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Abstract

by

Ke Wang

The design of chemical-based products and functional materials is vital to modern

technologies, yet remains challenging due to costly and time-consuming manufactur-

ing processes. These processes often involve tens of variables, resulting in hundreds

of thousands of possible experiments, with each experiment carrying significant re-

source costs. In such high-dimensional domains, traditional Edisonian, trial-and-error

approaches become prohibitively expensive and ine!cient at identifying optimal ex-

perimental conditions. Consequently, there is a critical need to shift from these

conventional methods to more systematic, data-driven decision-making.

Machine learning (ML) and operations research (OR) o”er promising approaches

to address these challenges through novel optimization frameworks. By building sur-

rogate models that capture the relationships between decision variables and targeted

objectives, ML enables predictive modeling of complex manufacturing processes. OR

then integrates these pre-trained models into a unified optimization framework, fa-

cilitating data-driven, rational, and scientifically grounded decisions that accelerate

product development while minimizing experimental costs.

In this work, we present an ML- and OR-based framework that combines Bayesian

optimization (BO) with first-principles knowledge. We demonstrate its e”ectiveness
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in solving industrial manufacturing optimization problems across additive manufac-

turing and thermoelectric material domains, including flash sintering, plasma sinter-

ing, and aerosol jet printing. Our framework accelerates the identification of optimal

experimental conditions while reducing both economic and labor costs. Moreover,

by incorporating physical knowledge in multiple ways, it is ideally suited for data-

scarce, customized, and expensive experiments. It is a general framework that is not

restricted to any single application domain.
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FIGURES

2.1 Bayesian optimization illustrative example. BO with EI is ap-
plied to the test problem f(x) = 0.0015x5

→0.055x4+0.65x3
→2.8x2+

3.0x+6.3 using a Squared Exponential kernel (kSE) with initial hyper-
parameter ωSE = 1. The left column shows the GP prediction mean
(black line) and 95% prediction intervals (grey regions), the unknown
function f(x) (red dashed line), and available training data for each
iteration (red dots). The right column shows the recommend opti-
mal sample (blue star) which maximizes the EI acquisition function
(green line). Iteration 1: We randomly select 4 data points within
search space 0 ↑ x ↑ 10 and train the GP model via MLE. We find
x̄1 = 9.0 maximizes EI. Iteration 2: We query f(x̄1) and corrupt
the observation with zero-mean normally distributed error with 0.1
standard deviation. We update/retrain the GP model using this new
observation and find x̄2 = 8.7 maximizes the EI. At this iteration, EI
favors exploitation. Iteration 3: After sampling f(x̄2) and updating
the GP model, we find x̄3 = 1.3. At this iteration, EI favors explo-
ration. Iteration 4: We sample f(x̄3), retrain the GP model, and
find x̄4 = 8.7, which again favors exploitation. Summary: Through
this example, we show BO can e!ciently sample the unknown function
f(x) near its two local maxima at x = 1.3 and x = 8.7 by balancing
exploration and exploitation. By comparing iterations 1 to 4, we see
the prediction intervals (grey regions) shrink as more observations are
added to the GP surrogate model. . . . . . . . . . . . . . . . . . . . . 12
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3.1 The proposed workflow integrates Bayesian optimization (BO) and
human intuition. The overall procedure contains three steps: Gaus-
sian process regression (GPR) model training (green box), expected
improvement (EI) calculation (blue box), and experimentalist down
selection and fabrication (yellow box). The BO is implemented in the
first two steps, and expert intuition is incorporated in the last one. The
dataset, D = (X,y), contains N samples of recorded sintering vari-
ables xi, which consist of voltage (xi1), pulse duration (xi2), pulse delay
(xi3), number of pulses (xi4), and thickness (xi5), and the correspond-
ing power factor yi. In each iteration, dataset D is provided to BO,
and d new experiments, {(xN+1, yN+1), . . . , (xN+d, yN+d)}, are selected
informed by human intuition, performed, and added to dataset D; the
procedure terminates when the expected improvement approaches zero
or the experimental budget is exhausted. . . . . . . . . . . . . . . . . 27

3.2 (a) Comparison of the measured and machine learning predicted power
factors for sintered films. The red dots and error bars correspond to
the GPR prediction mean and standard deviation. The black squares
and error bars show the measured power factor. (b)-(e) Heatmaps
show the sensitivity of the expected improvement (BO objective) as a
function of thickness and (b) voltage, (c) pulse duration, (d) number of
pulses, and (e) pulse delay time. The color scale from blue to red shows
the expected improvement, where the red region indicates the range
of optimal sintering variables. The black star marks the conditions of
experiment 32 which had the maximum measured power factor. . . . 37

4.1 Schematic illustration of experimental apparatus. (a) Under the given
applied voltage (Ua), input frequency (f) to a stainless-steel powered
electrode (brown rod) and a copper grounded electrode, and fixed jet
flow rate (Q), the DBD plasma jet is generated and propagates through
the dielectric tube, impinging on the sample surface with gap distance
(d). The substrate temperature is measured during the sintering pro-
cess with an IR camera. The inset is a photo of the reaction chamber
with a plasma jet impinging on the sample’s surface. (b) The on/o”
operating mechanism with pulse-on time (ton) and pulse-o” time (to!)
for each cycle determines the peak substrate temperature (Tmax). The
active sintering time tactive = number of cycles(n)↓ pulse-on time(ton)
for each experiment a”ects the film’s electrical conductivity (ε). . . . 50
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4.2 Optimization, machine learning, and data science tools are integrated
into an iterative workflow to identify constraints and improve objec-
tives. Phase 1 (green): The workflow started with a full factorial
design to collect dataset #1 (arrow 1) to identify how the onset voltage
and maximum voltage constraints depend on jet flow rate and input
frequency (arrow 2). Phase 2 (red): Then, the constraints were con-
sidered in Latin hypercube sampling (arrow 3) to form the initial nine
ITO samples and provide dataset #2 (arrow 4). The GPR model was
trained (arrow 5) and combined with pre-sintering constraints (arrow
6) to conduct an iterative optimization procedure (arrow 7). Phase 3

(blue): After identifying the variable values that produce the highest
SEI value (arrow 8), dataset #3 was used for two GPR models (arrow
9) to maximize the electrical conductivity and minimize peak substrate
temperature (arrow 10) in an iterative optimization procedure (arrow
11). The workflow terminates after successfully quantifying the Pareto
optimal trade-o”s between electrical conductivity and peak substrate
temperature, or the experimental budget is exhausted. . . . . . . . . 52

4.3 Operating envelope for Uon and Umax as a function of Q and f . Blue
and red dots represent experimental data, and the surfaces are the
prediction means of the GPR models for Uon and Umax, respectively. . 60

4.4 BO improves SEI. (a) Plot of the trajectory of SEI optimization over
8 rounds, with the peak experimental SEI value shown for each round.
(b)-(d) Plots of 2D sensitivity analyses for SEI, each with a fixed op-
timal experimental condition: (b) f = 45 kHz, (c) Q = 800 sccm,
and (d) Ua = 6.5 kV. The green, yellow, and black markers show the
experimental results from rounds 0 to 4, 5, and 7 to 8, respectively.
The closed markers represent experimental data, and the open mark-
ers represent projections of experimental data to the 2D plane in the
plot. The black dotted lines show the envelope constraints Umax(x

(1)

i )
and the white dotted lines show the global bound on Umax = 6.5 kV,
which is active in rounds 6-8. The error bars represent an uncertainty
of 4% for the SEI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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4.5 Multi-objective optimization of electrical conductivity and peak sub-
strate temperature. (a) Plot of the experimental data from the elec-
trical conductivity optimization, with the red dash-dotted line repre-
senting the experimental conductivity obtained via furnace sintering
at 300 °C as a reference. The black and blue dashed lines show Pareto
trade-o”s between electrical conductivity and peak substrate temper-
ature for a total sintering time of 60 min (black) and a projected total
sintering time of 30 min (blue). (b) Plot of a 2D sensitivity analysis for
ε with fixed Q = 800 sccm, f = 45 kHz, d = 2.5 mm, and to! = 70 s.
(c) Plot of a 2D sensitivity analysis for Tmax with fixed Q = 800 sccm,
Ua = 6.5 kV, f = 45 kHz, d = 2.5 mm, and n = 36. The error bars
represent an uncertainty of 9.36% for electrical conductivity and 2%
for the peak substrate temperature. . . . . . . . . . . . . . . . . . . . 65

4.6 Top-view SEM images of ITO thin films: (a) after pre-sintering but
before plasma jet sintering, (b) with the highest electrical conductivity
after plasma sintering in round 0 (Phase 3a), and (c) with the highest
electrical conductivity after plasma sintering in round 4 (Phase 3b).
The black regions in (a) and (b) are voids in the thin film. . . . . . . 69

5.1 Data science tools are integrated into an iterative workflow to postu-
late, select and calibrate the candidate models, resulting in the final
model with quantified prediction uncertainty. The workflow is adapted
from the literature [24–28] and starts with domain knowledge and pre-
liminary data on the film printing manufacturing process. This knowl-
edge is used to conduct the sensitivity analysis (arrow 1), exploring
the potential relation between decision variables and measurement.
These findings help postulate the physics-informed candidate model
library (arrow 2). Given the model library, identifiability analysis is
conducted (arrow 3) to determine if the parameters in each model can
be uniquely inferred from the given data. Next, parameter estimation
is conducted with identifiable models (arrow 4). Given the estimated
parameters for each candidate model (arrow 8), Akaike Information
Criteria (AIC) ranking recommends the best models that balance ac-
curacy and the number of parameters (arrow 9). Using the Fisher
information matrix (and its inverse, the parameter covariance matrix)
(arrows 5 and 6), MBDoE analysis recommends the most informative
new experiments (arrow 7). The down-selected model(s) (arrow 10)
and new experiment (arrow 11) provided new information to repeat the
entire procedure (arrows 3 to 5). The workflow terminates when the
experimental budget has been exhausted or the prediction uncertainty
for the selected model is adequately small (arrow 12). . . . . . . . . . 81
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5.2 (a) The schematic illustration of experiment apparatus. The voltage
U applied in the ultrasonic atomizer activates NPs ink to become an
aerosol jet, and the aerosol is mixed with the carrier gas flowrate Qa;
then, the sheath flowrate Qs in printhead projects the mixed particle
out; with the motion control system, the nozzle moves back and forth
at certain printing speed Vp to print multiple lines to form the film.
(b) The printed film. (c) The abstraction of the printed film with
thickness h, width d, and length l. The gaps between each line are
defined as printed gap w. . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 One-dimensional sensitivity analysis shows the e”ect of decision vari-
ables on the measured thickness h. (a) Voltage U acts like a threshold,
and follows a sigmoid function with thickness. Runs 2, 5, 6, 7, 8, 9,
and 10 are used from Table 5.2. (b) Printing speed vp is inverse propor-
tional to thickness considering the fixed film length and width. Runs
1, 2, 3, and 4 are used from Table 5.2. (c) The carrier gas flowrate Qa

is linear with thickness based on the one-dimensional sensitivity anal-
ysis. Runs 5, 11, 12, 13, 19, 20, 21, and 22 are used from Table 5.2.
(d) The sheath flowrate Qs has quadratic relation with thickness based
on the one-dimensional sensitivity analysis. Runs 5, 14, 15, 16, 17, 18,
and 20 are used from Table 5.2. In all subfigures, the lines show the
submodels evaluated with optimized parameters summarized in Table
C.2 in the SI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Parity plots showing prediction and experimental thickness for (a)
model 0, (b) model 3, (c) model 1, and (d) model 5, which were the
four best models selected by the AIC ranking. The optimal parameters
ω̂ are estimated via Eq. (5.11). . . . . . . . . . . . . . . . . . . . . . 99

5.5 This figure shows the sensitivity of A-, D-, and E-optimality metrics
for model 5 after a new experiment is added with Qa = 25 cm3

·min→1

and Vp = 1 mm · s→1 fixed. The color indicates the numerical value
of corresponding log10 optimality metrics. Row 1 shows figures only
considering original data, runs 1 to 22. Rows 2 to 5 consider these
prior data (runs 1 to 22) and one new experiment, and are labeled in
black dot (add run 23), star (add run 24), triangle (add run 25), and
square (add run 26), respectively. . . . . . . . . . . . . . . . . . . . . 104

5.6 This parity plot helps validate the models 0, 1, 3, and 5. The models
in the first column are trained with original data (blue triangle), runs
1 to 22; models in the second column are trained with original data
(blue triangles) and augmented data (green square), run 23. The red
dots show the validation experiments, runs 24 to 26. The error bars
are 95% PI which are calculated via Eq. (5.16). . . . . . . . . . . . . 106

5.7 This figure shows the sensitivity analysis of inverse design with fixed
U = 35 V using model 5. The first column is the mean prediction and
the second column is the corresponding 95% PI. . . . . . . . . . . . . 110
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5.8 This figure shows the comparison between optimal model 5 and GPR
performance in the validation process, the same setup as in Section
5.3.3; (a) and (b) are the leave-one-out cross-validation, while (c) and
(d) are the train-test split validation. The hyperparameters l↑ are
estimated via Eq. (5.30). . . . . . . . . . . . . . . . . . . . . . . . . . 111
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calculated via Eq. (5.16). The black stars, in (c) and (d), are the runs
1 to 26, from Table 5.2, projected into 2D space. . . . . . . . . . . . . 114

5.10 This figure shows the largest possible log10 D-optimality metric as a
function of the number of experiments for model 5. The red vertical
dashed line at n = 4 marks the number of parameters in model 5. The
black vertical dashed line marks the smallest number of experiment
suitables to estimate the model. The black star at n = 5 marks the
number of experiments chosen to compare model 5 and GPR. . . . . 116

5.11 This figure shows the comparison of train-test split prediction between
model 5 and GPR. The training data, blue triangles, are run 1, 18, 23,
24, and 25 from Table 5.2; the validation data, red dots, are the rest
21 experiments. The hyperparameters l↑ are estimated via Eq. (5.30). 117

5.12 This figure shows the heatmap comparison of model 5 and GPR using
five experiments, run 1, 18, 23, 24, and 25 from Table 5.2, with fixed
U = 35 V and Qs = 60 cm3

·min→1. The first column is the mean pre-
diction and the second column is the corresponding 95% PI calculated
via Eq. (5.16). The black stars, in (c) and (d), are run 1, 18, 23, 24,
and 25, projected into 2D space. . . . . . . . . . . . . . . . . . . . . . 118
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CHAPTER 1

INTRODUCTION

The design of chemical-based products and functional materials is vital to mod-

ern technologies. Examples include coatings, fertilizers, food additives[1], medicines,

engineered gene sequences[2], and functional devices[3]. However, developing these

products remains challenging due to costly and time-consuming modern manufac-

turing processes. For example, optimizing the sintering process for thermoelectric

materials (TE)[4] involves iterating in search space in O(106), where each requires

days of experimentation, specialized equipment, and costly resources. The O(106)

complexity arises from the combinatorial nature of the problem: the sintering pro-

cess is influenced by multiple interdependent variables, such as temperature, pressure,

heating rate, and material composition. Each variable can assume a range of values,

and the interactions between these variables exponentially increase the number of

possible experimental configurations.[5, 6] For instance, if there are six key vari-

ables, each with ten possible values, the total number of combinations scales as 106.

Traditional Edisonian trial-and-error approaches become prohibitively expensive and

ine!cient at identifying optimal experimental conditions in such high-dimensional

scenarios.

This challenge requires a paradigm shift from traditional Edisonian search toward

systematic, data-driven methodologies. Two fields—machine learning (ML) and op-

erations research (OR)—o”er complementary tools to address this need. However,

their integration remains underexplored in industrial manufacturing scenarios, es-

pecially in the thermoelectric material and additive manufacturing domain. This
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thesis sits at the intersection of these disciplines, proposing a novel framework that

integrates ML’s predictive capabilities with OR’s rigorous optimization strategies to

accelerate the discovery of optimal manufacturing conditions.

Machine learning refers to algorithms that learn patterns from data to make

predictions.[7] In chemical engineering and additive manufacturing, ML’s leverage its

ability to model complex, nonlinear relationships between process variables and target

outcomes. For example, surrogate models approximate expensive physics-based sim-

ulations or experiments, enabling rapid virtual testing of parameter combinations[8];

dimensionality reduction methods simplify high-dimensional datasets, uncovering la-

tent variables that govern material behavior[9]. However, purely data-driven ML

faces three main limitations in industrial settings. First, data scarcity is due to

highly customized manufacturing processes, leaving little historical data for train-

ing. Second, physical plausibility causes models to violate fundamental laws unless

constrained by domain knowledge. Third, interpretability in black-box predictions

hinders model adoption in safety-critical applications.

OR focuses on optimizing complex decision-making processes using mathemat-

ical and computational methods.[10] In manufacturing, OR methods enable sys-

tematic navigation of high-dimensional search spaces to identify conditions that

maximize performance while minimizing costs. For example, BO sequential bal-

ance exploration and exploitation for the global optimization of expensive black-

box functions.[11] Constraint optimization can incorporate domain-specific rules and

black-box ML models into optimization.[12] Multi-objective optimization balances

competing objectives, such as maximizing material functionality while minimizing

substrate temperature.[13] OR’s strength lies in its mathematical rigor and ability to

handle constraints, but it often assumes the existence of accurate models. In prac-

tice, manufacturing processes are too complex to model purely from first principles,

creating a reliance on data-driven approximations.
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This thesis bridges ML and OR by addressing a critical gap: optimizing high-

dimensional, constrained manufacturing processes when data is scarce and experi-

ments are expensive. While ML provides surrogate models to approximate process

behavior, OR provides the optimization frameworks to navigate the search space

strategically. Their integration is not merely sequential (e.g., train ML model, then

optimize) but deeply synergistic. Physics-informed ML models embedded domain

knowledge, allowing predictions adhere to physical laws and improving accuracy.

Constraint optimization allows OR algorithms to leverage ML models while enforcing

hard or soft constraints. Adaptive experimentation BO frameworks actively update

ML models with new data, dynamically refining the search strategy.

The main contributions of this thesis are as follows:

• A Bayesian optimization framework to enhance experimental design e!ciency
for improving product performance.

• A model-based design framework to accelerate the discovery of optimal exper-
imental designs for model identification.

• Validation of the e”ectiveness of combining first-principles and machine learning
for predictive modeling in data-scarce scenarios.

• Demonstration of the benefits of integrating first principles, machine learning,
and optimization in solving complex industrial optimization problems.

This thesis is organized to systematically address the integration of machine learn-

ing and operations research in manufacturing optimization. Chapter 2 comprehen-

sively reviews BO and its applications in chemical product design and functional

materials development, establishing foundational insights into its industrial applica-

bility. Chapter 3 introduces a BO framework with domain expertise to maximize TE

material performance in flash sintering, illustrating how expert intuition improves

search e!ciency in complex parameter spaces. Building on this, Chapter 4 formal-

izes the quantification of domain knowledge and integrates it with multi-objective

optimization, proposing a unified optimization framework for plasma sintering pro-
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cesses. Chapter 5 extends this methodology further by developing physics-informed

machine learning models and leveraging a model-based design of experiments (MB-

DoE) to identify optimal models with minimal experimental design. Finally, Chapter

6 summarizes the key contributions, discusses its implications for broad manufactur-

ing, and outlines future research directions in integrating operations research and

machine learning.
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CHAPTER 2

BAYESIAN OPTIMIZATION FOR CHEMICAL PRODUCTS AND

FUNCTIONAL MATERIALS

This chapter is based on previously published work:

Ke Wang and Alexander W Dowling. Bayesian optimization for chemical products

and functional materials. Current Opinion in Chemical Engineering, 36:100728, 2022.

2.1 Why is materials and product design optimization so challenging?

Chemical-based products and materials with specific functionalities are ubiquitous

in modern society and essential for many new technologies.[1, 2] Examples include

coatings, fertilizers, food additives[3], medicines, gene sequences[4], and functional

devices[5–7]. Yet the design of chemical-based products and functional materials

remains challenging. Often the design space is vast; for example, there are ap-

proximately 1023 drug-like molecules, of which only 108 have been synthesized.[8]

Moreover, chemical products and functional materials cannot be designed in isola-

tion; instead, multi-scale and multi-disciplinary design frameworks must account for

technical, economic, social, and environmental factors across manufacturing, use, and

end-of-life.[1] For example, engineering new functional materials (e.g., membranes)

to enable enhanced separations (e.g., water treatment, CO2 capture) should consider

how the new material will be integrated into devices, systems, and infrastructures.[9]

In computer-aided molecular design (CAMD), mathematical optimization is used to

e!ciently search through the vast molecular and materials design spaces to resolve
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(some) multiscale trade-o”s.[6, 10] Historically, the success of CAMD has been lim-

ited by the predictive accuracy of physical property models. Recently machine/deep

learning methods have shown great promise for predicting physical properties from

data and may revolutionize the computational design of chemical products and func-

tional materials.[11]

2.2 What is Bayesian optimization (BO)?

Bayesian optimization (BO) is a family of surrogate-assisted/derivative-free opti-

mization algorithms that use Bayesian probability theory to explicitly balance trade-

o”s between exploration and exploitation.[12] BO has two core components: a com-

putationally inexpensive stochastic surrogate model that emulates expensive compu-

tational or physical experiments and an acquisition function to determine the optimal

sequence of future experiments. [13] BO is typically deployed in a feedback loop with

experiments using the following general steps:

1. Identify the objective function(s) and decision variables (with bounds).

2. A space filling design (e.g., Latin hypercube sample) is generated and experi-
ments are performed.

3. The surrogate model is (re)trained using available experimental data.

4. Using the surrogate model, the acquisition function is maximized to recommend
the next experiment(s).

5. Experiment(s) are performed and added to the training data.

6. If the goal has not been attained and the experimental budget has not been
exhausted, GOTO step 3.

2.2.1 Gaussian process regression surrogate models

Gaussian Processes (GP) are the most popular surrogate models for BO.[14] Below

we summarize GP modeling following the notation of [15]; also see [16] for an excellent

introduction to GPs.
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LetD = {(xi, yi), |xi ↔ Rp, yi ↔ R, i ↔ 1, . . . , n} be a collection of n samples, where

the vector xi represents input variables (features) correspond to the observation yi.

For convenience, we denote the data D = (X,y) using matrix X = (x1, . . . ,xn) and

vector y = (y1, . . . , yn). We assume yi includes measurement error that is normal

distributed with zero mean and variance ε2. Mathematically, yi = f(xi) + ϖ and

ϖ ↗ N (0, ε2) where f(·) is an unknown function.

A Gaussian Process can be thought of as a collection of normally distributed

random variables that emulates the behavior of f(·) + ϖ:

f ↗ GP(m(x), k(x,x↓)) x,x↓
↔ Rp (2.1)

Here m(x) is the mean function; although often set to zero for computer science

applications (e.g., pattern recognition), the mean function is a natural way to incor-

porate physical relationships into the GP model. k(x,x↓) is the covariance or kernel

function. Eq. (2.2) defines three popular kernel functions: Matérn (kM), squared ex-

ponential (kSE), and rational quadratic (kRQ).[12] In Eq. (2.2a), ϱ = 5/2 and ϱ = 3/2

are two most popular Matérn kernels and Kv is a modified Bessel function.[17] Often,

ς ↔ Rp is the length-scale for the features x. Training hyperparameter ς gives insights

into the most important dimensions of x and is known as automatic relevance de-

termination. Alternatively, ς is may be treated as a scalar, i.e., the same for each

dimension of x, to reduce the number of hyperparameters.

kM (x,x↓) =
1

#(ϱ)2ω→1

[
2ϱ

p∑

j=1

(
xj → x↓

j

ςj

)2
]ω/2

Kω

[
2ϱ

p∑

j=1

(
xj → x↓

j

ςj

)2
]1/2

, ωM = (ς)

(2.2a)

kSE (x,x↓) = e
→ 1

2

∑p
j=1

(
xj→x↑j

ωj

)2

, ωSE = (ς) (2.2b)

kRQ (x,x↓) =

[
1 +

1

2φ

p∑

j=1

(
xj → x↓

j

ςj

)2
]→ε

, ωRQ = (φ, ς) (2.2c)
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Given training data (X,y) and values of the hyperparameters ω, one desires to

predict f↑ at new input values X↑. The key mathematical property of a GP is that

the outputs y and f↑ follow a multivariate normal (Gaussian) distribution:




y

f↑



 ↗ N








m(X)

m(X↑)



 ,




K(X,X) + ε2

I K (X,X↑)

K (X↑,X) K (X↑,X↑)







 (2.3)

Here K(·, ·) denotes the kernel matrix, which is the kernel function k evalu-

ated elementwise.[15] Exploiting analytical properties of the multivariate normal dis-

tribution (see [15, 16] for details) gives the following expected value (mean) and

(co)variance for the prediction f↑ corresponding to the new input matrix X↑:

µ↑(X↑) = E(f↑) = m(X↑) +K (X↑,X)

K(X,X) + ε2

I
→1

(y →m(X)) (2.4a)

!↑(X↑) = V(f↑) = K (X↑,X↑)→K (X↑,X)

K(X,X) + ε2

I
→1

K (X,X↑) (2.4b)

(For vector input x↑, we denote the posterior prediction mean and variance as scalars

µ↑(x↑) and ε2

↑(x↑), respectively.) Most importantly, GP models by construction quan-

tify prediction uncertainty via Eq. (2.4b). Furthermore, GPs are non-parametric re-

gression models which means the training data (X,y) are directly embedded into

the model. As consequence, a GP model interpolates between the training data and

the kernel function describes the prediction uncertainty as a function of distance (for

stationary models) from the training data.

2.2.2 GP training via hyperparameter optimization

The GP hyperparameters ω may be chosen based on modeler’s intuition (e.g., ε

corresponds to the random error of an experiment). In fact, Eq. (2.4) can be used to

make predictions with any valid values of ω (e.g., ς > 0, see [16] for details). Often,
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maximum likelihood estimation (MLE) is applied to further train the hyperparame-

ters ω.

log p(y | X, ω) = →
1

2
y
T
K(X,X)→1

y →
1

2
ln |K(X,X)|→

n

2
ln 2↼ (2.5)

In Eq. (2.5), p(y | X, ω) is the GP likelihood function. The log of the likelihood

function is nonconvex and often has many local maxima. Multi-start initialization

and cross validation are strongly recommended.

2.2.3 Acquisition functions balance exploration and exploitation

The main task for acquisition function (AF) is to find the optimal next experi-

mental conditions x̄ by balancing trade-o” between exploration and exploitation.[13]

When the AF is biased for exploration, it suggests x̄ near the current best known

decision x
+ to maximize f(x̄); conversely, when biased for exploitation, the AF rec-

ommends decisions with high prediction uncertainty. Expected Improvement (EI)

is the most popular AF for materials and product design BO, and is defined as the

expected value of max(f(x̄)→ f(x+), 0). When using a GP surrogate model for f(·),

EI is analytically calculated as follows[17]:

EI(x̄) =







µ↑(x̄)→ f


x
+

→ ↽)


$(z)

  
exploitation

+ ε↑(x̄)⇀(z)  
exploration

, ε↑(x̄) > 0

0, otherwise

(2.6a)

z(x̄) =






µ↓(x̄)→f(x+)→ϑ

ϖ↓(x̄)
, ε↑(x̄) > 0

0, otherwise
(2.6b)

Here $(z) and ⇁(z) are the cumulative and probability density functions for the

standard normal distribution, respectively, f(x+) is the largest measured value, i.e.,
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x
+ = argmax(f(x1), ..., f(xn)), and ↽ is an adjustable parameters. For large values of

↽, Eq. (2.6) favors exploration by placing less importance on the posterior prediction

mean µ↑(x̄) and thus increasing the relative importance of ε↑(x̄). Conversely, smaller

values of ↽ favor exploitation. Figure 2.1 shows BO applied to a test function using

EI with ↽ = 0 (no bias towards exploration).

2.2.4 Extension to other surrogate models and acquisition functions

As previously discussed, GP models are non-parametric and include the training

data (X,y). Unfortunately, the matrix inversions (often computed via Cholesky

decomposition) in Eq. (2.4) is often too computationally expensive with more than

10,000 observations without deploying specialized modeling and numerical techniques

(see Ch. 8 in [15]). Recent work focuses on adapting BO to deep learning models

better suited for large datasets.[18, 19] Other AFs including portfolio allocation,

entropy-based acquisition function, knowledge gradient, and mean objective cost of

uncertainty.[17] The general idea of balancing the trade-o” between exploration and

exploitation is universal across AFs, although the relative performance is problem

specific. Many practitioners start with EI and then explore other AFs as they develop

BO frameworks for new applications.

2.3 How can BO accelerate materials and product design?

Traditional materials and product design harmonize empirical data, scientific in-

tuition, and computational methods that describe the behavior of matter at the

atomistic and (macro)molecular behavior[20] to iteratively discover materials that

enable new products. Although successful, these methods rely on expensive and slow

computation and physical experiments. Moreover, it is di!cult for human-driven

scientific intuition to resolve trade-o”s in high-dimensional design space. BO-driven

inverse design frameworks systematically guide prevailing Edisonian workflows with
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Figure 2.1. Bayesian optimization illustrative example. BO with EI
is applied to the test problem

f(x) = 0.0015x5
→ 0.055x4 + 0.65x3

→ 2.8x2 + 3.0x+ 6.3 using a Squared
Exponential kernel (kSE) with initial hyperparameter ωSE = 1. The left

column shows the GP prediction mean (black line) and 95% prediction
intervals (grey regions), the unknown function f(x) (red dashed line), and
available training data for each iteration (red dots). The right column

shows the recommend optimal sample (blue star) which maximizes the EI
acquisition function (green line). Iteration 1: We randomly select 4 data
points within search space 0 ↑ x ↑ 10 and train the GP model via MLE.
We find x̄1 = 9.0 maximizes EI. Iteration 2: We query f(x̄1) and corrupt

the observation with zero-mean normally distributed error with 0.1
standard deviation. We update/retrain the GP model using this new

observation and find x̄2 = 8.7 maximizes the EI. At this iteration, EI favors
exploitation. Iteration 3: After sampling f(x̄2) and updating the GP

model, we find x̄3 = 1.3. At this iteration, EI favors exploration. Iteration
4: We sample f(x̄3), retrain the GP model, and find x̄4 = 8.7, which again
favors exploitation. Summary: Through this example, we show BO can
e!ciently sample the unknown function f(x) near its two local maxima at

x = 1.3 and x = 8.7 by balancing exploration and exploitation. By
comparing iterations 1 to 4, we see the prediction intervals (grey regions)

shrink as more observations are added to the GP surrogate model.
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artificial intelligence to accelerate molecular, materials, and product innovations.[21]

The previously described 6-step general BO workflow is easily adapted to inverse

design of new molecules, materials, or products with one or more tailored physical

properties by optimizing physical or computational experiments.

2.3.1 Molecular design and discovery

Artificial Intelligence (AI) o”ers new paradigms to systematically design and dis-

cover (macro)molecules with specific properties and functionality.[11] For example,

generative machine learning models including generative adversarial networks (GAN),

reinforcement learning (RL), recurrent neural networks (RNN), and variational au-

toencoders (VAE) are commonly used to propose new molecular structures.[11] For

brevity, we focus this review on Variational Autoencoder-based Bayesian Optimiza-

tion (VAE-BO), which was first proposed by Gómez-Bombarelli et al [22]. VAE

models were first proposed by Kingma et al[23] and have two main components. The

VAE encoder is an RNN or a similar deep learning model that converts string-like

molecular representations (e.g., SMILES strings) into a low to medium-dimensional

vector in continuous latent space. Similarly, the VAE decoder converts a vector in

the latent space into a string-like molecular structure. BO is then performed in the

continuous latent space. Unfortunately, many points in latent space do not map to

valid molecular structures. To overcome this challenge, Gri!ths et al [24] proposed

a constrained BO approach that uses an additional surrogate model to predict the

probability at each point in latent space corresponds to a valid molecule.

Table 2.1 highlights diverse applications of VAE and BO for materials design

including proteins[4], ligands (binding sites)[25], drug discovery[22, 24], and light-

absorbing organic molecules[26].

BO can be integrated with atomistic or (macro)molecular physics-based mod-

els to further accelerate materials design. For example, Tamura et al[27] used BO
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to estimate spin-spin interactions using magnetization curve synthesized by exper-

imental data, successfully selecting relevant terms of interactions from redundant

candidates with high accuracy. Ju et al[28] integrate atomistic Green’s function and

BO to maximize and minimize interfacial thermal conductance ultimately identify-

ing a non-intuitive optimal structure with 50% improvement. Yan[29] integrate high

throughput calculations with BO to discover atomistic SiGe alloy configurations with

extremely low thermal conductivity. Sestito et al [30] use multiobjective Bayesian

optimization to calibrate molecular dynamics force fields for polycaprolactone.

TABLE 2.1

RECENT APPLICATIONS OF BO IN MOLECULAR MODELING AND

DESIGN.

Ref. Application Finding Method

[22] Drug-like molecular
design

Seminal paper demonstrating VAE autoencoder with low
reconstruction error rates (i.e., generates few invalid
molecules) and proof-of-concept BO in molecular latent
space.

VAE-BO

[24] Drug-like molecular
design

Seminal paper demonstrating constrained BO to reduce the
number of invalid generated molecules in VAE model.

VAE-
CBO

[4] Protein sequence
design

Proposes VAE framework to capture complex protein
sequence-function relationships and applies BO to identify
mutations that optimize specific protein functions.

VAE-BO

[26] Organic light-
absorbing molecu-
lar design

Demonstrates VAE-BO framework trained on simple molec-
ular structures can generate complex molecular structures.

VAE-BO

[25] Ligand design VAE-BO identifies sub-regions of the ligand design space
with improved binding sites.

VAE-BO

[27] Magnetic material
design

Leverages BO to calibrate spin-spin interactions in molecu-
lar models using experimental data.

BO

[28] SiGe composite de-
sign

Use BO to identify a non-intuitive optimal structure for Si-Si
and Si-Ge composite which delivers 50% improved thermal
conductive compared to state-of-the-art.

BO

[29] SiGe composite de-
sign

BO identifies new layers structures to minimize the thermal
conductivity of SiGe alloys.

BO
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2.3.2 Smart and additive manufacturing

Under the emerging smart manufacturing paradigm, intelligent systems and robotics

are augmenting the synthesis and fabrication of new materials.[31] Additive manu-

facturing refers to layer-upon-layer fabrication processes controlled by an intelligent

system such as computer-aided design (CAD) model [32] and enables the creation

of new multi-functional materials that cannot be manufactured via conventional

methods.[33] However, optimizing smart and additive manufacturing processes is

challenging because these systems are often too complex to describe with physics-

based computational models. This is especially true for human-in-the-loop cyber-

physical systems. BO enables automated learning and self-optimization to address

this challenge.

BO improves smart and additive manufacturing systems, often an order of mag-

nitude fewer experiments (less data) than trial-and-error Edisonian search. [14] For

example, Nakano et al[5] optimized Li, Ca, Y, and Zr composition in solid electrolytes

to maximize Li-ion conductivity. They show BO with observations outperforms high

throughput trail-and-error search (169 observations). Lookman et al [34] applied BO

to minimize the thermal dissipation of shape memory alloys by optimizing the com-

position (Ni, Cu, Pd, Fe, Ti). Despite the vast search space with 800,000 possible

alloy compositions, discovers a novel alloy with 42% improvement in only 9 iterations

(with 4 alloy samples per iteration). Gongora et al[35] developed the Bayesian ex-

perimental autonomous researcher (BEAR) and demonstrate also a 60-fold reduction

in the number of experiments to optimize additive manufacturing structures versus

grid search.
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TABLE 2.2

RECENT APPLICATIONS OF BO IN SMART AND ADDITIVE

MANUFACTURING.

Ref. Application Finding Decision
Variables

[36] High performance concrete
formulation

Demonstrates inverse design by optimizing 7
variables and shows the prediction agree with
physicochemical measurements.

Quantity of
cement, water,
fly ash, etc.

[5] Solid electrolyte design BO only requires 40 experiments to max-
imize Li-ion conductivity compared to 169
with trail-and-error search.

Composition
of Li, Ca, Y,
Zr

[37] Mesoporous alloy design BO only required 47 experiments to optimize
catalytic activity.

Composition
of AcCl4,
PtCl4, PdCl4

[34] NiTi alloy design BO identifies novel alloy by e!ciently
searches over 800,000 possible compositions
using only 36 experiments.

Ratio of Ni,
Cu, Pd, Fe

[35] Additive manufacturing 5 out of 100 mechanical structures designed
by BO outperformed 1,800 designs generated
via grid search.

Number of hol-
low columns,
outer radius,
thickness,
twist angle

[38] 3D printing Optimized four printing variables with only
100 experiments. In contrast, full factorial
response surface optimization would have re-
quired up to 10,000 experiments.

prime delay,
print speed,
x-position,
y-position

[39] Multi-material 3D printed
composite solids

VAE-BO successfully optimizes macroscopic
elastic moduli in lattice structured composite
material.

Representative
volume ele-
ment (modeled
with VAE)

2.4 What are the current challenges and future opportunities?

2.4.1 Leveraging complex data

Experiments are often expensive and involve multiple data sources with complex

uncertainty structures; multi-fidelity BO is an emerging technique to systematically

fuse data from multiple physical or computational experiments.[17] The general idea

is to use inexpensive but less accurate models for initial exploration and transition

to higher-fidelity experiments to refine the search. This is done by leveraging the

correlation between low and high-fidelity experiments. For example, Herbol et al[40]
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recently proposed a BO framework to fuse data from multiple experiments using

the Pearson correlation coe!cient. Another challenge is heteroscedastic uncertainty

structures. Recall we previously assumed observations each observation is corrupted

by ϖi ↗ N (0, ε2) measurement error. We assumed this error was homoscedastic, i.e.,

it has constant (but perhaps unknown) variance ε2. Gri!ths et al[41] discuss the

benefits of using heteroscedastic uncertainty for BO.

2.4.2 BO with discrete decisions

Many materials and manufacturing optimization problems involve both discrete

and continuous decisions. However, a vast majority of BO frameworks only sup-

port continuous decision variables. Maximizing acquisition functions in a nonconvex

bounded continuous optimization problem is already challenging due to the pres-

ence of local minima. Extending BO to include discrete decisions yields a nonconvex

mixed-integer nonlinear optimization problem which is especially di!cult to solve

numerically. As a workaround, discrete decisions are relaxed to continuous variables,

the BO optimization problem is numerically solved, and rounding is applied.[42] Al-

though simple to implement, it is well known that rounding can yield sub-optimal

results. Alternatively, Zhang et al[43] proposed a latent-variable Gaussian process

(LVGP) to map discrete into numerical latent space in GP. They showed improved

prediction accuracy and lower computational times compared to rounding.

2.4.3 Batch experiment optimization

Often data is collected in parallel through high throughput screening (e.g., de-

position of films with continuous concentration gradients) or high-performance com-

puting. This requires BO to recommend the next experiments in batches.[44] One ap-

proach is to assemble batches from multiple local maxima of the acquisition function.[45]

Alternatively, Joy et al[46] train an ensemble of GP models with di”erent kernels
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and maximize the acquisition function for each GP model separately to assemble BO

batches. Batch BO remains an active research area.

2.4.4 Open-source software platforms

Special care is required when choosing a BO software platform for molecular de-

sign, material discovery, or manufacturing optimization. For example, COMBO[47],

one of the first open-source BO platforms, has not been actively developed for almost

three years. Similarly, pyGPGO[48] was last updated about two years ago. Three

packages most actively developed at the time of writing are ChemOS[49], BoTorch[50]

and pyOpt[51]. BO is a rapidly evolving methodology with new surrogate models and

acquisition functions proposed each year, and unfortunately, no single BO software

platform implements every innovation.

We recommend practitioners compare the features, documentation, and tutorials

for a handful of BO software platforms before starting each new project.
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CHAPTER 3

MACHINE LEARNING-ASSISTED ULTRAFAST FLASH SINTERING OF

HIGH-PERFORMANCE AND FLEXIBLE SILVER–SELENIDE

THERMOELECTRIC DEVICES.

This chapter is based on previously published work:

Ke Wang, Mortaza Saeidi-Javash, Minxiang Zeng, Zeyu Liu, Yanliang Zhang,

Tengfei Luo, and Alexander W Dowling. Gaussian process regression machine learn-

ing models for photonic sintering. In Computer Aided Chemical Engineering, volume

49, pages 1819–1824. Elsevier, 2022.

Mortaza Saeidi-Javash, Ke Wang, Minxiang Zeng, Tengfei Luo, Alexander Dowl-

ing, and Yanliang Zhang. Machine learning-assisted ultrafast flash sintering of high-

performance and flexible silver-selenide thermoelectric devices. Energy & Environ-

mental Science, 15:5093–5104, 2022.

3.1 Introduction

Flexible Thermoelectric Generators (TEGs) are promising candidates for devel-

oping self-powered wearable devices and industrial Internet of Things.[1–6] Flexible

TEGs are lightweight, compact, and maintenance-free solid-state energy convertors

with no moving parts that directly convert heat into electricity, and they can easily

conform to a variety of heat sources with curved surfaces (e.g., body heat). The e!-

ciency of thermoelectric (TE) materials largely depends on the dimensionless figure

of merit (zT ) defined as:
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zT =
ε · S2

κ
· T (3.1)

where S, ε, κ, and T denote the Seebeck coe!cient, electrical conductivity, ther-

mal conductivity, and absolute temperature, respectively.[7–9] Despite the significant

progress in thermoelectric materials to date, Bi2Te3-based alloys remain as dominant

materials for thermoelectric applications near room temperature, and the zT for n-

type TE materials still remains below or around unity at room temperature.[10, 11] In

addition, the scarcity of tellurium (Te) necessitates the development of new tellurium-

free thermoelectric materials for use in widespread industrial and wearable applica-

tions. Silver-selenide (Ag2Se) is a narrow band gap n-type chalcogenide and an ideal

candidate for room temperature applications owing to its high power factor (PF) and

low intrinsic thermal conductivity.[12–14]

Sintering is an essential step in materials processing to improve transport proper-

ties. In printed TE films, sintering transforms TE particles into a dense structure with

improved thermoelectric properties. Conventional thermal sintering requires hours of

processing time at elevated temperatures which hinders the widespread development

of flexible TEGs on organic substrates of low melting point (e.g., polymers, fabrics).

In addition, it hampers the high-throughput discovery and energy-e!cient manufac-

turing of high-performance TE materials with optimized compositions. Substantial

e”ort has been devoted to the development of innovative sintering methods, such as

microwave-assisted sintering, spark plasma sintering (SPS), chemical sintering, and

intense pulsed light (flash) sintering.[15, 16] Among these techniques, flash sinter-

ing using intense pulsed light is uniquely advantageous. For example, it is ultrafast,

energy-e!cient, and can sinter the TE films at elevated temperatures on low melting

point substrates without damaging the underlying substrate. Although flash sinter-

ing has been used for a variety of conductive materials such as silver, copper, and

graphene, it remains relatively underexplored on semiconducting nanomaterials, par-
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ticularly TE materials.[17, 18] Sintering of TE nanoparticles constitutes a complex

process involving solvent evaporation, decomposition of organic ingredients, forma-

tion of inter-particle conduction pathways, and densification, which highlights the

imperative role of optimized flash sintering variables on the resulting TE properties.

Previous e”orts to discover the optimum flash sintering variables relied on expert-

driven Edisonian trial-and-error search which is time and labor-intensive.[19] Enabled

by recent advances in machine learning, data-driven approaches such as Bayesian Op-

timization (BO) have rapidly permeated many fields including TE materials,[20, 21]

smart manufacturing,[20, 22] and molecular modeling of chemical products[23, 24].

Novel artificial intelligence (AI) systems enable automated prediction and optimiza-

tion of materials and additive manufacturing processes.[20–22] Moreover, machine

learning algorithms can both help intelligently maximize specific performance metrics

as well as aid in revealing the underlying physical mechanisms. Despite the renewed

interest and recent success of AI and machine learning, there are often significant

barriers in translating these methods into new application domains.

In this work, we integrate, for the first time, flash sintering with a Gaussian process

regression (GPR) machine learning model and BO to predict the optimum flash

sintering variables for n-type silver-selenide TE films that lead to maximum PF at

room temperature. The proposed methodology successfully optimized four sintering

variables – voltage, pulse duration, number of pulses, and pulse delay time – resulting

in a PF of 2205 µW/mK2, and a corresponding zT of 1.1 at room temperature

(among the highest in the reported flexible TE films) with a sintering time less than

1.0 second after only 32 experiment-machine learning iterations. This methodology

could be easily generalized to ultrafast and high-throughput flash sintering of a diverse

range of energy and electronic materials, as well as other manufacturing processes in

general.
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Figure 3.1. The proposed workflow integrates Bayesian optimization (BO)
and human intuition. The overall procedure contains three steps: Gaussian

process regression (GPR) model training (green box), expected
improvement (EI) calculation (blue box), and experimentalist down

selection and fabrication (yellow box). The BO is implemented in the first
two steps, and expert intuition is incorporated in the last one. The dataset,
D = (X,y), contains N samples of recorded sintering variables xi, which
consist of voltage (xi1), pulse duration (xi2), pulse delay (xi3), number of
pulses (xi4), and thickness (xi5), and the corresponding power factor yi. In

each iteration, dataset D is provided to BO, and d new experiments,
{(xN+1, yN+1), . . . , (xN+d, yN+d)}, are selected informed by human

intuition, performed, and added to dataset D; the procedure terminates
when the expected improvement approaches zero or the experimental

budget is exhausted.

3.2 Method

Figure 3.1 summarizes the Bayesian optimization framework we designed for op-

timizing thermoelectric (TE) materials via Gaussian process regression (GPR) and
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Bayesian optimization. We begin by defining the flash sintering dataset, which con-

tains five decision variables (voltage, pulse duration, number of pulses, pulse delay,

and thickness), all standardized alongside the power factor (the objective). A GPR

model is then used to capture the relationship between these experimental conditions

and their corresponding power factors. The hyperparameters of the GPR model,

specifically, the length scales for each feature and the noise variance are tuned by

maximizing either the log marginal likelihood or leave-one-out cross-validation crite-

rion. Finally, the expected improvement (EI) acquisition function is used to balance

exploration and exploitation when recommending new experiments that are most

likely to improve the power factor.

3.2.1 Decision variables, target, and data pre-processing

Flash sintering is a well-known technique for fabricating high-performance ther-

moelectric material that contains multiple controllable experimental conditions, de-

tails in A.1 in SI. Previous studies have indicated that the voltage (x1), pulse duration

(x2), number of pulses (x3), pulse delay (x4), and thickness (x5) are the most valu-

able experimental conditions, which we define as decision variables represented as

xi, where i denotes the sample order. The experimentalist starts with 7 experiments

to randomly fabricate TE devices and, based on the initial results, performs single-

variable control to optimize the experimental conditions to achieve the target (yi),

the power factor.

Let D = {(xi, yi)|xi ↔ R5, yi ↔ R, i ↔ {1, . . . , n}} be a collection of flash sintering

datasets, where the vector xi represents decision variables corresponding to the ex-

perimental result yi. For convenience, we denote the data D = (X,y) using matrix

X = (x1, . . . ,xn)T and vector y = (y1, . . . , yn)T . Each xi and yi has di”erent units;

directly applying them into GPR will degrade the model performance. The simplest

way to address this issue is by standardizing. Here, we use standardization to trans-
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form each decision variable and target to have a mean of zero and a unit standard

deviation:

z =
y → E(y)
Var(y)

. (3.2)

3.2.2 Gaussian process regression

During the experiment, randomness is unavoidable; it is natural to consider the

observed error (ε), which we assume is normally distributed with zero mean and

variance ε2, i.e., ε ↗ N(0, ε2). We incorporate this into the model as:

yi = f(xi) + ε, (3.3)

where f(·) is the objective function representing the behavior of di”erent experi-

mental conditions. This can be defined as a Gaussian process (GP):

f ↗ GP (m(x), k(x,x↓)), x,x↓
↔ Rd. (3.4)

For computational simplicity, we set m(x) to zero. The kernel function k(x,x↓)

determines the behavior of the GP. We use the radial basis function (RBF) kernel

for model fitting:

kRBF(x,x
↓) = exp


→
1

2

d∑

j=1

(xj → x↓
j)

2

ς2j


, (3.5)

where ςj is the length-scale for the j-th feature. To simplify, ςj can be set as a

scalar for human intuition, assuming equal importance across all features. However,

real-world scenarios often require varying importance for features. A smaller ςj in-

dicates higher importance of the corresponding feature. To find the optimal ς, log

marginal likelihood and cross-validation are used. The tuned results provide insights

into the most important features of x.
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Given new input values X↑ with corresponding predictions f↑, and training data

(X,y), the outputs y and f
↑ follow a multivariate normal distribution:




y

f
↑



 ↗ N








m(X)

m(X↑)



 ,




K(X,X) + ε2

I K(X,X↑)

K(X↑,X) K(X↑,X↑)







 , (3.6)

where K(·, ·) is the kernel function evaluated elementwise. The conjugacy prop-

erties of the Gaussian distribution yield the predictive results:

E(f↑) = m(X↑) +K(X↑,X)

K(X,X) + ε2

I
→1

(y →m(X)), (3.7)

Var(f↑) = K(X↑,X↑)→K(X↑,X)

K(X,X) + ε2

I
→1

K(X,X↑). (3.8)

3.2.3 Hyperparameter tuning

In this chapter, we consider exploring the performance of log marginal likelihood

(LML) and cross-validation (CV) for determining GPR hyperparameters ω in flash

sintering applications. LML uses all the training data D = (X,y) to find the ω that

maximizes the function, given by:

log p(y|X, ω) = →
1

2
y
T [K(X,X|ω) + ε2

I]→1
y →

1

2
log |K(X,X|ω) + ε2

I|→
n

2
log 2↼.

(3.9)

Cross-validation (CV) reduces the variance of the prediction evaluation. The

conjugacy property of GPR largely reduces computational cost; therefore, leave-one-

out cross-validation (Loo-CV) is adopted for evaluating the optimal ω that maximizes

the objective function LCV:
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log p(yi|X→i,y→i, ω) = →
1

2
log ε2

i →
1

2ε2

i

(yi → µi)
2
→

1

2
log 2↼, (3.10)

LCV(X,y, ω) =
1

n

n∑

i=1

log p(yi|X→i,y→i, ω), (3.11)

where X→i and y→i denote all data except sample i.

The length scales of the five decision variables are denoted by ς1, ς2, ς3, ς4, ς5,

respectively, and the observation error ε is set as a hyperparameter. We are leveraging

the existing dataset from prior study[19], see Table A.1 in SI, for an exploration

that excludes thickness as a feature; therefore, ς5, is temporarily omitted. Each of

these has a search region between (0, 1). The low-dimensional optimization (e.g., 5

variables) makes it computationally acceptable to apply a grid search. For higher

feature spaces, advanced optimization methods (e.g., gradient descent) are preferred.

3.2.4 Expected improvement

Expected improvement (EI) is a popular acquisition function to recommend an

optimal x↑ in a Bayesian Optimization (BO) framework. EI balances the trade-o”s

between exploration, i.e., choosing x↑ in regions with high uncertainty, and exploita-

tion, i.e., choosing x↑ in regions that will maximize f(x↑). EI achieves this balance by

computing the expected value of the improvement between f(x↑) and f(x+), where

x
+ is the experimental condition in dataset D that has the highest power factor.

Thus, mathematically:

EI(x↑) = E[max(f(x↑)→ f(x+), 0)]. (3.12)

By exploiting mathematical properties of the normal distribution, EI(x) has the

following analytic formula:
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EI(x↑) =






(µ↑(x↑)→ f(x+))$(z) + ε↑(x↑)⇀(z), if ε↑(x↑) > 0,

0, otherwise,

(3.13)

where

z(x↑) =






µ↓(x↓)→f(x+
)

ϖ↓(x↓)
, if ε↑(x↑) > 0,

0, otherwise.

(3.14)

Here, $(·) is the cumulative distribution function, and ⇀(·) is the probability den-

sity function, respectively, for the standard normal distribution. The GPR and BO

workflows were implemented in Scikit-learn. The entire workflow, including the in-

teraction between BO and human experts (experimentalists), is illustrated in Figure

3.1. The entire procedure, including hyperparameter tuning, training, and EI opti-

mization, requires less than 2 minutes on a MacBook with a 2.6 GHz Intel Core i7

CPU.

3.3 Results

3.3.1 Log marginal likelihood (LML) and leave-one-out cross-validation (Loo-CV)

identify similar hyperparameter values

Table 3.1 shows that we reached the same hyperparameter tuning results with

either LML or Loo-CV. The first two rows give the optimal hyperparameters of ς

when setting ε = 0.1 as a fixed parameter. The optimal ς in both frameworks are

exactly the same, which indicates that under the scenario of fixing observation error,

there is not much di”erence between the two methods for hyperparameter tuning,

at least for the flash sintering dataset. Conversely, the last two rows illustrate that

when ε is added as a hyperparameter, there is still no di”erence between the two
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TABLE 3.1

LML AND LOO-CV COMPARISON USING DATASET FROM TABLE

A.1 IN SI.

Method ς1 ς2 ς3 ς4 ε

ε fixed: LML 1 0.635 0.322 1 0.1

ε fixed: Loo-CV 1 0.635 0.322 1 0.1

ε tuned: LML 1 0.687 0.322 1 0.2

ε tuned: Loo-CV 1 0.687 0.322 1 0.2

methodologies.

One notable observation is that when adding ε as a tunable hyperparameter, ς2

increases from 0.635 in the ε-fixed model to 0.687, and ε itself increases from the

pre-fixed 0.1 to 0.2. This behavior reflects the trade-o” between bias and variance,

corresponding to the conclusion that relatively complex models (e.g., ς2 = 0.635)

usually obtain lower observation errors (e.g., ε = 0.1), while simpler models (e.g.,

ς2 = 0.687) have higher observation errors (e.g., ε = 0.2).

3.3.2 Retrospective and sensitivity analysis

Figure 3.2 demonstrates and explains the e!cacy of the GPR machine learning

model to predict the PF of flash sintered films as a function of four sintering variables

(voltage, pulse duration, number of pulses, pulse delay) and the thickness of the

silver-selenide films.

The predicted power factors in Figure 3.2(a) are generated iteratively (with con-

stant hyperparameters) using data from the prior experiments. For example, the

GPR prediction for experiment 7 uses data from the six prior experiments for train-
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ing. Out of the five variables (including four sintering variables, plus the thickness

of the film), the film thickness is the most challenging to control during the vac-

uum filtration process but most influential on GPR PF predictions. Table A.2 in

SI further divides the two groups of samples shown in Figure 3.2(a) with average

thicknesses of 2.6 µm to 12.5 µm into eight subgroups. Analysis of Figure 3.2(a)

and Table A.2 in SI shows the GPR rapidly learns the process-property relationship

and only needs one or two experiments in each thickness subgroup to make confident

predictions on experiment with close distance (each prediction is a “weighted sum”

of prior experiments). For example, experiments 14 to 22 are in the 9 µm thickness

subgroup; experiment 14 has high prediction uncertainty of ±545 µW/mK2 as there

is no prior experimental data for a sample with 9 µm. Experiment 15 has close dis-

tance with experiment 14; thus, after incorporating experiment 14 in the GPR model,

the prediction uncertainty of experiment 15 reduced to ±192 µW/mK2. Experiment

16 is far away in distance compared with both experiment 14 and 15, leading to high

prediction uncertainty of ±508 µW/mK2; comparing experiment 16 with experiment

14, the prediction uncertainty decreased 6.7% because the prior experiments 14 and

15 enhance the confidence of the GPR model. As more data are added to each thick-

ness subgroup near the optimal sintering conditions, one expects the GPR prediction

uncertainty to converge to the experimental measurement uncertainty. In addition,

Table A.2 in SI includes data for 8 experiments in which the thin film burned, due to

the excessive energy input, and the PF was measured to be zero. These experiments

are not shown in Figure 3.2(a) for clarity but were included in the GPR analysis.

Inspecting the GPR hyperparameters, l1 = 0.625 (voltage), l2 = 0.459 (pulse dura-

tion), l3 = 5 (number of pulses), l4 = 2.36 (pulse delay), and l5 = 0.0477 (thickness),

reveals that thickness is the most influential parameter for the flash sintering process

(the importance of a feature is inversely proportional to its length scale l) and the

thinner films typically have higher PF comparing similar thicker films. This is a re-
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markable finding, as thickness is controlled when preparing the thin films via vacuum

filtration and was not originally considered as a sintering optimization variable. As

aforementioned, the films with reduced thicknesses experience more uniform heat-

ing and sintering across the entire thickness, leading to dense microstructure, and

greater PF. These GPR results motivated the team to prepare the second group of

thinner films shown in Figure 3.2(a), which underscores the synergies between ex-

periments and machine learning modeling. Figures 3.2(b)-(e) show the sensitivity of

the expected improvement metric (objective for BO) as a function of thickness and

the other four flash sintering variables. Figure A.2 in the SI shows similar heatmaps

for the prediction mean, prediction uncertainty, and expected improvement over a

wider thickness range (1 to 16 µm). These heatmaps confirm that the GPR model

predicts a narrow thickness range, 2.2 µm to 2.6 µm, which maximizes the expected

improvement. Moreover, Figures 3.2(b)-(e) and Figure A.2 show voltage and pulse

duration are the second and third most influential factors on PF. Similarly, there is

a wide range of pulse delay time and number of pulses that give a high expected

improvement. This finding is consistent with importance of features indicated by the

length scales as well as the Pearson correlation matrix shown in Figure A.3. Fur-

thermore, the gradual improvement in PF in each thickness group emphasizes the

importance of optimizing all flash sintering variables. In this application, the film

thickness was determined by the vacuum filtration process. The GPR model was

then used to optimize the remaining four sintering variables with the thickness held

constant.

A key contribution of this work is the integration of BO recommendations and

expert intuition to maximize the PF of flash sintered silver-selenide TE films. To

illustrate this integration, consider the results from experiments 23 to 30 in the sec-

ond thickness group (2.6 ± 0.5 µm). Experiment 23 is chosen by intuition from

previous experiments 1 to 22 as it is the first experiment in 2.35 µm thickness sub-
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group. The GPR was then updated to incorporate the result from experiment 23

and BO recommend up to five optimal conditions for the next experiment, which

were then downselected by the experimental expert. Following this same procedure,

the conditions for the next eight experiments (24 to 32) were chosen, resulting in the

steady increase in power factor. The maximum PF was achieved at experiment 32

(see details of sintering conditions in Table A.2 in SI) which is the final experiment

in the sixth thickness subgroup (2.45 µm). We observed that the PF decreases for all

subsequent five sintering experiments which correspond to seventh and eighth thick-

ness subgroups (2.7 and 3.8 µm, respectively). One possibility, suggested by Figure

3.2(b)-3.2(e), is that there is a narrow range of thickness values, approximately 2.3 to

2.6 µm for which the PF is maximized. The final five experiments (and two thickness

subgroups) are outside this range.

3.4 Conclusions

In summary, we report the first machine learning-assisted ultrafast flash sintering

of flexible silver-selenide TE devices for energy harvesting applications. BO signifi-

cantly accelerated our findings of a set of intense pulsed light (flash) sintering vari-

ables leading to an ultrahigh power factor of 2205 µW/mK2, and zT of 1.1 at room

temperature realized with sintering time less than 1.0 second. Flash sintered films

demonstrate outstanding flexibility with 92% retention of the PF after 103 bending

cycles. The maximum power density of a six-leg TEG is 0.5 and 26.6 mW/cm2 at %T

of 10 K and 70 K, respectively. The ultrahigh-performance, low-cost, and highly flex-

ible silver-selenide TE films show great potential for energy harvesting and wearables.

Although this study focuses on the optimization of flash sintering for silver-selenide

TE devices, this machine learning-assisted experimentation strategy possesses the po-

tential for ultrafast sintering of other TE material systems (e.g., Bi2Te3, and Sb2Te3)

and roll-to-roll manufacturing of a broad range of energy, thermal, and electronic
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Figure 3.2. (a) Comparison of the measured and machine learning
predicted power factors for sintered films. The red dots and error bars

correspond to the GPR prediction mean and standard deviation. The black
squares and error bars show the measured power factor. (b)-(e) Heatmaps
show the sensitivity of the expected improvement (BO objective) as a
function of thickness and (b) voltage, (c) pulse duration, (d) number of

pulses, and (e) pulse delay time. The color scale from blue to red shows the
expected improvement, where the red region indicates the range of optimal
sintering variables. The black star marks the conditions of experiment 32

which had the maximum measured power factor.
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devices.

Besides, in this work, we successfully developed a GPR model for flash sintering

of TE material that can predict the majority of power factors around the experi-

mental results. We demonstrated that the two most popular frameworks are not

consequential for identifying the optimal hyperparameter ω, at least for our flash

sintering dataset. Specifically, the retrospective analysis supports using GPR as a

surrogate model in the Bayesian optimization framework, as GPR precisely predicts

the behavior of the objective function f(·). This capability enables combining GPR

with acquisition functions to choose the next experimental conditions that balance

the trade-o” between exploration and exploitation.

As demonstrated by these results, this study highlights the synergies between

machine learning-enabled Bayesian optimization and expert-driven Edisonian search.

Human intuition is critical to defining the BO problem by identifying the experi-

mental decision variables and their bounds. GPR is especially well-suited for sparse

noisy data arising from expensive experiments as GPR “intelligently interpolates”

from prior experiments. Early in the experimental campaign, we purposefully ex-

plored a mix of BO and human recommended sintering conditions. The latter helped

bias the search to consider unexplored regions of the decision space based on prior

knowledge. Late in the campaign, we used expert intuition to down select recom-

mended experimental conditions with similar EI scores. We found these strategies

to be less cumbersome than designing custom GPR kernels to incorporate said prior

knowledge. Moreover, this study demonstrates the robustness and flexibility of the

GPR strategy, as we successfully extended the GPR input space to include thickness

partway through the experimental campaign. While GPR models do not o”er full

mechanistic insights, analysis of the kernel length scales provides a relative impor-

tance of each input variable. We used this information to design one-dimensionally

sensitivity analyses near the optimal sintering conditions and perform the correspond-
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ing materials characterization to develop a mechanistic understanding of the results.

Moreover, emerging physics-based machine learning models can be incorporated into

the proposed framework. In our opinions, these synergies between machine learning

and expert intuition are key factors to success.
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CHAPTER 4

BAYESIAN OPTIMIZATION OF LOW-TEMPERATURE NONTHERMAL

PLASMA JET SINTERING OF NANOINKS

This chapter is based on previously published work:

Zhongyu Cheng, Ke Wang, Ali MN Tanvir, Wenjie Shang, Tengfei Luo, Yanliang

Zhang, Alexan- der W Dowling, and David B Go. Bayesian optimization of low-

temperature nonthermal plasma jet sintering of nanoinks. ACS Applied Materials &

Interfaces, 16(35):46897–46908, 2024.

4.1 Introduction

Flexible devices are widely used as wearables, sensors, and touch screens due to

their stretchability, transparency, and biocompatibility.[1–4] Such devices are typ-

ically developed using deposited inks containing active nanomaterials (nanoinks).

While electronic metals such as gold[5], silver[6], and copper[7] are the most com-

mon nanoinks, semiconductor materials increasingly play a more critical role in these

devices[8]. Once deposited, the nanoink films must be sintered before being fabricated

into functional devices[9]. Conventional sintering methods require high temperatures,

high pressures, and long sintering times[10–13], making them unsuitable for delicate

and thermally sensitive substrates[10, 14] or for emerging printing methods that can

conformally deposit nanoinks on complex surfaces[15]. Sintering methods that oper-

ate at low temperatures and atmospheric pressure can be conducted in place, making

them attractive alternatives to conventional furnace-based techniques.
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Non-thermal plasma-based sintering is an emerging technique that has been demon-

strated for both silver (Ag)[10, 16–18] and copper (Cu)[19] nanoink thin films. A

non-thermal plasma is a non-equilibrium ionized gas, where free electrons are at high

energies ( 1-10 eV) while ions and neutrons remain cooler ( 0.01 eV)[20], provid-

ing a very reactive environment of ions, electrons, excited neutrals, and photons.

Importantly, under proper conditions, the plasma itself can stay at or near room

temperature, making it suitable for processing on thermally sensitive surfaces. To

that end, there have been a few examples of plasma jet-based sintering on surfaces

such as polymers[16–18] and the flesh of fruit[10]. Turan et al.’s work, for example,

demonstrated that pulsing an atmospheric-pressure plasma jet on and o” with a rel-

atively slow frequency ( 10-2 Hz) maintained the substrate temperature close to room

temperature[10].

While plasma jet sintering has been demonstrated for Ag and Cu nanoinks, it

is not clear a priori that the same conditions would be optimal for semiconduc-

tor nanoinks. Moreover, plasma jet sintering has many degrees of freedom, and

the relationships among experimental variables are non-linear, making Edisonian

(trial-and-error) or heuristic (rule-of-thumb, one-factor-at-a-time) optimization in-

su!cient. Other researchers have employed machine learning methodologies[21, 22]

and related modeling strategies to plasma processing techniques, including appli-

cations to plasma medicine[23, 24], plasma etching[25], simulation of plasmas, and

plasma deposition[26]. Plasma jet sintering is another plasma processing application

that could benefit from these more systematic optimization approaches.

Three main categories of optimization methodologies are commonly applied to

manufacturing: experimental empirical investigations[27], physics-informed glass-box

optimization[28–30], and data-driven black-box machine learning (ML) optimization[31–

33]. Empirical investigations typically rely on one-dimensional sensitivity analyses

to experimental conditions, which often cannot result in complex multivariate inter-
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actions and can be highly biased towards expert intuition. Glass-box optimization

relies on predictive physics-informed models, which are often di!cult to postulate,

train, and validate, especially for complex systems where the physical phenomena are

not fully understood or computationally expensive to model. This motivates data-

driven optimization, which relies on ML models to predict the outcome of experi-

ments. Many data-driven black-box models require vast datasets (e.g., deep neural

networks) and lack physical interpretability. Gaussian process regression (GPR)[34],

physics-informed ML[35, 36], and hybrid models[37] are popular because of their

reduced data requirements for optimization[38–40].

This work develops and demonstrates a systematic optimization method leverag-

ing scientific knowledge and ML for non-thermal plasma sintering, using indium tin

oxide (ITO) nanoink as a model N-type semiconductor material. Starting with a full

factorial experiment design, we identified the constraint envelope for stable plasma

jet operation. These constraints are subsequently utilized in a constrained Bayesian

Optimization (BO) scheme to maximize the specific energy input (SEI) of the plasma

jet. Finally, single- and multi-objective optimization schemes maximized the sintered

electrical conductivity while maintaining the substrate temperature below 50 C by

manipulating seven sintering decision variables. Ultimately, these results establish

the utility of BO to emerging plasma processing techniques for new technology areas.

4.2 Experimental methods

4.2.1 Preparation of ITO thin films

We used a commercial nanoink consisting of an ITO nanoparticle water dispersion

(US Research Nanomaterials Inc, ITO, In2O3:SnO2 = 90:10, 20–70 nm, 20wt%) as

the raw material for fabricating the ITO thin films. The ITO nanoink was deposited

onto glass substrates (25 ↓ 25 mm2, 1 mm thick) by blade coating with a micrometer-
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adjustable film applicator (MTI, EQ-Se-KTQ-50) and using a PDMS mask (20 µm

thickness). Before applying blade coating, the glass substrates were cleaned with

acetone (MilliporeSigma, acetone ACS reagent, ↘ 99.5%) and dried by air jet. To

ensure the films’ thicknesses were uniform, we also used an injector to deposit 0.01

mL of the liquid ITO dispersion onto the substrate for each sample. The dimensions

of the ITO films were 3 ↓ 3 mm2. After being coated, the ITO nanoink was in a

liquid state and dried at 60 °C for 1 min in open air using a hot plate (VWR, 97042-

634 STD) prior to sintering. Note that this process did not influence the resistances

of ITO samples prior to sintering, and they all had what we term non-measurable

electrical conductivity, with magnitudes much greater than M&.

4.2.2 Non-Thermal plasma jet sintering apparatus

A similar plasma jet sintering apparatus as developed in prior work[10] was used

here, as shown in Figure 4.1. A cylindrical volume dielectric barrier discharge (DBD)

plasma jet configuration was employed with a quartz tube with an inner diameter

of 4.7 mm and an outer diameter of 7.0 mm. An external concentric copper tape

was used as the ground electrode, and a 1.2 mm diameter stainless-steel rod secured

axially down the center of the quartz tube was used as the high-powered electrode.

Argon gas (Ar, 99.999%) was used as the working plasma jet gas and controlled by

a mass flow controller (Omega FMA5500A). The plasma jet was expelled into a 4

↓ 4 ↓ 4 cm3 transparent acrylic chamber, which served as a controlled environment

to avoid the influence of air during the sintering process. Prior to each experiment,

the chamber was flushed with Ar for five minutes at a flow rate of 800 sccm. The

ITO sample was a!xed to the opposite side of the acrylic chamber, and the distance

from the outlet of the quartz tube to the substrate was variable. To monitor the

temperature of the substrate, an infrared (IR) camera (FLIR T420) was directed at

the back of the substrate[10], which was covered with 0.2 mm thick black tape with
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an emissivity of 0.92 and recorded the substrate temperature as a function of the

experiment running time.

The DBD plasma jet was operated using a sinusoidal waveform over frequen-

cies ranging from 35 to 70 kHz. The applied high voltage was regulated through a

transformer (CMI-5533) and a power amplifier (Powertron, model 50A, RF Ampli-

fier), with the input frequency adjusted via a function generator (Agilent 33220A).

The applied voltage was measured using a high-voltage probe (Tektronix P6015A)

connected to a digital oscilloscope (Tektronix TBS 2000). As in previous work[10],

the plasma jet was pulsed on and o” to control the substrate temperature (Figure

4.1b), with the pulsing automated by a MATLAB program connected to the function

generator.

As a benchmark, ITO samples were also sintered in a tube furnace (Thermcraft,

XST-2-0-12-1V1-F04) at 300 °C with air as the gas atmosphere. We tested furnace

sintering at temperatures of 47 °C, 100 °C, 200 °C, 300 °C, and 400 °C, with sintering

durations of 18 min (same as the active sintering time of our best plasma jet sintering

result), 1 h (same as the total experimental time of our best plasma jet sintering

result), 2 h, 3 h, and 4 h. It took 30 seconds to 2 minutes for the furnace’s temperature

to heat up from room temperature to the specified sintering temperature. When the

furnace sintering process was done, we opened the furnace and immediately took the

ITO samples out of the furnace. Then, we let the furnace cool down naturally to

room temperature before conducting a new furnace sintering test. We found that at

47 °C, the sample electrical conductivity was non-measurable, no matter how long

the sintering duration was. At 100 °C, the sample electrical conductivity showed

no appreciable increase unless the sintering duration was longer than three hours.

At 400 °C, the ITO samples were damaged, especially after sintering for over three

hours. We found that 300 °C for a sintering duration of three hours resulted in the

highest electrical conductivity without damaging the samples; we used this as our
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furnace sintering benchmark. ITO samples were fabricated using the same method

and dimensions and underwent the same pre-sintering drying process. We sintered

three ITO samples under the same sintering condition each time. They were set

in a quartz boat (MTI, H-EQ-QB-1042) and put into the tube furnace for furnace

sintering.

Sintered ITO samples were evaluated by measuring the electrical conductivity, ε,

based on their resistance and thicknesses, which can be expressed as:

ε =
1

▷
=

a

R · A
, (4.1)

where ▷ (&·m) is the resistivity of the sample, a (mm) is the length of the sample’s

edge in the direction of electrical current, A is the cross-sectional area through which

the electrical current flows, and R (&) is the resistance of the sample, measured using

a 2-probe resistance measurement with an AMPROBE digital multimeter (CAT III).

The cross-sectional area is based on the thin film thickness l (µm), measured with

an optical profilometer (Filmetrics Profilm3D).

Typically, for thin square films, the 4-probe Van der Pauw method is used to

measure the resistance of the thin film. In this work, we utilized a 2-probe approach,

described in detail in Section B.1 of the Supporting Information (SI), which has

been used before for aluminum-doped zinc oxide thin films[41] and ITO thin films

fabricated by electron beam evaporation[42]. While 2-probe resistance measurements

enable rapid measurements to accelerate training data for ML and BO, a major draw-

back of the technique relative to 4-probe measurements is reduced accuracy caused by

contact resistance. To minimize contact resistance, we used conductive silver paint

(Spi, 05001-AB) to create contact pads at the four corners of the ITO sample after

the sintering process. The untreated blade-coated ITO samples had resistances in the

M& range, and after plasma jet sintering, they were in the k& range, such that the

impact of contact resistance was deemed relatively small. This trade-o” was deemed
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acceptable for this study, but the limitations of the approach were acknowledged.

Therefore, we only compare conductivity values relative to others within our study

rather than comparing absolute values in the literature. The surface morphology of

the samples was characterized by a scanning electron microscope (Thermo Scientific

Helios G4 UX dual beam microscope).

4.2.3 Plasma jet sintering variables

As Figure 4.1 shows, seven decision variables most significantly a”ect plasma jet

sintering performance: the plasma jet flow rate (Q, sccm), the applied peak-to-peak

voltage (Ua, kV), the frequency (f , kHz), the gap distance between the outlet of

the dielectric tube and the sample surface (d, mm), the pulse-on time (ton, s), the

pulse-o” time (to!, s), and the number of cycles of plasma jet operation (n). Once

in operation, the transient plasma current and voltage can be used to determine the

plasma power P via:

P = f ·

 f

0

Ua(t) · I(t) dt, (4.2)

where Ua(t) and I(t) are the applied peak-to-peak voltage and measured plasma

current, respectively.

Three key output observables were monitored to determine the sintering per-

formance: the electrical conductivity (ε, S m→1), the peak substrate temperature

measured during the sintering process (Tmax, °C), and the total experimental time

(ttotal, s), which is the product of the number of cycles and pulse period:

ttotal = n · (ton + to!). (4.3)

The specific energy input (SEI, eV atom→1) is often used to quantitatively char-

acterize a plasma process[43], and can be calculated by the ratio of the plasma power
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to the flow rate[43]:

SEI =
P

Q
. (4.4)

Physically, the SEI describes the energy deposited by the plasma per particle in

the plasma, and prior work has shown that plasma jet sintering performance follows

an Arrhenius-like relationship with the SEI. Three decision variables, Q, Ua, and f ,

determine the SEI[44], and therefore, it is reasonable to start by optimizing these

three variables to maximize SEI. These variables can then be set to fixed values

when further optimizing the other four variables in the plasma jet sintering process.

We hypothesize this heuristic decomposition makes our entire optimization process

e!cient, with fewer experiments required overall.

4.2.4 Uncertainty analyses for the repeatability of plasma jet sintering experiments

As discussed in the ensuing sections, the optimization process occurred in three

phases. When determining the operating envelope for the onset voltage (Uon) and

maximum voltage (Umax) as a function of jet flow rate (Q) and input frequency (f),

the systematic uncertainty in Uon and Umax of each experimental condition was based

on the resolution of the Tektronix TBS 2000 oscilloscope, which is 3%. For the

optimization of SEI, the systematic uncertainties in current and voltage were again

based on the resolution of the Tektronix TBS 2000 oscilloscope, and the systematic

uncertainty in jet flow rate was based on the accuracy of the Omega FMA5500A mass

flow controller, which is 1%. Precision uncertainty was quantified at 95% confidence

for N = 3 experiments under each condition. The combined uncertainty of SEI was

↑ 4% for each condition.

Initial plasma jet sintering experiments consisted of nine di”erent sintering condi-

tions (see Table B.1 in the SI). Each sintering condition was repeated in triplicate to
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Figure 4.1. Schematic illustration of experimental apparatus. (a) Under the
given applied voltage (Ua), input frequency (f) to a stainless-steel powered
electrode (brown rod) and a copper grounded electrode, and fixed jet flow
rate (Q), the DBD plasma jet is generated and propagates through the

dielectric tube, impinging on the sample surface with gap distance (d). The
substrate temperature is measured during the sintering process with an IR
camera. The inset is a photo of the reaction chamber with a plasma jet
impinging on the sample’s surface. (b) The on/o” operating mechanism
with pulse-on time (ton) and pulse-o” time (to!) for each cycle determines

the peak substrate temperature (Tmax). The active sintering time
tactive = number of cycles(n)↓ pulse-on time(ton) for each experiment

a”ects the film’s electrical conductivity (ε).

quantify experimental variability. According to Eq. (4.1), the electrical conductivity

of a sintered ITO sample depends on the film’s resistance and thickness. There-

fore, the error primarily came from the measured 2-probe resistance value and the

measured film thickness, considering both precision and systematic contributions us-

ing standard error propagation approaches[45]. Precision uncertainty was quantified

at 95% confidence for N = 3 experiments. The uncertainty range across all nine

sintering conditions was 4.55% to 9.36% (see Table B.1 in the SI), revealing the over-

all repeatability of the process under a wide variety of conditions. The maximum
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uncertainty of 9.36% was assumed for subsequent rounds of plasma jet sintering ex-

periments, where only one experiment was conducted for each set of conditions. The

uncertainty in peak substrate temperature (Tmax) measurements was based on the

2% accuracy of the FLIR T420 infrared camera.

4.3 Machine learning and optimization methods

4.3.1 Optimization workflow

Delicate and thermally sensitive substrates are more susceptible to damage as the

temperature increases during sintering. On the other hand, a higher specific energy

input (SEI) indicates more plasma power deposited per gas particle in a plasma jet.

Consequently, when a high-SEI plasma jet interacts with the surface of a sample, it

results in an increased transfer of energy from the plasma jet to the sample, poten-

tially leading to an increase in the substrate temperature. Therefore, it is necessary

to e”ectively manage the balance between achieving optimal electrical conductivity

through plasma jet sintering and maintaining the lowest maximum substrate tem-

perature.

Our overall goal was to maximize the electrical conductivity of sintered ITO

samples while controlling the substrate temperature below a threshold of 50 °C.

The seven decision variables shown in Fig. 4.1 led to a challenging high-dimensional

optimization problem with complex physical interactions between decision variables

that are hard to disentangle.

We leveraged our experience with the plasma jet sintering process to decompose

the optimization problem into three phases to reduce the total number of required

experiments. In the proposed workflow (Fig. 4.2), we gradually increased the com-

plexity of the optimization problem in each phase from two to three and ultimately

to seven decision variables. Phase 1 started with a full factorial design to explore the
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Figure 4.2. Optimization, machine learning, and data science tools are
integrated into an iterative workflow to identify constraints and improve
objectives. Phase 1 (green): The workflow started with a full factorial

design to collect dataset #1 (arrow 1) to identify how the onset voltage and
maximum voltage constraints depend on jet flow rate and input frequency
(arrow 2). Phase 2 (red): Then, the constraints were considered in Latin
hypercube sampling (arrow 3) to form the initial nine ITO samples and

provide dataset #2 (arrow 4). The GPR model was trained (arrow 5) and
combined with pre-sintering constraints (arrow 6) to conduct an iterative
optimization procedure (arrow 7). Phase 3 (blue): After identifying the
variable values that produce the highest SEI value (arrow 8), dataset #3

was used for two GPR models (arrow 9) to maximize the electrical
conductivity and minimize peak substrate temperature (arrow 10) in an

iterative optimization procedure (arrow 11). The workflow terminates after
successfully quantifying the Pareto optimal trade-o”s between electrical
conductivity and peak substrate temperature, or the experimental budget

is exhausted.

operating limitations of our plasma jet system and identify the constraint envelope,

considering the interactions between jet flow rate (Q) and input frequency (f) on the

onset (Uon) and maximum (Umax) voltages. Phase 2 applied the envelope constraint

to a constrained Bayesian Optimization (CBO) procedure to identify the plasma jet

flow rate (Q), applied voltage (Ua), and frequency (f), achieving the highest SEI
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value. Phase 3 consisted of two steps. In Phase 3a, we fixed Q, Ua, and f to the

values that provided us with the highest SEI in Phase 2 and optimized the remaining

four decision variables, gap distance (d), pulse-on time (ton), pulse-o” time (to!), and

number of cycles (n), to maximize the electrical conductivity (ε). In Phase 3b, we

optimized all seven variables, considering both objectives: maximizing electrical con-

ductivity and minimizing peak substrate temperature. Figure B.2 in the SI visualizes

the model structure, including all the decision variables in our optimization process,

which is consistent with the workflow shown in Fig. 4.2.

Phase 1: Establish Plasma Jet Operating Envelope. To maintain a stable plasma

jet, the applied voltage (Ua) must be between the onset voltage (Uon), the minimum

voltage required to induce gas breakdown, and the maximum voltage (Umax), which

is the upper limit beyond which the plasma jet transitions into attached streamers to

the substrate. Uon and Umax depend on Q and f via mechanisms that are challenging

to model with first principles. Instead, we trained two data-driven Gaussian Process

Regression (GPR) models. We selected seven uniformly spaced levels for Q and f and

applied a full factorial design[46]. For each experiment (Q and f value), it took one

minute to measure Uon and Umax. We denoted this dataset asD1 = {(x(1)

i ,y(1)

i ) |x(1)

i ↔

R2,y(1)

i ↔ R2
}, where x

(1)

i = (Q, f) and y
(1)

i = (Uon, Umax), which are summarized

in Table B.2 of the SI. For simplicity, we denoted D1 = (X(1),y(1)) using matrix

X
(1) = (x1, . . . , xn) and vector Y(1) = (y1, . . . ,yn).

Phase 2: Maximize Specific Energy Input. Turan et al.[43] proposed an Arrhenius-

like dependence between the electrical conductivity of silver nanoink thin films and

the SEI, which can be expressed as:

ε ≃ exp

(
→

1

SEI

)
. (4.5)

Thus, maximizing SEI is a good proxy for maximizing ε. The SEI value is pri-

marily determined by three decision variables: Q, Ua, and f [43]. We began with
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nine experiments identified through Latin hypercube sampling (LHS) to populate

the search space with starting values for all seven decision variables and initial sin-

tered electrical conductivities. Then, we utilized the Q, Ua, and f information from

this initial LHS dataset to start the SEI optimization process using (constrained)

expected improvement, where each SEI experiment only took five minutes. We de-

noted the dataset as D2 = {(x(2)

i , y(2)i ) |x(2)

i ↔ R3, y(2)i ↔ R}, where x
(2)

i = (x(1)

i , Ua)

and y(2)i = SEI. The corresponding dataset is summarized in Table B.3 in the SI and

denoted D2 = (X(2),y(2)).

Phase 3a: Maximize Electrical Conductivity. Direct optimization of both ε and

peak substrate temperature (Tmax) is a complicated task. The absence of prior studies

on non-thermal plasma jet sintering’s e”ectiveness for ITO thin films presented a

considerable risk to the simultaneous optimization of all decision variables. Thus,

we first maximized ε without considering Tmax. Using the findings from Phase 2,

we fixed Q, Ua, and f , x(2)

↑ , to the values obtained in Phase 2, which maximize

SEI. This reduces the dimensionality of Phase 3a to only four decision variables (d,

ton, to!, n). We started with the nine LHS experiments from Phase 2. The dataset

used in Phase 3a is denoted as D3 = {(x(3)

i ,y(3)

i ) |x(3)

i ↔ R7,y(3)

i ↔ R2
}, where

x
(3)

i = (x(2)

↑ , d, ton, to!, n) and y
(3)

i = (ε, Tmax). Thus for all Phase 3a experiments,

while we only maximized ε, we also recorded the peak substrate temperature Tmax.

The corresponding dataset is summarized in Table B.4 in the SI and denoted D3 =

(X(3),y(3)).

Phase 3b Maximize Electrical Conductivity and Minimize Peak Substrate Tem-

perature. After three successful rounds of maximizing ε (Phase 3a, single objective),

we continued two rounds of bi-objective optimization considering all seven decision

variables, where x(3)

i = (x(2)

i , d, ton, to!, n). Phase 3b established the Pareto trade-o”s

between electrical conductivity and peak substrate temperature constrained by the

total experimental time. The corresponding results are summarized in Table B.4.
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4.3.2 Gaussian process regression

A Gaussian Process Regression (GPR) model is a non-parametric model that

learns from data directly[47]. We assumed yi includes measurement error that is

independent and identically normally distributed with zero mean and variance ε;

mathematically, i = f(xi) + ε and ε ↗ N (0, ε2), where f : X ⇐ R is an unknown

function. Assuming f follows a Gaussian process, i.e., f ↗ GP(m(x), k(x,x)), where

the mean function m : X ⇐ R is the expected value of the output variable given

the input variables, and the kernel (covariance) function k : X ↓ X ⇐ R measures

the degree of similarity between di”erent output values given di”erent input feature

values. To predict the output variable of a new experiment, f(x↑), at conditions x↑,

given dataset D, we have:




y

f



 ↗ N








m(X)

m(x↑)



 ,




K(X) + ε2I k(X,x↑)

k(x↑,X) k(x↑,x↑)







 . (4.6)

Applying Bayes’ rule of probability[48], f(x↑) ↗ N (m(x↑), k(x↑,x↑)), the ana-

lytical formula for the prediction mean µ↑(x↑) and prediction variance (uncertainty)

ε2

↑(x↑) are given by:

µ↑(x↑) = m(x↑) + k
↔(x↑,X)[K(X,X) + ε2

I]→1(y →m(X)), (4.7)

ε2

↑(x↑) = k(x↑,x↑)→ k
↔(x↑,X)[K(X,X) + ε2

I]→1
k(X,x↑). (4.8)

The kernel function k(·, ·) with hyperparameters h describes the similarity be-

tween input variables. Here, we applied the commonly used radial basis kernel func-

tion, k(x, x↓) = exp

→

|x→x↑|2
2·h2


, where p is the degree of freedom for the input vari-

ables. The hyperparameters h, also called length scales, determine the relevance

of the input variables; if the length scale has a relatively large value, the kernel
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(covariance) function k(x, x↓) will depend less on the input variables. Researchers

often remove irrelevant input variables[49] using automatic relevance determination

methods[50]. The optimal length scales h↑ are determined by maximizing the log

marginal likelihood (LML):

logP (y | X, h) = →
1

2
y
↔[K(X,X | h)+ε2

I]→1
y→

1

2
log

∣∣K(X,X | h) + ε2
I
∣∣→n

2
log 2↼.

(4.9)

The typical approach for hyperparameter h↑ optimization is the multi-start strat-

egy with the quasi-Newton method[51], and the mean function is set to zero, i.e.,

m : X ⇐ {0}. Here, we developed the GPR model using scikit-learn (version

1.0.2)[52], and optimized the hyperparameters using LBFGS[53]. The entire pro-

cedure, including model building and hyperparameter training, required less than 3

minutes. After the model training, the performance of the GPR model was measured

by leave-one-out prediction. All calculations were performed on a MacBook with a

2.6 GHz Intel Core i7-6700HQ CPU and 8 GB of RAM.

4.3.3 Constrained Bayesian optimization

Bayesian Optimization (BO) has been used in many emerging applications in ma-

terials science[54, 55], advanced manufacturing[56], and molecular modeling of chem-

ical products[57, 58], among others, during the past five years. BO is a family of

surrogate-assisted, derivative-free optimization algorithms that use Bayesian proba-

bility theory to explicitly balance trade-o”s between exploration and exploitation[59].

BO has two core components: a computationally inexpensive stochastic surrogate

model that emulates expensive computational or physical experiments and an ac-

quisition function to determine the optimal sequence of future experiments. BO is

typically deployed in a feedback loop with rounds following the general steps, as de-
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scribed in Fig. 4.2. Standard BO, also called e!cient global optimization (EGO)[60],

uses the GPR as the surrogate model and expected improvement (EI):

EI(x) = E[max(0, f(x)→ f(x+))], (4.10)

as the acquisition function, where f(x+) is the current best objective value in

dataset D and f(x) is the prediction from the GPR. The next recommended ex-

periment is x↑ = argmaxEI(x). EI automatically balances the trade-o”s between

exploration, i.e., choosing x↑ in regions with high uncertainty, and exploitation, i.e.,

choosing x↑ in regions that will maximize f(x↑). By exploiting the mathematical

properties of the normal distribution, EI(x↑) has the following analytic formula[61]:

EI(x↑) =






(µ↑(x↑)→ f(x+))$(z) + ε↑(x↑)⇀(z), ε↑(x↑) > 0,

0, otherwise,

(4.11)

where:

z(x↑) =






µ↓(x↓)→f(x+
)

ϖ↓(x↓)
, ε↑(x↑) > 0,

0, otherwise.

(4.12)

Here, $(·) is the cumulative distribution function, and ⇀(·) is the probability den-

sity function for the standard normal distribution. z is the improvement standardized

by the prediction standard deviation ε↑.

Constrained BO restricts the search to the feasible region F = {x | ci(x) ↑ 0},

where constraints {ci(x) ↑ 0} are inferred from data, e.g., modeled with GPRs. Com-

putational studies have shown that CBO can be more e!cient than BO. The expected

improvement constraint (EIC) acquisition function uses GPR or similar probabilistic

models (which are assumed to be independent[62]) to consider the probability the

constraints are feasible[63]:
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EIC(x) = EI(x) ·
∏

i

P (ci(x) ↑ 0). (4.13)

Both EI and EIC functions are non-convex with many possible local maxima.

We used a local quasi-Newton method with the multi-start strategy. The entire

procedure, including hyperparameter training and EIC optimization, requires less

than 4 minutes.

4.3.4 Multi-objective optimization

Multi-objective optimization systematically determines the Pareto optimal trade-

o”s between conflicting objectives. A point is Pareto optimal if improving one objec-

tive requires sacrificing at least one other objective[64]. Mathematically, min{fi(x)}

denotes the multi-objective problem where i ↔ I denotes the index of the objectives.

Multi-objective optimization problems are often solved via the epsilon-constrained

methods by maximizing one objective (denoted 1 without loss of generality) while

constraining all other objectives to be less than the tolerance εi:

min f1(x),

s.t. fi(x) ↑ εi, ⇒i ↔ I \ {1}. (4.14)

Problem (4.14) was solved for many εi values, identifying solutions within the

Pareto set. For our proposed workflow, problem (4.13) was implemented and solved in

Scipy[65] (version 1.11.4) with a trust-region solver, and the optimization procedure

requires one minute for each point. We note that establishing Pareto optimality

requires solving Eq. (4.14) to provable global optimality[66]. We solved Eq. (4.14)

with a multi-start search as a global optimization heuristic. This means our reported

results are likely in the Pareto set.
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4.4 Results and discussion

4.4.1 Data-driven determination of the plasma jet operating envelope (Phase 1)

We first identified the operating envelope for the Uon and Umax of the Ua as a

function of Q and f , using Gaussian Process Regression (GPR):

Uon ↗ GP(x(1)

i ), Umax ↗ GP(x(1)

i ), x
(1)

i = (Q, f). (4.15)

We employed a full factorial design with seven levels for Q from 100 to 1900 sccm

and f from 20 to 80 kHz, which correspond to the limitations of the experimental

apparatus. We used the data from these 49 experiments (see Table B.2 in the SI)

to train the GPR models. The prediction results are shown in Fig. 4.3, which show

that overall Uon ↘ 2.2 kV and Umax ↑ 8.7 kV, with the exact values depending on

Q and f . For most flow rates and frequencies, the plasma jet was uniform between

Uon ⇑ 2.5 kV and Umax ⇑ 5.5 kV. Although the relationship among Q, U , and

f is complicated and not well understood, it is clear that Q and f have a much

more pronounced e”ect on the maximum operating voltage than the onset voltage,

and these e”ects are particularly more pronounced at lower flow rates (Q < 1000

sccm in Fig. 4.3). Qualitatively, we observed that at higher flow rates, the plasma jet

propagates out of the dielectric tube more easily. This is likely because of the balance

of heating by the plasma with heat transfer through the quartz tube a”ecting the

formation of surface ionization waves along the tube surface, though there are likely

other relevant behaviors as well. More work is needed to better understand these

underlying relationships. For this study, the GPR models accurately predicted the

onset and maximum voltages, respectively, and as such, we utilized them as envelope

constraints for SEI optimization in Phase 2.
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Figure 4.3. Operating envelope for Uon and Umax as a function of Q and f .
Blue and red dots represent experimental data, and the surfaces are the
prediction means of the GPR models for Uon and Umax, respectively.

4.4.2 Bayesian optimization maximizes specific energy input (Phase 2)

Three decision variables, Q, Ua, and f , determine SEI, and importantly, these

three variables have synergistic (and likely nonlinear) roles in influencing plasma jet

sintering results, which motivates the following optimization problem:

max
x
(2)
i

SEI ↗ GP(x(2)

i )

s.t. Uon(x
(1)

i ) ↑ Ua ↑ Umax(x
(1)

i ). (4.16)

where x
(1)

i = x
(2)

i = (Q, f). Latin-hypercube sampling (LHS) with nine levels

generated nine initial data samples for round 0 of SEI optimization (see Table B.3

in the SI). Subsequently, we employed Bayesian Optimization (BO) to iteratively

refine the SEI prediction, conducting eight rounds, each consisting of five individual
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experiments, to maximize the SEI.

Figure 4.4(a) summarizes the optimization results, showing the maximum SEI

value achieved for each round (with full results in Table B.3 in the SI). For the first

four rounds, we utilized constrained BO with the operating envelope constraints. Af-

ter round 4, we determined that the constraints on Uon and Umax were too restrictive,

such that none of the recommended experiments had surpassed the peak SEI result

in round 0. In round 5, we considered both constrained BO (3 experiments) and un-

constrained BO (2 experiments). Surprisingly, the unconstrained BO experimental

conditions yielded SEI values comparable to the maximum SEI value obtained from

the round 0 dataset. This result indicated that the envelope constraint GPR over-

restricted the high applied voltage search space, i.e., Ua ↘ 6.0 kV, for the majority

of possible Q and f conditions. By inspecting the leave-one-out prediction shown in

the parity plots in Figure B.3 in the SI, we observed that the GPR model for Umax

is less accurate in high voltage regions, Ua ↘ 7.0 kV.

We, therefore, relaxed the upper operating envelope constraint to have a global

bound of Umax = 6.5 kV for allQ and f , and for the subsequent three rounds (6, 7, and

8), we utilized unconstrained BO with this constant bound. In round 8, we achieved

a maximum SEI = 0.132 eV atom→1 at experimental conditions of Ua = 6.5 kV,

f = 45 kHz, and Q = 800 sccm, denoted as x
(2)

↑ = (800 sccm, 6.5 kV, 45 kHz).

This highest SEI (0.132 eV atom→1) is a 136% improvement compared to round 0

(0.056 eV atom→1). In hindsight, rounds 1 to 5 showed how BO can fail when over-

restrictive constraints, in this case for Uon and Umax, appear in the GPR model.

Rounds 6 to 8, on the other hand, showed how BO e!ciently identified experimental

conditions that lead to high SEIs under relaxed bounds.

In order to understand the SEI optimization, we conducted sensitivity analyses

of the GPR models around x
(2)

↑ = (800 sccm, 6.5 kV, 45 kHz), as shown in Figs. 4.4b-

4.4d, to characterize the behavior around the experimental conditions that yielded
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(b)

(c) (d)

(a)

Figure 4.4. BO improves SEI. (a) Plot of the trajectory of SEI optimization
over 8 rounds, with the peak experimental SEI value shown for each round.
(b)-(d) Plots of 2D sensitivity analyses for SEI, each with a fixed optimal

experimental condition: (b) f = 45 kHz, (c) Q = 800 sccm, and (d)
Ua = 6.5 kV. The green, yellow, and black markers show the experimental
results from rounds 0 to 4, 5, and 7 to 8, respectively. The closed markers
represent experimental data, and the open markers represent projections of
experimental data to the 2D plane in the plot. The black dotted lines show
the envelope constraints Umax(x

(1)

i ) and the white dotted lines show the
global bound on Umax = 6.5 kV, which is active in rounds 6-8. The error

bars represent an uncertainty of 4% for the SEI.

the highest SEI. Figure 4.4b illustrates the relationship between Q and Ua when the

input frequency is fixed at f = 45 kHz. We observe that an increase in applied voltage

increases the SEI value, consistent with Eq. (4.4). Hence, we expected to obtain the
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maximum SEI at the maximum value of Ua. We also observe that decreasing the jet

flow rate increases the SEI, given that the jet flow rate is inversely proportional to

SEI, as indicated in Eq. (4.4).

Figure 4.4c depicts the relationship between Ua and f when the jet flow rate

is fixed at Q = 800 sccm. Similar trends are shown with applied voltage, while

an optimal region exists for input frequency, revealing the non-linear dependence of

power on frequency. Figure 4.4d demonstrates the relationship between f and Q

when the applied voltage is fixed at Ua = 6.5 kV. Again, we observed that input

frequency has an optimal operating window and that lower jet flow rates will result

in higher SEI values. Overall, these plots show that the optimized point of x(2)

↑ =

(800 sccm, 6.5 kV, 45 kHz) sits within a relatively small window where high SEI values

are achievable, with a steep drop-o” when moving away from x
(2)

↑ . The prediction of

the GPR model also suggested that increasing Ua beyond the global bound, Umax =

6.5 kV, may likely achieve higher SEI; but due to experimental apparatus limitations,

we decided to terminate the optimization. However, this prediction can be used to

inform the design of future experimental apparatuses that have a higher applied

voltage operating envelope to increase SEI. Detailed optimization iterations with

two-dimensional sensitivity analyses for each round are shown in Figures B.4-B.13 in

the SI, and the leave-one-out prediction of SEI is shown in Figure B.14 in the SI.

4.4.3 Bayesian optimization for maximizing electrical conductivity (Phase 3a)

From Phase 2, we obtained the optimal SEI experimental condition

x
(2)

↑ = (800 sccm, 6.5 kV, 45 kHz), and with these three decision variables fixed,

we then varied the other four decision variables, d, ton, to!, and n, to optimize the

electrical conductivity (ε) of sintered ITO samples. Mathematically,
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max
x
(3)
i

ε ↗ GP(x(3)

i ),

s.t. x
(2)

i = x
(2)

↑ . (4.17)

where x
(3)

i = (x(2)

↑ , d, ton, to!, n). We used the same round 0 dataset as Phase 2

(shown in Table B.4 in the SI) consisting of nine experiments to initialize Phase 3a

optimization. In round 1, we combined x
(2)

↑ with d, ton, to!, and n values from the

round 0 experiments that yielded the highest ε and conducted a single experiment.

As shown in Fig. 4.5a, round 1 increased the experimentally measured electrical

conductivity by 40% relative to the best ε value in round 0.

In rounds 2 and 3, we used BO to select five experimental conditions in each

round, resulting in a 4% improvement in electrical conductivity compared with that

in round 1 and a 3% improvement relative to that in round 2, respectively. Although

in round 3 we obtained an appreciably high electrical conductivity of ε = 7.421 S m→1

under the experimental condition of Q = 800 sccm, Ua = 6.5 kV, f = 45 kHz,

d = 1.5 mm, ton = 60 s, to! = 90 s, and n = 50, we observed that it resulted in

a high substrate temperature of Tmax = 70.1 °C, surpassing the temperature goal

of 50 °C. It also required a long sintering time of approximately two hours. Hence,

in Phase 3b, we sought to balance this increase in electrical conductivity with a

lower substrate temperature. Detailed optimization iterations with two-dimensional

sensitivity analyses for rounds 2 and 3 are shown in Figure B.15 and B.16 in the SI.
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(b) (c)

(a)

Figure 4.5. Multi-objective optimization of electrical conductivity and peak
substrate temperature. (a) Plot of the experimental data from the electrical
conductivity optimization, with the red dash-dotted line representing the
experimental conductivity obtained via furnace sintering at 300 °C as a

reference. The black and blue dashed lines show Pareto trade-o”s between
electrical conductivity and peak substrate temperature for a total sintering

time of 60 min (black) and a projected total sintering time of 30 min
(blue). (b) Plot of a 2D sensitivity analysis for ε with fixed Q = 800 sccm,

f = 45 kHz, d = 2.5 mm, and to! = 70 s. (c) Plot of a 2D sensitivity
analysis for Tmax with fixed Q = 800 sccm, Ua = 6.5 kV, f = 45 kHz,

d = 2.5 mm, and n = 36. The error bars represent an uncertainty of 9.36%
for electrical conductivity and 2% for the peak substrate temperature.
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4.4.4 Multi-objective optimization maximizes electrical conductivity and minimizes

substrate temperature (Phase 3b)

Based on the single-objective optimization results from Phase 3a (rounds 0 to 3),

we formulated a bi-objective optimization problem (Phase 3b):

max
x
(3)
i

{ε ↗ GP(x(3)

i ),→(T ↗ GP(x(3)

i ))},

s.t. ttotal = (ton + to!) · n ↑ c. (4.18)

where x
(3)

i = (Q,Ua, f, d, ton, to!, n) and c is an upper bound for the total ex-

perimental time ttotal. Phase 3b started at round 4, where we conducted sensitivity

analyses (shown in Figure B.16 in the SI) using the Phase 2 optimum for SEI of

x
(2)

↑ = (800 sccm, 6.5 kV, 45 kHz). The results reveal that the active sintering time is

the most important decision variable for electrical conductivity; meanwhile, pulse-on

time is the most important decision variable for peak substrate temperature. As

such, we fixed the gap distance at d = 2.5 mm, which was expected to produce a

relatively high electrical conductivity, as shown in Figure B.16(a) in the SI. We also

fixed the pulse-on time at ton = 30 s, which was expected to produce a relatively

low peak substrate temperature, as shown in Figure B.16(b) in the SI, and fixed the

total experimental time as ttotal = 60 min. We changed the number of cycles with

five di”erent values between 24 and 50 and pulse-o” time with five di”erent values

between 40 s and 120 s, resulting in a 33.7% reduction in the experimentally observed

Tmax from 70.1 °C (round 3) to 46.5 °C (round 4), with only a 2% decrease in the

experimentally measured ε from 7.421 S m→1 (round 3) to 7.272 S m→1 (round 4).

Thus, we were able to meet the 50 °C temperature constraint while only having

a minimal e”ect on electrical conductivity. This optimal experimental condition is

x(3)

i = (x(2)

↑ , d = 2.5 mm, ton = 0.5 min, to! = 1.2 min, n = 36) and is shown as
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experiment 23 in Table B.4 in the SI.

Figures 4.5b and 4.5c show the 2D sensitivity analyses for ε and Tmax around

the optimal experimental condition. Figure 4.5b shows the influence of Ua and tactive

on ε; we observe that increasing Ua increases ε, which is consistent with our earlier

conclusion that a higher voltage could yield a higher SEI and, thus, a higher electrical

conductivity. Meanwhile, we also observe that ε may increase with tactive. However,

according to additional tests, we found that if the active sintering time was extremely

long (three hours or more), the ITO sample’s electrical conductivity would not keep

increasing, but rather, the ITO sample would be damaged. Given these observations,

we understand that further improvement of ε requires higher Ua, i.e., Ua ↘ Umax;

however, this improvement is unavailable in the current experimental apparatus, and

we decided to stop further optimizing ε. Figure 4.5c shows the influence of ton and to!

on Tmax. We observed that increasing ton and decreasing to! could increase Tmax and

vice versa. This is reasonable, as for a fixed number of cycles, a longer pulse-on time

means a longer active sintering time. Hence, the energy transfer process between

the plasma jet and the sample surface will be longer, leading to an increase in the

substrate temperature.

A Pareto set is a set of Pareto optimal solutions, i.e., points where it is not

possible to improve one objective without sacrificing one or more of the remaining

objectives. The goal of multi-objective optimization is to characterize the Pareto

set, which helps understand the trade-o” between objectives. To characterize the

trade-o” between ε and Tmax in our system, we decided to explore this relationship

in the region of Tmax < 40 °C by conducting one additional round of experiments

(round 5) that considered all seven decision variables. The purpose of this round 5

was not to further increase ε, but to understand how ε might be a”ected if we

restricted Tmax < 40 °C rather than 50 °C and constrained the total experimental

time. We conducted two BO analyses, one for a total experiment time of 60 min
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and one for 30 min, and we conducted a single experiment that corresponded to the

lowest predicted peak substrate temperature for each.

The results of round 5 are plotted as the two yellow squares in Figure 4.5a, and

the corresponding predicted Pareto sets are the solid black (ttotal < 60 min) and blue

(ttotal < 30 min) lines, respectively. Note that the black line is the GPR prediction

mean, which accurately captures the best experimental points from rounds 2-4; it also

shows that an improvement in electrical conductivity is constrained by the substrate

temperature beyond roughly 50 °C. That is, allowing the substrate temperature to

increase substantially would result in only a minor improvement in ε. If we were

to reduce the total experimental time to ttotal = 30 min, we would observe similar

behavior, but the electrical conductivity would be generally lower. That is, electrical

conductivity is highly sensitive to substrate temperature below 50 °C but more sen-

sitive to total experimental time above 50 °C. Detailed optimization iterations with

two-dimensional sensitivity analyses for rounds 4 and 5 are shown in Figure B.18

and B.19 in the SI, and the leave-one-out prediction of ε and Tmax are shown in

Figure B.20 in the SI.

4.4.5 Characterization and comparison between plasma jet sintering and furnace

sintering

The optimal plasma jet sintering condition x
(3)

i = (x(2)

↑ , ton = 0.5 min, to! =

1.2 min, n = 36, d = 2.5 mm) yielded an experimental electrical conductivity of

7.272 S m→1 in only a 60-minute total experimental time and with the peak substrate

temperature never exceeding 46.5 °C. In order to understand this value relative to

thermal sintering, we sintered three ITO samples in a tube furnace at 300 °C for

a duration of three hours, yielding an electrical conductivity of 8.93 ± 0.05 S m→1.

Notably, the plasma jet sintering process achieved 81.4% of the electrical conductivity

achieved through furnace sintering while reducing the processing time by a factor of
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three and at a temperature of more than 250 °C cooler.

Figure 4.6 shows scanning electron microscopy (SEM) images of the surface struc-

ture of ITO samples before (Fig. 4.6a) and after (Figs. 4.6b, c) plasma jet sintering.

While there is some densification of the film for the best experiment in round 0

(Fig. 6b), the degree of densification is much greater for the optimal condition in

round 4 (Fig. 4.6c). Qualitatively, the densification is similar to that observed for

thermal sintering, and thus it is unsurprising that the electrical conductivities were

similar.

(a) (b)
(a) (b)

(a) (b) (c)

200 μm 200 μm 200 μm

Figure 4.6. Top-view SEM images of ITO thin films: (a) after pre-sintering
but before plasma jet sintering, (b) with the highest electrical conductivity

after plasma sintering in round 0 (Phase 3a), and (c) with the highest
electrical conductivity after plasma sintering in round 4 (Phase 3b). The

black regions in (a) and (b) are voids in the thin film.

4.5 Conclusions

This work demonstrates the potential of non-thermal plasma jet sintering as a vi-

able and e!cient method for enhancing the electrical conductivity of ITO thin films

while maintaining a low substrate temperature. Moreover, Bayesian Optimization
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(BO) and Machine Learning (ML) techniques enable the systematic and e”ective

optimization of sintering conditions across many dimensions, resulting in a 99.2%

improvement in measured sintering performance within five rounds of experiments.

Our findings indicate that non-thermal plasma jet sintering can achieve 81.4% of the

electrical conductivity attained by traditional furnace sintering, and this achievement

is particularly noteworthy given that non-thermal plasma jet sintering accomplishes

this within a significantly reduced time frame and at a far lower temperature. These

outcomes signify an advancement in sintering technology compatible with emerg-

ing nanoink-based devices and underscore the potential for non-thermal plasma jet

sintering to impact the field of materials processing, o”ering faster and more energy-

e!cient solutions for enhancing material properties.

Looking forward, the application of machine learning, especially BO, in plasma

jet processes shows promising avenues for addressing complicated, high-dimensional

problems inherent in the treatments of various materials. Adapting this approach

for other plasma jet applications, such as processing alternative semiconducting ma-

terials like silver selenide (Ag2Se), molybdenum disulfide (MoS2), and tin dioxide

(SnO2), may require more predictive and sophisticated hybrid surrogate models.

These models should synergistically integrate physics-informed parameters with data-

driven insights to further diminish the experimental burden[67]. This advancement

in optimization techniques could lead to universally applicable results, transcending

the specific conditions of a single material system. By leveraging the inherent par-

allelizability and iterative learning capability of BO, we can extend this framework

to tackle the increased complexity of multi-material systems, ultimately streamlining

the discovery and refinement of plasma jet processes across various domains.
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CHAPTER 5

WHEN PHYSICS-INFORMED DATA ANALYTICS OUTPERFORMS

BLACK-BOX MACHINE LEARNING: A CASE STUDY IN THICKNESS

CONTROL FOR ADDITIVE MANUFACTURING

This chapter is based on previously published work:

Ke Wang, Minxiang Zeng, Jialu Wang, Wenjie Shang, Yanliang Zhang, Tengfei

Luo, and Alexander W Dowling. When physics-informed data analytics outperforms

black-box machine learning: A case study in thickness control for additive manufac-

turing. Digital Chemical Engineering, 6: 100076, 2023.

5.1 Introduction

Recent advances in printing technologies have enabled the direct transformation of

nanoparticle inks into functional devices [1]. In particular, aerosol jet printing (AJP)

has emerged as a promising additive manufacturing method due to its high printing

resolution and broad material options. In the past decade, a wide range of materials

have been printed into various complex device architectures, including temperature

sensors [2], photodetectors [3], piezoelectric sensors [4], and thermoelectric devices

[5, 6]. During the AJP process, the amount of materials deposited, often referred to

as deposition thickness, is influenced by several decision variables, such as carrier gas

flowrate, sheath flowrate, printing speed, and atomizing voltage [1]. The interplay

and nonlinear e”ect of these printing decision variables make it di!cult to accurately

predict and precisely control the deposition thickness [7, 8]. Moreover, for certain

material systems and additive manufacturing methods, controlling film thickness is
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essential to maximize material performance [9]. Thus, there is a great need for reliable

methods to precisely control printing thickness to further expand the application

domain of AJP.

Currently, there are three main categories of AJP manufacturing optimization

studies: experimental empirical investigations, physics-informed modeling, and data-

driven black-box machine learning (ML) optimization [10]. In the first category, [7]

studied the influence of manufacturing conditions (e.g., carrier gas flowrate) on the

line width and thickness of the printed film based on one-dimensional sensitivity

analysis. This experimental empirical investigation focused on one-dimensional sen-

sitivity analyses. The method can study the influence of one experiment condition on

the measurement by fixing other experimental conditions but ignores the interaction

between experimental conditions and can be highly biased by the intuition of the

experimental expert.

In the second category, physics-informed modeling, [11] proposed a 3D computa-

tional fluid dynamics (CFD) model to investigate the influence of the tamper angle of

the nozzle and the jet printing height on the droplet of the printed line. [12] developed

a simplified first-principle model to replace Stokes and Sa”man force-based numerical

calculation for the prediction of the width of the printed line. The physics modeling

allows researchers to build up a complete physical model to describe the experiment

phenomenon, but the assumptions in the model may be impractical. Additionally, in

some scenarios, e.g., computational fluid dynamics, the computation time can be a

problem.

In the third and final category, ML optimization, [13] utilized linear regression to

study the relationship between manufacturing experimental conditions and printed

line features. [14] developed a hybrid machine learning model with k-means cluster-

ing and support vector machine (SVM) to identify the optimal operation window of

the printing process. [15] proposed a multi-objective optimization framework with
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Gaussian process regression (GPR) to increase the overall printed line quality. These

black-box machine learning models can give accurate predictions and are widely ap-

plied across engineering disciplines, but often requires a large to massive dataset and

lack physical interpretability. While physics-informed ML is seen by many as a way

to reduce these data requirements [16–18], we are unaware of any prior work using

these emerging methods for AJP systems.

Complementary to these prior studies, we consider a data science framework built

upon model-based design of experiments (MBDoE) principles to postulate, train, and

validate predictive physics-informed models for the AJP process using limited data.

We emphasize our approach prioritizes developing physically interpretable models

that are well suited for optimization and inverse control, similar to [19] and [20], and

can ultimately support molecular-to-systems engineering [21]. The MBDoE frame-

work is a generalization of classical design of experiment (DoE) methods, which

provides a systematic framework to recommend new experiments based on previous

observations. These so-called black-box DoE methods use response surface models

(e.g., polynomial models) to map the factors and response outputs. Black-box DoE

methods are suitable for applications with limited knowledge of underlying processes

and are usually combined with the analysis of variance (ANOVA) to identify the in-

fluential features. For example, [22] studied the influence of operating decision vari-

ables (e.g., working pressure, filling ratio), on the performance of the thermoelectric

generator (TEG) system by the three-level Box-Behnken response surface method.

Likewise, [23] explored the relationship between the thermoelectric properties of the

ball-milled materials and main operation parameters (e.g., duration of milling, speed)

by full factorial design. MBDoE, on the other hand, builds upon the scientific model

with physically meaningful parameters. MBDoE recommends the most informative

experiments based on candidate models to accelerate the identification of the optimal

model and corresponding parameters [24]. A case study shown by [25] demonstrates
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that the MBDoE usually requires fewer experiments and thus can reduce total labor,

time, and resource costs.

In this study, we adapted a general data science and MBDoE framework from the

literature [24–28] to AJP additive manufacturing processes, which is summarized in

Figure 5.1. Starting with data already available experiments from equipment commis-

sioning, we develop and validate physics-informed data-driven mathematical models

to describe the film printing process. These models enable precise inverse control

of thickness for each printed film with quantified uncertainty. We find the proposed

parametric model outperforms a machine learning alternative, e.g., nonparametric

GPR, calibrated using the same data. This finding underscores the data e!ciency

and e!cacy of physics-based models and is consistent with the recent popularity of

physics-informed ML methods.

This chapter is organized as follows. Section 5.2 introduces the experimental

methods and mathematical modeling framework. Section 5.3 reports the results of

sensitivity analysis, MBDoE model selection, and inverse design, and shows the per-

formance comparison between the physics-informed model and GPR. Finally, Section

5.4 presents conclusions and future research opportunities.

5.2 Methods

5.2.1 Experimental apparatus and manufacturing process

The AJP setup consists of an ultrasonic atomizer, printhead, temperature control

stage, and motion control system that controls the real-time position and velocity

during the targeted move and jogging operations. For AJP printing, the inks are

atomized in aerosols which are transferred to the printhead by a nitrogen carrier

gas flowrate. The printhead applies a sheath flowrate to narrow the aerosols into

a fine jet which is deposited onto a pre-cleaned substrate during the temperature
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Figure 5.1. Data science tools are integrated into an iterative workflow to
postulate, select and calibrate the candidate models, resulting in the final
model with quantified prediction uncertainty. The workflow is adapted from
the literature [24–28] and starts with domain knowledge and preliminary

data on the film printing manufacturing process. This knowledge is used to
conduct the sensitivity analysis (arrow 1), exploring the potential relation
between decision variables and measurement. These findings help postulate
the physics-informed candidate model library (arrow 2). Given the model
library, identifiability analysis is conducted (arrow 3) to determine if the
parameters in each model can be uniquely inferred from the given data.
Next, parameter estimation is conducted with identifiable models (arrow
4). Given the estimated parameters for each candidate model (arrow 8),
Akaike Information Criteria (AIC) ranking recommends the best models
that balance accuracy and the number of parameters (arrow 9). Using the

Fisher information matrix (and its inverse, the parameter covariance
matrix) (arrows 5 and 6), MBDoE analysis recommends the most

informative new experiments (arrow 7). The down-selected model(s) (arrow
10) and new experiment (arrow 11) provided new information to repeat the

entire procedure (arrows 3 to 5). The workflow terminates when the
experimental budget has been exhausted or the prediction uncertainty for

the selected model is adequately small (arrow 12).

control stage. A heating process accelerates the evaporation of ink solvents to avoid

undesired drying e”ects. The experimental apparatuses are shown in Figure 5.2(a).

The morphology of printed film is uniform shown in Figure 5.2(b) and can be modeled

as a cubic shown in Figure 5.2(c). Given the fixed length l and width w, the height

of the cubic, defined as thickness in our study, is the measurement of our study.

The ultrasonic atomizer generates aerosol droplets from nanoparticle (NPs) dis-

persion; we use graphene nanoplates as the NPs in this study. The applied voltage U

determines the concentration of NPs in the aerosol c. The printhead projects aerosol

jet to printed film; carrier gas flowrate Qa and sheath flowrate Qs control the amount
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Figure 5.2. (a) The schematic illustration of experiment apparatus. The
voltage U applied in the ultrasonic atomizer activates NPs ink to become
an aerosol jet, and the aerosol is mixed with the carrier gas flowrate Qa;
then, the sheath flowrate Qs in printhead projects the mixed particle out;
with the motion control system, the nozzle moves back and forth at certain
printing speed Vp to print multiple lines to form the film. (b) The printed
film. (c) The abstraction of the printed film with thickness h, width d, and

length l. The gaps between each line are defined as printed gap w.

of aerosol projected. The motion control system controls the printing speed vp that

determines the printing time t of each sample. We ultimately seek a control strat-

egy to manipulate the experimental degrees of freedom Qa, Qs, vp, and U to print

a thin film with desired thickness h. In the remaining of this section, we develop a

mathematical modeling framework to help achieve this control objective.

The concentration of NPs, c, is challenging to directly measure. Instead, we

assume the voltage U has a nonlinear influence on c, denoted by g1(U):

c = g1(U). (5.1)

Volumetric flow V is the amount of aerosol projected by the nozzle in a unit
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of time, which is regulated by aerosol flow Qa and sheath flowrate Qs. The exact

relationship between these variables is unknown and denoted by g2(Qa, Qs):

V = g2(Qa, Qs). (5.2)

The momentum flux ◁ is the weight of projected aerosol in a unit of time and can

be derived from the volumetric flow:

◁ = c · V. (5.3)

The weight m of projected aerosol is controlled by both printing time t and

momentum flux ◁ :

m = ◁ · t. (5.4)

The printed film, shown in Figure 5.2(b), can be modeled as a cuboid, shown in

Figure 5.2(c), with length l, width d, and thickness h. Fabrication of the film requires

the nozzle to move back and forth to print lines. The interspace exists between lines

that the width of it is called printed gap w, as shown in Figure 5.2(c). The porosity

⇀, due to interspace, is defined as a fraction of the volume of voids over the total

volume of the printed film; here, we assume the porosity ⇀ is a constant. Considering

all the factors mentioned above, the weight of the printed film is given by:

m = (1→ ⇀) · l · d · h · ▷. (5.5)

With fixed width d, length l and printed gap w, the printing time t is determined

by the printing speed vp, using the nonlinear function g3(vp):

t =
l · d

w
· g3(vp). (5.6)
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We assume the AJP process operates at steady-state, so the weight of film m

equals the weight of the nozzle projected m. From Eqs. (5.3) to (5.6), the balanced

equation can be derived:

(1→ ⇀) · l · d · h · ▷ = ◁ · t = c · V · t =
c · V · l · d

w
· g3(vp). (5.7)

Simplify the Eq. (5.7) and substituting Eqs. (5.1) and (5.2) gives:

h =
c · V

(1→ ⇀) · ▷ · w · vp
=

g1(U) · g2(Qa, Qs) · g3(vp)

(1→ ⇀) · ▷ · w · vp
. (5.8)

In this chapter, we use tools from data science — nonlinear regression, Fisher in-

formation matrix analysis (FIM), model-based design of experiment (MBDoE), and

Akaike information criteria (AIC) — to systematically determine mathematical ex-

pressions for g1(U), g2(Qa, Qs), and g3(vp). Table 5.1 gives numerical values, ranges,

and operating windows as bounds for all physical properties used in the above equa-

tions.

5.2.2 Decision variables, measurement, and 1D sensitivity analysis

The manufacturing process contains multiple controllable decision variables, in-

cluding voltage Ui, printing speed vpi, carrier gas flowrate Qai and sheath flowrate

Qsi, which influence the measured output variable thickness hi, where i denotes run

i. Let xi = (Ui, vpi, Qai, Qsi) denote these decision variables. We define the dataset as

D = {(xi, hi) | xi ↔ R4, hi ↔ R, i ↔ 1, 2, . . . , n}. For simplicity, we denote D = (X,h),

using matrix X = (x1, . . . ,xn)T and vector h = (h1, . . . , hn)T .

While developing and commissioning the laboratory-scale AJP process, 26 ex-

periments were conducted, which are reported in Table 5.2, and constitute dataset

D. Runs 1 through 22 were systematically chosen by an experimental expert to test

and develop an understanding of the AJP process. Many of these runs correspond
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TABLE 5.1

THIS TABLE DEFINES THE PHYSICAL PROPERTIES IN THE

MANUFACTURING PROCESS AND PROVIDES THEIR

CORRESPONDING UNIT AND NUMERICAL VALUE OR RANGE.

name symbol unit range or value

Voltage U V 15→ 45

NPs concentration c g · cm→3 1→ 5↓ 10→3

NPs density ▷ g · cm→3 2.267

carrier gas flowrate Qa cm3
·min→1 10→ 25

Sheath flowrate Qs cm3
·min→1 40→ 85

Printing speed vp cm · s→1 6→ 24

Volumetric flow V cm3
·min→1 30→ 100

Momentum flux ◁ g · s→1 60→ 250

Width d cm 0.35

Length l cm 0.15

Thickness h µm 0.1→ 2.0

Printed gap w cm 0.002

Porosity ⇀ dimensionless 0.2

Printing time t s 30→ 180

to one-dimensional (1D) sensitivity analysis between the decision variables xi and

thickness hi. These data are typically gathered in the commissioning of a new piece

of laboratory equipment with the primary goal of developing expert intuition. In this

chapter, we use runs 1 to 22 to postulate a library of mathematical models. Runs 23

to 25 are validation experiments recommended by MBDoE (see Section 5.3.2) and

expert opinions. Run 26 is a fourth validation experiment, selected solely by expert
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intuition.

The decision variables xi and measurement hi each have di”erent scales (e.g.,

units) and are accordingly normalized by Eq. (5.9).

xi,j ⇓
xi,j

0j
, hi ⇓

hi

05
. (5.9)

Here the index j corresponds to the decision variable, and 0j denotes the nor-

malizing constants which are given in Table C.1 of the Supporting Information (SI).

Unless otherwise noted, the normalized variables are used in the remaining equations

in the chapter.

TABLE 5.2

THIS TABLE SUMMARIZES ALL THE RUNS OF EXPERIMENTS

DECISION VARIABLES X AND MEASUREMENT h.

Run Voltage Speed Carrier Gas Flowrate Sheath Flowrate Thickness

(V) (mm · s→1) (cm3
·min→1) (cm3

·min→1) (µm )

1 30 1 14 50 1.23

2 30 2 14 50 0.558

3 30 3 14 50 0.326

4 30 4 14 50 0.27

5 35 2 14 50 0.553

6 40 2 14 50 0.555

7 45 2 14 50 0.623

8 25 2 14 50 0.305

9 15 2 14 50 0

Continued on next page
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TABLE 5.2 (CONTINUED)

Run Voltage Speed Carrier Gas Flowrate Sheath Flowrate Thickness

(V) (mm · s→1) (cm3
·min→1) (cm3

·min→1) (µm )

10 10 2 14 50 0

11 35 2 11 50 0.203

12 35 2 12 50 0.268

13 35 2 13 50 0.313

14 35 2 14 80 0.251

15 35 2 14 70 0.357

16 35 2 14 40 0.438

17 35 2 14 30 0.324

18 35 2 14 20 0.162

19 35 2 16 60 0.794

20 35 2 14 60 0.453

21 35 2 12 60 0.193

22 35 2 10 60 0.0158

23 45 1 25 85 0.93

24 35 1 25 60 2.09

25 40 1 25 60 1.8

26 35 1 20 60 1.56

Note: Runs 1 to 22 are from the commissioning of the experimental equipment. Runs 23 to 26
are from validation conducted after modeling.

5.2.3 Parameter estimation

Given the dataset D, model parameters ω can be estimated with the following

procedure. We define the residual sum of square (RSS) function as:
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$(ω,X) :=
1

2
(h→ f(ω,X))T (h→ f(ω,X)), (5.10)

where f : Rn↗p
⇐ Rn, and p is the number of parameters. To keep the notation

uncluttered, we write $(ω) in the rest of the chapter. The parameter estimation

problem is equivalent to minimizing the RSS function, which gives:

ω̂ = argmin
ω

$(ω). (5.11)

The optimization problem is solved by MINPACK using the trust region reflective

method available in Scipy [29] and central di”erence to approximate the Jacobian

matrix ⇔ω$(ω̂). A multi-start strategy helps avoid local minima by sampling initial

values from a uniform distribution between 0.0 to 1.0 ten times.

5.2.4 Uncertainty propagation

After computing the estimate ω̂, we can obtain the prediction uncertainty via first-

order uncertainty propagation [30]. Assume the measured thickness h is corrupted

by random measurement error ε, which follows homoskedastic standard Gaussian

distribution, ε ↗ N(0, ε2
I). Assuming the nonlinear regression model f(ω̂) is true,

the observations are:

h = f(ω̂) + ε. (5.12)

We wish to estimate how the measurement uncertainty ε propagates into uncer-

tainty about the estimated regression parameters ω̂. Taking the first-order Taylor

expansion on nonlinear regression model f(ω̂), the unbiased estimator of the ε2 can

be approximated and calculated by [31]:
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ε̂2 =
2$(ω̂)

n→ p
. (5.13)

The corresponding covariance matrix !ω̂ is estimated by [32]:

!ω̂ = ε̂2(⇔ω$(ω̂)
T
⇔ω$(ω̂))

→1 (5.14)

For an arbitrary experiment xi, the prediction variance var(hi|ω̂,xi) is given by:

var(hi|ω̂,xi) = ⇔ωf(ω̂,xi)!ω̂⇔ωf(ω̂,xi)
T + ε̂2, (5.15)

where the Jacobian vector ⇔ωf(ω̂,xi) is also estimated by central di”erence for

convenience. Finally, we can compute a 95% prediction interval (PI) for the thickness

of experiment i as follows:

{ f(ω̂,xi)→ 1.96
√
var(hi|ω̂,xi), f(ω̂,xi) + 1.96

√
var(hi|ω̂,xi) }. (5.16)

5.2.5 Model selection criteria

With the estimated optimal parameter ω̂ for the corresponding model, we can

measure the model performance, as well as down-select the model using Akaike In-

formation Criterion (AIC) criteria [33]. The performance of the given model is mea-

sured by three criteria: R2 score, AIC, and mean squared error (MSE). The first two

criteria evaluate the model with all data, while the last one evaluates the model with

leave-one-out cross-validation, detailed in Section 5.2.7.

The R2 score shows the goodness of fit by measuring how well the model can
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explain the observed data [31] and is calculated by:

R2 = 1→
2$(ω̂,X)

n∑
i=1

(hi →
1

n

n∑
i=1

hi)
. (5.17)

The AIC measures how well the model will generalize to the new data. It is

the trade-o” between log-likelihood and the model complexity, i.e., the number of

parameters, and can be directly calculated by RSS in the least-square regression

problem using all data, given by [33]:

AIC(ω̂, p) = n · ln


2$(ω̂)

n


+ 2p. (5.18)

The preferred model is the one with the smaller AIC value.

The MSE measures the out-of-sample mean squared error and is usually applied

with leave-one-out cross-validation to reduce the bias of estimated error. It can be

calculated by:

MSE =
2$(ω̂,X)

n
. (5.19)

5.2.6 Model-based design of experiment (MBDoE)

Design of experiments (DoE) methods aim to identify experiments that maximize

the information gain, either to discriminated between models or improve parameter

precisions. Model-based design of experiments (MBDoE) methods leverage science-

based models to measure such information gain with the Fisher information matrix

(FIM) [24]. FIM is defined as the variance of the partial derivative of the natural

logarithm of the likelihood function f with respect to the unknown parameter ω. The

FIM of previous experiments, defined as M(ω,X, ε̂), can be calculated by:
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M(ω,X, ε̂) = ε̂→2

n∑

i=1

⇔ωf(ω,xi)
T
⇔ωf(ω,xi), (5.20)

where i is the index and n is the number of experiments. When adding a new

experiment, the total information content, M(ω,X,xn+1, ε̂), is measured by the ac-

cumulation of all FIM from previous experiments X, and the new experiment xn+1:

M(ω,X,xn+1, ε̂) = M(ω,X, ε̂) + ε̂→2
⇔ωf(ω,xn+1)

T
⇔ωf(ω,xn+1). (5.21)

Large FIM indicates that significant information is contained in the model; A-,

D-, and E-optimality metrics are the three most used design criteria [34]. These

metrics can be computed using the eigendecomposition of M [35], where 1j for j =

{1, 2, . . . , p} are the eigenvalues:

A→ optimality : trace(M) =
p∑

j=1

1j, (5.22)

D→ optimality : det(M) =
j=p∏

j=1

1j, (5.23)

E→ optimality : min
ϱj

{11,12, . . . ,1p}. (5.24)

FIM su”ers from the unidentifiable issue when it is (near) singular [36]; in practice,

M, is near-singular when the condition number, CM , is larger than 1012 [37]:

CM =
maxϱj{11,12, . . . ,1p}

minϱj{11,12, . . . ,1p}
↘ 1012. (5.25)

Given n previous experiments, and obtaining the next most informative experi-

ment, xn+1, D-optimality is the most popular MBDoE objective function to maximize:
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max
xn+1

log(detM(ω,X,xn+1)) =
p∑

j=1

log(1j). (5.26)

where 1j are the eigenvalues of M(ω,X,xn+1). The optimization problem is

solved using Pyomo.DoE [25].

5.2.7 Model validation

Given the set of candidate models, we can further investigate the correctness

of the model and choose the optimal model(s). The MBDoE workflow facilitates

this by recommending the most informative experiments. Here, two frameworks are

adopted for model validation: train-test split and leave-one-out validation. Both of

them split dataset D into the training dataset D1 and testing dataset D2. In the

train-test split validation framework, dataset D is split only once to demonstrate the

actual prediction performance of the given model using all previously collected data.

Mathematically, D1 = (X1:q,h1:q) and D2 = (Xk:n,hk:n), where q and k denote the

run q and k, respectively, and ’:’ is an abbreviation for in-between samples.

The leave-one-out validation framework consistently splits dataset D iteratively

for n times to compute leave-one-out mean squared error (LOO-MSE), the out-of-

sample error. Mathematically, D1 = (X→i,h→i) and D2 = (Xi,hi), where →i denotes

all data except sample i. The optimal parameters ω̂ are estimated via Eq. (5.11),

using training data D1. The prediction mean is computed by:

h = f(ω̂,X), (5.27)

where f is the given model. The prediction uncertainty is estimated by using the

uncertainty propagation via Eq. (5.16).
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5.2.8 Gaussian process regression

In contrast to the parametric model f(ω̂) described above, Gaussian process re-

gression (GPR) is a nonparametric model, which learns from data directly [38, 39].

The GPR model, f(x), also assumes a random measurement error, similarly to

Eq. (5.12), and is defined as [39]:

f(x) ↗ GP(m(x), k(x,x↓)) x,x↓
↔ Rp, (5.28)

where the mean function m(x) is assumed to be zero and k(x,x↓) is the radial

basis function (RBF):

k (x,x↓) = e
→ 1

2

∑p
j=1

(
xj→x↑j

ωj

)2

. (5.29)

The l are the hyperparameters to measure the closeness between di”erent samples;

the closer the samples are in the kernel space, the more correlated these two samples

[40]. The hyperparameters l is estimated by maximizing log-marginal likelihood

function [41]:

l↑ = argmax
l

log p(h | X, l) = →
1

2
h
T
K(X,X)→1

h→
1

2
ln |K(X,X)|→

n

2
ln 2↼. (5.30)

The hyperparameters l↑ are estimated using the L-BFGS-B algorithm imple-

mented in Scipy [29] with ten multi-starts.

Given the dataset D and hyperparameters l↑, we can write the multivariate joint

Gaussian distribution in the matrix form:
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


h

f↑



 ↗ N








m(X)

m(X↑)



 ,




K(X,X) + ε2

I K (X,X↑)

K (X↑,X) K (X↑,X↑)







 , (5.31)

where X↑, is new inputs values and f↑ is the corresponding prediction. K(·, ·) is

kernel function k(·, ·) evaluated element-wise. Through the conjugacy properties in

exponential family [42], we can analytically obtain the prediction mean µ↑(X↑) and

variance !↑(X↑):

µ↑(X↑) = m(X↑) +K (X↑,X)

K(X,X) + ε2

I
→1

(h→m(X)) (5.32a)

!↑(X↑) = K (X↑,X↑)→K (X↑,X)

K(X,X) + ε2

I
→1

K (X,X↑) (5.32b)

The GPR model is implemented in Scikit-learn [43].

5.3 Results

We apply the data science workflow, described in Figure 5.1 and Section 5.2, with

the ultimate goal of controlling AJP sample thickness.

5.3.1 1D sensitivity analysis builds a library of models

5.3.1.1 1D analysis provides data-informed nonlinear equations

The domain knowledge and 1D sensitivity analysis provide possible nonlinear

relationships g1(U), g2(Qa, Qs), and g3(vp) between the decision variables and the

measured thickness. This step corresponds to arrows 1 and 2 in Figure 5.1. Figure

5.3 visualizes these experiments and shows the corresponding data-informed fitting

curve. The parameter estimates (arrows 3 and 4 in Figure 5.1) are calculated via
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Figure 5.3. One-dimensional sensitivity analysis shows the e”ect of decision
variables on the measured thickness h. (a) Voltage U acts like a threshold,
and follows a sigmoid function with thickness. Runs 2, 5, 6, 7, 8, 9, and 10
are used from Table 5.2. (b) Printing speed vp is inverse proportional to
thickness considering the fixed film length and width. Runs 1, 2, 3, and 4
are used from Table 5.2. (c) The carrier gas flowrate Qa is linear with

thickness based on the one-dimensional sensitivity analysis. Runs 5, 11, 12,
13, 19, 20, 21, and 22 are used from Table 5.2. (d) The sheath flowrate Qs

has quadratic relation with thickness based on the one-dimensional
sensitivity analysis. Runs 5, 14, 15, 16, 17, 18, and 20 are used from Table

5.2. In all subfigures, the lines show the submodels evaluated with
optimized parameters summarized in Table C.2 in the SI.

Eq. (5.11).

In the ultrasound atomizer, the voltage acts as a threshold for generating the

NPs. Under a certain threshold, the NPs cannot be activated to become aerosol.

Above a certain threshold, NPs will become steady aerosol with a (near) constant NP
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concentration. Combining this prior knowledge with the data shown in Figure 5.3(a),

we postulate the following sigmoid relationship between voltage U and thickness h:

g1(U) =
1

1 + exp {→φ1U + φ0}
, (5.33)

where φ0 and φ1 are two fitted parameters. Because such threshold will not

vary with the change of other decision variables, we use φ↑
0
= 15.38 and φ↑

1
= 30.99

estimated from the one-dimension analysis in all models. For this nonlinear regression

problems, we replace f(ω,X) with assumed sigmoid function g1(U) in Eq. (5.10), and

estimate the parameters φ↑
0
and φ↑

1
via Eq. (5.11). We chose a sigmoid function as a

smooth and di”erentiable approximation to this switching behavior.

Likewise, from Figure 5.3(b), we propose an inverse proportional relation between

printing speed vp and thickness h:

g3(vp) =
1

vp
. (5.34)

Such relation follows the intuition that with fixed width d, length l, printed gap w,

and momentum flux ◁ , thickness is proportional to printing time t, and the printing

time t should be inverse proportion to printing speed vp. Even without the fitting

parameters, we observe the data agrees with the model in Figure 5.3(b).

Figure 5.3(c) shows the linear relation between carrier gas flowrate Qa and thick-

ness h that two lines are plotted with di”erent sheath flowrate Qs. With fixed sheath

flowrate Q↑
s, the relation is given by:

g2(Qa, Q
↑
s) = aQa + b, (5.35)

where a and b are the regressed parameters.

Finally, Figure 5.3(d) shows the quadratic relation between sheath flowrate Qs

and thickness h with fixed carrier gas flowrate Q↑
a. The relation is given by:

96



g2(Q
↑
a, Qs) = aQ2

s +Qsb+ c, (5.36)

where a, b and c are the regressed parameters. Assume the carrier gas flowrate Qa

has linear relation with g2(Q↑
a, Qs), we postulate the general formula for g2(Qa, Qs),

given by:

g2(Qa, Qs) = ϑ00 + ϑ10Qs + ϑ20Q
2

s + ϑ01Qa + ϑ11QaQs + ϑ21QaQ
2

s, (5.37)

where ϑ00, ϑ10, ϑ20, ϑ01, ϑ11, and ϑ21 are parameters, denoted by ω.

5.3.1.2 Model library and down-selection

Combining the above one-dimensional sensitivity analysis results Eqs. (5.33) -

(5.37) into Eq. (5.8), gives the most general model, named model 0:

h =
1

1 + exp(→φ1U + φ0)

ϑ00 + ϑ10Qs + ϑ20Q2

s + ϑ01Qa + ϑ11QaQs + ϑ21QaQ2

s

⇀▷wvp
.

(5.38)

Model 0 contains all possible combinations of interactions between Qa and Qs.

We then systematically remove quadratic and (or) cubic terms in the expressions for

Qa and Qs, giving models 1 to 7. The postulated model library is summarized in

Table 5.3.

Table 5.3 shows all models have a moderated high R2 value, from 0.93 to 0.96.

Model 7 is the exception with an R2 value of 0.85. Instead, we use AIC, computed

via Eq. (5.18), to consider the trade-o”s between the quality of fit and the number

of parameters, as shown in arrows 8 and 9 of Figure 5.1. We down-select and retain

only models 0, 1, 3, and 5, which have the highest four AIC values reported in Table
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TABLE 5.3

THE POSTULATED MODEL LIBRARY WITH A COMPARISON OF

THE GOODNESS OF FIT USING R2 SCORE AND AIC CRITERIA.

R2 AIC Parameters

Model 0 0.96 -104.0 all regressed

Model 1 0.95 -101.4 ϑ21 = 0

Model 2 0.95 -100.4 ϑ20 = 0

Model 3 0.95 -101.2 ϑ11 = 0

Model 4 0.93 -92.1 ϑ21 = 0, ϑ20 = 0

Model 5 0.95 -101.9 ϑ21 = 0, ϑ11 = 0

Model 6 0.94 -98.7 ϑ20 = 0, ϑ11 = 0

Model 7 0.85 -75.9 ϑ21 = 0, ϑ20 = 0, ϑ11 = 0

5.3 (all above -101). These four retained models have high R2 score values of 0.95

to 0.96, suggesting the variations in the decision (input) variables explain a majority

of the variations in thickness (output variable). Table C.3 reports the estimated

parameter values for models 0, 1, 3, and 5. Among four selected models, model 0

is unidentifiable using the initial runs 1 to 22 in Table 5.2, but becomes identifiable

after adding the optimal MBDoE experiment, run 23, which is explained in Section

5.3.2; models 1, 3, and 5 are identifiable with the initial dataset.

Figure 5.4 is the parity plot for retained models 0, 1, 3, and 5 with optimal trained

parameters ω̂. The horizontal axis and vertical axis are experimental and predicted

thickness, respectively. The blue dots are all the experiments, runs 1 to 26 in Table

5.2 and the error bars show 95% PI computed via Eq. (5.16). From Figure 5.4, we

observe that all of the prediction uncertainty bars capture the dashed parity line,
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Figure 5.4. Parity plots showing prediction and experimental thickness for
(a) model 0, (b) model 3, (c) model 1, and (d) model 5, which were the
four best models selected by the AIC ranking. The optimal parameters ω̂

are estimated via Eq. (5.11).

suggesting the four models can successfully explain the relation between decision

variables and thickness. This is consistent with the high R2 scores reported in Table

5.3.

5.3.2 MBDoE informs three validation experiments

The model library in Table 5.3 reports eight models with physically meaningful

parameters. We then apply MBDoE to recommend the new experiment(s) to validate

these models.
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TABLE 5.4

COMPARISON OF THE A-, D-, AND E-OPTIMALITY METRICS FOR

MODELS 0 TO 7 WHEN ADDING DIFFERENT SETS OF NEW

EXPERIMENTS.

Model 0 1 2 3 4 5 6 7

log
10
trace(M), A-optimality

Runs 1 to 22 9.237 4.989 4.694 4.961 3.929 4.976 5.201 3.696

Runs 1 to 22:

Run 23
9.581 5.160 5.131 5.131 4.236 5.148 5.398 3.869

Runs 1 to 22:

Run 24
9.422 5.109 4.932 5.081 4.112 5.095 5.343 3.868

Runs 1 to 22:

Run 25
9.422 5.109 4.933 5.082 4.113 5.096 5.344 3.869

Runs 1 to 22:

Run 26
9.378 5.092 4.864 5.064 4.069 5.079 5.313 3.823

log
10
det(M), D-optimality

Runs 1 to 22 26.227 9.523 7.620 9.406 4.704 11.860 12.472 4.072

Runs 1 to 22:

Run 23
38.676 12.226 10.334 12.315 7.390 13.179 14.253 5.363

Runs 1 to 22:

Run 24
27.746 10.901 8.999 10.784 6.081 13.116 13.717 5.315

Runs 1 to 22:

Run 25
27.141 10.903 9.001 10.786 6.083 13.117 13.718 5.317

Runs 1 to 22:

Run 26
26.984 10.446 8.543 10.329 5.625 12.686 13.288 4.885

Continued on next page
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TABLE 5.4 (CONTINUED)

Model 0 1 2 3 4 5 6 7

log
10
trace(M), A-optimality

log
10
min(eig(M)), E-optimality

Runs 1 to 22 -7.031 -2.370 -2.759 -2.368 -2.128 1.515 1.375 -0.632

Runs 1 to 22:

Run 23
2.488 -0.988 -1.525 -0.781 -1.025 1.516 1.644 -0.575

Runs 1 to 22:

Run 24
-6.892 -2.247 -2.638 -2.245 -2.034 1.564 1.396 -0.622

Runs 1 to 22:

Run 25
-7.498 -2.247 -2.638 -2.245 -2.034 1.564 1.396 -0.622

Runs 1 to 22:

Run 26
-7.198 -2.273 -2.665 -2.272 -2.054 1.563 1.398 -0.615

5.3.2.1 Recommendation of new experiments

Before MBDoE analysis, we perform the identifiable analysis of all the mod-

els using previous runs 1 to 22. Table C.4 in the SI reports the eigendecomposi-

tion of the Fisher information matrix for all of the considered models. The results

show that model 0 is unidentifiable using the prior 22 experiments indicated by a

near-zero eigenvalue. Models 1 to 7 are identifiable with condition numbers rang-

ing from 104 to 107. Next, we consider a batch of four more experiments, runs 23

to 26, to quantify the e”ectiveness of MBDoE and to validate the models. Run 23

in Table 5.2 is the experiment that maximizes D-optimality criteria computed by

Eq. (5.26), which corresponds to arrows 6, 7, and 11 in Figure 5.1. Interestingly, for

all eight models, MBDoE recommends the same optimal experiment, run 23, with
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U = 45 V, vp = 1 mm · s→1, Qa = 25 cm3
·min→1, Qs = 85 cm3

·min→1. Figure C.1 -

C.7 in the SI shows that the di”erent structures of the eight models do not have a

large e”ect on MBDoE recommendation. Recall from Table 5.1, we observe that the

experiment designs mentioned above are located in the boundary of the experiment

device operation range. This result indicates that, though di”erent models have dras-

tically di”erent mathematical formulas, the MBDoE approach consistently finds that

new experiments at the bound contain the most information.

In addition to the one optimal experiment identified by the MBDoE approach, we

also propose another two experiments, runs 24 and 25 in Table 5.2, by selecting two

arbitrary conditions with high D-optimality values from the corresponding heatmap

of model 5, shown in row 1 of Figure 5.5. The last experiment, run 26 in Table 5.2,

was selected by only expert intuition without considering the MBDoE results. Figure

5.5 shows these proposed experiments and their influence on the MBDoE metrics.

5.3.2.2 A-, D-, and E-optimality comparison

To quantify the benefits of the newly proposed experiments, Table 5.4 compares

the A-, D-, and E-optimality metrics across the model library. Each row is generated

by considering calculating the previous experiments, runs 1 to 22, and adding a

di”erent proposed experiment, chosen from runs 23 to 26; each column corresponds to

one of the eight models. The A-, D-, and E-optimality metrics were log
10
transformed.

Table C.3 reports the parameters used to compute the A-, D-, and E-optimality

metrics.

Comparison between rows in Table C.3, we observe that the A-, D-, and E-

optimality metrics increase, which is expected based on the FIM formula, Eq. (5.21).

Each new experiment adds to the prior FIM. We also notice that the MBDoE optimal

choice, run 23, caused a consistently larger increase in the MBDoE metrics compared

to the other three experiments, run 24 to 26; considering model 5 as an example,
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compared with the original FIM, the MBDoE optimal choice improved A-optimality

by 49%, D-optimality by 1990%, and E-optimality by 0.23%. In contrast, the ex-

periment chosen based on expert intuition (run 26) improved A-optimality by 26%,

D-optimality by 570%, and E-optimality by 5.44%. This result indicates the MBDoE

optimal choice indeed recommend experiment with higher information.

Comparison between columns in Table C.3, though the dataset is the same, A-

, D-, and E-optimality metrics vary across models. Such variation can be again

explained by Eq. (5.21) that di”erent models have di”erent estimated parameters ω̂

and variance ε̂2, leading to di”erent Jacobian matrix ⇔ωf(ω̂,xn+1); the estimated

parameters ω̂ and ε̂2 for all models are reported in Table C.5 of the SI.

5.3.2.3 Comparison of sensitivity variation with new experiment

Apart from numerical comparison, Figure 5.5 shows the sensitivity analysis of

A-, D-, and E-optimality metrics for the same original data and a di”erent new

experiment for model 5. Row 1 shows the heatmap with only original data, runs 1 to

22 in Table 5.2, while rows 2 to 5 show the heatmap with original data and a sample

from runs 23 to 26 in Table 5.2, accordingly. Figures C.1 - C.7 in the SI provide a

similar analysis for the other models.

Next, we perform sensitivity analysis to confirm the A-, D-, and E-optimality

metrics, which are computed using local sensitivity estimates, Eq. (5.21), are robust

to variations in the model parameters. Following Algorithm 2 described in the SI [44],

we draw 1000 parameter samples ω̃ from a multivariate normal distribution defined by

the parameter estimates and their covariance matrix. For each sample, we recompute

the A-, D-, and E-optimality metrics and record the distance to the nominal value for

these metrics. The histograms of these di”erences, Figure C.8 in the SI, shows all of

the MBDoE metrics change less than 1.5% di”erence across all Monte Carlo samples.

To further verify this conclusion, Figure C.9 in the SI visualizes the heatmaps from
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Figure 5.5. This figure shows the sensitivity of A-, D-, and E-optimality
metrics for model 5 after a new experiment is added with

Qa = 25 cm3
·min→1 and Vp = 1 mm · s→1 fixed. The color indicates the

numerical value of corresponding log10 optimality metrics. Row 1 shows
figures only considering original data, runs 1 to 22. Rows 2 to 5 consider
these prior data (runs 1 to 22) and one new experiment, and are labeled in
black dot (add run 23), star (add run 24), triangle (add run 25), and square

(add run 26), respectively.
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Figure 5.5 using the single sample from the Monte Carlo analysis with the largest

di”erence in D-optimality. Figures C.9 and 5.5 are practically indistinguishable,

further demonstrating the results are robust to parameter uncertainty.

Comparison between rows in Figure 5.5 yields three important observations. First,

the sensitivities of A-, D-, and E-optimality metrics, given the same new experi-

ment, are di”erent. Adding a new experiment has a relatively small influence on

A-optimality because it is the bounding box of a given FIM ellipsoid, and adding a

new measurement has minimal impact on these bounds. In contrast, D-optimality

and E-optimality metrics significantly vary with the addition of a new experiment.

D-optimality is the volume of the FIM ellipsoid and E-optimality is the smallest

eigenvalue, which corresponds to the smallest minor axis of the FIM ellipsoid. The

new experiment enlarges this smallest minor axis and increases the ellipsoid volume.

Secondly, after adding an experiment not recommended by the MBDoE approach,

e.g., any experiment from runs 24 to 26, which are rows 3 to 5 in Figure 5.5, the

next recommendation of experiment self-corrects. The next optimal MBDoE recom-

mendation is run 23, as shown in the red region of rows 3 to 5 in Figure 5.5. This

indicates that most information can be obtained only by considering the MBDoE

optimal recommendation experiment (or region). Finally, after adding the MBDoE

optimal experiment, run 23, the next MBDoE optimal one is located in the lower right

region, see row 2 of Figure 5.5, which verifies the claim above that boundary usually

contains the most information. Such observations are common across all models as

shown by Figure C.1 - C.7 in the SI.

5.3.3 Validated models enable precise thickness control

With the new experiments recommended by MBDoE, we select the best model

and use it for predictive inverse control of thickness.
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Figure 5.6. This parity plot helps validate the models 0, 1, 3, and 5. The
models in the first column are trained with original data (blue triangle),
runs 1 to 22; models in the second column are trained with original data
(blue triangles) and augmented data (green square), run 23. The red dots
show the validation experiments, runs 24 to 26. The error bars are 95% PI

which are calculated via Eq. (5.16).

106



5.3.3.1 Optimal model identification

TABLE 5.5

COMPARISON OF PARAMETER CHANGE IN MODEL 5 BETWEEN

TRAINED WITH ORIGINAL DATA (RUNS 1 TO 22) AND WITH

ADDING AUGMENTED DATA (RUNS 1 TO 23).

Parameters
ϑ00

(cm3
·min→1)

ϑ10

dimensionless

ϑ20

(min · cm→3)

ϑ01

dimensionless

Original

(runs 1 to 22)
-0.0180 0.0290 -0.0255 0.0248

Augmented

(runs 1 to 23)
-0.0116 0.0336 -0.0314 0.0116

The model validation process identifies the optimal model (arrow 10 in Figure

5.1). We selected the optimal model by using the train-test split and leave-one-out

validation frameworks. Figure 5.6 shows the train-test split validation results for

models 0, 1, 3, and 5. The left column uses original data, runs 1 to 22 in Table 5.2,

as train data D1 to obtain optimal parameters ω̂, and make predictions for the final

three experiments, runs 24 to 26 in Table 5.2 as testing data D2. The right column

follows a similar procedure but with run 23 in Table 5.2 included in the training data

D1. A side-by-side comparison between two columns for di”erent models shows the

augmented data assists model 5 in successfully predicting the validation experiment,

while models 0, 1, and 3 fail the test-split validation. This result reinforces our
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conclusions that model 5 is the best model to describe the relationship between

decision variables and thickness. The leave-one-out prediction results in Figure C.10

and Table C.6 in the SI further verifies this finding that model 0, 1, and 3 su”ers

from overfitting issue; in other words, model 5 has the best-generalized performance

[42]. The physical interpretation of optimal model 5 is that there is no interaction

between carrier gas flowrate Qa and sheath flowrate Qs. Given the most general

model 0, Eq. (5.38), we have six parameters to estimate, including ϑ00, ϑ10, ϑ20,

ϑ01, ϑ11, and ϑ21; the model 5 directly set ϑ11 = 0 and ϑ21 = 0, which means the

interaction terms, Q2

aQs and QaQs, can be ignored.

Table 5.5 summarizes the optimal estimated parameters ω̂ comparison between

original data and original data with augmented data for model 5. Two parameters,

ϑ00 and ϑ10 have increased 35.6% and 15.9%, while another two parameters, ϑ20

and ϑ01 have decreased 23.1% and 53.2%, respectively. The highest variation of

parameter, ϑ01, is the linear term of carrier gas flowrate Qa. Meanwhile, Table C.7

in the SI shows the uncertainty of estimated parameters ω̂ increases when run 23

is also used to regress model 5. This is because the FIM is calculated by using

estimated variance, ε̂2, and local sensitivity, via Eq. (5.21); the augmented data

increase estimated variance ε̂2 from 3.66 ↓ 10→3 to 1.58 ↓ 10→2, which causes the

increase of the estimated uncertainty of the parameters. This is expected because

run 23 is dramatically di”erent from the experimental conditions in runs 1 to 22 and

thus increases the residuals. A similar comparison for other models is summarized in

Table C.5 in the SI.

Figure C.11 in the SI visualizes the correlation between parameters in model 5.

We observe high correlation, greater than 0.90, between parameters ϑ00, ϑ10, and

ϑ20. The variables of the three parameters correspond to the Qs with order 0, 1,

2, respectively, that can provide highly correlated relation between parameters [45].

The parameter ϑ01 corresponds to variable Qa that shows no correlation, less than
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0.2, between the other three parameters.

5.3.3.2 Predictive inverse control of thickness

The selection and validation of model 5 enable the predictive inverse control of

thickness based on sensitivity analysis (arrow 12 in Figure 5.1). Specifically, Figure

5.7 predicts how film thickness depends on the two most important decision variables

— printing speed vp and carrier gas flowrate Qa — with voltage U = 35 V. Each

row considers sheath flowrate rates Qs, values of 50, 65, and 80 cm3
·min→1. Similar

plots for the voltage U = 45 V and U = 20 V are reported in Figure C.12 and C.13

of the SI. The comparison of these three figures indicates the voltage has no influence

on the thickness once it reaches to proper operation condition (e.g., U ↘ 30 V).

Figure 5.7(a), (c), and (e) show the prediction thickness as the function of printing

speed vp and carrier gas flowrate Qa with other decision variables fixed. The thickness

contours are linear because thickness h is inverse proportional to printing speed vp

and proportional to carrier gas flowrate Qa, as shown in Eq. (5.38). Comparison

between Figure 5.7(a), (c), and (e), shows thickness h decreases with the increase of

sheath flowrate Qs. From Figure 5.7(b), (d), and (f), we observe that the uncertainty

increase with the larger sheath flowrate Qs, which indicates the limitations of model

predictive performance in the high sheath flowrate Qs and low carrier gas flowrate Qa

region. Specifically, we notice that the lower carrier gas flowrate Qa region in Figure

5.7(e) predicts a negative thickness which is physically infeasible.

One can fabricate the desired thickness film by selecting the corresponding point(s)

from Figure 5.7. For example, for a target film thickness of h = 0.50 µm, we can

choose any point near the contour line in Figure 5.7(c) that equals 0.50 µm. Then

along this contour we, choose the conditions that minimize the prediction uncertainty

using Figure 5.7(d), which is voltage U = 35 V, sheath flowrate Qs = 65 cm3
·min→1,

carrier gas flowrate Qa = 25 cm3
·min→1, and printing speed vp = 3.75 mm · s→1 for
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this example.

Figure 5.7. This figure shows the sensitivity analysis of inverse design with
fixed U = 35 V using model 5. The first column is the mean prediction and

the second column is the corresponding 95% PI.
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5.3.4 Comparison between data-driven physical model and Gaussian process regres-

sion

Figure 5.8. This figure shows the comparison between optimal model 5 and
GPR performance in the validation process, the same setup as in Section
5.3.3; (a) and (b) are the leave-one-out cross-validation, while (c) and (d)
are the train-test split validation. The hyperparameters l↑ are estimated

via Eq. (5.30).

So far in this chapter, we employed nonlinear regression to select and validate

a parametric predictive model, which requires multiple modeling assumptions (e.g.,
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linear, quadratic, sigmoid) about the parametric relationship between the decision

(input) variables and measurement (output). An alternate data-driven approach is to

use a nonparametric model, such as GPR, which replaces the parametric assumptions

with alternate assumptions about how a kernel interpolates between the data [31, 38,

39]. We now make a side-by-side comparison between the optimal model 5 and GPR.

The decision variables and measurement of the GPR are the same as the model 5,

xi = (Ui, vpi, Qai, Qsi) and hi, respectively. The hyperparameters of the GPR model

are trained by maximizing log-marginal likelihood shown in Eq. (5.30).

5.3.4.1 Comparison of model performance between model 5 and GPR with all ex-

periments

Figure 5.8(a) and (b) show the leave-one-out prediction comparison between opti-

mal model 5 and GPR. We can observe that model 5 makes more precise predictions

in higher experimental thickness region (e.g., h ↘ 0.9 µm), while GPR performs

better for lower experimental thickness (e.g., h < 0.9 µm). Specifically, in lower

experimental thickness, h < 0.9 µm, the LOO-MSE metric of GPR is 67.1% lower

than model 5, while in the higher experimental thickness, h ↘ 0.9 µm, the LOO-MSE

metric of model 5 is 30.7% lower than GPR. Table C.8 reports the results of LOO-

MSE for higher and lower thicknesses. To explain this, we need to introduce the key

di”erence between the parametric and nonparametric models. The parametric model

has a fixed equation structure and is often re-calibrated after each new experiment.

However, the nonparametric model directly learns from data and each data sample

is used to make predictions, as shown in Eq. (5.32a). The GPR prediction at a new

experimental condition can be interpreted as summing the prior measurements using

weights from the kernel function Eq. (5.29). When the samples are close in kernel

distance, their prediction will behave similarly. In dataset D, we have abundant data

in the lower thickness region, which makes GPR perform better than model 5; while,
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in the higher thickness region, the lack of data makes model 5 performs better. Table

C.6 shows the comparison of LOO-MSE for model 5 and GPR. The result indicates

the GPR performs slightly better, 16.7% in the LOO-MSE metric, than model 5, due

to the better performance of GPR in the abundant data region, h < 0.9 µm.

Figure 5.8(c) and (d) show the train-test split prediction comparison between op-

timal model 5 and GPR. The setup is the same in Section 5.3.3. Comparison between

the training data prediction shows the predicted thickness and experimental thick-

ness of the GPR method are the same, which is the property of the nonparametric

method that it has no bias [38]. In GPR, the predicted thickness of validation samples

is consistently smaller than the experimental thickness, which can be explained via

Eq. (5.32a), as the weighted sum can never be higher than the maximum thickness

of training samples.

Figure 5.9(a) and (c) show the mean prediction comparison between model 5 and

GPR. In the regions that have abundant samples (black star), we observe similar

trends in equipotential surface across model 5 and GPR. However, in scarce data re-

gion (e.g., vp ↘ 2.5 mm · s→1), the equipotential surface has flattened. With su!cient

data, the GPR will converge to parametric model 5 [46], and even perform better,

because the assumptions of the parametric model may become invalid in regions near

bounds. Figure 5.9(b) and (d) compare the 95% PI between model 5 and GPR. The

uncertainty in the data abundant region, black stars, is small, and the data-scarce

region, upper right, is larger. This can be explained by Eq. (5.32b) that the first term

can be regarded as prior uncertainty from new inputs X↑, and the second term can

be regarded as the uncertainty induced by training data X; the subtraction shows the

uncertainty of new input !↑(X↑) is reduced by providing training data X, and the

more training data, the less the uncertainty of new input !↑(X↑). The comparison

suggests the parametric model is more data e!cient because it provides physically

realistic estimates across the entire experimental domain using a small dataset.
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Figure 5.9. This figure shows the heatmap comparison of model 5 and GPR
with fixed U = 35 V and Qs = 60 cm3

·min→1. The first column is the
mean prediction and the second column is the corresponding 95% PI

calculated via Eq. (5.16). The black stars, in (c) and (d), are the runs 1 to
26, from Table 5.2, projected into 2D space.

5.3.4.2 Comparison of data e!ciency between model 5 and GPR with experiments

selected by D-optimality

To compare the data e!ciency between parametric and nonparametric models, we

down-select five experiments with maximum log
10

D-optimality metric. Specifically,

Algorithm 1 iterates over all possible combinations of experiments to form datasets

containing 1 to 26 samples. This analysis is conducted using the parameter values

reported in Table 5.2. From Figure 5.10, we observe the D-optimality metric is near

zero for fewer than 4 experiments. This makes sense as a 4-parameter model requires

at least 4 experiments to be identifiable (otherwise ⇔ωf(ω,xi)T⇔ωf(ω,xi) cannot
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be full rank). As expected, the log
10

D-optimality demonstrates diminishing returns.

Recall each point on the blue line corresponds to the best combination of experiments

for a given dataset size and not all experiments in Table 5.2 are equally informative.

The most informative experiments are the first selected by Algorithm 1. Based on

Figure 5.10, we select the five experiments (runs 1, 18, 23, 24, and 25) as training

data, and use the rest as validation data, to further make a comparison between

model 5 and GPR.

Algorithm 1 Calculate the maximum log10 D-optimality as a function of the number
of experiments
1: Given: Total number of experiments n, number of desired experiments k, esti-

mated parameters ω̂, estimated uncertainty ε̂, dataset D
2: Calculate the FIM for each experiment, Mi = M(ω̂,xi, ε̂), ⇒i ↔ {1, · · · , n} with

ω and ε̂ fixed
3: for subset ↼j in all combinations of n choose k experiments do
4: Calculate M

j =
∑
i↘ςj

Mi

5: Calculate Dj = log
10
det(Mj)

6: end for

7: Return: D = maxDj, ↼↑
j = argmaxj Dj

Figure 5.11 shows the train-test split prediction comparison between optimal

model 5 and GPR using only five experiments as training data and the other 21

experiments as testing data described above. Comparing Figure 5.11 and Figure

5.8(c) and (d), we notice that small data training, five experiments, leads to larger

error bars in both model 5 and GPR. In Figure 5.11, the test data MSE reported

by model 5 is 0.035, while the same metric reported by GPR is 0.092. Thus, the

GPR has a 62% larger MSE than model 5. Side-by-side comparison between Figure

5.11(a) and (b) shows the training data of GPR are exactly located in the parity

line as expected; while, the training data of model 5 is around the parity line, in-
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Figure 5.10. This figure shows the largest possible log10 D-optimality
metric as a function of the number of experiments for model 5. The red
vertical dashed line at n = 4 marks the number of parameters in model 5.
The black vertical dashed line marks the smallest number of experiment

suitables to estimate the model. The black star at n = 5 marks the number
of experiments chosen to compare model 5 and GPR.

dicating the trained model can well-explained the variation of training data. The

validation data of model 5 has uniform uncertainty, while the same data in GPR has

a larger variation in prediction uncertainty. This observation can also be explained

by that GPR provides relatively larger uncertainty in regions without data and the

parametric model can provide uniform uncertainty across regions.

Figure 5.12 shows the mean and uncertainty prediction comparison between model

5 and GPR with limited training data (five experiments). The settings are the same

as Figure 5.9, which uses all of the available data (26 experiments). The comparison

between 5.12(a)(b) and (c)(d), we observe that the mean and uncertainty prediction

of the parametric model can provide a consistent contour shape. In contrast, the

prediction and uncertainty contours of the nonparametric model are largely deter-

mined by the distribution of samples. With only five experiments, the parametric
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Figure 5.11. This figure shows the comparison of train-test split prediction
between model 5 and GPR. The training data, blue triangles, are run 1, 18,
23, 24, and 25 from Table 5.2; the validation data, red dots, are the rest 21

experiments. The hyperparameters l↑ are estimated via Eq. (5.30).

model can provide a reasonable prediction with relatively small uncertainty in broad

regions.

Next, we focus on the comparison between using five experiments and all ex-

periments as training data. First, in comparison between Figure 5.9(c) and Figure

5.12(c), we observe that the prediction mean of the latter one, trained with five ex-

periments, performed poorly in regions with no data. Second, by comparing Figure

5.9(b)(d) and Figure 5.12(b)(d), we observe the consistently higher uncertainty with

only five experiments. The uncertainty is relatively small in regions that have sam-

ples and relatively large in regions without data. These can both be explained by

that the nonparametric model directly learns from data and cannot provide confident

prediction in regions without data nearby.
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Figure 5.12. This figure shows the heatmap comparison of model 5 and
GPR using five experiments, run 1, 18, 23, 24, and 25 from Table 5.2, with
fixed U = 35 V and Qs = 60 cm3

·min→1. The first column is the mean
prediction and the second column is the corresponding 95% PI calculated
via Eq. (5.16). The black stars, in (c) and (d), are run 1, 18, 23, 24, and 25,

projected into 2D space.

5.4 Conclusions

In this work, we apply powerful data science tools such as model-based design of

experiments (MBDoE) to facilitate precise control of printed film thickness in AJP

processes for the first time. We start with an otherwise disregarded dataset containing

22 experiments from AJP apparatus commissioning and other projects. Using these

preliminary data, a library of eight candidate physics-informed models is proposed

and down-selected to four models using AIC. MBDoE identifies a single optimal

experiment to improve the prediction accuracy of these models. Four additional

118



experiments are conducted, and as predicted the experimental conditions informed

by MBDoE are more informative than experiments selected based solely on expert

intuition. Finally, the single best model identified via cross-validation is used to

identify strategies to manipulate voltage, carrier gas flowrate, sheath flowrate, and

printing speed to achieve the desired film thickness with minimal model prediction

uncertainty. Moreover, retrospective analysis using the determinant of the Fisher

information matrix determines that only five optimized experiments are needed to

train the identified physics-informed nonlinear model. This suggests that only a

handful of experiments are needed to translate the proposed workflow to AJP with

other material systems.

To benchmark the e”ectiveness of the approach, we train black-box nonparamet-

ric models using the same data. As expected, we find the GPR model performs

best in data-rich regions (e.g., thin films for this dataset). In contrast, the physics-

informed nonlinear parametric model outperforms GPR in regions with limited data.

This trend is especially highlighted when considering the minimal dataset of only

five optimal experiments. These results are expected and consistent with trends in

recent physics-informed ML literature. Whenever possible, it is best to incorporate

scientific and phenomenological information into mathematical models to reduce the

data required for training. This chapter provides an additional case study to reinforce

this observation.

As future work, we expect the identified relationship between decision variables

including voltage, carrier gas flowrate, sheath flowrate and printing speed, and thick-

ness can be applied to other AJP material systems such as AgSe [47] or BiSbTe [48]

for thermoelectric materials and devices. We optimistically predict adaptations to

new material systems will require as few as five to ten optimally designed experiments

for initial modeling, but with two important changes: (1) the bounds of decision vari-

ables should updated to consider changes in the ink viscosity; and (2) the regression
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coe!cient will likely be di”erent for each system.

Another direction for future work is increasing the model accuracy near opera-

tional bounds. For example, given the best model identified, we observe the assumed

linear and quadratic relationships may not hold near the operational bounds. We

hypothesize this subtle model-form error explains the superior performance of black-

box GPR with extensive data. In the future, hybrid models [49, 50] can be used to

correct this small systematic bias in thickness predictions. Moreover, the identified

physics-informed models and proposed data science framework can be extended to

optimize more steps and decisions in additive manufacturing processes such as ink

composition for AJP.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

The integration of machine learning (ML) and operation research (OR) into exper-

imental workflow represents a novel paradigm for advancing thermoelectric materials

and additive manufacturing. This thesis demonstrates how strategic collaboration

between domain expertise, data-driven algorithms, and active learning frameworks

can overcome the ine!ciencies of traditional Edisonian search. Here, I synthesize and

summarize the insights for best practices of this framework in three aspects.

Surrogate modeling, which uses machine learning to map relationships between

process variables and outcomes, is the key to e!cient experimental optimization. In

Chapter 2, Gaussian Process Regression (GPR) stands out as a non-parametric sur-

rogate model that excels in data-scarce regimes by interpolating sparse datasets and

quantifying uncertainty for known and unknown samples. In Chapter 3, a critical les-

son from this work is the robustness of GPR hyperparameter training: two distinct

optimization methods (log-marginal likelihood and leave-one-out cross-validation)

converged to identical hyperparameter values, indicating that the choice of training

framework is inconsequential. These hyperparameters also provided interpretable

insights, such as feature importance rankings and aligned model predictions with do-

main knowledge. However, parametric models like non-linear regression remain valu-

able in the manufacturing domain. In Chapter 5, we showed that physics-informed

nonlinear regression, combined with leave-one-out cross-validation and uncertainty
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quantification, achieves high predictive accuracy with minimal data, a key advan-

tage for resource-constrained applications. Notably, parametric models outperformed

non-parametric models in data e!ciency but required careful incorporation of first-

principles knowledge to o”set their reliance on predefined mathematical structures.

This underscores a broader best practice: Choosing parametric and non-parametric

surrogate models should consider data availability and prior mechanistic understand-

ing. Non-parametric models like GPR are ideal for exploratory, high-uncertainty

scenarios, while parametric models succeed when domain knowledge can guide their

modeling structure, enabling precise predictions with fewer experiments.

Optimization frameworks leverage pre-trained surrogate models and domain-specific

objective functions to iteratively identify high-value experiments, accelerating the

convergence to optimal experiment design. Central to this approach is the adaption

of prior observations into the optimization loop, which strategically balances explo-

ration (regions with high uncertainty) and exploitation (known high-performance

regions). In Chapter 3, Bayesian optimization (BO) demonstrated this strategy,

achieving optimal sintering conditions for a real-world flash sintering process within

32 experiments in high-dimensional and noisy environments. However, optimization

e!ciency can be further improved by incorporating constraints. In Chapter 4, we in-

tegrated black-box constraints into BO to narrow the search space. However, a critical

lesson learned: Constraints should not be incorporated early if their mechanisms are

unclear, as they may overly restrict the search space. Beyond single-objective opti-

mization, manufacturing often demands trade-o”s between competing objectives. For

such scenarios, multi-objective optimization with Pareto frontiers provides a princi-

pled way to visualize and navigate progress. In Chapter 4, Pareto-front identified

knee points, regions where marginal gains in one objective (e.g., electrical conductiv-

ity) incur disproportionate losses in another (e.g., substrate temperature), enabling

data-driven prioritization of candidate conditions. This underscores a broader best
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practice: Optimization frameworks should leverage multi-objective strategies to re-

solve competing priorities and should avoid over-constraining the search space in the

early stage of the experiment.

While surrogate models and optimization algorithms provide su!cient tools for

solving manufacturing optimization challenges, expert intuition remains indispens-

able for e!ciently navigating complex experimental search space. This thesis demon-

strates how collaboration with experts at varying experience levels can be tailored to

maximize the value of human-machine synergy. In Chapter 3, we collaborated with

highly experienced experts to refine the BO workflow: BO constrained the search

space to regions of high Expected Improvement (EI), while experts down-selected

experiments within these regions based on practical feasibility and domain-specific

heuristics. Conversely, in Chapter 4, collaboration with less-experienced experts re-

quired a more iterative, ML-guided strategy. Here, optimization frameworks shaped

the experimental roadmap from low-dimension to high-dimension search space, incre-

mentally incorporating expert feedback to align outcomes with broader goals (e.g.,

identifying knee points in Pareto frontiers). This underscores a broader best prac-

tice: The role of expert intuition should adapt to the practitioner’s experience level.

For seasoned experts, leverage their deep domain knowledge to bias or validate

ML-driven recommendations; for novices, use ML-driven optimization to conduct

decision-making, iteratively refining strategies as their understanding grows. This dy-

namic integration ensures that human insight improves the e!ciency of data-driven

experimentation.

6.2 Recommendations for future work

Opportunity 1: Broadening to Generalized Manufacturing Systems. In Chap-

ters 3 to 5, we demonstrate the integration of machine learning, operations research,

and domain expertise to accelerate the identification of optimal experimental designs
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in thermoelectric materials and additive manufacturing. The opportunity lies in ex-

panding this well-developed framework to broader manufacturing systems, such as

carbon capture[1], water treatment[2], and biomanufacturing[3]. These fields share

common challenges, including multi-parameter interaction, high-dimensional nonlin-

ear process responses, and rigid resource constraints (time, cost, data). The proven

capability of the framework, e!cient optimization under data scarcity, quantification

of multi-objective trade-o”s, and human-machine collaborative decision-making can

seamlessly transition to these complex manufacturing fields.

Opportunity 2: Large language model (LLM). In Chapters 3 and 4, we showed

how the predictive accuracy of GPR can be improved in data-scarce scenarios by

incorporating physical knowledge into the machine learning model. However, the

process of extracting this physical knowledge from the literature requires advanced

expertise in mathematics and physics. This presents an opportunity to leverage

pre-trained LLMs (e.g., Llama[4], GPT[5]) by designing an LLM-based agent[6] to

automatically acquire the necessary physical knowledge and build the hybrid model.

There is also a growing area of research focusing on the development of digital twins

powered by LLMs, which exploit few-shot capabilities to generate warm-up datasets

with a small amount of initial experimental data.[7] For example, by fine-tuning a

pre-trained LLM [8, 9] on a small dataset, generating large synthetic datasets, and

using the large dataset to train the subsequent machine learning model, it can achieve

more accurate predictive modeling with less real-world experimental data.

Opportunity 3: Constraint Learning. In Chapter 5, we demonstrated that

model-based design of experiments (MBDoE) can e”ectively determine optimal ex-

periment designs for model selection when using physics-informed machine learning

models with explicit mathematical formulas. However, optimization becomes more

complex when constraints are learned from black-box machine learning models (e.g.,

random forests or neural networks) and are implicitly defined. In these cases, the
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solver must obtain predictions from the machine learning model each time it needs to

calculate gradients, making the process computationally intensive. There is an oppor-

tunity to develop an MBDoE framework that integrates constraint learning[10, 11].

In this framework, implicit constraints are learned from data using machine learning

models. Then, the pre-trained models are embedded into the optimization frame-

work by reformulating it as a mixed-integer problem.[12] This approach o”ers two

key advantages: first, it can better adapt to the mixed-integer solver, making it faster

to solve; second, it can extend to dynamic optimization where current decisions are

influenced by previous decisions in sequential experiments.[13]

Opportunity 4: Autonomous experimental design. Throughout Chapters 3 to

5, the active learning framework provides optimal experiment designs to experimen-

talists who manually conduct new experiments. However, the manufacturing process

is highly uncertain and time-consuming, with many factors that can influence the

accuracy of the final results. This presents an opportunity for autonomous experi-

mentation built upon active learning [14, 15] and multi-modal large language models

[16, 17], where a robotic system is developed, and the agent robot/device automat-

ically designs optimal experiments, conducts them, measures results, and iterates

until the desired product requirements are reached.
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