

The shear slip capacity due to the beam post-tensioning force can be calculated
as:

Vsbp = ucc I:)bi (321)

where, Pp; = initial post-tensioning force in the beam post-tensioning tendon; and pec =
coefficient of friction for concrete-against-concrete surfaces. The increase in the beam
post-tensioning force due to the elongation of the strands under lateral loading is
conservatively ignored.

As a conservative estimate of the nominal shear slip capacity at the beam-to-wall
interfaces, only the contribution of the compression angle, Vs, is considered. As described
in Section 3.3.3, each angle-to-wall connection in the test specimens consists of two
unbonded post-tensioned strands [ASTM 416 low-relaxation strands with 0.6 in. (15.2
mm) diameter]. The shear slip capacity provided by the compression angle-to-wall
connection can be determined as:

Vsa =He P

api,comp (322)
where, Papicomp IS the total initial force in the compression angle connection post-

tensioning strands. Note that the tension angles also help to prevent the beam from
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slipping vertically at the beam-to-wall interfaces; however, they were conservatively
ignored in the shear slip design of the test specimens.
The total shear slip capacity then becomes:
Ve = Heg (Pascomp + P (3.23)
Section 11.7.4.3 of ACI 318 (ACI 2005) permits a coefficient of friction, p,
equal to 1.4x for concrete placed monolithically, 1.0n for concrete placed against
hardened concrete with surfaces intentionally roughened, and 0.6\ for concrete placed
against hardened concrete not intentionally roughened, where A = 1.0 for normal weight

concrete. For the design of the test specimens, a value of .= 0.6 was used.

3.2.2 Reaction Block

As shown in Figure 3.21, the length of the reaction block in the N-S direction is
60 in. (1.52 m); however, the reaction block does not have a uniform thickness. Adjacent
to the coupling beam, the reaction block is 7.5 in. (191 mm) thick, modeling the thickness
of the prototype wall pier at half-scale. This region of the reaction block is referred to as
the “wall test region.” The wall test region is 30 in. (762 mm) long and 48 in. (1219 mm)
high. The other regions of the reaction block are 58 in. (1.47 m) wide to provide lateral
stability to the block and to accommodate anchorage to the strong floor. A total of sixteen
1.0 in. (25 mm) diameter rods tie the reaction block to the strong floor. Eight of these
rods are used to apply vertical forces to the wall test region through a spreader beam (see
Figures 3.2 and 3.3), representing the wall pier axial forces. The total vertical force

applied on the wall test region ranges between 150 — 160 kips (667 — 712 kN).
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Figure 3.21 shows the duct details for the reaction block. There are sixteen
vertical Dywidag Spiro 4.0 in. (102 mm) nominal diameter ducts used for the 1.0 in. (25
mm) diameter tie down rods connecting the reaction block to the strong floor. The ducts
are oversized so that the placement of the reaction block can be adjusted as needed. There
are a total of twelve 1.0 in. (25 mm) nominal diameter ducts running in the horizontal
(north-south) direction to attach the top and seat angles to the reaction block (Dywidag
grout tubes were used for these ducts). Note that only two post-tensioning strands are
used to attach each angle to the reaction block; the additional ducts allow for the reaction
block to accommodate test beams with different depths as described in Section 3.2.1.

The central post-tensioning duct in the reaction block uses a Dywidag 1 in. by 3
in. (25 mm by 76 mm) nominal duct that matches the central post-tensioning duct in the
beam, which then transitions to a 2.375 in. (60 mm) nominal diameter duct that connects
to an embedded Dywidag Multiplane Anchorage MA 7 - 0.6 in. anchor. As shown in
Figure 3.22, the anchorage system used for the beam post-tensioning strands consists of
an MA anchor, a trumpet for the transition from the anchor to the duct, and a reinforcing
spiral to accommodate the high stresses at the anchor location. The 7-strand MA anchor
allows the use of two, three, or four post-tensioning strands in each test beam.
Furthermore, these strands can be separated at the anchor location, permitting a load cell
to be placed at the end of each strand as described in Chapter 5 and shown in Figure 3.23.
To accommodate these load cells, individual barrel/wedge type anchors and an anchor
plate are used for the strands instead of the forged wedge plate and wedges that are part

of the standard MA anchor.
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Figure 3.23: Reaction block duct details.
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Figure 3.24: Dywidag Multiplane MA anchor components used with the beam post-
tensioning strands.

barrel/wedge
athor 9 MA anchor

trumpet

post-tensioning

strand /

0

load cell reinforcing
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anchor
plate
wall face

Figure 3.25: Modified Dywidag Multiplane MA anchor details.
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Figure 3.24 shows the reinforcement details of the reaction block. The reaction
block is designed to be reused for the entire experimental program and therefore must be
able to accommodate both the shallow test beams (Beams 1 — 3) and the deep test beam
(Beam 4). To resist similar levels of compressive stresses as those that develop at the
beam ends during gap opening, confining hoops are required in the beam-to-wall contact
regions of the reaction block. The location of the contact region changes with the
increased beam depth in Test 4. Furthermore, the size and placement of the confinement
hoops must accommodate the angle-to-wall connection ducts and the central post-
tensioning duct. The confinement details also must limit the amount of nonlinear concrete
strains in the test wall region since the reaction block is to be used for the entire
experimental program. To achieve this, a higher confined concrete strength (i.e., more
confinement) is used in the wall test region than in the coupling beam. Due to the high
confinement demands, three layers of hoops [2 layers of 6.125 in. by 2.625 in. (156 mm
by 67 mm) hoops and one layer of 6.125 in. by 3.125 in. (156 mm by 79 mm) hoops] are
used above and below the central post-tensioning duct. In each layer, five hoops are
placed at a spacing of 1.5 in. (38 mm). Behind these five hoops, five additional deeper
6.125 in. by 9.375 in. (156 mm by 238 mm) hoops are used at the same spacing of 1.5 in.
(38 mm).

Figure 3.25 shows the confining hoops used in the reaction block and Figure 3.26
shows the hoop cages placed above and below the central post-tensioning duct in the wall
test region. Similar to the hoops for the test beams, the hoops used in the reaction block
were manufactured in the Structural Systems Laboratory at the University of Notre Dame

and do not meet ACI 318 Section 7.2 (ACI 2005) minimum bend requirements in order to

94



minimize the amount of cover concrete in the half-scale specimens. Additional
reinforcement in the reaction block includes W4.0xW4.0 — 4x4 welded wire mesh (which
is not continuous over the confining hoop cages), vertical No. 6 bars, No. 4 corner bars,
and lifting anchors. This reinforcement does not affect the behavior or design of the wall
test region; and thus, is not discussed here. Photographs of the reaction block details prior
to the casting of the concrete are provided in Figures 3.27 and 3.28. More detailed

drawings, including all reinforcement in the reaction block, can be found in Appendix D.
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Figure 3.26: Reaction block reinforcement details.
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Figure 3.27: Reaction and load block reinforcement hoops.

97



Figure 3.28: Photograph of reaction and load block reinforcement cage.
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Figure 3.29: Photograph of reaction block duct and reinforcement placement.
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Figure 3.30: Photograph of wall test region duct and reinforcement details.
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3.2.3 Load Block

Similar to the reaction block, the load block has a horizontal length of 60 in. (1.52
m) and a height of 36 in. (914 mm). The load block has a uniform thickness (width) of 35
in. (889 mm) along its length to allow for connections to the actuators and to prevent
damage to the block during testing (the load block was re-used in all of the tests in the
experimental program).

Figure 3.29 shows the duct details inside the load block. In the vertical direction,
there are eight Dywidag Spirol1.58 in. (41 mm) nominal diameter ducts and twenty-four
Dywidag Spiro 1.0 in. (25mm) nominal diameter ducts. Ten 1.0 in. (25 mm) diameter and
eight 0.5 in. (12 mm) diameter threaded rods run through these vertical ducts to secure
the load block to the two steel connection beams above. The threaded rods are bolted to
the load block at the bottom and to the bottom flanges of the connection beams at the top.
Two servo-controlled hydraulic actuators are bolted to the connection beams and are used
to displace the load block vertically through a quasi-static reversed cyclic displacement
history while preventing its rotations. Note that some of the vertical ducts in the load
block remain unused in this process.

The horizontal ducts in the load block are the same as the ducts in the reaction
block. There are a total of twelve 1.0 in. (25 mm) nominal diameter ducts to attach the
top and seat angles to the load block (Dywidag grout tubes are used for these ducts).
Similar to the reaction block, two post-tensioning strands are used to attach each angle to
the load block; the additional ducts allow for the load block to accommodate test beams
with different depths as described in Section 3.2.1. The central MA post-tensioning

anchor is embedded in the north end of the load block with the post-tensioning duct
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transitioning from a 1 in. by 3 in. (25 mm by 76 mm) nominal duct at the south end to the
MA anchor at the north end (similar to the reaction block).

Figure 3.30 shows the reinforcement used in the load block, which is the same as
that described for the reaction block (see Figures 3.25 and 3.26 for photographs of the
No. 3 hoops and cages used in the load block). Figure 3.31 shows a photograph of the
duct and reinforcement details for the load block, with more complete details and
drawings provided in Appendix E. The load block was cast with the top side at the
bottom so that a smooth formed surface was achieved for attachment to the steel

connection beams in the final configuration.
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Figure 3.31: Load block duct details.
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Figure 3.32: Load block reinforcement details.
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Figure 3.33: Photograph of load block duct and reinforcement details.

3.3  Testing Procedure

The procedure for each subassembly test requires a multi-day process. The first
day involves the initial and final alignment of the coupling beam, the load block, and the
reaction block; application of the vertical forces (representing the wall pier axial forces)
on the wall test region of the reaction block; tamping (packing) of the grout into the
beam-to-wall interfaces; and application of a small amount of central post-tensioning
force to close the gaps at the beam-wall-joints. The grout is then allowed to cure for 8
days. On the ninth day, full post-tensioning is applied to the system and the top and seat
angles are connected to the beam and to the load and reaction blocks. The load block and

the coupling beam are supported on screw jacks during this entire process to prevent
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settling. On the tenth day (test day), the temporary jacks are removed, the self-weight of
the subassembly is counteracted using the hydraulic actuators, and finally, the structure is
tested by moving the load block vertically through a predetermined displacement history.

As described previously, the experimental program consists of eight floor level
subassembly tests using four precast coupling beam specimens, investigating the
following primary design parameters: (1) beam post-tensioning tendon area and initial
stress; (2) beam initial concrete stress; (3) angle strength; and (4) beam depth (beam
length-to-depth aspect ratio). Details on the variation of these design parameters, as well
as more information on the experimental program, are depicted in Table 3.2. A new beam

is used in the first test of each series of tests.

3.3.1 Wall Test Region Vertical Forces

Before the final alignment of the coupling beam with respect to the reaction and
load blocks, vertical forces are applied to the wall test region of the reaction block to
represent the effect of the wall pier axial forces on the coupling region. The forces are
applied using eight 1.0 in. (25 mm) rods that run through a spreader beam (see Figures
3.2 and 3.3) and connect the reaction block to the strong floor. The total target initial
vertical force applied on the wall test region ranges between 150 — 160 Kips (667 — 712
kN). Following the application of the vertical force, any final adjustment/alignment of the
beam with respect to the reaction and load blocks is done.

A hydraulic torque wrench is used to tighten the eight vertical tie-down rods
incrementally. The outermost east and west rods are tightened first, followed by the inner

rods. To keep a uniform application of force on the wall test region, after the tightening
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of each rod, the rod on the opposite side is tightened (e.g., north-east rod followed by
south-west rod). This procedure is continued until the desired initial forces are achieved
as monitored using strain gauges attached to the rods as described in Chapter 5. Note that
the forces in the tie-down rods vary as the subassembly is subjected to lateral
displacements during testing. As discussed in Chapters 6 and 7, the variations in the
vertical forces are generally small, with the total vertical force in the wall test region
remaining compressive throughout a test. The wall pier axial forces in a multi-story
coupled wall structure can undergo significant variations, including tension-compression
load cycles, during an earthquake. These large variations cannot be captured by the tie-

down rods applying vertical forces to the wall test region of the reaction block.
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TABLE 3.2

SUBASSEMBLY TEST MATRIX

Coupling Beam

A . 2 3 4 5 6¢ 7 8 9
Test | Test Dimensions 1 lov la | Beampt | XA Fopi foci i Foi | Vinax Primary Test
No. Date in. (mm)] Angles [in. [in. Tendon [|n2 [ksi fr ' ' Parameter(s)
T (mm)] | (mm)] mm] | fyy | ovea) | fO ] fg
14 7.5 45 7.5 2-0.6" 0.434 0.58 10
1 10/17/06 @356) | (191) | (1143) L8x8x1/2 | 5 (127) (191) (15.2mm) (280) 0.50 (4.0) 0.076 0.069 5.0 (0.42) patched beam
beam PT
tendon area and
14 7.5 45 75 4-0.6" 0.868 0.82 L .
2 01/26/07 (356) | (191) | (1143) L8x8x1/2 | 5(127) (191) (15.2mm) (560) 0.36 5.7) 0.114 0.089 6.5 (0.54) It?elgfr: it}:gs;
concrete stress
14 7.5 45 2x25 3-0.6" 0.651 0.68 1
3 02/19/07 (356) | (191) | (1143) L8x8x1/2 | 5(127) (64) (15.2mm) (420) 0.39 4.7 0.089 0.073 5.4 (0.45) angle strength
14 7.5 45 75 3-0.6” 0.651 0.59 12
3A 03/15/07 @356) | (191) | (1143) L8x8x1/2 | 5 (127) (191) (15.2mm) (420) 0.34 (4.1) 0.077 0.063 4.3 (0.45) angle strength
14 7.5 45 2x25 3-0.6" 0.651 0.58 13
3B 04/04/07 (356) | (191) | (1143) L8x8x1/2 | 5(127) (64) (15.2mm) (420) 0.34 (4.0) 0.076 0.062 5.1 (0.36) angle strength
18 7.5 45 2x25 3-0.6” 0.651 0.58
4 05/23/07 @s7) | (191) | (1143) L8x8x1/2 | 5(127) (64) (15.2mm) (420) 0.43 (4.0) 0.087 0.075 5.4 (0.42) beam depth
18 7.5 45 3-0.6" 0.651 0.52
4A | 06/08/07 @57) | (191) | (1143) - - - (15.2mm) (420) 0.39 (3.6) 0.083 0.068 3.4 (0.45) no angles
18 7.5 45 7.5 4-0.6" 0.868 0.73 14
4B 06/12/07 @57y | (191) | (1143) L8x8x1/2 | 5 (127) (191) (15.2mm) (560) 0.41 (5.0) 0.116 0.094 7.6 (0.63) angle strength

T'U.S. shape.

2Angle vertical leg gage length measured from centroid of angle-to-wall connection strands to heel of angle.
Angle length (in Tests 3, 3B, and 4, two short angles were used at each top and seat beam-to-wall connection location as described in Chapters 6 and 7).
4 Xapp=total area of coupling beam post-tensioning tendon.
il fopu = average initial coupling beam post-tensioning strand stress; where, fup, = 270 ksi (1862 MPa) is the design maximum strength of the post-tensioning steel.
%y = Ppi/Ac = initial coupling beam concrete nominal stress; where, Py; = total initial force measured in coupling beam post-tensioning tendon; A, = actual cross-sectional area of beam (with

central PT duct area taken out);
’f". = test day strength of unconfined beam concrete.
8 foi = Puopi/Ag = initial grout nominal stress; where, Ag = actual cross-sectional area of beam-to-wall interface grout (with central PT duct area taken out); f’y = test day strength of grout.
Vinax = Vimad Agross (note: VimadVF¢ values in units of psi (MPa); where, Viax = maximum measured beam shear strength; Agross = gross cross-sectional area of beam (central PT duct area not

taken out).

“OFirst beam specimen was patched at south end as described in Chapter 6.

“Angle strength was reduced by using two 2.5 in. (64 mm) short angles.
2Angle strength was reduced by drilling holes in angle vertical leg as described in Chapter 7.
Angle strength was reduced by using two 2.5 in. (64 mm) short angles along with angle-to-wall connection plates as described in Chapter 7.
¥Angle strength was increased by using 7.5 in. (191 mm) long angles as described in Chapter 7.




3.3.2 Beam Post-Tensioning Force

The application of the beam post-tensioning force is done using a single-strand
(Figure 3.32) hydraulic post-tensioning jack (manufactured by Jacks & Accessories,
Inc®) at the north end of the load block. Single use barrel/wedge type anchors with three-
piece wedges and ring are used to anchor the post-tensioning strands at both the live end
(i.e., jacking end) and the dead end (Figure 3.33).

Following the curing of the grout at the beam-to-wall interfaces, a series of pulls
are applied to achieve the desired initial forces in the post-tensioning strands. First, each
strand is incrementally pulled [approximately to 2.0 — 4.0 kips (9.0 — 18 kN) of force] to
remove any slack in the strand. Then, the strands are incrementally pulled [frist,
approximately to 15 — 18 kips (67 — 80 kN) of force, and then, to 26 — 33 kips (116 — 147
kN) of force] until the desired initial force is reached. The incremental jacking procedure
helps apply uniform stresses to the beam and allow for better control of the strand force.
Each prestress increment is selected to ensure that the wedges seat in new location on the
strand allowing for an increase in the post-tensioning force. The force in each strand is
monitored using a load cell mounted between the barrel/wedge anchor and the bearing
plate [Figure 3.32(c)] at the reaction block end (i.e., dead end) as described in Chapter 5.
The post-tensioning jack has a hydraulic ram that attempts to evenly seat the anchor
wedges as part of the jacking process. To achieve the desired force, the strand is pulled to
a jacking force slightly higher than the desired initial force since considerable losses
occur during the seating of the anchor wedges (due to the relatively short length of the

post-tensioning strands).
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Figure 3.34: Post-tensioning operation — (a) single-strand jack; (b) jack operation; (c)
anchor bearing plate.
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Figure 3.35: Single use barrel/wedge type anchors with three-
piece wedges and ring.

3.3.3 Top and Seat Angle Connections

Following the stressing of the beam post-tensioning strands, each set of top and
seat angles are connected to the test beam using four 7/8 in. (22 mm) diameter threaded
rods passing through the vertical ducts cast inside each end of the beam (see Figures 3.11
and 3.12). First, the nuts on the threaded rods are hand-tightened to snug-tight condition.
Then, the bolts are tightened to slip critical condition following the “turn-of-nut
pretensioning method” as described in the LRFD Manual of Steel Construction (AISC
2001) using a hydraulic torque wrench. The number and size of the angle-to-beam
connection bolts is determined such that the slip-critical strength of the connection is
larger than the anticipated maximum strength of the angles in tension.

Once the angle-to-beam connections are secured, the angle vertical legs are
attached to the load and reaction blocks using two unbonded post-tensioning strands per
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angle [ASTM A416 low-relaxation strands with 0.6 in. (15.2 mm) diameter]. Two-piece
wedges and barrels are used for the anchorage system for the angle-to-wall connections.
The stressing of the angle post-tensioning strands is done similar to the beam post-
tensioning strands using an incremental procedure (usually in a three-step jacking
procedure). A small amount of stress is first applied to remove any slack in each strand
[approximately to 2.0 — 4.0 Kips (9.0 — 18 kN) of force]. Then, a series of pulls are made
[first, approximately to 15 — 18 kips (67 — 80 kN) of force, and then, to 26 — 33 kips (116
— 147 kN) of force] until the desired force of approximately 20 kips (89 kN) is reached in
each strand. The incremental prestressing procedure helps apply uniform stresses to the
wall test region of the reaction block and allow for better control of the strand force. Each
prestress increment is selected to ensure that the wedges seat in a new location on the
strand, allowing for an increase in the post-tensioning force.

The desired angle-to-wall connection force of 40 kips (178 kN) for the two
strands is determined based on the anticipated maximum strength of the angles in tension,
including prying effects. Four load cells (as described in Chapter 5) are used at the north
end of the angle-to-reaction-block connection strands to monitor the forces in the
connection strands. Note that even though the angle-to-wall connection strands are taken
to similar jacking forces as the beam post-tensioning strands, due to their short length,

they experience much higher anchor seating losses resulting in lower initial forces.
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3.3.4 Test Day

Prior to each test, the forces in the actuators due to the self-weight of the
subassembly (i.e., the load block, steel connection beam and bolts, coupling beam
specimen, strands, angles, etc.) are measured. On the test day, these forces are applied to
the subassembly (by operating the actuators in load control) in the opposite direction to
counteract the effect of the structure self-weight on the coupling beam. These initial
forces applied to the structure are subtracted from the coupling beam shear force (since
the initial actuator forces are equal and opposite to the forces due to the structure self-
weight) to initialize the shear force measurement to zero.

Following this pre-test procedure and the application of the self-weight forces, a
pre-determined cyclic lateral displacement loading history is applied to the test beam.
The beam chord rotation, 6,, which is used to specify the applied displacement history,
represents the relative transverse displacement between the beam ends. The nominal
displacement history for Test 1 is shown in Figure 3.33(a) and Table 3.3. The amplitude
of each set of three cycles is taken as 1.25 — 1.5 times the amplitude of the preceding set
of three cycles. After 0.25% beam chord rotation, each set of three fully reversed
displacement cycles is followed by one single smaller cycle to a displacement amplitude
equal to 30% of the preceding set of three cycles (with the exception of the last set). This
displacement history was determined based on the recommendations of ACI ITG 5.1
(ACI 2008).

A slightly different displacement loading history, still satisfying ACI ITG 5.1
recommendations, is used in the remaining tests (Tests 2 — 4B) [see Figure 3.33(b) and

Table 3.3]. Changes to the loading history include the following: (1) all small cycles with
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amplitudes equal to 30% of the preceding set of three cycles are removed; and (2) the
increase in amplitude between each set of three cycles is modified from that used for the
displacement history in Test 1.

Note that the actual beam chord rotations, 6y (i.e., relative vertical displacement
between the beam ends divided by the beam length) reached during testing are slightly
different than the nominal loading histories in Figure 3.34. The actual actuator
displacements and beam displacements measured during each test, as well as the
maximum beam rotations reached, are provided in Chapters 6 and 7.

The rate of displacement of the load block varied throughout the duration of each
test, ranging between 0.05 in. — 0.6 in. (1.2 mm — 15.2 mm) per minute as shown in Table
3.3. The small cycles used a slower displacement rate to help better control the two
actuators and observe the response of the structure. As the target displacement of the load
block increased, the displacement rate was also increased.

The data instrumentation used in the experimental program is described in
Chapter 5. During each test, a collection of linear displacement transducers, rotation
transducers, strain gauges, and loads cells are used to monitor the behavior of the
structure. To obtain a visual record of the progression of damage, digital photographs are
taken at the peaks and zeros of the first and third displacement cycles at each different
amplitude of the displacement loading history. In addition, concrete crack propagation is
marked on the test beam and recorded on paper at the peak positive and negative

displacements.
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Figure 3.36: Nominal lateral displacement loading
history — (a) Test 1; (b) Tests 2 — 4B.
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TABLE 3.3

NOMINAL APPLIED DISPLACEMENT HISTORY

Test 1 Tests 2 — 4B
Beam Chord Number Loading Rate | Beam Chord Number Loading Rate
Rotation, 0y of Cveles [in./min Rotation, 0y of Cveles [in./min
(%) y (mm/min)] (%) y (mm/min)]
0.044 3 0.044 3
0.067 3 0.067 3
0.10 3 0.10 3 0.05(1.2)
0.125 3 0.05(1.2) 0.125 3
0.175 3 0.175 3
0062755 i 025 3
0'35 3 0.10 (2.5)
0.105 1 0-35 3
s w0 | s
0'75 3 0.10 (2.5) 0.20 (5.1)
0.225 1 075 3
01'300 i 1.0 3
1'5 3 0.30 (7.6)
0.45 1 15 3
2.0 3
0.60 1 0.30 (7.6) 2.25 3
3;0 3 0.40 (10.2)
0.90 1 333 3
4,
1 200 i 5.0 3
5.0 3 0.50 (12.7)
- 6.4 3
1.50 1 0.60 (15.2)
6.4 3
102 1 8.0 3 0.60 (15.2)
8.0 3

Note: The actual maximum cycle rotations reached in each test are given in Chapters 6 and 7.
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3.35

Summary of Test Procedure

This section provides a summary of the subassembly testing procedures used in

the experimental program for both the virgin and non-virgin subassembly tests.

3.3.5.1 Virgin Beam Test Procedure

Day 1

1.

Spray the beam-to-wall connection interfaces of the reaction block and load block
with a bond breaker.

Epoxy wooden shims to each end of the beam to ensure uniform grout thickness
of 0.5 in. (13 mm) at the beam-to-wall interfaces.

Position the test beam in between the load and reaction blocks, ensuring that the
entire subassembly is lined up and the post-tensioning ducts are properly aligned.
Install (but do not stress) the beam and angle post-tensioning strands and anchors.
Zero the strain gauges in the reaction block.

Zero the load cells on the eight tie-down bars that apply vertical forces to the wall
test region of the reaction block.

Apply a total initial vertical force of approximately 150 — 160 kips (667 — 712
kN) to the wall test region.

Record the forces in the actuators due to the self-weight of the test subassembly.
Complete final adjustment/alignment of the beam with respect to the reaction and

load blocks and record the actuator positions.
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10. Support the test beam and load block on temporary screw jacks (note that screw
jacks are used to minimize the settlement of the load block and beam until
testing).

11. Pack 0.5 in. (12.7 mm) thick grout between the beam ends and the reaction and
load block faces.

12. Zero the beam post-tensioning anchor load cells.

13. Zero the beam strain gauges.

14. Zero all horizontal (i.e., along the beam length) displacement transducers.

15. Apply a small amount of initial force [approximately 2.0 to 4.0 kips (9.0 — 18
kN)] to the beam post-tensioning strands to close the gaps between the beam and
the reaction and load blocks. Remove any excess grout “squeezed” out of the
beam-to-wall interfaces due to the application of this force.

16. Let the grout cure for 8 days, applying moisture to it during this time.

Day 9

17. Stress the beam post-tensioning strands to the desired initial force.

18. Tighten the angle-to-beam connection bolts to snug tight by hand, and then, using
a hydraulic torque wrench, to slip critical.

19. Zero the angle post-tensioning anchor load cells.

20. Stress the angle-to-wall connection stands to the desired initial force

[approximately 20 Kkips (89 kN)].
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Test Day

21.

22,

23.

24,

25.

Move the actuators to the “zero” (i.e., level) position of the subassembly recorded
in Step 9 of Day 1.

Remove the temporary screw jacks supporting the test beam and the load block.
Switch actuators to load control and apply the self weight forces from Step 8 of
Day 1. Record the new “zero” position of each actuator.

Zero the displacement transducers on the load block and reaction block, as well as
the vertical displacement transducers on the beam, rotation transducers on the
beam, and load cells in the actuators (instrumentation described in Chapter 5).
Switch the actuators to displacement control and apply the cyclic lateral

displacement history in Figure 3.33, while continuously recording all sensor data.

3.3.5.2 Non-Virgin Beam Test Procedure

After angles have been removed from previous test.

Day 1

1.

Stress the beam post-tensioning strands to the desired initial force (i.e., add or
take away post-tensioning strands).

Tighten the angle-to-beam connection bolts to snug tight by hand, and then, using
a hydraulic torque wrench, to slip critical.

Zero the angle post-tensioning anchor load cells.

Stress the angle-to-wall connection stands to the desired initial force

[approximately 20 kips (89 kN)].
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Test Day

5.

3.4

Move the actuators to the “zero” (i.e., level) position of the subassembly recorded
at end of virgin beam test.

Remove the temporary screw jacks supporting the test beam and the load block.
Switch actuators to load control and apply the self weight forces from Step 8 of
Day 1 from virgin beam test procedure. Record the new “zero” position of each
actuator.

Zero the displacement transducers on the load block and reaction block, as well as
the vertical displacement transducers on the beam, rotation transducers on the
beam, and load cells in the actuators (instrumentation described in Chapter 5).
Switch the actuators to displacement control and apply the cyclic lateral

displacement history in Figure 3.33, while continuously recording all sensor data.

Chapter Summary

This chapter provides an overview of the half-scale experimental program on the

lateral load behavior of floor-level unbonded post-tensioned precast concrete coupling

beam subassemblies. The experiment setup, subassembly test components, and testing

procedure are described in the chapter.
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CHAPTER 4

DESIGN AND MATERIAL PROPERTIES

This chapter describes the design and measured properties of the materials used in

the subassembly experiments.

4.1 Design Material Properties

The design compressive strength for the unconfined concrete used in the beam
specimens and the reaction and load block fixtures is f’c = 6.0 ksi (41 MPa). Several
different concrete mixes were tested prior to the casting of the subassembly specimens to
ensure that the 28-day strength is as close to 6.0 ksi (41 MPa) as possible and minimize
overstrength.

The design compressive strength for the fiber-reinforced grout used at the beam-
to-wall joints is f'qt = 10 ksi (69 MPa). The grout is designed to have a strength and
stiffness slightly under the confined concrete used in the beam specimens and the
reaction and load block fixtures without compromising workability and ductility (see
Section 3.2.1.4). The slightly lower grout strength and stiffness are expected to force the
compression strains (deformations) to occur within the fiber-reinforced grout rather than

the beam or wall concrete.
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The design yield strength and maximum strength of the post-tensioning strands is
foy = 245 ksi (1689 MPa) and f,, = 270 ksi (1862 MPa), respectively. The post-tensioning
steel meets ASTM A416 low-relaxation strand requirements.

The design yield strength of the No. 3 hoop reinforcement used in the beam
specimens and the reaction and load block fixtures is fy, = 60 ksi (414 MPa). These bars
meet ASTM A615 Gr. 60 reinforcement requirements.

The design yield strength of the No. 6 looping reinforcement used in the beams is
fy = 75 ksi (517 MPa). These bars also meet ASTM A615 Gr. 60 reinforcement
requirements; however, they are selected to have a high yield strength based on the mill
certifications.

All other mild steel reinforcement used in the subassembly components has a
design yield strength of 60 ksi (414 MPa, ASTM A615 Gr. 60 reinforcement).

The design yield strength of the top and seat angle steel is fay = 36 ksi (248 MPa)

according to ASTM A709 Gr. 36.

4.2 Measured Material Properties

ASTM standards were followed to determine the actual properties of the
unconfined concrete, fiber-reinforced grout, post-tensioning steel, mild reinforcing steel,
and top and seat angle steel used in the subassembly test structure. The measured material

properties are described below.
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4.2.1 Unconfined Concrete Strength

The compressive strengths of the unconfined concrete used in the two reaction
blocks, the load block, and the four beam specimens were obtained by conducting two or
three standard (ASTM C39/C 39M) 6.0 in. by 12 in. (152 mm by 305 mm) cylinder tests
using a 600 kip (2669 kN) SATEC® Model 600XWHVL universal testing machine.
Unbonded caps using rubber pads and retainer rings were used at both ends of the
cylinder specimens in accordance with ASTM C 1231/C 1231M (ASTM 2001). The
concrete cylinders were cast at the same time as the test specimens and fixtures, and were
kept under the same environmental conditions until testing.

The cylinder tests were conducted at 28-days for the reaction block, load block,
and beam concrete as well as on the day of subassembly testing (first test for beams
tested more than once) for the beam concrete. A loading rate of 20 pounds per second
(0.14 MPa per second) was used. Figure 4.1 shows three concrete cylinder specimens
after failure and Table 4.1 lists the results obtained from the cylinder tests. No strain
measurements were taken for the concrete cylinder specimens. The concrete mix design

can be found in Appendix A.

Figure 4.1: Concrete cylinder specimens.
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TABLE 4.1

UNCONFINED CONCRETE STRENGTH

¢ at Subassembly s
somple | Sommentl | caseose | ST [ vty | 00 | 1 i D
P [ksi (MPa)]
o s e
3 Load Block  |04/05/2006| 10/18/2006 6.71 (46I3) 05/03/2006 6I61 (45.6)
Average | eaction Block 1 7.57 (52.2) 6.27 (43.2)
1 7.98 (55.0) 7.67 (52.9)
2 Beam 2 7.22 (49.8) 6.45 (44.5)
3 Reaction Block 2 12/15/2006| 01/27/2007 6.52 (44.9) 01/12/2007 5.98 (41.2)
Average 7.24 (49.9) 6.70 (46.2)
1 8.21 (56.6)
2 7.84 (54.1) same batch as
3 Beam 3 12/15/2006| 03/06/2007 6.83 (47.1) 01/12/2007 Beam 2
Average 7.63 (52.6)
1 -
2 6.41 (44.2) same batch as
3 Beam 4 12/15/2006| 05/24/2007 6.12 (42.2) 01/12/2007 Beam 2
Average 6.27 (43.2)

f’c = maximum (i.e., peak) strength of unconfined concrete.

4.2.2 Fiber-Reinforced Grout Properties

The fiber-reinforced grout used at the beam-to-wall interfaces is an integral part
of the test subassembly. A high-strength grout with adequate stiffness and ductility is
required, while maintaining its workability. To achieve this goal, several mixes were tried
prior to the selection of the final design mix. A number of mix parameters were

investigated including the water-to-cement ratio, amount of fibers, curing conditions, and

the use of epoxy grout.

A series of preliminary tests were done on trial mixes to determine the final grout
mix design properties for the coupling beam subassembly experiments. The compressive

strength of the grout was determined by testing 2.0 in. (50.8 mm) cube specimens using a
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60 kip (267 kN) Instron Model 5590-67HVL hydraulic universal testing machine
(Figures 4.2 and 4.3). ASTM C 109/C 109M (ASTM 2001) requirements were followed
in preparing and testing the grout cubes. A relative machine displacement rate [0.04 in.
per minute (1.0 mm per minute)] corresponding to a loading rate of 0.20 to 0.40 kips per
second [900 to 1800 N per second] was used for testing. The cube specimens wear placed
directly against the bearing plates of the testing machine; and thus, the position
measurements from the testing machine were used to calculate the compressive strain of
the specimens. Specimen dimensions and weights were taken for each mix to ensure that
the densities of the different samples were approximately the same. Compressive strength
tests were then ran on each sample at 1, 3, 7, 10, 14, 21 and 28 days to determine the
curing time needed for the grout to reach the design strength of the mix. The grout was
then allowed to cure for this duration prior to testing in the experimental program. The
results from the preliminary tests are shown in Table 4.2. The ultimate strain of the grout
is assumed to be reached at a stress of 85% of the maximum stress (i.e., 0.85f’y;). The
initial stiffness (i.e., Young’s modulus) was calculated based on the slope from two
points within the linear-elastic portion of the measured stress-strain relationship. Note
that mixes 1 — 5 were not carried out to the full 28-day strength tests.

The workability of the grout was an important factor due to the need to pack the
grout into the 0.50 in. (13 mm) thick gap at the beam-to-wall interfaces of the
subassembly test setup. Each mix design was tested by forcing the grout through a 0.50
in. (13 mm) diameter funnel. Several different water-to-cement ratios were tested ranging

from 0.30 — 0.45, with different amounts of fibers. Based on the “funnel tests” and visual
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inspection, it was determined that the minimum water-to-cement ratio to ensure adequate
workability was 0.375.

Several different amounts of fibers were tested for the grout mix. First, the largest
recommended amount of fibers (16.99 g/ft*) from Grace™ Microfibers was used. Then,
several different grout mixes were tried with factors of the recommended fiber amount
(e.g., 2 times, 4 times, 10 times, etc.). These mixes were investigated the workability,
strength, and ductility.

Other parameters, including the use of epoxy grout and curing conditions, were
also investigated. The epoxy grout was difficult to work with and therefore was not
practical for the subassembly test setup. It was also found that for best strength gain, the
grout should be kept moist during the curing process.

The preliminary testing on various trial grout mixes resulted in a fiber-reinforced
Type I cement grout (with Grace™ Microfibers) that achieved the desired strength,
stiffness, and ultimate strain requirements for the test structure (Mix 7 in Table 4.2). The
same mix was used in each subassembly test; however, during mixing, visual inspection
of the grout workability was ultimately used. The grout could neither be too wet or too
dry for proper placement at the beam-to-wall interfaces. The water-to-cement ratio
determined for the final mix design was never exceeded; however, the use of a smaller
water-to-cement ratio was possible for the grout in the subassembly experiments. The
final mix design for the fiber-reinforced grout can be found in Appendix A. Table 4.3
lists the measured properties for the actual grout samples from each of the four test
subassemblies and Figure 4.4 shows the stress-strain relationship for a grout sample from

each subassembly.

126



b ST §

(a) (b)

Figure 4.2: Grout samples — (a) mortar mix; (b) epoxy grout.
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Figure 4.3: Photographs from a grout test.
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TABLE 4.2

PRELIMINARY GROUT MIX TESTS

. 7-Day Properties 28-Day Properties
wic | Fibers Initial Initial
Mix|Parameter Ratio (percent [Workability| ot am | Sou | tiffness ot ggm | €ou | oiffness
i 0, 0, i 0, 0,
volume) [ksi (MPa)]| (%) | (%) [ksi (MPa)] [ksi (MPa)]| (%) | (%) [ksi (MPa)]
1 | baseline |0.38] 0.05 | good | 9.9 (68.1) | 2.58 | 2.71 |477 (3289) - ~ |- -
2 |wic, fibers| 0.35| 0.07 | difficult | 8.9 (61.4) | 2.63 | 3.24 |406 (2799) - - |- -
3 |playsand|0.35] 0.05 | difficult | 8.7 (60.0) | 2.62 | 3.00 | 430 (2965) - - - -
4 [ron=shrinkl g 451 .05 good 30 | 1.89 | 2.16 | 205 (1413) - -] - -
grout
5 Cgamsfgt 040| 0.05 good 88 | 2.56 | 2.77 |405 (2792) - - - -
Dayton
6 | Superior | - | 0.07 okay | 7.3(50.4) | 3.22 | 3.36 |250 (1724)| 8.0 (55.0) | 2.62 | 2.89 |344 (2372)
grout mix
17 |wic, fibers|0.375] 0.07 | good |10.1(69.3)| 3.04 | 3.28 |337 (2324)| 9.1 (62.4) | 2.62 | 2.74 | 396 (2730)
8 | fibers |0.375] 0.13 okay | 7.0 (48.3) | 2.21 | 2.69 |338 (2330)| 7.7 (52.8) | 2.34 | 2.74 | 362 (2496)
9 f'et;egffr‘g’gt 0.375| 0.14 good | 7.8(53.8) | 2.00 | 2.71 |437 (3013)| 7.1 (49.0) | 2.50 | 2.78 | 323 (2227)
10 reg;ncsd 0375 0.13 good | 9.1(62.9) | 1.67 | 1.96 |581 (4006)| 8.1 (55.6) | 2.69 | 3.27 | 293 (2020)
11 Zﬁgﬁ’ - - difficult | 9.3 (64.1) | 3.01 | 3.82 |365 (2517)| 8.9 (61) |3.22|4.95 |329 (2268)

' = maximum (i.e., peak) strength of grout.

€gm = Strain at f'g.

£ = Ultimate strain at 0.85f .
*Grout mix used for subassembly experiments.

128




TABLE 4.3

PROPERTIES OF GROUT USED IN COUPLING

BEAM TEST SUBASSEMBLIES

Subassembly Test Day Properties 28-Day Properties

Samole Initial Initial

Nop Sub.| Cast Date | Subassembly ot ggm | &qu |Stiffness|28-Day Test Fat Egm | &qu | Stiffness

' Test Date | [ksi (MPa)] | (%) | (%) | [ksi Date [ksi (MPa)]| (%) | (%) | [ksi
(MPa)] (MPa)]

392 634

1 8.72(601) | 254|280 | 10.4(71.7) | 166 | 206 | (zo7y

2 7.69(53.0) |2.16 | 2.16 (2357501) 9.97 (68.8) | 1.91 219 (3596293)

1 [10/05/2006| 10/18/2006 106 | 11/02/2006 224

3 8.85(61.0) |2.24 |2.40 (2937) 9.66 (66.6) | 2.14 | 2.34 (3061)
396 549

Average 8.42(58.0) |2.31|245 (2730) 10.0(69.0) | 1.90 | 2.20 (3785)
556 633

1 9.8L(677) | 190|210 | gony 9.59(66.1) | 194|219 | 1oy

2 9.69 (66.8) | 1.85 | 2.21 (35635% 10.1(69.6) | 1.84 | 2.19 (575066)

2 [01/17/2007| 01/27/2007 so6. | 02/14/2007 =6

3 9.74(66.8) | 167|208 | ) 9.25(63.8) | 1.93| 239 | (3971
571 645

Average 9.75(67.1) |1.81|2.13 (3937) 9.65 (66.5) | 1.90 | 2.26 (4447)
600 428

1 9.84(67.8) | 176|213 o0y 9.53(65.7) | 200 | 224 | g5y

2 9.36 (64.5) |213[234 (2‘22474) 100 (69.1) | 2.16 | 2.40 (3?4?3%1)

3 [02/07/2007| 03/06/2007 2g7 | 03107/2007 =09

3 9.92(68.4) | 214249 | poc0) 9.55(65.8) | 200 214 | (3509)
504 478

Average 9.71(62.2) |2.01]2.32 (3475) 9.70 (66.9) | 2.08 | 2.26 (3296)
707 620

1 9.39(648) | 152|203 | ,o0c) 7.91(54.5) | 1511 2311 1575

2 7.97 (55.0) | 1.41 | 150 (3597778) 9.18(63.3) | 1.75 | 2.24 (563735)
4 |05/08/2007| 05/24/2007 754 | 06/05/2007 554

3 6.48(447) | 181|257 | 51, 9.28(64.0) | 164 | 223|150
579 602

Average 7.95(54.8) | 1.58 | 2.02 (3992) 8.79 (60.6) | 1.78 | 2.26 (4151)

f’qt = maximum (i.e., peak) strength of grout.
£gm = Strain at .
£qw = Ultimate strain at 0.85f .
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Figure 4.4: Stress-strain relationships for subassembly grout samples.

4.2.3 Post-tensioning Strand Properties

The monotonic tensile stress-strain relationship of the post-tensioning strands was
measured by testing four specimens in a 600 kip (2669 kN) SATEC® Model 600XWHVL
hydraulic universal testing machine following ASTM 370 requirements. Figure 4.5 shows
the strand test set-up and Figure 4.6 shows a photograph from a strand test. The strains in
the strand specimens were measured using an MTS Model 634.25E-24 extensometer with
a 2.0 in. (50.8 mm) gauge length. Note that the International Code Council — Evaluation
Service (ICC-ES 2007) and the Post-Tensioning Institute (PTI 2003) require a minimum
extensometer gauge length of 36 in. (914.4 mm) for testing post-tensioning strand;

however, recent research (Walsh and Kurama 2009) has shown that the strain
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measurements from 2.0 in. (50.8 mm) and 36 in. (914.4 mm) extensometers are nearly
identical. Thus, the strand strains presented in this dissertation are expected to be
accurate.

Precision SureLOCK® single strand steel wedge/barrel type post-tensioning
anchors (the same as the anchors that were used in the subassembly experiments) were
used to pull the strands until failure to provide anchor conditions similar to those in the
coupled wall subassembly experiments. Note that the seating of the anchor wedges in the
strand tests was not done using a post-tensioning jack, possibly resulting in slightly
different wedge seating conditions at the live end as compared with the subassembly
tests. The strand specimens were approximately 60 in. (1.5 m) long between the anchors
and were carefully positioned between the loading heads of the testing machine to
minimize end eccentricities. Thus, the end eccentricity that occurs in the subassembly
strands during the lateral displacements of the structure was not captured in the strand
material tests. Failure of all strand specimens occurred due to the fracturing of a post-
tensioning wire (one wire out of a total of seven wires) inside an anchor (see Figure 4.7).
The ultimate strain, ey, Of the post-tensioning strand is reached when the strand wire
fracture occurs at the maximum strength, fy,u. Note that since the wire fracture occurs in a
brittle manner, the maximum stress, fypy corresponds to the fracture strain with no visible
necking in the fracture zone. Furthermore, the measured fracture strain, eypy provides a
good representation of the overall strand strain even though the fracture occurs outside
the extensometer gauge length.

Three strand samples were tested using a loading rate of 0.375 in. per minute

(0.015 mm per minute) and one strand was tested at a slower rate of 0.05 in. per minute
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(0.002 mm per minute), similar to the loading rate of the strands in the subassembly tests.
The results from the strand tests are shown in Figure 4.8 and tabulated in Table 4.4. The
limit of proportionality point (at fopi, €npi) Was determined by monitoring the change in the
strand stiffness as shown in Figure 4.9. As can be seen in Figure 4.8, the limit of
proportionality is reached significantly before the “yielding” of the post-tensioning

strand.
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Figure 4.5: Post-tensioning strand test set-up.
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Figure 4.7: Photograph of post-tensioning strand wire fracture inside anchor.

134



—~
o
o ©
w— A
1723
g2
(D)
il
v v

e

PT strand

O limit of proportionality
€ppl» Thpl

v strand wire fracture
(pru ’ fbpu)

—— specimens 1-3
specimen 4

strain,sbp

0.036

Figure 4.8: Stress-strain relationships for post-tensioning strand specimens.

TABLE 4.4

POST-TENSIONING STRAND MATERIAL PROPERTIES

Specimen fopi Eppl Topu Eppu Rate of Loading
No. [ksi (MPa)] (%) [ksi (MPa)] (%) [in/min (mm/min)]
1 167 (1150) 0.581 261 (1802) 3.21 0.375 (0.015)
2 173 (1191) 0.604 261 (1801) 3.20 0.375 (0.015)
3 167 (1148) 0.576 256 (1764) 2.47 0.375 (0.015)
4 159 (1094) 0.567 262 (1805) 3.27 0.05 (0.002)
Average 166 (1146) 0.582 260 (1793) 3.04 -

fopr = limit of proportionality of post-tensioning strand.

eppt = Tppr divided by measured Young’s modulus.

fppu = ultimate/maximum strength of post-tensioning strand.
eppu = Ultimate strain of post-tensioning strand.
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Figure 4.9: Limit of proportionality determination.

4.2.4 Mild Reinforcing Steel Properties

Three material samples each for the No. 6 and No. 3 reinforcing bars used in the
subassembly specimens were tested monotonically in tension using an Instron Model
5590-67HVL hydraulic universal testing machine with a 60 kip (267 kN) capacity. The
strains were measured using an Instron Model 2630-114 extensometer with a 2.0 in. (50.8
mm) gauge length. The failure of all specimens occurred within this gauge length. The
No. 6 specimens were approximately 12 in. (305 mm) long, while the No. 3 specimens
were approximately 8.0 in. (203 mm). Figure 4.10 shows photographs from a No. 3 bar
test. The measured monotonic tensile stress-strain relationships for the three No. 3 and
three No. 6 bar specimens are shown in Figures 4.11 and 4.12 respectively.

Tables 4.5 and 4.6 summarize the material properties from each of the rebar
specimens. The samples all show a distinct yield point. The yield strength was

determined as the lower yield point on the measured stress-strain relationship. The yield
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strain was determined by dividing the yield strength with the measured Young’s
modulus, which was calculated based on the slope from two points on the linear-elastic
portion of the measured stress-strain relationship. The o, A, and V markers in Figures
4.11 and 4.12 correspond to the yield stress, maximum (i.e., peak) stress, and ultimate
strain values, respectively, in Tables 4.5 and 4.6. The ultimate strain values are assumed

to occur at a stress of 85% of the maximum stress (i.e., 0.85fy, and 0.85f, for the No. 3

and No. 6 rebar, respectively).
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Figure 4.12: Stress-strain relationships for No. 6 bar specimens.
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TABLE 4.5

No. 3 REINFORCING BAR MATERIAL PROPERTIES

Specimen oy Eny fm Ehm i Ehu
No. [ksi (MPa)] | (%) |[ksi (MPa)]| (%) |[ksi(MPa)]| (%)

1 (Z%?f) 0.260 (%g) 10.3 (%i'g) 138

2 (386'8) 0.209 (%g;) 9.18 (ggg 113

3 (%g) 0.257 (71388) 10.1 (22'79) 14.2
Average (2336; 0.242 (7125?) 9.86 (gé:g 131

fhy = lower yield strength.
&ny = Ty divided by measured Young’s modulus.
fom = maximum (i.e., peak) strength.

epm = Strain at fy,.

fhu = 085fhm

gpy = ultimate strain at 0.85fy,.

TABLE 4.6

No. 6 REINFORCING BAR MATERIAL PROPERTIES

Specimen fiy el fim Eim fiu €l
No. [ksi (MPa)] | (%) | [ksi(MPa)]| (%) |[ksi(MPa)]| (%)
1 (7595'3) 0.283 (%8% 10.2 (%'11) 15.6
2 (85%% 0.282 (%8% 103 (863)'12) 17.2

3 (2%5) 0.283 (%8%) 10.4 (%'g) 16.2
Average (Z;%f) 0.283 (%82) 103 (%B'll) 16.3

fiy = lower yield strength.
gy = fiy divided by measured Young’s modulus.
fim = maximum (i.e., peak) strength.

&m = Strain at fi,.

f|u = 085f|m

gy = ultimate strain at 0.85fj,.
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4.25 Angle Steel Properties

Four material samples for the top and seat angle steel were saw-cut from the angle
legs in the direction perpendicular to the angle length. The samples were then machined
into 0.25 in. (6.40 mm) round specimens using the same proportions from standard
ASTM .505 specimens. The samples were smaller than standard ASTM .505 specimens
because of the limited thickness of the angle steel. A 2.0 in. (50.8 mm) gauge length was
used, the same as ASTM .505 requirements.

Photographs from an angle steel material test can be seen in Figure 4.13 and the
measured stress-strain relationships from the four specimens can be seen in Figure 4.14.
The specimens were tested in an Instron Model 5590-67HVL hydraulic universal testing
machine with a 60 kip (267 kN) capacity. The strains were measured using an Instron
Model 2630-114 extensometer with a 2.0 in. (50.8 mm) gauge length. The failure of all

specimens occurred within this gauge length.

Figure 4.13: Photographs from an angle steel material test.
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The material properties of the angle steel specimens are listed in Table 4.7.
Similar to the mild steel reinforcing bars, the samples show a distinct yield point and the
yield strength was determined as the lower yield point on the measured stress-strain
relationship. The yield strain was determined by dividing the yield strength with the
measured Young’s modulus, which was calculated based on the slope from two points on
the linear-elastic portion of the measured stress-strain relationship. The o, A, and V
markers in Figure 4.14 correspond to the yield strength, maximum (peak) strength, and
ultimate strain values, respectively, in Table 4.7. The ultimate strain values are assumed

to occur at a stress of 85% of the maximum stress (i.e., 0.85fam).

80 '
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v ultimate strain
€au’ 'au
0 . . . . .

Figure 4.14: Stress-strain relationships for angle steel material specimens.
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TABLE 4.7

ANGLE STEEL MATERIAL PROPERTIES

Specimen fay €ay fam €am fau Sau
No. [ksi (MPa)] (%) [ksi (MPa)] (%) | [ksi (MPa)]| (%)
1 (gég) 0.175 (2227) 13.7 (53%(% 19.7

2 (5304;) 0.171 (Z.j-é)) 16.9 (%%82) 23.6

3 (2231) 0.173 (2227) 175 (5328) 25.7
4 (23'51) 0.169 é‘if) 15.2 (53%'3?) 204
Average (%%'f) 0.172 (75‘?5) 15.9 (%%'71) 22.3

fay = lower yield strength.

gay = fay divided by measured Young’s modulus.
fam = maximum (i.e., peak) strength.

€am = Strain at f .

fau = 0.85f 3.

€4 = Ultimate strain at 0.85f,,.

4.3  Chapter Summary

This chapter describes the design and actual properties of the materials used in the
subassembly test setup. Details of the material testing procedures, equipment, and
measured properties are presented. Table 4.8 summarizes the average material properties

from the experimental program.
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TABLE 4.8

MATERIAL PROPERTIES SUMMARY

. Test Series
Material 1 5 I 3 | 7
f’c at 28-Days 6.27
Beam [ksi (MPa)] (43.2) 6.70(46.1)
Concrete f'c at Test Day 7.57 7.24 7.63 6.27
[ksi (MPa)] (52.2) (49.9) (52.6) (43.2)
Reaction Block f’; at 28-Days 6.27
Concrete [ksi (MPa)] (43.2) 6.70(46.2)
Load Block f’c at 28-Days
Concrete [ksi (MPa)] 6.27(432)
f'q at 28-Days 10.0 9.65 9.70 8.79
[ksi (MPa)] (69.0) (66.5) (66.9) (60.6)
£qm (%) 1.90 1.90 2.08 1.78
&g (%) 2.20 2.26 2.26 2.26
Initial Stiffness 549 645 478 602
Grout [ksi (MPa)] (3785) (4447) (3296) (4151)
'y at Test Day 8.42 9.75 9.71 7.95
[ksi (MPa)] (58.0) (67.1) (62.2) (54.8)
£qm (%) 2.31 1.81 2.01 1.58
gqu (%) 245 2.13 2.32 2.02
Initial Stiffness 396 571 504 579
[ksi (MPa)] (2730) (3937) (3475) (3992)
fopt [ksi (MPa)] 166 (1146)
Post-Tensioning €ppt (%) 0.582
Strand fopu [ksi (MPa)] 260 (1793)
&npu (%) 3.04
fry [ksi (MPa)] 68.6 (473)
€ny (%) 0.242
No. 3 Reinforcing fom [ksi (MPa)] 108 (745)
Bar enm (%) 9.87
fou [Ksi (MPa)] 91.8 (633)
enu (%) 13.1
fiy [ksi (MPa)] 79.9 (551)
ey (%) 0.283
No. 6 Reinforcing fim [ksi (MPa)] 103 (706)
Bar &im (%) 10.3
fiu [ksi (MPa)] 87.1 (601)
e (%) 16.3
fay [ksi (MPa)] 50.9 (351)
£ay (%) 0.172
fam [Ksi (MPa)] 75.2 (518)
Angle Steel e (%) 15.9
fau [Ksi (MPa)] 56.1 (387)
gau (%) 22.3

All values are average values for samples ran for each material.

f’c = maximum (i.e., peak) strength of unconfined concrete.

f’ g = maximum (i.e., peak) strength of grout; eqm = strain at f’y; &g = ultimate strain at 0.85f"g.
fopr = limit of proportionality of post-tensioning strand.

enpl = fopi divided by measured Young’s modulus.

fopu = ultimate/maximum strength of post-tensioning strand.

eppu = Ultimate strain of post-tensioning strand.

fry = lower yield strength; e, = fi, divided by measured Young’s modulus.
fom = maximum (i.e., peak) strength; eny = strain at fi,.

fhu = 0.85fim; €ny = ultimate strain at 0.85fm.

fiy = lower yield strength; e, = fi, divided by measured Young’s modulus.
fim = maximum (i.e., peak) strength; &, = strain at fip.

fiu = 0.85fim; &, = ultimate strain at 0.85fiy.

fay = lower yield strength; &, = fy divided by measured Young’s modulus.
fam = maximum (i.e., peak) strength; e,y = strain at fan.

fau = 0.85fam; €au = ultimate strain at 0.85f;y.
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CHAPTER 5

DATA INSTRUMENTATION AND SPECIMEN RESPONSE PARAMETERS

This chapter describes the data instrumentation and response parameters for the

precast coupling beam floor level subassembly experiments.

5.1 Data Instrumentation

Up to 92 channels of data were collected during testing including: (1) load cells to
measure the forces in the hydraulic actuators, beam post-tensioning strands, angle-to-wall
connection post-tensioning strands, and the vertical forces (representing the wall pier
axial forces) applied to the wall test region of the reaction block; (2) displacement
transducers to measure the in-plane displacements of the actuators, load block, reaction
block, and coupling beam; the local horizontal deformations of the concrete in the beam-
to-wall contact region of the reaction block; and the gap opening displa cements at the
beam-to-reaction-block interface; (3) rotation transducers to measure the rotations of the
coupling beam near the midspan and near the reaction block (i.e., south) end; and (4)
strain gauges to measure the strains in the mild steel reinforcement and the confined
concrete in the beam and the reaction block. For each test, all sensors, instrumentation,

and data acquisition were initialized such that any data recorded was due to the
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application of the post-tensioning forces and lateral loads. The data acquisition hardware
consisted of a National Instruments SCXI-1001 chassis daisy-chained to a SCXI-1000
chassis and the data was collected using LabView Version 7.0 at a sampling rate of once
every 3 seconds. During testing, important data and response parameters (e.g., beam
chord rotation, beam shear force, post-tensioning forces, etc.) were processed in real-time

and observed throughout the duration of the test.

5.1.1 Instrumentation Overview

The sensors used for testing, some of which are shown in Figure 5.1, include the

following:

Figure 5.1: Photograph of beam-to-reaction-block interface and
instrumentation for Test 1.
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Load cells:

(1) Two load cells (LC1 and LC2) to measure the forces in the servo-
controlled hydraulic actuators used to vertically displace the load block.

(2) Four load cells (LC3 — LC6) manufactured in the Structural Systems
Laboratory at the University of Notre Dame to measure the forces in the
angle-to-reaction-block connection post-tensioning strands.

(3) Eight load cells (LC7 — LC14) to measure the vertical forces (representing
the wall pier axial forces) in the 8 bars used to “tie-down” the wall test
region of the reaction block to the strong floor.

(4) Up to four load cells (LC15 — LC18) manufactured in the Structural
Systems Laboratory at the University of Notre Dame to measure the forces
in the beam post-tensioning strands.

Linear displacement transducers:

(1) Two linear displacement transducers (DT1 and DT2) to measure the axial
displacements of the servo-controlled hydraulic actuators used to
vertically displace the load block.

(2) Three linear displacement transducers (DT3 — DT5) to measure the
vertical and horizontal displacements of the load block in the plane of the
test subassembly.

(3) Three linear displacement transducers (DT6 — DT8) to measure the
vertical and horizontal displacements of the reaction block in the plane of

the test subassembly.
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(4) Two linear displacement transducers (DT9 — DT10) to measure the
vertical displacements of the coupling beam in the plane of the test
subassembly.

(5) Three linear displacement transducers (DT11 — DT13) to measure the gap
opening displacements at the beam-to-reaction-block interface.

(6) Two linear displacement transducers (DT14 — DT15) to measure the local
horizontal deformations in the beam-to-wall contact region of the reaction
block.

Rotation transducers:

1) Two rotation transducers (RT1 and RT2) to measure the rotations of
the coupling beam near the reaction block (i.e., south) end and near the
midspan.

Electrical resistance strain gauges:

(1) Up to 38 strain gauges to measure the strains in the mild steel
reinforcement and the hoop-reinforced concrete in the coupling beam.

(2) Thirteen strain gauges to measure the strains in the mild steel
reinforcement and the hoop-reinforced concrete in the beam-to-wall
contact region of the reaction block.

The data instrumentation used in the experimental program is summarized in
Tables 5.1 — 5.8. Figures 5.2 — 5.6 show the general placement of the load cells,
displacement transducers, rotation transducers, and reaction block and coupling beam

strain gauges, respectively. More detailed information on the instrumentation and on the
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test subassembly response parameters calculated from the measured data is provided in
the remainder of this chapter.

Note that as mentioned in Chapters 3 and 4, two reaction blocks were cast for the
subassembly testing program. The same steel formwork was used for both reaction
blocks with the same reinforcement and concrete design parameters. The same number of
strain gauges were embedded in both reaction blocks; however, the strain gauge wires
coming out of the second reaction block were all severed during the removal of the
formwork. Thus, no strain gauge measurements could be made for the second reaction

block (Tests 2 — 4B) as discussed in more detail in Chapter 6.

TABLE 5.1

SUMMARY OF LOAD CELLS

Transducer Measurement Description Sign . Transducer Location
No. Convention
tg; Etz; actuator forces internal to actuator
LC3 Fics .
LC4 Fica angle-to-reaction between single strand anchor barrel and
block connection h
LC5 Fics forces bearing plate
LC6 Fice
LC7 Ficy
LC8 Fics
LC9 Fico compression
LC10 FLcio wall test region positive on individual vertical tie down bars at
LC11 Ficu vertical forces north end of reaction block
LC12 Fici
LC13 Ficiz
LC14 Ficia
LC15 Ficis
LC16 Ficis beam post- between single strand anchor barrel and
LC17 Ficiz tensioning forces bearing plate
LC18 Ficis
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TABLE 5.2

SUMMARY OF DISPLACEMENT AND ROTATION TRANSDUCERS

Transducer Measurement Description Slgn. Transducer Location
No. Convention
DT1 Apt1 actuator internal to actuator
DT2 Apr2 displacements externally attached to actuator
load block
DT3 ApTs horizontal
displacement
Ioa_d black vertical between insert in load block and fixed
DT4 Apmg displacement at -
reference point
north end
load block vertical
DT5 Apts displacement at
south end
reaction block
DT6 ApTs horizontal
displacement
reaction block
DT7 Apt7 disp\ll;cr;l;aelnt at between insert in reaction block and
fixed reference point
north end
reaction block .
vertical exter_1§|on
DT8 Aors displacement at positive
south end
beam vertical
DT9 Abte displacement at
south end between insert in beam and fixed
beam vertical reference point
DT10 Abti0 displacement at
north end
vap opening at betwe.en insert near beam end and
DT12 ApT12 beam centerline reaction plate near beam-to_-wall
93D Opening near interface of wall test region
DT13 Aoris beam bottom
wall test region
DT14 Aoris contact a(ie;gormatlon between insert in wall test region and
wall test rigion reqction plate near beam-tq-wall
DT15 Aoris contact deformation interface of wall test region
at bottom
RT1 OrT1 beaglfﬁa;:]%n at clockwise near south end of beam
RT2 Orz beam rotation near positive hear midspan of beam
midspan
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TABLE 5.3

SUMMARY OF BEAM LOOPING REINFORCEMENT

LONGITUDINAL LEG STRAIN GAUGES

Trar:\?gucer Measurement Description Cons\;e?:tion Transducer Location
] on top leg, east reinforcement, 5.75”
6(1)T-E For-E (146mm) from south end of beam
. on top leg, east reinforcement, 11.5”
6(2)T-E Eo@r-e (292mm) from south end of beam
] on top leg, east reinforcement, 17”
6@3)T-E QT (432mm) from south end of beam
: on top leg, west reinforcement, 5.75”
6(1)T-W Eorw (146mm) from south end of beam
X on top leg, west reinforcement, 11.5”
6()T-W oW (292mm) from south end of beam
g on top leg, west reinforcement, 17”
6(3)T-W Ee@TwW (432mm) from south end of beam
on bottom leg, east reinforcement,
6(1)B-E €6(1)B-E 5.75” (146mm) from south end of
beam
beam No. 6 loopin on bottom leg, east reinforcement,
6(2)B-E €6(2)B-E L Ping 11.5” (292mm) from south end of
@ reinforcement .
. tension beam
longitudinal positive on bottom leg, east reinforcement, 17”
6(3)B-E EoB-E (horlszt(r);itr? SI) leg (432mm) from south end of beam
on bottom leg, west reinforcement,
6(1)B-W £6(1)B-W 5.75” (146mm) from south end of
beam
on bottom leg, west reinforcement,
6(2)B-W £6(2)B-W 11.5” (292mm) from south end of
beam
on bottom leg, west reinforcement, 17”
6(3)B-W E6)B-W (432mm) from south end of beam
: on top leg, east reinforcement,
6MT-E FouT-E midspan of beam
on bottom leg, east reinforcement,
6MB-E Fove-£ midspan of beam
: on top leg, west reinforcement,
6MT-W EouT-W midspan of beam
6MB-W c on bottom leg, west reinforcement,
- 6MB-W

midspan of beam
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TABLE 5.4

STRAIN GAUGES

SUMMARY OF BEAM TRANSVERSE REINFORCEMENT

Transducer
No.

Measurement

Sign

Description Convention

Transducer Location

6SE(l)-E

E6SE(I)-E

6SE(E)-E

E6SE(E)-E

6SE(I)-W

E6SE(1)-W

6SE(E)-W

E6SE(E)-W

beam No. 6 looping
reinforcement
transverse (vertical)

leg strains .
g tension

positive

MH-E

EMH-E

MH-W

EMH-W

beam midspan No. 3
transverse hoop
strains

on vertical leg, east reinforcement,
midheight of leg (internal), south end
of beam

on vertical leg, east reinforcement,
midheight of leg (external), south end
of beam

on vertical leg, west reinforcement,
midheight of leg (internal), south end
of beam

on vertical leg, west reinforcement,
midheight of leg (external), south end
of beam

on transverse hoop at beam midspan,
midheight of east
vertical leg

on transverse hoop at beam midspan,
midheight of west vertical leg

TABLE 5.5

SUMMARY OF BEAM END CONFINEMENT HOOP STRAIN GAUGES

Transducer Measurement Description Sign . Transducer Location
No. Convention
on 1% bottom hoop from south end,
1HB-E E1He-£ midheight of east vertical leg
on 2" bottom hoop from south end,
2HB-E f2He-E midheight of east vertical leg
on 3 bottom hoop from south end,
3HB-E Ear-E midheight of east vertical leg
on 4™ bottom hoop from south end,
4HB-E EaHB-E beam end No. 3 tension midheight of east vertical leg
confinement hoop - <t
1HB-W . strains positive on 1_ bot_tom hoop from s_outh end,
i midheight of west vertical leg
on 2" bottom hoop from south end,
2HB-W E2HB-w midheight of west vertical leg
on 3™ bottom hoop from south end,
3HB-W E3ra-w midheight of west vertical leg
th
AHB-W oW on 4™ bottom hoop from south end,

midheight of west vertical leg
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TABLE 5.6

SUMMARY OF BEAM CONFINED CONCRETE STRAIN GAUGES

Transducer
No.

Measurement

Description

Sign
Convention

Transducer Location

3THT-(1)

E3THT-(1)

3THT-(2)

E3THT-(2)

3THB-(1)

€3THB-(1)

3THB-(2)

E3THB-(2)

3BHT-(1)

E3BHT-(1)

3BHT-(2)

€3BHT-(2)

3BHB-(1)

€3BHB-(1)

3BHB-(2)

€3BHB-(2)

beam confined
concrete strains

tension
positive

on No. 3 support bar, top of top
confining hoops, approximately 0.25”
(6mm) from south end of beam

on No. 3 support bar, top of top
confining hoops, approximately 3”
(76mm) from south end of beam

on No. 3 support bar, bottom of top
confining hoops, approximately 0.25”
(6mm) from south end of beam

on No. 3 support bar, bottom of top
confining hoops, approximately 3”
(76mm) from south end of beam

on No. 3 support bar, top of bottom
confining hoops, approximately 0.25”
(6mm) from south end of beam

on No. 3 support bar, top of bottom
confining hoops, approximately 3”
(76mm) from south end of beam

on No. 3 support bar, bottom of
bottom confining hoops,
approximately 0.25” (6mm) from
south end of beam

on No. 3 support bar, bottom of
bottom confining hoops,
approximately 3” (76mm) from south
end of beam
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TABLE 5.7

SUMMARY OF REACTION BLOCK STRAIN GAUGES

Transducer
No.

Measurement

Description

Sign
Convention

Transducer Location

1THM

E1THM

1MHM

E1MHM

1BHE

E1BHE

reaction block No. 3
confinement hoop
strains

CBMI1E

ECBM1E

CBM3E

ECBM3E

CBM1W

ECBMIW

CBM3W

ECcBM3W

CBB1E

€CBB1E

CBB2E

€CBB2E

CBB3E

€CBB3E

CBB1W

€cBIwW

CBB2W

€ceB2wW

CBB3W

€CBB3W

reaction block
confined concrete
strains

tension
positive

on 1% (from north face) top hoop
below central PT duct, midlength of
bottom horizontal leg

on 1% (from north face) middle hoop
below central PT duct, midlength of
bottom horizontal leg

on 1% (from north face) bottom hoop
below central PT duct, midheight of
east vertical leg

on No. 3 corner bar, middle hoops
below central PT duct, east side, 1.5”
(38mm) from north face

on No. 3 corner bar, middle hoops
below central PT duct, east side, 6”
(152mm) from north face

on No. 3 corner bar, middle hoops
below central PT duct, west side, 1.5”
(38mm) from north face

on No. 3 corner bar, middle hoops
below central PT duct, west side, 6”
(152mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, east side, 1.5”
(38mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, east side, 3.75”
(95mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, east side, 6”
(152mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, west side, 1.5
(38mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, west side,
3.75” (95mm) from north face

on No. 3 corner bar, bottom hoops
below central PT duct, west side, 6”
(152mm) from north face
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TABLE 5.8

TRANSDUCER DETAILS

TraTnjgtécer Trar’]jgucer Manufacturer Model No. Serial No. Capacity Sensitivity Nonlinearity
4'1(f:’r:‘si“;r\]/)’ Vil 0047%
LC1 107431 21679 VIV
Interface 1240AF — 200K +200 kips (comp.) 008
(2979 kN) 4.1379 mVIV 0.018%
(tension) D
LC2 107340
A1363MVIV [ oo
(comp.)
LC3 -
LC4 University of - 50 kips
LC5 Notre Dame - (comp.) see Table 5.9
Load Cell LC6 _
LC7 -
LC8 -
LC9 -
LC10 Micro- CEA-06-250UN- - Gauge Factor =
LC11 | Measurements® 120 - 2.085
LC12 -
LC13 -
LC14 -
LC15 -
LC16 University of - 50 kips
LC17 Notre Dame - (comp.) see Table 5.9
LC18 -
BTL-5-B11- .
DT1 Balluff MO508-K-S32 +10in.
DT2 15090-001 +30in. 32.15 mV/V/in. -0.031%
DT3 613539 +10 in. 92.29 mV/V/in. 0.057%
DT4 13601-008 12.13 mV/V/in. -0.054%
DT5 Houston 1850 Series 13601-004 12.13 mV/V/in. -0.047%
DT6 Scientific™ Position 13601-006 +80 in. 12.16 mV/V/in. 0.034%
Displacement| DT7 Transducer 13601-007 12.14 mV/V/in. -0.037%
Transducer DT8 13601-001 12.05 mV/V/in. 0.031%
DT9 613540 +10 in. 92.30 mV/Vl/in. 0.066%
DT10 14103-001 +20 in. 48.90 mV/V/in. -0.030%
DT11 1.3329300 2.1204 Vrums/in. 0.110%
DT12 Sensotec MOﬂ%E\)’EA 3112700 | +2.00in. | 2.1384 Veusiin. | 0.120%
DT13 1.3112400 2.1324 \/gumslin. 0.080%
DT14 Sensotec Model VL7A L.3740700 +1.00in 2.4528 Vgwms/in. 0.040%
DT15 LVDT L.3739700 - ) 2.4552 /gums/in. 0.120%
™ + /30
Rotation RT1 Schaevitz® Aé?ggtsr tc?;ic +n/3 radians | =©/3 mV/radian radian
Transducer : (260 degrees) | (60 mV/degree) (x0.1
RT2 Inclinometer
degree)
. all strain Micro- CEA-06-250UN- Gauge Factor =
Strain Gauge gauges | Measurements® 120 2.085
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LC15-LC18
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load block
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LC7-LCl4(H R

reaction block

strong floor

Figure 5.2: Load cell placement.
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% N —
actuators
see detail &= DT1 DT2
DT6 below \ ][ 8 8 D13
3 \ 1 —
‘/ \\ beam PT strands
f ]
65" \ /
(1651mm) 1110 load block
i reaction block
” D17 DT8| |IDT9 DT10| |DT5 DT4]

DT3-5 placed in center plane of load block.
DT6-8 placed in center plane of reaction block.
DT9-10 placed 1.7** (43 mm) from beam ends at centerline of west side surface.

T fiber-reinforced grout /
RET ] N
) "IDT14 DT11k
6.0 (152mm)
5.0" (127mm) beam
wall. test
region ¢ DTL2 ¢
6.0"" (152mm)
: € 4DT15 DT13y
RETFT 1 R
=) /

Figure 5.3: Displacement transducer placement.
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[m] [m]
O O
% N
actuators
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: beam PT strands
RT1 RT2

load block

Figure 5.4: Rotation transducer placement.

CBBI1E, CBB1IW __J
CBB2E, CBB2W
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wall test region
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centerline"} ““““ " duct —

| o
IMHM CBM1W [

CBMaW__ | =
1BHE

angle-to-wa
connection duct

1THM
-

1IMHM
|

[~ 1BHE

Figure 5.5: Strain gauge placement — reaction block.
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Figure 5.6: Strain gauge placement — coupling beam.

5.1.2 Post-Tensioning Strand Load Cells

As described in Chapter 3, the beam post-tensioning tendon in each test is
comprised of two, three, or four 7-wire 0.6 in. (15.2 mm) diameter strands. Up to four
load cells (LC15 — LC18, see Tables 5.1 and 5.8) are used to measure the forces in these
strands. A single-use Precision SURELOCK® steel barrel anchor with three-piece wedges
and ring is used at the dead (south) and live (north, jacking) end of each strand. As shown
in Figure 5.7, a 1.5 in. (38 mm) thick bearing plate is placed for the anchor barrels to
react against at both ends. The force in each post-tensioning strand is measured using a
load cell between the barrel anchor and the bearing plate at the dead (south) end.

Similarly, four load cells (LC3 — LC6, see Tables 5.1 and 5.8) are used to measure
the forces in the angle-to-reaction-block connection post-tensioning strands. On each

strand, a single-use Precision SURELOCK® steel barrel anchor with two-piece wedges
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and ring is used at the dead end and the live end. At the live (south) end, a 1 in. (25 mm)
thick plate is placed for the anchor barrel to react against. At the dead end, the anchor
barrel bears directly on the vertical leg of the connection angle. Each load cell is placed at
the dead end of the strand between the anchor and the vertical angle leg as shown in

Figure 5.8.

UNIV. OF
_ 0CT 1
s TEST NO 1

B e —

Figure 5.8: Photograph of load cells on angle-to-reaction-
block connection post-tensioning strands.
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These eight load cells were manufactured and calibrated at the University of
Notre Dame. Each load cell was manufactured by placing four Micro-Measurements®
(type CEA-06-250UN-120) strain gauges on a single-use Precision SURELOCK® post-
tensioning anchor barrel in a full bridge configuration (Figure 5.9). As shown in Figure
5.10, the load cell barrel was placed in the opposite orientation as the post-tensioning
anchor barrel to ensure better contact between the two barrels. Prior to the placement of
the strain gauges, each load cell barrel was first loaded in compression several times to a
force significantly larger than the expected force during coupling beam subassembly
testing to allow for any permanent deformations (nonlinear effects) that might occur in
the barrel. The strain gauges were then installed in a circular arrangement at the mid-
height of the barrel at a 90 degree spacing on the outside. After the load cells were wired
in a full bridge configuration, they were covered with a protective pad and sealed to help

prevent damage to the strain gauges or wiring.

Figure 5.9: Photograph of post-tensioning strand load cells.
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Four strain gauges, 2 vertical

and 2 horizontal, placed radially
(90 degrees) around outside surface
of barrel. Full bridge configuration

wiring used.

1.83"
(46mm)

\

top view

barrel/wedge

anchor \

load cell
barrel

-

—~_ ’

PT strand

—>
1.76" (45mm)

side view

N

\
Y.

A

configuration

\

anchor

bearing plate

Figure 5.10: Placement of post-tensioning strand load cells.

Calibration of the load cells was performed in pairs as shown in Figure 5.11 using

a 600 kip (2669 kN) SATEC® Model 600XWHVL hydraulic universal testing machine.

Each load cell was placed on a post-tensioning strand between a steel barrel/wedge

anchor and an anchor bearing plate. The load cell barrel was placed in the opposite

orientation as the anchor barrel as shown in Figure 5.10, thus, simulating the conditions

the load cell would experience during a coupling beam subassembly test. The post-

tensioning strand was then loaded in tension putting the load cells in compression.

Voltage measurements from the load cells were taken at various increments up to

approximately 45 kips (200 kN). The load cells were then unloaded, rotated 90 degrees,

and the test was repeated. This was repeated at least 4 times for each load cell and the

data was averaged to get the calibration equation for the load cell. Note that unlike the
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subassembly experiments, the seating of the anchor wedges during the load cell
calibrations was done using the displacements of the universal testing machine heads and
not using a post-tensioning jack. Furthermore, each calibration test was conducted under
concentric axial loading, whereas in the subassembly tests, the ends of the tendon
displace in the transverse direction as well as axially due to the lateral displacements of
the structure.

Figure 5.12 shows the force versus voltage calibration data for the eight post-
tensioning strand load cells, with the regression calibration equations given in Table 5.9.
The calibration equations use the output voltage, Vou, from the data acquisition system to
give the load cell force in kips. The coefficient of determination, R? indicates how closely
the regression line conforms to the calibration data, and ranges between 0 and 1, with 1
representing a perfect fit between the data and the regression line. The load cells with the
highest R? value were used on the strands comprising the beam post-tensioning tendon
(i.e., LC15 - LC18). The other load cells were used on the strands that connect the angles
to the reaction block (i.e., LC3 — LC6).

Figure 5.13 shows the force versus voltage calibration data for Load Cells UND2
and UND3 during loading and unloading. The unloading voltage measurements were
taken to ensure that the calibration regression equations (which were determined from the
loading data) are valid upon unloading as well. It can be seen from Figure 5.13 that the

loading and unloading data points for each load cell are similar.
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Figure 5.11: Post-tensioning strand load cell calibration setup.
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Figure 5.12: Calibration data for the post-tensioning strand load cells.
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TABLE 5.9

LOAD CELL CALIBRATIONS

Load Cell Calibration Regression Equation (Kips) R’
UND1 13105 Vot 0.97
UND2 -2736905 Vo 2 + 24080 Vout 0.98
UND3 15669 Vot 0.97
UNDA4 172039Vy? + 10025 Vour 0.99
UNDS5 236090 Voui” + 8004 Vo 0.99
UND6 -3859378 Voui® + 27980 Vout 0.98
UND? -2389914 Vo + 24469 Voyr 0.99
UNDS8 2579758171 Vouo — 1345851 Voo + 37304 Vout 0.98

50
(222)
© A7+
OI bA
§ 8 ‘g
<
2 7
E [ ] A
= & &7V
&
L
= UND2 loading
o UND2 unloading 1
a UND3loading |
v UND3 unloading
0 . . . . . :

voltage (mV)

Figure 5.13: Loading and unloading calibration data
for Load Cells UND2 and UND3.
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5.1.3 Wall Test Region Vertical Force Load Cells

Eight load cells (LC7 — LC14, see Tables 5.1 and 5.8) are used to measure the
vertical force on the wall test region of the reaction block. Each load cell consists of a
single electrical resistance strain gauge attached to one of the eight vertical bars used to
anchor the wall test region of the reaction block to the strong floor. The force in each bar

is determined from the corresponding strain measurement as:

Fici = €ici Epar Avar (5.1)
where, g ¢i = strain measurement in Bar i; Epar = YOung’s modulus for the bar steel [taken
as 29,000 ksi (200 GPa)]; and Apar = cross-sectional area of the bar [equal to 0.60 in.?

(388 mm?)].

5.1.4 Load Block Global Displacement Transducers

Three string pot linear displacement transducers (DT3 — DT5, see Tables 5.2 and
5.8) are used to measure the in-plane vertical and horizontal displacements of the load
block. Figure 5.3 shows the general placement of these displacement transducers.
Vertical displacements Apts4 and Aprs (measured by DT4 and DT5) correspond to the
vertical displacements of the hydraulic actuators (i.e., displacements Apr; and Apr, as
measured by displacement transducers DT1 and DT2). The horizontal displacement Aprs
(measured using DT3) represents the movement of the load block in the north-south
direction.

The body of each string pot is attached to a fixed reference location and the string
end is attached to a Dayton-Superior® F-42 3/8”-16 loop ferrule insert embedded into the

load block as shown in Figure 5.14. Each ferrule insert is placed within the center plane
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of the load block in the north-south direction. A lead wire is used with each transducer to
maximize the gain in the data acquisition system, and thus, minimize the measurement
noise. The use of a lead wire also allows the body of the string pot to be placed
significantly away from the corresponding ferrule insert, and thus, reduce the angular

movement of the string as the structure is displaced.
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Figure 5.14: Load block ferrule insert locations.
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5.1.5 Reaction Block Global Displacement Transducers

Three string pot linear displacement transducers (DT6 — DT8, see Tables 5.2 and
5.8) are used to measure the in-plane vertical and horizontal displacements of the reaction
block. Figure 5.3 shows the general placement of the displacement transducers. The
objective of these measurements is to ensure that the displacements of the reaction block
remain small throughout the duration of each test.

Similar to the load block string pots, the body of each reaction block string pot is
attached to a fixed reference location, and the string end is attached to a Dayton-
Superior® F-42 3/8”-16 loop ferrule insert embedded into the reaction block as shown in
Figure 5.15. Each ferrule insert is placed within the center plane of the reaction block in
the north-south direction. A lead wire is used with each transducer to maximize the gain

in the data acquisition system, and thus, minimize the measurement noise.
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Figure 5.15: Reaction block ferrule insert locations.
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5.1.6 Beam Global Displacement Transducers

Two string pot linear displacement transducers (DT9 and DT10, see Tables 5.2
and 5.8) are used to measure the vertical displacements of the beam specimens. Figure
5.3 shows the general placement of these string pots. The displacements Apte and Aprio
are used to determine the beam chord rotation during each subassembly test.

Similar to the reaction block and load block string pots, the body of each beam
string pot is attached to a fixed reference location, and the string end is attached to a
Dayton-Superior® F-43 3/8”-16 plain ferrule insert embedded into the beam as shown in
Figure 5.16. Each ferrule insert is placed at the midheight of the beam on the west face. A
lead wire is used with each transducer to maximize the gain in the data acquisition
system, and thus, minimize the measurement noise. The use of a lead wire also allows for
the body of the string pot to be placed significantly away from the corresponding ferrule

insert, and thus, reduce the angular movement of the string as the structure is displaced.
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Figure 5.16: Beam vertical displacement ferrule insert locations.

5.1.7 Gap Opening Displacement Transducers

Three Linear Variable Displacement Transducers [LVDTs] (DT11 - DT13, see
Tables 5.2 and 5.8) are used to measure the gap opening displacements at the beam-to-
reaction-block interface. Figures 5.3 and 5.17 show the placement of these LVDTSs. The
bodies of the LVDTSs are attached to Dayton-Superior® F-43 3/8”-16 plain ferrule inserts

embedded into the beam specimen on the west face and the rod ends react against plates
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mounted to Dayton-Superior® F-43 3/8”-16 plain ferrule inserts embedded into the wall

test region of the reaction block on the west face (see Figure 5.18).
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Figure 5.17: Beam gap opening ferrule insert locations.
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5.1.8 Wall Test Region Local Displacement Transducers

Two LVDTs (DT14 and DT15, see Tables 5.2 and 5.8) are used in the wall test
region to measure the local axial compression deformations in the contact regions of the
reaction block. Figures 5.3 and 5.18 show the placement of these transducers, the bodies
of which are attached to Dayton-Superior® F-43 3/8”-16 plain ferrule inserts placed into
the wall test region on the west face. The rod ends of the LVDTSs react against plates (the
same plates used for transducers DT11 — DT13 measuring the gap opening displacements
at the beam-to-reaction-block interface) mounted to another set of Dayton-Superior® F-43
3/8”-16 plain ferrule inserts embedded into the reaction block as shown in Figure 5.18.
The placement of DT14 and DT15 on the reaction block lines up with the placement of

DT11 and DT13 on the beam specimen, respectively.
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Figure 5.18: Reaction block wall test region ferrule insert locations — (a) inserts for
Beams 1-3; (b) inserts for Beam 4.
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5.1.9 Beam Rotation Transducers

Two rotation transducers (RT1 and RT2, see Tables 5.2 and 5.8) are used to

measure the rotations of the beam specimens. Figures 5.4 and 5.19 show the placement of

these transducers. The bodies of the transducers are attached to acrylic (plexi-glass)

plates, which are then attached to the west side of the beam using Dayton-Superior® F-43

3/87-16 plain ferrule inserts or LOCTITE® Power Grab epoxy. Note that the rotation

transducer at the beam midspan is placed 0.25 in. (6 mm) off the midspan location to

accommaodate the lateral brace plates on the beam.
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Figure 5.19: Beam rotation ferrule insert locations.
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5.1.10 Beam Looping Reinforcement Longitudinal Leg Strain Gauges

Up to sixteen strain gauges (see Tables 5.3 and 5.8) are used to measure the
strains in the longitudinal (i.e., horizontal) legs of the two No. 6 looping mild steel
reinforcing bars in each beam specimen as shown in Figure 5.20. Figure 5.21 shows the
design placement of these strain gauges (note that the actual gauge locations may have
shifted during construction and/or casting) and Figure 5.22 gives the gauge designation
system. The strain gauges are concentrated near the angle-to-beam connection at the
reaction block (i.e., south) end of the beam, which is a critical design location as
discussed in Chapter 3. The strain measurements are used to determine if the design of
the longitudinal mild steel reinforcement is adequate to transfer the tension angle forces

into the beam.

strain
gauge

Figure 5.20: Photograph of beam strain gauges.
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Figure 5.21: Beam looping reinforcement longitudinal leg strain gauge locations.
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Strain Gauge Designation System:
Longitudinal Reinforcement

5.75" (146 mm) from —— topleg

south end of beam
r east reinforcement
E

N0.6barﬁ I

6 (1) -

1: 575" (146 mm) from T: top leg E: east reinforcement
south end of beam

2: 115" (292 mm) from
south end of beam

3: 17" (432 mm) from
south end of beam

B: bottom leg W: west reinforcement

M: midspan of beam

Figure 5.22: Strain gauge designation system — longitudinal reinforcement.

5.1.11 Beam Transverse Reinforcement Strain Gauges

Up to six strain gauges (see Tables 5.4 and 5.8) are placed on the transverse mild
steel bars to verify the design of the transverse reinforcement in each beam. Figure 5.23
shows the design placement of these strain gauges (note that the actual gauge locations
may have shifted during construction and/or casting) and Figure 5.24 gives the gauge
designation system. Strain gauges are placed on the vertical legs of the No. 6 looping bars
at the south end, where finite element analysis results indicate high transverse stresses
will develop. Additional strain gauges are placed on the vertical legs of the No. 3 hoops
at the midspan of the beam. As discussed in Chapter 3, only a nominal amount of
transverse reinforcement is used away from the beam ends, and the strain measurements
taken at the midspan are used to verify the analytical models as well as the amount of this

transverse reinforcement.

179



Test Beams 1 -2

£
L

b g oo 0 N\ T
| | ——\
/b]f !\[\ W\ fpsn\ A
I I
6SE(1)-E R R
6SE(E)-E [ MH.E
6SE(D-W AWl 1 1 R ey
6SE(E)-W | BN MH-W ¢
—
I I 7.0"
| i / #3 hoop (178mm)
I I
1
T T \
- F 1 0 c \ 1
—
1.125"
(29mm) Test Beam 3 ¢
i
b g oo o 0 0 N\ T
| | —\
| 1 #6_ looping 7.0"
F {1 reinforcement (178mm)
I I
18] T III 11
] ]
[ [ MH_E
esEmE M MHW [t €
6SE(1)-W R
-1
I I 7.011
Al / kk #3 hoop ( (178mm)
I I
1
T T \
F 1 0 c \ 1
1.125"
(29mm)
Test Beam 4 t
%% T
e \
! \ ! ’\ #6_looping
! ! reinforcement
1 - I: 11 g.on
y PO P (229mm)
6SE()E 1M 1 MH-W e
6SE(I)-W I
L o0
[ i /‘ ! #3 hoop (229mm)
i \
P o : 0 : 0 o0 O @ \ B
HII
(%glr%q?n) Note: Strain gauge locations shown

are design locations. Materials may
have shifted during construction
and/or casting.

Figure 5.23: Beam transverse reinforcement strain gauge locations.
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Strain Gauge Designation System:
Transverse Reinforcement

south end internal
No. 6 bar —l J l— east reinforcement
6 SE ()- E
I: internal E: east reinforcement
E: external W: west reinforcement
midspan hoop
T east vertical leg
MH - E

T

E: east vertical leg

W: west vertical leg

Figure 5.24: Strain gauge designation system — transverse reinforcement.

5.1.12 Beam End Confinement Hoop Strain Gauges

Up to eight strain gauges (see Tables 5.5 and 5.8) are used to measure the strains
in the No. 3 confinement hoops at the reaction block (i.e., south) end of each beam
specimen. The strain gauges are attached to the east and west legs of the bottom hoops as

shown in Figures 5.20 and 5.25. Figure 5.26 shows the design placement of these strain
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gauges (note that the actual gauge locations may have shifted during construction and/or

casting) and Figure 5.27 gives the gauge designation system.

Figure 5.25: Photograph of strain gauged confinement hoop.

182



#3 hoop
\

#3 hoop
\

#3 hoop

Note: Strain gauge locations shown
are design locations. Materials may
have shifted during construction

and/or casting.

Test Beams 1 -2

1HB-E
| 2HBE
3HB-E
4HB-E

1HB-W
2HB-W
3HB-W
4HB-W

Test Beam 3

|__1HBE
3HB-E

1HB-W
2HB-W
3HB-W
4HB-W

Test Beam 4

1HB-E
3HB-E

1HB-W
2HB-W
3HB-W
4HB-W

e 70"
I (178mm)
1 1 - 1T 11
T T
[ 1
[ LI
R S
[ LI
R a15n
[0 0] [09] .
T 1T : Ill: 1w | (losmm)
1 1
2: 3: -
: L 2.85"
(72mm)
| |
Ugisn S8, o,
% @, B
2% 2
27 "y My
1 I
! ! 7.0"
I (178mm)
1 1 - 1T 11
T
[ 1
[ LI
L e
[ LI
R a15n
[0 0] [09] .
T TT : |||: 1| (105mm)
1 1
2: 3: -9
1 | ! 285"
(72mm)
I I
2 e O 3
Y Ty
e
il | 90"
! - i 1 (229mm)
1 1 1 1
o l*@
1 1 1 1
o 6.15"
L ! (156mm)
ot |
2, W3 -4-
1 - 2.85"
: : 1 | (72mm)
o, 0.0 |
%, %%, %,
o 0" 3
6\9),))%9)(6\7/,) (f)o)
2 "y My

Figure 5.26: Beam end confinement hoop strain gauge locations.

183



Strain Gauge Designation System:
Beam End Confinement Hoops

bottom hoop

1% bottom hoop from _

south end of beam —L east vertical leg
1 HB-E

1: 1 Sottom haop from E: east vertical leg

south end of beam

W: west vertical leg

2: 2" bottom hoop from
south end of beam

3: 3" bottom hoop from
south end of beam

4: 4™ pottom hoop from
south end of beam

Figure 5.27: Strain gauge designation system — beam end confinement hoops.

5.1.13 Beam Confined Concrete Strain Gauges

Up to eight strain gauges (see Tables 5.6 and 5.8) are used to measure the axial
strains inside the confined concrete at the reaction block (i.e., south) end of each beam
specimen. As shown in Figures 5.20 and 5.28, these strain gauges are attached to 8.0 in.
(203 mm) long deformed No. 3 mild steel support bars tied to the No. 3 confinement
hoops in the beam. Figure 5.29 gives the designation system for the beam confined

concrete strain gauges.
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Figure 5.28: Beam confined concrete strain gauge locations.



Strain Gauge Designation System:
Beam Confined Concrete

top hoop

top of confining hoop 7
0.25" (6 mm) from
No. 3 bar ﬂ south gnd of)beam
5T AT

T: top of confining hoop HT: top hoop 1: 0.25" (6 mm) from
south end of beam

2: 3.0" (76 mm) from
south end of beam

| |

B: bottom of confining hoop HB: bottom hoop

Figure 5.29: Strain gauge designation system — beam confined concrete.

5.1.14 Reaction Block Confinement Hoop Strain Gauges

Three strain gauges (see Tables 5.7 and 5.8) are attached to the No. 3 confinement
hoops in the wall test region of the reaction block specimens. The strain gauges are
attached to the first No. 3 hoop (closest to the beam end surface of the reaction block) for
each row of hoops in the bottom reinforcing cage below the main post-tensioning duct.
Figure 5.30 shows the design placement of these strain gauges (note that the actual gauge
locations may have shifted during construction and/or casting) and Figure 5.31 gives the
gauge designation system. Due to the small size of the two top hoops of the bottom cage,
the strain gauges had to be placed on the horizontal legs of the hoops. The slightly larger

size of the bottom hoop allowed for the strain gauge to be placed on the west vertical leg.
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Figure 5.30: Reaction block confinement hoop strain gauge locations.
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Strain Gauge Designation System:

Reaction Block

midlength of
horizontal leg

top hoop
15t hoop from
north face 1
1 TH M
T: top hoop below M: midlength of
central PT duct horizontal leg
M: middle hoop below E: midheilght of east
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c8 M T E
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1: 1.5" (38 mm) from
north face

2: 3.75" $95 mm) from
north face

3: 6.0" (152 mm) from
north face

W: west side

Figure 5.31: Strain gauge designation system — reaction block.
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5.1.15 Reaction Block Confined Concrete Strain Gauges

Ten strain gauges (see Tables 5.7 and 5.8) are embedded into the wall test region
of the reaction block specimens inside the middle and bottom confinement hoops of the
bottom reinforcing cage below the main post-tensioning duct. These strain gauges are
used to measure the axial strains in the wall test region confined concrete. As shown in
Figure 5.32, the strain gauges are attached to 15 in. (381 mm) long deformed No. 3 mild
steel corner bars tied to the No. 3 confinement hoops. Figure 5.31 gives the designation

system for the reaction block confined concrete strain gauges.

1.0" (25mm? nominal
angle-to-wall
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Note: Strain gauge locations shown
are design locations. Materials may
have shifted during construction
and/or casting.

Figure 5.32: Reaction block confined concrete strain gauge locations.
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5.2  Subassembly Response Parameters

This section describes the determination of the test subassembly response
parameters from the data measurements described above. Figures 5.33 and 5.34 show the
test subassembly displaced in the positive (i.e., load block moved downward) and
negative (i.e., load block moved upward) directions. The following parameters shown in
Figures 5.28 and 5.29 are defined as: 0, = beam chord rotation; Ay, = gap opening at the
north end of the beam; Ags = gap opening at the south end of the beam; Fays1 = force in
actuator axis 1; Faxisz = force in actuator axis 2; Aais1 = displacement of actuator axis 1;
and Aaxisz = displacement of actuator axis 2.

The subassembly response parameters described below are: (1) coupling beam
shear force; (2) coupling beam end moment; (3) coupling beam post-tensioning force; (4)
vertical force on wall test region; (5) angle-to-wall connection post-tensioning force; (6)
reaction block displacements; (7) load block displacements; (8) beam vertical
displacements; (9) beam chord rotation; and (10) gap opening and contact depth at beam-
to-wall interface. Note that in data manipulations, rotations (e.g., 8p, Op1n, OrT1, €LC.) are in

radians.
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Figure 5.33: Subassembly displaced in positive direction.
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Figure 5.34: Subassembly displaced in negative direction.

5.2.1 Coupling Beam Shear Force

+ FaxisZ
+Aaxi52

The coupling beam shear force, Vy, is equal to the sum of the vertical components

of the forces in the two hydraulic actuators, Faxis1 and Faxisz, Where Faiss = Frc1 and Fais

= F_c2 as depicted Figures 5.33 and 5.34. Thus,
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Vb = I:axisl,y + I:axi52,y = I:LCI Cos(eaxisl)+ I:LC2 Cos(eaxisz) (52)
where,
A
eaxisl = tan l( e (53)
Iaxisl + Aaxisl,y
A
eaXiSZ — tan_l axis2,x (54)
Iaxisz + Aaxisz,y

where, laist = laxisz = length of the actuators between the top pin and the bottom pin at the
beginning of each test. It is assumed that coS(0axis1) = C0S(0axisz) = 1.0 for the small
horizontal displacements of the load block during testing. Thus, the beam shear force can
be determined directly from the measured actuator forces as:
V, =F +F, (5.5)
Note that as discussed in Chapter 3, prior to each test, the forces in the actuators
due to the self-weight of the subassembly (i.e., the load block, steel connection beam and
bolts, coupling beam specimen, strands, angles, etc.) are measured. Before the application
of the lateral displacement history, these forces are applied to the subassembly (by
operating the actuators in load control) in the opposite direction to counteract the effect of
the structure self-weight on the coupling beam. These initial forces applied to the
structure are subtracted from the coupling beam shear force (since the initial actuator
forces are equal and opposite to the forces due to the structure self-weight) to initialize

the shear force measurement to zero.
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5.2.2 Coupling Beam End Moment

The coupling beam end moment, M, is calculated from the beam shear force, V,

and the length of the beam including the thickness of the grout, I, as:

M L= Vb (Ib,tg ) — (FLC1 + FLCZ)(Ib,tg ) (56)
2 2

where, lpg = Ip + 2tg; and tg = thickness of the grout at each end.

5.2.3 Coupling Beam Post-Tensioning Force

The total coupling beam post-tensioning force, Py, is calculated by summing the
measured forces in the individual post-tensioning strands. Thus, for a specimen with four
beam post-tensioning strands,

Pb = FLClS + FLCl6 + FLC17 + FLClS (5-7)

5.2.4 Vertical Force on Wall Test Region

The total vertical force, Fy: (representing the wall pier axial forces) on the wall
test region of the reaction block is determined by summing the forces in the eight tie-

down bars as:

Fwt = I:LC7 + I:LCB + I:LC9 + FLClO + I:LCll + I:LC12 + I:LC13 + I:LC14 (58)
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5.2.5 Angle Post-Tensioning Forces

The post-tensioning forces Papop and Papsear Used to connect the top angles and
seat angles, respectively, to the reaction block, are determined from load cells LC3 — LC6
as:

P

ap,top = I:LCE’» + I:LC4 (59)
and

P

ap,seat

= FLCS + FLCG (5-10)

5.2.6 Reaction Block Displacements

Assuming that the reaction block behaves as a rigid body, the measurements from
displacement transducers DT6 — DT8 can be used to calculate the horizontal and vertical
displacements and the rotation at the centroid of the block (see Figure 5.35). Note that the
non-uniform shape of the reaction block needs to be considered in the calculation of the

block centroid.
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Figure 5.35: Reaction block displacements.

Using the measurements from displacement transducers DT7 and DTS, the
rotation, Ogg at the centroid of the reaction block can be calculated as:

Agr, —A
0np = DT7 DT8 (5.11)

IRB
The horizontal displacement at the centroid of the reaction block, Argx can be

calculated as:

IRB

_ A —-A _
ARB,x = ADT6 +9RB (yDT6 - yRB): ADT6 +[M}(yme - yRB) (5-12)
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Finally, the vertical displacement at the centroid of the reaction block, Argy can

be determined as:

IRB

Apr; —A
Agg,y = Aprg + OreXpe = Aprs + |:M:|XRB (5.13)
or

_ A A _
ARB,y = ADT7 _eRB(IRB _XRB): ADT7 _[M}(IRB _XRB) (5-14)

IRB
As will be shown later in Chapter 6, the displacements of the reaction block were

negligible during the experiments.

5.2.7 Load Block Displacements

Assuming that the load block behaves as a rigid body, the displacement
measurements from DT3 — DT5 can be used to determine the horizontal and vertical
displacements and the rotation of the block centroid. Figure 5.37 shows an exaggerated
displaced shape of the load block. As the test subassembly is displaced and gaps open at
the beam ends, the load block is pushed in the horizontal (north) direction. Furthermore,
even though the two actuators are displaced vertically by the same amount, the load block
may undergo a small amount of rotation. The adjustments that need to be made on the
displacement measurements from DT3, DT4, and DT5 (due to the angular movement of
the string pot strings as the structure is displaced) and the resulting displacements at the

centroid of the load block are described below.
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Figure 5.37: ldealized exaggerated displaced shape of load block.
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The following parameters, some of which are shown in Figures 5.36 and 5.37, are
used in the formulation: I g = length of the load block; h g = height of the load block; yprs
= vertical location of the ferrule insert to which displacement transducer DT3 is attached;
Aprts, ApTs, @and Apts = original, unadjusted measurements from displacement transducers
DT3, DT4, and DTS5, respectively; diprs, 0ipra, and diprs = initial extended lengths of
DT3, DT4, and DTS5, respectively, from the string pot body to the ferrule insert location
(i.e., including the lead wires); d:prs, Otpra, and d¢prs = final extended lengths of DT3,
DT4, and DT5, respectively (including the initial extended lengths so that &pr3 = diprs -
Aprts, 8tpT4 = 8ipT4 - ADT4, AN 31 DT5 = di DTS + ApTs); @and 0DT3, ADT4, AN pTS = angles that
the strings of DT3, DT4 and DTS5, respectively, undergo during the displacement of the
block. The procedure to determine the horizontal displacement, vertical displacement,
and rotation (Agsx, Ay, and 0., respectively) at the centroid of the load block is as
follows.

1. Use the measurements from DT4 and DT5 to calculate the rotation, 0. at the

centroid of the load block as:
0g=—"7—" (5.15)

2. Determine the horizontal displacement, A g at the centroid of the load block

as:

h Aqr, —A h
Agy =—Aprs +eLB(yDT3 _%j =—Apr; +{M}(ym3 _%j

ILB

(5.16)

3. Determine the vertical displacement, A g, at the centroid of the load block as:
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A —A
A|_B,y = ADT5 +eLB (ILB /2): ADT5 +|:%:|(ILB /2) (5-17)

or

Apra —A
Ay =Aprs =0 (ILB /2): Aprs _[%}OLB /2) (5.18)

Use the displacements at the load block centroid to determine the horizontal
measurements of DT4 and DT5 as:

ADT4,x = A|_B,>< +6LB (hLB /2) (5-19)
ADT5,x = ALB,x +eLB (hLB /2) (5-20)

Determine the angular movement that the strings of DT4 and DT5 undergo as:

A
Opra = Sin_{ﬂJ (5.21)
f,DT4
A
Oprg = sin‘l[ﬂJ (5.22)
f,DT5
Determine the adjusted vertical measurements for DT4 and DT5 as:
Apray = COS(U‘DT4)8f,DT4 -0 pr4 (5.23)
Aprsy = COS(aDTB)Sf,DTS -8 o1s (5.24)

Use the displacements of the load block centroid to determine the vertical

displacement of DT3 as:

ADT3,y :ALB,y +eLB (ILB /2) (5-25)

Determine the angular movement that the string of DT3 undergoes as:

A
Uprs :sinl[ﬂ] (5.26)

f,DT3
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9. Determine the adjusted horizontal measurement for DT3 as:
Aprax = COS(aDTS)Sf,DTS -0 pr3 (5.27)
10. Use the adjusted measurements for DT3, DT4, and DT5 in Steps 1 — 3 and

iterate the entire procedure until the additional adjustments needed are

sufficiently small (i.e., until the displacements converge).

5.2.8 Beam Vertical Displacements

The vertical displacements of the beam can be calculated using the displacement
measurements from DT9 and DT10. Figure 5.38 shows an idealized exaggerated
displaced configuration of the beam. Similar to the load block displacements, adjustments
may be needed on the measurements from DT9 and DT10 due to the angular movement

of the string pot strings as the structure is displaced.
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Figure 5.38: Idealized exaggerated displaced shape of test beam.

The following parameters, some of which are shown in Figure 5.38, are defined
as: hy = height of the beam; 6, = chord rotation of the beam; Aptg and Apt10 = oOriginal,
unadjusted measurements from displacement transducers DT9 and DT10, respectively; la-
pro and lapr10 = distances between point A and the ferrule insert to which DT9 and

DT10, respectively, are attached; Iprio-ore = horizontal distance between the ferrule
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inserts for DT9 and DT10 in the undisplaced configuration; d;pre and diprio = initial

extended lengths of DT9 and DT10, respectively, from the string pot body to the ferrule

insert location (i.e., including the lead wires); & pre and d¢pr10 = final extended lengths of

DT9 and DT10, respectively (including the initial extended lengths so that 6; prg = dipro +

ApTg and 6f’DT1() = 5i,DT10 + ADTlO); and oDT9 and 0pT10 — angles that the strings of DT9 and

DT10, respectively, undergo during the displacement of the beam. It is assumed that any

shifting in the positions of the ferrule inserts due to the nonlinear deformations of the

beam concrete are negligible in the formulations below.

The procedure to determine the vertical displacements at the south and north ends

of the beam, Apsyand Apny, respectively, is as follows.

1.

Use the measurements from DT9 and DT10 to determine the rotation, 0y, of

the beam as:

g, = Doro ~Aoro (5.28)

IDTlO—DT9
Note that 0y is positive in the clockwise direction (opposite the direction
shown in Figure 5.38).

Use triangles AEF and ABC to determine dprg and dprio, respectively, as:
d DTY — |6b|IA—DT9 (5-29)
dDTlO = |eb|IA—DT10 (5.30)

Use triangles EFG and BCD and the law of cosines to determine opre and

aprio, respectively, as:

82f,DTg +6i2,DT9 _dSTQJ (531)

-1
Opre = COS
28f,DT98i,DT9
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Cprio = cos-l[gz“DTlO *Siorio = dorg J (5.32)
26f,DTlOSi,DTIO
4. Determine the adjusted vertical measurements for DT9 and DT10 as:
Aprey =C08(cprg )8 pro — i ore (5.33)
Aprioy = C08(epr10 )81 oo — 8 o710 (5.34)

5. Use the adjusted measurements for DT9 and DT10 in Step 1 and iterate the
entire procedure until the additional adjustments needed are sufficiently small
(i.e., until the displacements converge).

Note that in Figure 5.38, the beam is assumed to rotate as a rigid body about its
corner at point A, ignoring the deformations in the beam and/or reaction block concrete.
This results in a larger estimation of the adjustments needed in the measurements from
DT9 and DT10. In Chapter 6, it is shown that the angles apre and aprio (based on the
above procedure) remain very small during testing. As a result, the vertical (i.e., y-
direction) displacements of the test beam are taken as the original (i.e., unadjusted)
measurements Aptg and Aprio from displacement transducers DT9 and DT10,

respectively.

5.2.9 Beam Chord Rotation

The beam chord rotation, 0y, is defined as the relative vertical displacement
between the beam ends divided by the beam length. As demonstrated in Chapter 6 and
described in the previous section, the vertical displacements of the beam are taken as the
original (i.e., unadjusted) measurements from displacement transducers DT9 and DT10.

Thus,
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g, = Loro ~Aoro (5.35)

IDTlO—DT9
Note that in some of the tests, measurements from DT9 and/or DT10 could not be
obtained (e.g., due to the spalling of the ferrule inserts). Under these conditions, the beam
chord rotation is approximated using the vertical displacement at the centroid of the load

block as (see Chapters 6 and 7):
0, =20, = =Y (5.36)

In Equation 5.36, it is assumed that the displacements of the reaction block are negligible.

5.2.10 Gap Opening and Contact Depth at Beam-to-Wall Interface

Three LVDTs (DT11 - DT13) are used to measure the gap opening displacements
at the beam-to-reaction-block interface at the south end of the beam. In addition, rotation
transducer RT1 is used to measure the rotation at the beam centerline approximately 1 in.
(25 mm) away from the beam south end. As depicted in Figures 5.34 and 5.39, as the test
beam is displaced in the negative direction (i.e., counterclockwise), a gap opens at the
bottom of the beam at the south end and at the top of the beam at the north end. The gap
opening and contact corners of the beam are reversed as the beam displacements are

reversed.
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Figure 5.39: Gap opening and contact depth.

The following parameters are defined in Figure 5.39 as: Xpt11, Xpr12, and Xpriz =
horizontal locations of the ferrule inserts to which displacement transducers DT11, DT12,
and DT13, respectively, are attached; ypr11, Ypr12, and ypriz = vertical locations of the
ferrule inserts to which DT11, DT12, and DT13 are attached (measured from the
compression fiber of the beam); ¢ = neutral axis depth in the vertical direction; and ¢’ =
neutral axis depth perpendicular to the beam axis. It is assumed that any shifting in the
position of the ferrule inserts due to the nonlinear deformations of the beam concrete are
negligible in the formulations below.

As shown in Figure 5.39, the LVDTSs rotate with the beam as a gap opens. The
rotation of the LVDTs is assumed to be equal to the gap opening rotation at the beam

end, which can be calculated as:

o = Bors ~ Aoy (5.37)

g
yDT13 ~Yori2
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Then, the adjusted horizontal measurements for DT11, DT12, and DT13 can be

calculated as:

Aprygy = C0S0 A Gy, (5.38)
Apripy =COSAG AR, (5.39)
Aprizx =C0S0 AL, (5.40)

It will be shown in Chapter 6 that the angular adjustments for DT11, DT12, and
DT13 are small; and thus, the LVDT measurements in the x-direction are taken as the
original measurements from these transducers. Referring to Figure 5.39, there are several
different methods that can be implemented to determine the gap opening displacements
of the beam as follows: (1) linear interpolation from the centerline and outer LVDT data;
(2) from RT1 and outer LVDT data; (3) from RT1 and centerline LVDT data; (4) from 6,
and centerline LVDT data; and (5) from 6, and outer LVDT data. The corresponding
equations to determine the gap opening displacements Ag, and Ay at the bottom and top,

respectively, of the beam are listed below.

Method (1):
A —A
Agb =Aprpy +M(hb - yDTlZ) (5.41)
Yorizs — Yo
A -A
Agt = ADT12 +M(hb - yDTlZ) (5-42)
Yoru — Yoriz
Method (2):
Agb =Apr3 +|ORT1|(hb - yDTlS) (5-43)
Agt =Apmy t |e RTl|(hb - yDTll) (5-44)
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Method (3):

Ag = Apriz +[Orri|(hy = Yorsz) (5.45)

Ag =Apriy +[0gra|(y = Yors2) (5.46)
Method (4):

Ag =Apriz +105(hy = Yorsz) (5.47)

Ag = Apri +[0p|(hy = Yorsz) (5.48)
Method (5):

Ag =Apris +[0,)(hy = Yorss) (5.49)

Ag = Ay +104)(h = Yors) (5.50)

Note that Equations 5.41, 5.42, 5.45, 5.46, 5.47, and 5.48 are valid only when
Apr12 1S positive (i.e., gap extends beyond the level of DT12).

Similarly one of the following four methods can be used to calculate the contact
depth, ¢ at the beam end. The small differences between ¢ and ¢’ (see Figure 5.39) are

ignored in this formulation.

Method (1):
y -y
Ci = Yori _ADle[%j (5-51)
DT13 DT12
y -y
C, = Yoriz _ADTlZ (Wj (5-52)
DT11 DT12
Method (2):
A
Ci = Yoriz — |eDT13| (5.53)
RT1
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A
Co = Yoru — o (5.54)

|9RT1|
Method (3):
A
Ci = Yoriz — |6DT12| (5.55)
RT1
A
Co = Yorir — |9D”2| (5.56)
RT1
Method (4):
A
Ci = Yoriz _ﬁ (5-57)
b
A
Co = Yoru _—|eDTr (5.58)
b
Method (5):
A
Ci = Yoriz — |6DTr (5.59)
b
A
Co = Yorn ——|6DT|“ (5.60)
b

Note that Equations 5.51, 5.52, 5.55, 5.56, 5.57, and 5.58 are valid only when

ApT12 IS positive (i.e., gap extends beyond the level of DT12).
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5.3  Chapter Summary

This chapter describes the data instrumentation for the subassembly experiments,
including the description of the force, displacement, rotation, and strain transducers.
Additionally, the specimen response parameters determined from the subassembly

experiments are presented.
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