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APPLICATIONS OF FACTORIZATION HOMOLOGY

TO RIEMANNIAN FIELD THEORIES

Abstract

by

Jeremy Mann

In this thesis, we relate geometric field theories with classical, homotopical invari-

ants of algebraic objects. We begin by defining an abstract setting in which to model

the local observables of field theories depending on a Riemannian structure. We then

introduce a family of examples whose input is implicit in quantum mechanical sys-

tems. Following standard higher categorical procedures, we produce an extension of

these local constructions to general Riemannian manifolds.

Using abstract homotopy theory, factorization algebras, and factorization ho-

mology ,we relate the observables of a field theory on a circle (of fixed size) with

Hochschild homology with coefficients in a module. The action maps of this module

depend explicitly on the geometry on which the field theory habitates. We end with

a general discussion of how these techniques may be used in more general contexts.



CONTENTS

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Outline of the Approach . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Riemannian Variations I: The Local Story . . . . . . . . . . . . . . 7
2.1 Monoidal Digression . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Geometric Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Riemannian 1-Disk Algebras . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A Family of Examples of such Algebras . . . . . . . . . . . . . . . . . 16

2.4.1 A Technical Categorical Digression . . . . . . . . . . . . . . . 18
2.4.2 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Associative Algebras and Modules Thereover . . . . . . . . . . . . . . 26
2.5.1 One Dimensional Manifolds with Boundary . . . . . . . . . . . 26

Chapter 3: Riemannian Variations II: Globalization . . . . . . . . . . . . . . . 36
3.1 Value on Infinitely Large Objects . . . . . . . . . . . . . . . . . . . . 39
3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Value on Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Hochschild Homology . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Hochschild Homology and Factorization Homology over a Rie-

mannian Circle . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4: Factorization Homology . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1 Algebraic and Geometric Preliminaries . . . . . . . . . . . . . . . . . 54

4.1.1 A Few Classic n-Disk Algebras. . . . . . . . . . . . . . . . . . 57
4.2 Factorization Homology . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Factorization Homology: Definitions . . . . . . . . . . . . . . 62
4.2.2 Finality Theorems . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Factorization Homology: Pushforwards and Formal Properties 64

4.3 Computations and Applications . . . . . . . . . . . . . . . . . . . . . 66

ii



Chapter 5: Factorization Algebras . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Prefactorization Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Examples of Prefactorization Algebras . . . . . . . . . . . . . 75
5.2 Weiss CoSheaves: The Appropriate Notion of Locality . . . . . . . . . 79

Appendix A: Quillen’s Theorem A . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix B: Symmetric Monoidal Categories . . . . . . . . . . . . . . . . . . 88
B.1 Pointed Finite Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

iii



FIGURES

2.1 An example of our convention for maps in DiskR1 . . . . . . . . . . . . 20

2.2 A commutative diagram in Ch⊗
R . This illustrates how the properties

of φ lead to the “associativity” of Aφ. Setting ϕ = Id clarifies the
motivation behind the term “associativity”. . . . . . . . . . . . . . . 22

3.1 An infographic of ρx, along with it’s value on 4 points of S1
L . . . . . 49

iv



ACKNOWLEDGMENTS

First, I would like to thank my advisor Stephan Stolz, whose careful support

and editing greatly improved the precision and quality of this thesis. Thank you for

introducing me to this wonderful subject in such a conceptually inspiring manner, as

well as consistently (and at times indelicately) pushing me to address my weaknesses.

On the factorization side, I would like thank David Ayala, John Francis, Ryan

Grady, Ben Knudsen, and Brian Williams for patiently addressing my many technical

confusions and lack of intuition. I would especially like to thank Lauren Bandklayder

for carefully going through her work with me, which inspired much of the technical

features of this work.

On the homotopy/categorical side, I’d like to thank Mark Behrens, Tim Campion,

Chris Schommer-Preis, and the participants of the Notre Dame Topology Graduate

Student Seminar. I’d especially like to thank Dominic Culver. Learning basic homo-

topy theory with you were among my most inspiring and intellectually stimulating

conversations. Without your your perspective, my understanding of the subject would

be a fraction of its current state.

To all my BV buddies, Donny, Riccardo, and Konstantin, thank you for your

careful and patient instruction, without which I wouldn’t have been able to see these

connections between homotopy theory and physics. I want to especially thank Pavel

Mnev. Your presentation and exercises on this formalism were clear and inspiring,

physically illuminating and exceptually sophisticated.

On the physics side, I’d like to thank Antonio Delgado, Chris Kolda, John LoSecco,

and the participants of their quantum field theory courses for giving me a physical

v



intution for this subject, without which I would be horribly lost in abstraction. I’d

like to especially thank Ingmar Saberi for sharing with me some of the deepest insight

I’ve heard on this subject.

I want to thank my friends: James Benn, Quinn Culver, Will Denton, Ana

Giraldo-Wingler, Paul McEldowney, Szimonetta Mulati, Maggie Regan, and Micha

ela Shaw for their support. You kept me sane during this long period.

Most importantly, I’d like to thank my Mom, Dean, Dad, Grandma, Erin, and

David for their support throughout this period. I’ll never be able to fully expression

my gratitude for all you’ve given and sacrificed for me. Without your support, I

wouldn’t have been able to pursue this passion, let alone complete this thesis.

vi



CHAPTER 1

INTRODUCTION

The primary goal of this thesis is to establish (in specific examples) relationships

between invariants from homotopy theory to field theories which depend on a fixed

(Riemannian) geometry. Our primary results proves a result (stated without proof)

of [CG1] (Theorem 4.2.2) relating the observables of a Riemannian field theory to

Hochschild homology of a certain module.

The primary strategy will be to reduce questions about our geometric field theory

to one of a “topological theory”, one manifold at a time. Properties of this topological-

type theory will reflect the global geometry of that manifold.

1.1 Background

Mathematicians and physicists have established connections between field theory

and homotopy theory through a variety of routes. This thesis fits under the gen-

eral program of “factorization algebras.” This approach orginates in Belinson and

Drinfeld’s work in conformal field theory. Lurie, Ayala, and Francis later introduced

topological analogs of these methods, relying heavily on abstract homotopical meth-

ods. Using a combination of the BV formalism, Wilsonian effective field theory, and

homotopy theory, Costello and Gwilliam extended this apporach to general statistical

field theories. Although our primary examples are not topological, the results [AF]

will be essential to the results which follow.

The general strategy in [AF] is the exploitation of En-algebras and (co)sheaf

theory to construct more refined invariants of n-manifolds. In this framework, one
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argues that the (local) observables of a topological field theory admit an algebraic

structure, whose operations are continuously parametrized by embedded Euclidean

neighborhoods. Standard categorical and homotopical constructions extend these lo-

cal, algebraic structures to global observables of a manifold, referred to as factoriza-

tion homology. In many cases, these extension admit more conventional homotopical

descriptions, the most famous example being Hochschild homology.

A fundamental result shows that factorization homology forms a “multi-linear”

homology theory. This “multi-linearity” gives rise to more sensitive invariants of

manifolds and En-type algebraic objects. For example, a standard collar deconstruc-

tion of the circle gives an expression of the Hochschild complex of an associative

algebra as:

HC∗(A) ≃ A⊗A⊗Aop A

Work of Costello and Gwilliam extend this operadic approach to statistical field

theories which are not “topological.” The operations of these algebras are parametrized

by the partially ordered set of open sets. Following Beilinson and Drinfeld, they refer

to these objects as (pre)factorization algebras.

In [CG1][CG2], they utilize a cohomological approach to the BV formalism (pi-

oneered in the seminal work of Kontsevich and Axelrod-Singer) to construct fac-

torization algebras living over a single fixed manifold. The rigorous existence of

these algebraic structures requires deep results in functional analysis and elliptic par-

tial differential equations, most notably paramatrix methods. Moreover, they show

that these constructions obey a cosheaf condition with respect to a nonstandard

Grothendieck topology.

Unsurprisingly, explicit computations of these algebraic structures within this

framework can be extremely difficult for general theories. For example, the mere

existence of these multiplication maps rely upon the existence of compactly supported

parametrices, which do not necessarily admit easy-to-come-by explicit descriptions.
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However, there exists a more tractable class of theories, namely those which obey

a “local constancy” condition. This condition will be essential to the results which

follow. Loosely, this condition has two facets.

First, it states that the support of any local observable can in some way be shrunk

to an equivalent observable supported within a smaller region. Second, it states that

viewing a local observable as an observable in a slightly larger neighborhood results

in no loss of information.

If our theory is “classical”, we can take the ansatz that observables are functions

on the solutions to some equations of motion. In this instance, the local constancy

condition asserts that every local solution to the equations of motion admits a “op-

erationally unique” extension to a larger local neighborhood. If a theory admits a

description as a “quantization” of a locally constant classical theory, one might hope

to somehow inductively exploit the compatibility of the quantization with the equa-

tions of motions to extend the classical local constancy to a local constancy at the

quantum level. On a formal level, this amounts to a spectral sequence-type argument.

Many well-known field theories satisfy this condition, for example, the Ising

model/massive scalar field theory. At the classical level, this should follow from

the well-posedness of the Helmholtz/Klein-Gordon equation.

A folk attitude towards these objects asserts the following: if we are thinking of a

factorization algebra as describing some field theory, local constancy means that we

are modeling a topological field theory. We speculate that this attitude is founded

in a result of Lurie, which proves an equivalence of homotopy theories between En-

algebras and locally constant factorization algebras.

In light of the previous discussion, a naive invocation of this attitude suggests

that massive scalar field theory describes topological theory. This is clearly nonsense.

The author proposes a more conservative interpretation of local constancy: these are

field theories which have a hope of some type of algebraic description. For example,
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Lurie’s work demonstrates how one can extract an En algebra from a locally constant

factorization algebra on Rn.

We now present an example from the standard curriculum in field theory. Every-

thing we say should only be true at the level of physics.

A standard approach to massive scalar field theory amounts to the extraction an

associative algebra, a module thereover and a suitable representation of the Poincare

group.

Following Dirac, these algebraic structures can (approximately) deconstuct scat-

tering processes as more elementary processes involving the creation and/or anni-

hilation of particles of various types. The relations in this associative algebra are

“topological”, and admit no explicit reference to geometric quantities such as dis-

placement. The representation then relates processes which occur in different points

in spacetime. The geometric dependence of this theory is completely encoded in this

representation.

If we restrict our interest to understanding processes which occur over a fixed over

time interval with a distinguished point, the relevant computations become purely

algebraic. The specific form of these computations (namely the module structure)

will depend upon a global geometric property: the duration of the process.

We invite the reader to keep these examples in mind and the thesis progresses.

1.2 An Outline of the Approach

We begin by defining a suitably general, abstract model for the local observables

of a one dimensional “Riemannian field theory.”

Remark 1. In the lingua franca of field theory, these describe field theories whose

action involve an operator constructed from a Riemannian metric. For example a

theory whose action involves a Laplacian or a theory which has been gauge-fixed

using a Riemannian structure.
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This definition will be categorical in nature, paralleling those in [AF]. These

choices are not only meant to provide a rigorous context: they also streamline the

importation of homotopical methods.

We then construct our primary object of investigation: a class of “locally con-

stant” examples. This construction takes as input an associative algebra, A equipped

with a one parameter family of automorphisms, φ. On a conceptual level, these the-

ories may be thought of as ”probes” for more general theories. For example, those

obtained as pushforwards of higher dimensional theories, or those constructed in the

BV formalism.

Remark 2. This data provides a one-dimensional family of (A,A) bimodules, whose

underlying chain complex is A, and multiplication maps for every L ∈ R are:

a0 ⊗ a⊗ a1 ↦→ φL(a0) · a · φ−L(a1)

We will denote this module as LA−L

After applying categorical methods to extend this local construction to general

Riemannian 1-manfolds, we then analyze the global observables for each Riemannian

manifold.

The primary result is an identification between the observables on a circle of

circumference 2L and Hochschild homology:

HH∗(A,L A−L)

which was stated (without proof) in [CG1].

We obtain this result by identifying the local observables on this circle with a

“topological” theory in the sense of [AF]. This argument only works “one Riemannian

manifold at a time,” in that the structure of this identification explicitly depends on

the geometry of the specific manifold at hand. In other words, we establish the result
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through the construction of equivalences of factorization algebras.

The final two parts and appendix of this thesis contain background information

on factorization homology, factorization algebra, and higher category theory.
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CHAPTER 2

RIEMANNIAN VARIATIONS I: THE LOCAL STORY

We begin with the core of the thesis, leaving much of the relevant background to

later chapters. Therefore, those without a particular background will have to either

accept certain facts without proof or refer to later chapters, appendices, and/or

outside literature.

We begin this chapter with a section setting up certain “algebraic” preliminar-

ies. Paralleling the theory of operads and the approach to topological field theories

established in [AF], we will construct categories of geometric objects parametrizing

the operations of a certain type of algebraic object, a Riemannian 1-disk algebra.

We then outline a procedure to construct a Riemannian 1-disk algebra from data

of a unital associative algebra and a 1-parameter group of automorphisms. Hope-

fully, this will illuminate the relationship between Remannian 1-disk algebras to field

theory, via Dirac-style quantization and the time-ordered product.

The motivation behind this more geometric approach is twofold. First, as out-

lined in [CG1], the BV formalism constructs examples of such algebras. As the BV

approach relies on Feynman’s path integral approach to field theory, this work may

be considered as constructing a common setting in which to explore the relationships

between these two standard approaches to field theory. More importantly, the work

of [AF] will allow us to relate these constructions to abstract homotopy theory.
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2.1 Monoidal Digression

Before going into the primary content, we pause to make a few technical notes

about “ordinary” symmetric monoidal categories, in the sense of Mac Lane, [M].

In this formalism, symmetric monoidal structures are controlled by planar rooted

trees whose internal vertices have valency three. On a conceptual level, the planar

rooted tree is granting us the structure of a parenthesization of the ordered set of

leaves of T .

Given such a tree T , we will adopt the following notation:

• We let [T ] denote the underlying nonempty ordered set of leaves. The ordering
exists because we assumed T to be planar

• We will ⟨T ⟩ denote the underlying set of leaves.

The structure of a symmetric monoidal structure on an ordinary category, C,

gives an operation with two inputs: a planar rooted tree T along with a labelling of

the leaves of T by objects of C:

A : ⟨T ⟩ → ob(C)

i ↦→ Ai

Given such data, the monoidal structure gives a new object of C, which we’ll denote

as: ⨂
i∈T

Ai

When A is constant, this object will be denoted as:

A⊗T

8



Example 3. We invite the reader to keep the following infographic in mind:

A0

⨂
A0 ⊗ A1

A1

⨂
(A0 ⊗ A1)⊗ A2

A2

Remark 4. We can also think of T as a factorization of the unique map [n]→ [0]:

[n]→ . . .→ [0]

So that for each [k]→ [k − 1], the preimage of any point has cardinality one or two.

In other words, every such T is (non-uniquely) determined by a simplex in the nerve

of ∆ satisfying a property corresponding to the valency property on the planar rooted

tree. As the preimage of an degeneracy map is either one or two, every nonempty

totally ordered set [n] gives a “standard” planar rooted tree:

[n]
σn→ [n− 1] . . .

σ0→ [0]

Therefore, we will at times abusively omit reference to the above planar rooted tree

structure, and simply write: ⨂
i∈[n]

Ai

or

A⊗[n]

In the coming discussion, for ease of exposition, we will refer to such a T as an

ordered parenthesized set.
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Moreover, the symmetric monoidal structure “interpolates” between the various

orderings and parenthesizations. More formally, it gives us, for any (T,A), (T̃ , Ã),

along with a bijection:

⟨T ⟩ σ≃ ⟨T̃ ⟩

so that:

σ∗(A) = Ã

an isomorphism: ⨂
i∈T

Ai ≃
⨂
j∈T̃

Ãj

Maclane’s coherence theorem asserts that these morphisms assemble into a con-

tractible groupoid. In a more informal language, “all possible diagrams commute”.

Therefore, for ease of notation, our exposition will not explicitly label these isomor-

phisms whenever it is clear from the context.

There is an analogous story at the level of morphisms. Given a T , along with a

morphism for every i ∈ ⟨T ⟩:

Ai
fi→ Bi

We obtain a map: ⨂
i∈⟨T ⟩

fi

with source
⨂

Ai and target
⨂

Bi.

As above, this process is natural with respect to reordering and reparenthesization,

in the obvious fashion

2.2 Geometric Input

Definition 5. Let MfldR
1 denote the category of oriented Riemannian 1-manifolds

without boundary, and oriented isometric embeddings therebetween. We will view

10



MfldR
1 as a symmetric monoidal category under disjoint union.

We now hone in a certain subcategory containing basic regions.

Definition 6. Let DiskR1 denote the full symmetric monoidal subcategory of MfldR
1

containing finite disjoint unions of open intervals of finite diameter. For any R > 0

we let:

BR := (−Ri, Ri)

denote the (unique up to unique isomorphism in DiskR1 ) Riemannian 1-manifold of

volume 2R. We denote its midpoint as mR ∈ BR.

Remark 7. The finite diameter condition implies the existence of an essential feature:

every object of DiskR1 has a notion of a (or a configuration of) midpoint(s).

Remark 8. The evaluation at the midpoint (of each connected component) of an

embedding ι : U → M with U ∈ DiskR1 determines a configuration of points in M .

Moreover, every finite configuration of points in M may be obtained in this manner

by some sufficiently sized U ∈ DiskR1 .

Remark 9. Every object in DiskR1 is equivalent to the data of a finite ordered, paren-

thesized set labeled by positive real numbers. We will denote such a labeled paren-

thesized ordered set as (T,R), where T denotes the underlying ordered parenthesized

set, and

⟨T ⟩ R→ (0,∞) ↪→ ob(DiskR1 )

i ↦−→ Ri ↦−→ BRi

its labelling by objects. Such data gives rise to an object:

B(T,R) :=
∐
i∈T

BRi
∈ DiskR1

11



As the geometry is so rigid, when the source is connected, evaluation at the

midpoint permits us to view every map as a point in the target satisfying a condition

expressible in terms of its metric geometry. More formally, we have a bijection:

DiskR1 (Br, BR) ≃ {p ∈ BR|d(p,mR) ≤ R− r}

More generally, evaluation at the midpoint of each connected component gives a

bijection:

DiskR1 (B(T,r), BR) ≃ {x : ⟨T ⟩ → BR|d(xi, xj) ≥ ri+rj, d(mR, xi) ≤ R−ri,∀i, j ∈ ⟨T ⟩}

And most generally:

DiskR1 (B(T,r), B(T ′,R)) ≃
∐

f :⟨T ⟩→⟨T ′⟩

( ∐
j∈⟨T ′⟩

f−1(j)̸=∅

DiskR1 (B([f−1(j)],r), BRj
)
)

Where we are omitting any parethesization of [f−1(j)] (which has an ordering induced

from the [T ]), as the identification above makes it clear that DiskR1 (B(T,R), BR) need

not make any explicit reference to the ordering or parenthesization.

Remark 10. As the previous remark indicates, the orientation and metric give a closed

inclusion:

DiskR1 (B(T,r), BR) ↪→ Conf⟨T ⟩(TmR
BR) ≃ Conf⟨T ⟩(R)

into the space of ⟨T ⟩-labeled configuration spaces. Here, the ordering is induced by

the orientation on BR.

Example 11. Seeing the set of maps as sitting inside ordered configuration spaces

12



gives the composition a straightforward algebraic description. For example:

(∏
i∈T

DiskR1 (B(T,ri), BRi
)
)
×DiskR1 (B(T,R), Br′)→ DiskR1 (BT̃R

, Br)
)

(tji , ti) ↦−→ (tji + ti)

Where T̃ is obtained from grafting (T i) to T .

Remark 12. This description only holds for a subspace of configurations. In other

words, it does not extend to a map on ordered configuration spaces.

2.3 Riemannian 1-Disk Algebras

Remark 13. Although the definitions in this section will hold for an arbitrary symmet-

ric monoidal∞-category C⊗, we will restrict our attention to the symmetric monoidal

∞-category of chain complexes over R, Ch⊗
R , as this will be the case relevant to the

task at hand. We will refer to the ordinary symmetric monoidal category of chain

complexes over R as Ch⊗
R . The author does not expect those initiated in the theory

of∞-categories to have any difficulties extending these constructions to more general

contexts.

Definition 14. A Riemannian 1-disk algebra (with values in Ch⊗
R) is a symmetric

monoidal functor:

DiskR1
A−→ Ch⊗

R

Remark 15. We invite the reader less aquainted with defining algebraic objects in

this manner to consult section 3.2 of [CG1].

Remark 16. As the previous remarks indicates, the set of maps in DiskR1 admits

an enrichment in smooth manifolds with corners, foreshadowing a smoothly varying

enhancement of the above definition. We will not pursue this line of reasoning, and

regard DiskR1 as an ordinary symmetric monoidal category.
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Remark 17. As the reader can imagine, one can repeat the above definition, replacing

1 by any finite number, n. In this case, the value of any such an A on an open ball

admits a natural representation of SO(n). Therefore, for a general n, such an object

contains strictly more data than an algebra over the multicategory of open sets of Rn

homeomorphic to a finite disjoint union of Rn.

Remark 18. We invite the reader to imagine that some model of a statistical (or

quantum) system should give rise to such an algebra. Adopting this perspective, the

value of A on an interval parametrizes some (physically meaningful) observables of

that system taking place within that interval.

Following the Wilsonian/renormalization perspective on observables, every obser-

vation corresponds to an (or multiple) “external” system(s), localized within a finite

region, and interacting weakly with the system of interest in a prescribed manner.

This interaction “influences” some aspect of the external system. A description of

this alteration via a single numerical quantity constitutes an observation. For more

on this perspective, we invite the reader to consult 12-8 of [FH] on “Influence Func-

tionals” and 2.2.3 of [W] on “Effective Field Theory”.

We can view multiple of external systems as a constituting an external system

localized within a larger region. As it would be unwise to attempt to co-locate these

systems, we may assume each of these systems as being contained within disjoint

regions of space. As addition admits a similar interpretation, we adopt the perspective

that the value of A on an embedding constitutes a type of algebraic operation.

A general Riemannian 1-disk algebra may be difficult to work with. Therefore,

we introduce the following condition, which is satisfied in many interesting examples.

Definition 19. A Riemannian 1-disk algebra A is locally constant if the image of

any map in DiskR1 , whose source and target have a single connected component, is

an equivalence.

14



Remark 20. A folk attitude towards these objects asserts that if we are thinking

of such an object as describing a field theory, the locally constant condition means

that we are talking about a topological field theory. To the author’s knowledge, this

statement is not formally justified anywhere within the literature (the notion of a

topological field theory is much more subtle that Atiyah’s axiomatization may make

it appear).

The author speculates the reason for this mistake lies in a misinterpretation of a

(mathematically rigorous and well-defined) result of Lurie’s, asserting an equivalence

of homotopy theories between “locally constant factorization algebras on Rn” and the

classical homotopy theory of En-algebras. For sake of continuity, we will postpone

our discussion of factorization algebras for later chapters, and present one reason why

such a slogan cannot be true.

Suffice it to say that a factorization algebra in this sense is analogous to a (co)sheaf

on a fixed manifold. This notion, is different than a (co)sheaf on the site of manifolds.

For example, the maps within the latter category demand that the value of any

(co)sheaf on Rn inherits, an action of the monoid Emb(Rn,Rn). As any category of

open sets is a poset, the values a (co)sheaf on this category need not admit an action

of any symmetry groups. Of course, the restriction of a (co)sehaf on manifolds to a

fixed manifold still contains a wealth of information.

Most notions of a field theory (which is a notion in physics), on the other hand,

demand that its degrees of freedom admit an action of the symmetries of the context

at hand. In fact, the construction of irreducible representations of the Poincare group

historically coerced the physics community into adopting field-theoretic methods.

This requirement becomes even more important in phenomenological/effective field

theory approaches to statistical field theory, where equivariance conditions makes

the admissible classes of Hamiltonian densities tractable. See chapter 2 of [K] for an

elegant treatment of this approach.

15



Whatever one means by a topological field theory, its local degrees of freedom

should come equipped with an action of some “large” subgroup of the relevant dif-

feomorphism group. Note that a general En-algebra does not necessarily come with

an action of any such subgroup. Therefore, considering Lurie’s equivalence, a factor-

ization algebra is, at best, a shadow containing incomplete (but highly interesting!)

data of a field theory.

Remark 21. On a concrete level, the local constancy condition first states that every

cocycle in A(U) is equivalent to one contained within an arbrarily small region of any

point in U , whenever U is connected. This is the surjectivity part of the condition.

Second, if the extension of two cocylces to a larger region are equivalent, they must

have been equivalent to begin with. This is the injectivity part of the condition.

If we are imaginingA as parametrizing the data of the observables of a field theory,

these conditions are dual to the existence and uniqueness of extensions to solutions

of the relevant equations of motions (at least at the at the classical level). Therefore,

the author asserts that, when the algebra in question is constructed from differential

geometry, the question of whether such an algebra is locally constant should be

unravelable to a classical analysis question, via some (algebraic) incarnation of the

inverse function theorem.

2.4 A Family of Examples of such Algebras

In this section, we will construct a broad family of examples of Riemannian 1-disk

algebras. This takes as input two pieces of data.

• A unital differential graded associative algebra, A in Ch⊗
R , with multiplications

for every finite totally ordered parenthesized set T :

µT
A : A⊗T → A

Depending on the context, we may omit the dependency of µ on T . For simplic-
ity, we assume all associativity conditions hold on the nose. As our upcoming
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theorems will be homotopy invariant, standard rigidification results imply this
assumption involves no loss of generality. Note that this is implied by stating
that A is an algebra in the ordinary category Ch⊗

R .

• A one-parameter group of automorphisms of A:

φ : (R,+) −→ AutAlgR(A)

t ↦−→ φt

In other words, φt is an algebra automorphism for every t ∈ R, and

φt ◦ φs = φs+t

Remark 22. The standard mathematical examples of A to keep in mind are a poly-

nomial algebra on even number of generators (position/momentum), or the universal

enveloping algebra of the Heisenberg Lie algebra associated to a symplectic vector

space. In other words, the physically meaningful observables of some physical sys-

tem. In this context, φ should be thought of as encoding how outcomes of a fixed

measurement change in time. The essential ingredients of such automorphisms are

supplied by the solutions to some well-posed ordinary differential equation through

the analytic theory of semigroups.

Remark 23. Those familar with quantum mechanics can imagine such an input arises

from self-adjoint operators on a Hilbert space, along with a group of automorphisms

determined by a Hamiltonian, via the Heisenberg equation of motion [SN], [PS].

Therefore, although this input may appear “explicit,” when the Hamiltonian involves

an interaction/nonlinear term, an explicit description of the automorphism requires

solving a potentially intractable ordinary differential equation.

As these problems are conventionally addressed using perturbation theory, one

can imagine that an interesting line of inquiry would be to explore examples which

are defined in chain complexes over some nilpotent R-algebra.
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2.4.1 A Technical Categorical Digression

We will eventually be interested in constructing homotopical invariants, and there-

fore desire a functor with values in the symmetric monoidal infinity category of chain

complexes Ch⊗
R . This ∞-category has an ecosystem of equivalent constructions. All

of these constructions have the property that there exists a canonical symmetric

monoidal functor:

Ch⊗
R → Ch⊗

R

which is a localization sending quasi-isomorphisms in Ch⊗
R to equivalences in Ch⊗

R .

As this indicates, a convenient way to construct a Riemannian 1-disk algebra

with values in Ch⊗
R is to first construct a symmetric monoidal functor of ordinary

categories:

DiskR1 → Ch⊗
R

and compose it with the above functor. This method has the advantage that the

data and conditions of constructing a symmetric monoidal functor “a la Maclane”

are significantly fewer in number.

2.4.2 The Construction

We now combine our geometric and algebraic/analytic input. This is nothing

more than the potentially familiar notion of a time-ordered product.

Remark 24. For ease of exposition, we pause to establish some simplifying notation.

First, note that a map:

B(T,r)
x→ BR

along with the orientation on the target, gives the set T a total ordering, which we

will denote [T ]x.

Second, note that every such map can be labeled by a T -labelled collection of
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numbers, (ti)i∈T . Here, each ti ∈ R is the unique number so that under the Rieman-

nian exponential map (which also identifies R with the tangent space at the midpoint,

mR of BR):

expmR
(ti) = x(mri)

Finally, note that a general map, B(T,R)
x→ B(T ′,R′) decomposes T into:

⟨T ⟩ ≃
∐
j∈T ′

x−1(j)

Here, we are conflating x and π0(x). Therefore, x gives an equivalence:

B(T,R)
σx≃

∐
j∈T ′

B[x−1(j)]R

By convention, B∅ = ∅. Under this equivalence, x decomposes as:

x = σ∗
x

(∐
j∈T ′

(B[x−1(j)R]x

xj→ Brj)
)

as discussed in section 2.1.

Example 25. Heuristically, one should interpret x notation as encoding where an

embedding sends the midpoint of the source (B(T,r)), and the t’s encode the displace-

ment from x to the midpoint of the target (BR).

Under this notation, the inclusion (0, 4) ↪→ (0, 8) = BR has t = −2, as it sends

the midpoint of (0, 4) two units the to left of the midpoint of (0, 8).

With this in place, we can define our primary antagonist.

Definition 26. Let

Aφ : DiskR1 → Ch⊗
R

denote the symmetric monoidal functor, whose value on
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Figure 2.1. An example of our convention for maps in DiskR1

1. Objects is:
Aφ(B(T,r)) = A⊗T

2. Morphisms of the type, B(T,r)
x→ BR, is defined as the composition:

A⊗T ≃ A⊗[T ]x

⨂
φ−ti−→ A⊗[T ]x

µ
[T ]x
A−→ A

For a general morphism, B(T,r)
x→ B(T ′,R), we use the decomposition above, and

defined as: ⨂
j∈T ′

Aφ(xj)

Remark 27. The author finds the following narrative helpful. The elements ofAφ(BR)

are imagined as being elements of A which sit at the midpoint of BR. The action

map evaluates on an inclusion by first using φ to move elements of A to the midpoint

of the target intervals, and then multiplies everything using µA.In particular, the

structure maps have no explicit dependence on the diameter of the intervals.

More specifically, given any a ∈ A and ι : Br → BR, A
φ(ι)(a) is the unique

solution to:

φι(0)=t

(
Aφ(ι)(a)

)
= a

In order to clarify the above formulas, we now go through some examples of Aφ’s

behavior.

Remark 28. Note that the exponential map based at the midpoint of an open interval

(a, b) ⊂ R as an object of DiskR1 .
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Example 29. Aφ evaluates on the inclusion (0, 2)→ (−2, 2) as:

A −→ A

a ↦−→ φ−1(a)

The value on (−4,−2)⨿ (0, 4)→ (−4, 4) is given by:

A⊗ A −→ A

a⊗ b ↦−→ φ3(a) · φ−2(b)

The value on the composition

Aφ
(
(−4,−2)⨿ (−2, 2)⨿ (2, 4) ↪→ (−4, 2)⨿ (2, 4) ↪→ (−4, 4)

)

can be seen to be:

a0 ⊗ a1 ⊗ a2 ↦→ (φ2(a0) · φ−1(a1))⊗ a2 ↦→ φ1(φ2(a0) · φ−1(a1)) · φ−3(a2)

While the value on the composition

Aφ
(
(−4,−2)⨿ (−2, 2)⨿ (2, 4) ↪→ (−4, 2)⨿ (2, 4) ↪→ (−4, 4)

)

may be computed as:

a0 ⊗ a1 ⊗ a2 ↦→ a0 ⊗ (φ1(a1) · φ−2(a2)) ↦→ φ3(a0) · φ−1((φ1(a1) · φ−2(a2))
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Both of which agree with the evaluation of Aφ on their composite:

Aφ
(
(−4,−2)⨿ (−2, 2)⨿ (2, 4) ↪→ (−4, 4)

)
a0 ⊗ a1 ⊗ a2 ↦→ φ3(a0) · a1 · φ−3(a2)

Figure 2.2. A commutative diagram in Ch⊗
R . This illustrates how the

properties of φ lead to the “associativity” of Aφ. Setting ϕ = Id clarifies
the motivation behind the term “associativity”.

Remark 30. The last two examples demonstrate how the algebraic properties of φ

account for the functoriality, or “associativity” of Aφ.

Example 31. First, we fix a finite set J , equipped with a map:

E : J → R≥0

j ↦→ Ej
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From this data, we map obtain a 2|J |+ 1 dimensional complex vector space:

C · {c} ⊕
⨁
j∈J

C · {a(j), a†(j)}

Where C·{S} denote the free complex vector space generated by a set S. In particular,

C · {a(j), a†(j)} is just the two dimensional complex vector space with distinguished

basis vectors a(j), a†(j).

We can endow this vector space with the structure of a Lie algebra, given by:

[a(k), a†(j)] = δkjc,

[a(k), a(j)] = 0 = [a†(k), a†(j)]

and c is central. Those familiar with this approach will recognize the above as a

Heisenberg Lie algebra construction.

This Lie algebra has a one parameter family of automorphisms, determined by

E, which we will denote by φ. On generators, this behaves as:

φt(a(j)) = e−iEjta(j)

φt(a
†(j)) = eiEjta†(j)

In other words, it is the semi-group of operators associated to the ordinary differential

equations:

d

dt
a(j) = −iEja(j)

d

dt
a†(j) = iEja

†(j)

Let WJ denote the universal enveloping algebra the of the above Lie algebra with

c = 1. The above semigroup of operators extends to WJ by functoriality. Note that
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we can use the Lie bracket associated to WJ to write down the following ordinary

differential equation for any O ∈WJ :

d

dt
O =

1

i

∑
J

[O,Ej · a(j)a(j)†]

which agrees with the previous ODE when O is a(j) or a†(j). This is the familiar

Heisenberg equations of motion.

The semigroup of operators on WJ arising from the above ODE agrees with the

one obtained via the functorial extension of φ. This follows because they agree

infinitesmally on generators.

For example a straightforward computation shows:

[a(j)a†(j), (a†(k))n] = n · (a†(k)nδjk

[a(j)a(j)†, a(k)n] = −n · (a(k)†)nδjk

For this reason, we will adopt the notation:

Nj =
∑
J

a†(j)a(j)

as it “counts (with signs) the number” of powers of the generators. Therefore, the

generator of our semigroup is:

[HE,−] = [EjNj,−] =
∑
J

Ej(a
†(j)

∂

∂a†(j)
− a(j)

∂

∂a(j)
)

So that:

[HE, (a
†(j))n] = (nEk)a

†(k)
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This algebra admits another famous basis, given as:

a(j)† =

√
ω

2

(
pj − i

xj

ω

)
, a(j) =

√
ω

2

(
pj + i

ω

xj

)

where (following De Broglie), Ej = ωj. A straightforward computation shows that:

[xj, pk] = δjk

HE =
1

2

∑
J

p2j + ω2
jxj −

ω

2

[HE, xj] = p

[HE, pj] = −ωx

from which we can see that the above models a quantization of J harmonic oscillators

oscillating at frequency ωj, with ℏ = 1. Moreover, in this basis, the automorphism

acts as:

φt(xj) = xj cos(ωt) +
pj
ω

sin(ωt)

and

φt(pj) = −ωxj sin(ωt) + pj cos(ωt)

As we have written down an algebra with an automorphism, we obtain an DiskR1 -

algebra by the above construction.

Finally, we adopt a notation for how to twist the action maps of some (A,A)-

bimodule (M,µM) by φ. We will use this notation in later chapters.

Definition 32. Given any L,L′ ∈ R. Let LML′ be the bimodule in Ch⊗
R , whose
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underlying object is M , and with multiplication maps:

A⊗[n] ⊗M ⊗ A⊗[k] −→M

a[n] ⊗m⊗ a[k] ↦→ φLµ
[n](a[n]) ·m · φL′µ

[k]
A (a[k])

That is
L
ML′ is the image of M under the pullback functor:

(φL, φL′)∗ : (A,A)−Mod→ (A,A)−Mod

We will denote this new action as LµL′
M .

2.5 Associative Algebras and Modules Thereover

The goal of this section is to relate the notions described above to more famil-

iar algebraic structures: unitial associative algebras, and unital left/right modules

thereover. The reader may consult [AF] for a detailed treatment.

Although these categories appear elementary, a thorough understanding of their

basic features is a necessary prerequisite for anything beyond a formal understanding

of how they are used. Therefore, we request the reader to tolerate a slow, convulsive

treatment of the subject. A conceptual and honest treatment of this subject requires

certain higher categorical notions that may feel unnecessarily technical and opaque

at first. However, the author hopes to convey a sense in which these methods are

both technically advantageous and conceptually natural. We invite the reader only

interested in the formal statements to ignore the upcoming remarks.

2.5.1 One Dimensional Manifolds with Boundary

Written representations and manipulations of expressions within an associative

algebra are inherently one dimensional and oriented. The written language of left and

26



right modules over an associative algebra are similarly oriented and one-dimensional,

although their intrarelationships are vastly more restricted than in the case of an

associative algebra. As we hope to argue, the grammar of these manipulations are

controlled by the differential topology of oriented 1-manifolds with boundary.

Although these formal expressions have typographical properties, these charac-

teristics have no mathematical meaning. More specifically, the formal meaning of

these written string of symbols are insensitive to kerning and font size. As we hope

to argue, this insensitivity may be accounted for by an abstract homotopy theory of

oriented 1-manifolds with boundary.

With this in mind, we will first construct an ordinary category overapproximating

the theory of associative algebras and unital left and right modules thereover. As we’ll

see, this ordinary category contains a variety of data which makes this relationship

somewhat awkward. We then introduce an ∞-category remedying this awkardness.

Definition 33. Let Mfldor,∂
1 denote the category of (possibly empty) smooth, one di-

mensional oriented manifolds with boundary and smooth oriented embeddings which

send boundary components of the source to boundary components of the target.

Disjoint union endows this category with a symmetric monoidal structure.

Let Diskor,∂1 denote the full symmetric category containing finite disjoint unions

of R, R≥0, and R≤0.

Similiarly, let Mfldor
1 and Diskor1 denote the full symmetric monoidal subcategories

of Mfldor,∂
1 and Diskor,∂1 , respectively, containing those oriented manifolds without

boundary.

Remark 34. For the time being, we are less interested in the specifics of Diskor,∂1 per

se, as we are in the data it corepresents. Therefore, we need to address the questions:

what data is contained in a symmetric monoidal functor out of Diskor,∂1 ? How can

we interpret this data algebraically? Obviously we have no hope in addressing this

question without a thorough understanding of the maps in Diskor,∂1 .
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Definition 35. Throughout this section, we will refer to a map in either Mfldor,∂
1 or

Diskor,∂1 as an admissible embedding.

Remark 36. Note that there exists no admissible embeddings from either R≥0 or R≤0

to R or between R≥0 or R≤0. The source of any admissible embedding into an object

with boundary must have at most one boundary component. For example, there

are no maps from R≥0 ⨿ R≥0 into R≥0 or R. There exists unique maps from ∅ (the

symmetric monoidal unit) into R≥0 and R≤0.

Although there are potentially infinite number of maps between two objects of

Diskor,∂1 , any two maps which agree on π0 are isotopic, when considered as habitating

within a subspace of the compact-open topology.

Remark 37. The image of R under an admissible embedding of the form:

R≥0 ⨿ R→ R≥0

must be to the right of the image of R≥0, while it’s image under an admissible

embedding of the form :

R⨿ R≤0 → R≤0

must be to the left of the image of R≤0. Note that any pair of admissible embeddings

in Diskor,∂1 between R, R≥0, R≤, with a common source and target are isotopic.

Remark 38. Note that every admissible embedding of the form:

∐
I

R→ R

gives I a total ordering. Any two such admissible embeddings are isotopic if and

only if their induced linear orderings agree. In other words, the isotopy class of such

a map contains precisely the data of a linear ordering of the connected components

of the source. Recall that given an I-indexed collection of elements of an associative
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algebra, a unique multiplication of these elements is defined upon a choice of total

ordering of I.

Remark 39. [−1, 1] is not an object of Diskor,∂1 . Moreover, every admissible embedding

of the form: ∐
I

R ↪→ [−1, 1]

factors through an admissible embedding of the form:

R≥0 ⨿ (
∐
I

R)⨿ R≤0 ↪→ [−1, 1]

Although this extension is not unique, any two such extensions are isotopic.

Remark 40. A common typographical representation of an map of the form:

R≥0 ⨿
( 2∐
i=1

R
)
⨿R≤0 ι

↪→ [−1, 1]

(which is an element of Diskor,∂1/[−1,1]) is:

−| − | − |−

where the bars correspond to the connected components of the complement of ι.

Although the bar notation does not uniquely determine ι, it does uniquely determine

it’s isotopy class.

The “−” are to be labelled by elements of either a right module (when it is the

right most slot), a left module (when it is left most slot), or an associative algebra

(when it is in the middle slot). A map in Diskor,∂1/[−1,1] that is also a surjection on

connected components is then modelled by the removal of a bar, and a concatenation

of the slots. When the slots are labelled by the above algebraic data, the labels within

concatenated slots multiply in the obvious fashion.
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As this suggests, we should think of R as the canvas labelled by elements of an

associative algebra, R≥0 as the canvas labelled by elements of an left module, and

R≤0 as the canvas labelled by elements of a right module. Maps inducing surjections

on connected componenst corepresent multiplication maps.

This notation may be formalized by packaging this data as a functor out of ∆op.

On objects,

[n]→ N ⊗ A⊗n ⊗M

where A is an associative algebra, and M and N are left and right modules over A,

respectively.

Remark 41. In some sense, this (unspoken) relationship between Diskor,∂1/[−1,1] and

associative multiplications precedes the formal Bourbaki approach to algebra, and is

arguably the greatest achievement in graphic design.

Remark 42. In order to more directly relate Diskor,∂1/[−1,1] to bar constructions, one

might like to construct some functor:

∆op → Diskor,∂1/[−1,1]

Unraveling the general “slice” construction (reviewed in A), one recognizes that tak-

ing the image of the admissble embedding witnesses the target category as equivalent

to the partially ordered set of proper subsets of [−1, 1]. The previous remark suggests

this functor should evaluate as some map of the form:

[n] ↦−→
(
R≥0 ⨿ (

n∐
i=1

R)⨿ R≤0 ↪→ [−1, 1]
)

Unfortunately, a cursory examination shows that this assignment has no chance

of being functorial, primarily to due either the placement or size of an interval.

Moreover, no clever choice of embeddings can address these obstructions to defining
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a point-set level functor. Somehow, the ordinary category Diskor,∂1 fails to account

for the insensitivity of the bar notation to our (most likely unintentional) choice of

kerning and fontsize (which together determined the placement of the interval).

However, these identities can be coerced into holding, if we allow ourselves to

suitably guide our embeddings through isotopies. More precisely, all the desired

equations required for it’s functoriality do hold, up to specified homotopy (which, in

this case, is synonymous with isotopy)! Therefore, if we are in a setting in which

Mfldor,∂
1 contains the data of the compact-open topology, and functors need only be

natural up to specified homotopy, we’d be able to construct such a functor. This is

accomplished using the theory of topologically enriched categories (which will allow us

to encode the compact-open topology) and their relationship to∞-categories, via the

homotopy coherent nerve construction (which will allow us to rigorously manipulate

equations which hold “up to higher coherent homotopy”).

Definition 43. Let Mfldor,∂
1 denote the symmetric monoidal topologically enriched

category whose underlying symmetric monoidal category is Mfldor,∂
1 , along with the

compact-open topology on the space (or a subspace of) the set of embeddings.

Let Diskor,∂1 denote the full symmetric monoidal topologically enriched subcate-

gory containing finite disjoint unions of R, R≥0 and R≤0.

Let Diskor1 and Mfldor
1 denote the obvious subcategories of Diskor,∂1 and Mfldor,∂

1 ,

respectively, containing those oriented manifolds without boundary.

The homotopy coherent nerve functor allow us to view these as ∞-categories.

Following standard conventions in the literature, our notation will not differenti-

ate between these two perspectives, despite the annoyance the convention generated

within focus groups.

Remark 44. As reviewed in rapid introductions to ∞-categories [Gr], one can assign

a topological space of maps to every ordered pair of objects of an ∞-category (via a

pullback construction). Although there are many different choices for such topological
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spaces, the abstract theory guarantees the existence of a map relating these choices,

all of which are homotopy equivalences.

Moreover, the homotopy coherent nerve construction satisfies the property that

the topological space of maps provided by the enrichment is a perfectly suitable

model for the mapping spaces of its associated ∞- category . Therefore, we do not

lose the useful tools of differential topology by viewing Mfldor,∂
1 or Diskor,∂1 as an

∞-categories. As we will see, this perspective will streamline the importation (and

therefore application) of categorical and algebraic tools.

Remark 45. In summary, note that there exists a commutative diagram of∞-categories:

Diskor1 Diskor,∂1 Diskor,∂1

Mfldor
1 Mfldor,∂

1 Mfldor,∂
1

where the second horizontal maps are essentially surjective and full, but not faithful.

Note this diagram may be rigorously constructed by applying the homotopy coher-

ent nerve construction on the obvious diagram of topologically enriched categories.

Viewing this diagram as one of ∞-categories should signal the reader that we will

transition into think of these as (co)representing homotopy coherent diagrams.

Example 46. Unraveling the homotopy coherent nerve construction shows that the

data of a composition:

∆2 →Mfldor,∂
1

is the data of three embeddings: f : M0 → M1, g : M1 → M2, h : M0 → M2, along

with an isotopy ι : f ◦ g ≃ h.

For example, there exists a factorization of

(−1, 1)→ [−1, 1]
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through

[−1,−.5)⨿ (−.5, .5)⨿ (.5, 1)→ [−1, 1]

This factorization clearly does not exist in Mfldor,∂
1 .

Moreover, a standard, an elementary differential topology argument shows that

the mapping spaces of Diskor1 and Diskor,∂1 are discrete.

Definition 47. Corollary 2.33 of [AFT] states that the data of a symmetric monoidal

functor out of Diskor,∂1 is precisely the data of a unital associative algebra A, and a

unital left and right module thereover, N and M , which we’ll denote as:

Diskor,∂1

(M,A,N)−→ Ch⊗
R

Remark 48. The associative algebra comes from R, and the left and right modules

come from R≤0 and R≥0, respectively. Similiarly, a symmetric monoidal functor out

of Diskor1 is precisely the data of an unital associative algebra.

We urge those readers having trouble intuitively grasping this relationship to

consult Chapter 3, Section 2 and 3, of [G] for a more accessible treatment of these

ideas.

Remark 49. As the above example suggests, there exists a functor (of∞ categories):

∆op → Diskor,∂1/[−1,1]

sending a composition in ∆op to a triplet of compatible admissible embeddings which

form a composition up to (a specified) isotopy. This isotopy should be viewed as

being part of the data of such a functor (although it turns out that the space of such

isotopies is contractible).

Given a unital associative algebra A and a unital right and a unital left module,

M and N thereover (in Ch⊗
R), incarnated as a symmetric monoidal functor out of
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Diskor,∂1 , the composition:

∆op → Diskor,∂1/[−1,1] → Diskor,∂1 → Ch⊗
R

represents the classical bar construction, whose colimit computes:

M ⊗A N

Again, these statements are to be interpreted at the level of∞-categories. For ex-

ample, one could instead compute the above colimit at the point-set level by resolving

M or N . Lemma 3.11 of [AF] gives a rigorous construction of this functor:

∆op → Diskor,∂1/[−1,1]

along with a proof that it is final (a key ingredient of which follows from reasoning

along the lines of 39). In particular, the natural map:

M ⊗A N → colim
(
Diskor,∂1/[−1,1] → Diskor,∂1

(M,A,N)−→ Ch⊗
R

)

is an equivalence. A point-set level analog of the above results may be found in

Section 4.3 of [G]. This analog is expressed in terms of factorization algebras, which

will be defined in coming chapters.

We now explicate one sense in which Aφ contains more data than an associative

algebra.

Theorem 50. If φt is not homotopic to φ0 = IdA for some t ∈ R, then Aφ does not

factor through maps:

DiskR1 −→ Diskor1

Proof. We will argue by contradiction.
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First, assume that there indeed exists a factorization, which we denote as A. This

factorization produces a factorization of one of Aφ’s action map:

DiskR1 ((−t, t), (−2t, 2t))→ Diskor1 ((−t, t), (−2t, 2t))→ Ch⊗
R(A,A)

By definition the middle space is equivalent to the space oriented self embeddings

of R, which contractible. Therefore, the action map factors through a point, i.e. is

constant. This contradicts the assumption of the theorem.

The equivalence between symmetric monoidal functors out of Diskor1 and associa-

tive algebras [AFT] gives the following as an immediate corollary of the above:

Corollary 51. Aφ is not in the image of the natural functor:

AlgAss(Ch
⊗
R)→ Fun⊗(DiskR1 ,Ch

⊗
R)

We now shift our focus towards Riemannian 1-manifolds which are not disjoint

unions of intervals of finite diameter.
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CHAPTER 3

RIEMANNIAN VARIATIONS II: GLOBALIZATION

We now perform a standard maneuvre in homotopy theory: formally globalizing

a locally defined invariant. That is, we extend Aφ to a Riemannian 1-manifold M by

taking a colimit of Aφ over the category of isometrically embedded disks in M .

We begin by introducing the functor whose colimit defines our desired invariant:

Definition 52. Given M ∈ MfldR
1 , let A

φ
/M denote the induced algebra over DiskR1/M ,

given by:

A
φ
/M : DiskR1/M → DiskR1

Aφ

−→ Ch⊗
R

We will refer to such an object as a Riemannian prefactorization algebra over M.

Definition 53. Left Kan extension of Aφ along the inclusion DiskR1 ↪→ MfldR
1 deter-

mines a functor:

∫
−
Aφ : MfldR

1 −→ Ch⊗
R

M ↦−→
∫
M

Aφ

whose value on a given M ∈ MfldR
1 can be computed as:

∫
M

Aφ ≃ colim
(
DiskR1/M −→ DiskR1

Aφ

−→ Ch⊗
R

)

which we will refer to as factorization homology of M with coefficients in Aφ.
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Remark 54. We remind the reader that “colimit” is meant to be interpreted in a

homotopical sense. In other words, a colimit in the sense of ∞-categories, or as a

homotopy colimit.

Remark 55. Although Aφ was initially constructed as an ordinary functor, it’s glob-

alization will be a functor of ∞-categories. In other words, it will be functorial ”up

to specified homotopy.” However, it will be an ordinay functor upon passage to

homology:

MfldR
1 → Ch⊗

R → Ho(Ch⊗
R)

Although this composition takes place within the simpler formalism of ordinary cat-

egories, it is relatively poorly behaved.

In some sense, this functor is only well-defined up to a contractible choice. There-

fore it may be the case that one could construct a left Kan extension which arises

from a composition:

MfldR
1 → Ch⊗

R → Ch⊗
R

This is analogous to modeling sheaf cohomology via differential forms.

Remark 56. Factorization homology is universal in the following sense. Let’s say

we have our hands on a functor (which we can imagine as constructed via global

analysis):

F : MfldR
1 → Ch⊗

R

Along with a map (which we can image as arising from the classical analytic tech-

niques):

Aφ → F|DiskR1

The universal property of the left Kan extension ensures the existence of a map, for

every M : ∫
M

Aφ → F(M)

37



Even when the locally defined map is an equivalence, in general this map need

not be an equivalence , but is instead some “approximation”, analogous to:

Spec(RJxK) ↪→ Spec(R[x])

The theory of factorization algebras provides a cosheaf-type technique for checking

whether this map is an equivalence. We will address these ideas in later chapters.

Remark 57. These constructions are designed to formalize the ”products” found in

the Heisenberg approach to canonical quantization. In this formalism, the ”prod-

ucts” of exponentials involve a “time-ordering” along with a temporally appropriate

application of the time-evolution operator generated by a Hamiltonian.

As we see below,these categorical and homotopical techniques give a manifestly

invariant approach to this formalism. This invariance is the essential ingredient in

extending these local operations to general Riemannian 1-manifolds.

Example 58. The data of:

• a finite ordered configuration of points, t0, . . . , tn, in a connected, oriented Rie-
mannian 1-manifold M

• a collection of cocycles O0, . . . ,On of Aφ
(
Bϵ

)
of (co)homological degree (minus)

ki, with ϵ/2 < dM(ti, tj) for i ̸= j,

gives a cocycle in factorization homology of Aφ with coefficients in M as follows.

First, as ϵ is sufficiently small, the (not necessarily order preserving) embedding,

t : {0, . . . , n} →M admits a factorization through some ϵ-neighborhood of the subset

t:
n∐

i=0

Bϵ(ti) −→M
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Second, as we assumed Oi to be cocyles, they give rise to:

R[k̃] −→ A⊗n+1

1 ↦−→ O0 ⊗ · · · ⊗ On

where: k̃ =
∑

ki The functoriality of factorization homology then gives:

R[k̃]→ A⊗n+1 ≃
∫
Bϵ(t)

Aφ −→
∫
M

Aφ

Which one might suggestively denote as:

T{O0(t0) · O1(t1) . . . · O(tn)}

Note that the Oi(xi) must be first reordered using the Koszul sign rule and the

ordering on the points t induced by the orientation onM . Finally, the automorphisms

φti must be applied to Oi before the multiplication.

With this in place, we return to our discussion on how Aφ extends to Riemannian

1-manifolds.

3.1 Value on Infinitely Large Objects

As a warm-up to the main result, we will begin by examining the behavior of

factorization homology of Aφ on three inequivalent objects of MfldR
1 with infinite

diameter:

E = (−∞,∞), E>0 = (0,∞), E<0 = (−∞, 0)

Remark 59. The answer is hardly surprising. However, because DiskR1 only contains

open intervals of finite diameter, this statement requires a proof.

Remark 60. The following proofs will require a fair amount of abstract homotopy
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theory. The primary technical tool will be Quillen’s theorem A, which is reviewed in

Appendix A. Heuristically, we will use this theorem to formalizes the intuition that,

as factorization homology is built from data contained within finite intervals, every

observable is concentrated in some finite region center around some fixed, chosen

point.

Lemma 61. A point q ∈ E determines an equivalence:

∫
E
Aφ ≃ A

Proof. Let R≥1 denote the partially ordered set of real numbers greater than or equal

to one. Consider the inclusion:

R≥1 −→ DiskR1/E

1 ≤ r ↦−→
(
Br(q) ↪→ E

)

We will argue that this inclusion is final. In particular, pulling back A
φ
/E along

this inclusion induces an equivalence on colimits.

Recall that DiskR1/E is equivalent to the category of open subsets of E diffeomorphic

to a finite disjoint union of intervals, all of which happen to lie within some compact

subset. Therefore, for every U ∈ DiskR1/E,
U/(R≥1) is equivalent to the partially

ordered set of positive numbers greater 1 and than the distance between q and the

point of x ∈ U which is fartherest away from q.

This slice category has an inital object: | q − x | or 1. Therefore, it’s classifying

space is contractible, and the inclusion is final.

Moreover as the midpoints of the above intervals all coincide, there exists a com-

40



position:

R≥1 Ch⊗
R

∗

A
φ
/E|R>0

A

.

This shows:

∫
E
Aφ ≃ colim

(
DiskR1/E

A
φ
/E−→ Ch⊗

R

)
≃ colim

(
R≥1

A
φ
/E|R≥1

−→ Ch⊗
R

)
≃ colim

(
∗ A−→ Ch⊗

R

)
≃ A

The first equality is by definition. The second follows from the finality of R>0 ↪→

DiskR1/E. The equivalence on the third line is provided by the above factorization. It

is an equivalence because ∗/(R≥1) ≃ R≥1 has an initial object (1), and therefore has

a contractible classifying space. The fourth follows from Yoneda Lemma.

Remark 62. The choice of intervals of length greater than or equal to 2 in the above

argument is arbitrary, and chosen to avoid an argument about the (weak) contractibil-

ity of the “uncountably” long real line.

We now provide describe the behavior of Aφ on E>0 and E<0 :

Theorem 63. There exists an identification:

∫
E>0

Aφ ≃
∫
E<0

Aφ ≃ A

Proof. We begin with the case of E>0. The identification of E<0 will be defined in
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terms of the identification constructed below. First consider the functor:

R≥1 −→ DiskR1/E>0

1 ≤ r ↦−→ (0, r)

An argument nearly identical to the one above shows that this inclusion is final. Fur-

thermore, although this restriction of Aφ
/E>0 to this subcategory doesn’t not strictly

factor through a point as in the previous case, it does up to homotopy. This homo-

topy is constructed in terms of φ, and gives rise to the above equivalence. First, note

that Aφ evaluates on a morphism r0 < r1 as:

φr1−r0 : A −→ A

This indicates that natural isomorphism witnessing the commutativity of the diagram

below should ”undo” these maps.

R>0 Ch⊗
R

∗

A
φ
/E|R>⊬

A

.

Therefore, we must construct, for each positive real number r, an automorphism of

A. We make the obvious choice:

A
φ−r−→ A

The naturality of the collection of the above maps follows from the assumption that

φ is a one parameter family of automorphisms.

The case of E<0 follows similarly. Loosely, one replaces r by −r.
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3.2 Translations

Even though no connected object of DiskR1 admits any interesting symmetries,

R acts on E via translations. As factorization homology is functorial with respect

to isometries, this implies that for every τ ∈ R (which we view as a translation),

factorization homology gives an automorphism, which we’ll denote as:

∫
E
Aφ τ∗−→

∫
E
Aφ

along with equivalences:

(τ + τ ′)∗ ≃ τ∗ ◦ τ ′∗

We now analyze this action.

Remark 64. The fact that the previous equation doesn’t ”hold on the nose” is a

reflection of the ∞-categorical nature of factorization homology. However, the data

of the factorization homology (which is a functor) includes a homotopy witnessing

that the equation holds on the nose, upon passing to connected components.

Recall that given a point x ∈ M , and a cycle O ∈ A of degree k, there exists

a corresponding cycle, denoted O(x) This is obtained by evaluating factorization

homology on an inclusion of a ball Br(x) → M . By construction, this does not

depend the choice of a radius.

Remark 65. Before proceedinig to the next two lemmas, we briefly comment on the

two essential ingredients of their parallel proofs.

The first part is that factorization homology is functorial. In other words, upon

the application of factorization homology, any diagram in MfldR
1 gives a diagram in

Ch⊗
R :

J→ MfldR
1 → Ch⊗

R

For example, when J = [3].
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The second essential ingredient is the uniqueness of the composition of composable

maps in any ∞ category. In other words, any two candidate compositions of a

sequence of composable maps are homotopic. The theory allows one to articulate a

notion of a “space of compositions”, which is contractible.

Both of these properties (a well behaved theory of Kan extensions and a suitable

uniqueness of composition) are part of the foundations of higher category theory.

The following lemma establishes that τ∗ moves the support of O(x) to O(x+ τ).

Theorem 66. There exists a chain-homotopy:

τ∗(O(x)) ≃ O(x+ τ)

In particular, they are equal in homology.

Proof. The lemma follows from a straightforward application of the functoriality of

factorization homology. We have the following commutative triangle in MfldR
1 :

Br E E
Br(x)

Br(x+τ)

τ

Application of factorization homology gives a diagram in Ch⊗
R :

R[k]
∫
Br

Aφ

∫
E
Aφ

∫
E
AφO

O(x)

τ∗(O(x))

O(x+τ)

∫
Br(x)

Aφ

∫
Br(x+τ) A

φ

τ∗
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Therefore, the top and bottom maps are compositions for the same triplet of maps,

and are therefore homotopic, as the space of such compositions is contractible.

Therefore, we obtain a homotopy between the following parallel maps:

R[k]
∫
E

Aφ

O(x+τ)

τ∗(O(x))

As homotopic maps out of R[k] are homologous when viewed as cycles, the result

follows.

The next lemma relates the action of τ to the automorphism φτ .

Theorem 67. There exists a chain homotopy:

τ∗(O(x)) ≃ O(x+ τ) ≃ (φ−τO)(x)

In particular, they are all equal in homology.

Proof. We begin by fixing some R > r + |τ |. We can apply factorization homology

to the following diagram in MfldR
1 :

Br BR EBr(τ)

Br(x+τ)

BR(x)

to obtain the following diagram in Ch⊗
R

R[k]
∫
Br

Aφ

∫
BR

Aφ

∫
E
Aφ

O

φ−τ (O)

O(x+τ)=τ∗(O(x))

(φ−τ (O)(x)

φ−τ=
∫
Br(τ)

Aφ

∫
Br(x+τ) A

φ

∫
BR(x) A

φ
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Therefore, the top and bottom maps are compositions for the same triplet of maps,

and are therefore homotopic, as the space of such compositions is contractible.

Therefore, we obtain a homotopy between the following parallel maps:

R[k]
∫
E
Aφ

O(x+τ)=τ∗(O(x))

(φ−τ (O)(x)

As homotopic maps out of R[k] are homologous when viewed as cycles, the result

follows.

In summary, we can use factorization homology to recover all of φ from the

translation action on E.

3.3 Value on Circles

We now describe the value of factorization homology of Aφ on circles of a fixed

circumference 2L, denoted S1
L, in terms of a classical homotopical invariant of as-

sociative algebras and modules thereover: Hochschild Homology. Therefore, for the

sake of continuity, we briefly review one of many standard definitions of Hochschild

homology.

Remark 68. Those already familiar with Hochschild homology may safely skip the

following subsection.

3.3.1 Hochschild Homology

Remark 69. In the following review, all algebraic descriptors should be interpreted

in a manner consistent with the ambient symmetric monoidal (∞-)category. For

example, an associative algebra in the ordinary category of chain complexes with

tensor product is to be taken as a differential graded associative algebra.
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Definition 70. Given an associative algebra A, and N , a bimodule over A, then the

Hochschild complex of M over A is defined to be:

HC∗(A,N) := A⊗A⊗Aop N

In other words, the Hochschild complex may be computed as a bar construction:

B(A,A⊗ Aop, N)

When N = A, this will be denoted as HC∗(A)

Example 71. For simplicity, let’s assume A and N is an associative algebra and a

bimodule concentrated in degree zero ). In this case it’s not difficult to verify that:

H0(HC∗(A,N)) ≃ N/[A,N ]

For example, assume that A = N . Then there is a quotient map:

A→ HC∗(A)

If we have a representation, ρ of A, then it’s associated trace map uniquely factors

through the Hochschild complex:

A R

HC∗(A)

Trρ

Example 72. A classical application of Hochschild homology is to the study of the

homology of free loop spaces (via algebraic methods). For example, given a space

X, Hochschild homology gives an algebraic description of the cohomology of the free
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loop space of X in terms of it’s singular cochains:

C∗(LX) ≃ HC∗(C
∗(X))

Therefore, at least in this context, the Hochschild complex admits an S1-action.

Example 73. A special case of the Hochschild-Konstant-Rosenberg theorem gives a

relationship between Hochschild homology and differential forms:

HC(OAn) ≃ Ω•(An)

We emphasize that Ω• is not to be interpreted as a chain complex with the deRham

differential and standard grading by weight. These structures should be interpreted

in a manner parallel to the S1-action above.

Remark 74. As the above examples indicate, Hochschild homology of an associative

algebra admits two conceptual interpretations: functions on a free loop space with it’s

S1 action, and differential forms with it’s deRham differential and weight filtration.

[B-ZN] give an precise reconciliation of these perspectives (in the case when A is

commutative) via language of derived algebraic geometry.

The next section will leverage the relationship between the Hochschild complex

and the geometry of the circle (with a distinguished point) to describe factorization

homology of Aφ on a circle of finite diameter.

3.3.2 Hochschild Homology and Factorization Homology over a Riemannian Circle

Our strategy will be to translate the local geometric dependency ofAφ

/S1L
to a single

point fixed point of the circle, obtaining a bimodule over A. This localization process

will explicitly depend on a global geometric invariant of the circle (it’s circumference),

the remnants of which are contained in the action maps of this bimodule.
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With this identification in place, we will then use standard theorems in the theory

of factorization homology to express our desired invariant in terms of Hochschild

homology of A with values in the above bimodule. The following theorem and proof

make this discussion precise.

Theorem 75. Let S1
L be the circle of circumference 2L. A point x ∈ S1

L determines

an equivalence: ∫
S1L

Aφ ≃ HC∗(A,L A−L)

Proof. Our localization process will be simplified by first pushing A
φ

/S1L
to an closed

interval. Our chosen point, x and the metric determines a distance function:

ρx : S1
L → [0, L]

p ↦→ d(x, p)

Figure 3.1. An infographic of ρx, along with it’s value on 4 points of S1
L
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Precomposing by (ρx)−1 gives a functor:

(ρx)∗A
φ

/S1L
: Diskor,∂1/[0,L] → Ch⊗

R ,

So that the preimage of a disjoint union of intervals not containing L:

U0 := [0, δ)⨿
( ∐
i=0...n

(ti − ϵi, ti + ϵi)
)

with ti < ti+1 can be identified with:

( ∐
i=n,...,0

Bϵi(expx(−ti))
)
⨿
(
Bx(δ)

)
⨿
( ∐
i=0...n

Bϵi(expx(ti))
)

Remark 76. We are thinking of the ordering of the connected components (ρx)−1(U0)

as arising from the orientation on (ρx)−1([0, L)). This ordering will come into play

when analyzing (ρx)∗A
φ

/S1L
.

Therefore:

(ρx)∗A
φ

/S1L
(U0) ≃

( ⨂
i=n,...,0

A
)
⊗A⊗

( ⨂
i=0,...,n

A
)

Similarly, the preimage of a disjoint union of intervals not containing 0:

UL :=
( ∐
i=0...n

(ti − ϵi, ti + ϵi)
)
⨿(L− δ, L)

can be identified with:

( ∐
i=n,...,0

Bϵi(expx(−ti))
)
⨿
(
Bx(δ)

)
⨿
( ∐
i=0...n

Bϵi(expx(ti))
)

so that:

(ρx)∗A
φ

/S1L
(UL) ≃

( ⨂
i=0,...,n

A
)
⊗A⊗

( ⨂
i=n,...,0

A
)

50



For ease of notation, we will denote the last factor of (ρx)
−1(UL) and the first

factor of (ρx)
−1(U0) as:

A⊗[n]op

Note that we can view A as an (A,A)-bimodule. As described Definition 47 at

the end of subsection 2.3.2, we can twist these action maps to obtain a new (A,A)-

bimodule, LA−L. Recall that the action map is given by:

(
φ
⊗[n]
L ⊗ IdA ⊗ φ

⊗[n]op

−L

)∗
(µA) : A

⊗[n] ⊗ A⊗ A⊗[n]op → A

In the standard way, we will view A as a right A⊗Aop-module, and LA−L as a left

A⊗Aop-module. As noted at the end of section 2.4.1, this data naturally determines

a functor:

(A,A⊗ Aop,L A−L) : Disk
or,∂
1/[0,L] → Ch⊗

R

whose value on objects coincides with those above.

The primary ingredient of the proof is the following identification:

Lemma 77. There exists an equivalence of functors:

Ψ : (ρx)∗A
φ

/S1L

≃−→ (A,A⊗ Aop,LA−L)

Loosely, Ψ will ”undo” the effect of φ. More formally, we define Ψ as follows:

• On half open intervals:
Ψ[0,δ) = Ψ(L−δ,L] := IdA

• On open disjoint unions of intervals U ↪→ (0, L):

ΨU := φ
⊗[n]
−ti ⊗ φ

⊗[n]op

ti : A⊗[n] ⊗ A⊗[n]op → A⊗[n] ⊗ A⊗[n]op

We now check that these maps commute with the multiplication maps. It suffices

to check the commutativity on the following three classes of maps:
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• Case I: Right Module Compatibility: [0, ℓ)⨿ U ↪→ [0, ℓ′):

A⊗[n]op ⊗ A⊗ A⊗[n] A⊗[n]op ⊗ A⊗ A⊗[n]

A A

φ
⊗[n]op

ti
⊗IdA⊗φ

⊗[n]
−ti

(φ
⊗[n]op

ti
⊗IdA⊗φ

⊗[n]
−ti

)∗µA µA

IdA

• Case II: Algebra Compatibility: U ↪→ (T − δ, T + δ)

A⊗[n] ⊗ A⊗[n]op A⊗[n] ⊗ A⊗[n]op

A⊗ A A⊗ A

(φ
⊗[n]
(T−ti)

)∗µ
[n]
A ⊗(φ

⊗[n]op

(ti−T )
)∗µ

[n]op

A

φ
⊗[n]
−ti

⊗φ
⊗[n]op

ti

µA

φ−T⊗φT

• Case III: Left Module Compatibility: U ⨿ (r, L] ↪→ (r′, L]

A⊗[n] ⊗ A⊗ A⊗[n]op A⊗[n] ⊗ A⊗ A⊗[n]op

A A

φ
⊗[n]
−ti

⊗IdA⊗φ
⊗[n]op

ti

(φ
⊗[n]
L−ti

⊗IdA⊗φ
⊗[n]op

−(L−ti)
)∗µA

(
φ
⊗[n]
L ⊗IdA⊗φ

⊗[n]op

−L

)∗
(µA)

IdA

The commutativity of these squares follow from the fact that φ is a one-parameter

of automorphisms of the algebra A. For example, the fact that φτ is a one-parameter

family of automorphisms implies that:

(
φ−T ⊗ φ−T

)
◦
(
φT−t0 ⊗ φT−t1

)
= φ−t0 ⊗ φ−t1

The fact that it is an automorphism of associative algebras gives that:

φ−T ◦ µ[1]
A = µ

[1]
A ◦

(
φ−T ⊗ φ−T

)
These combine to give an essential ingredient to the commutativity of case II (when
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n = 1):

φ−T ◦ µ[1] ◦
(
φT−t0 ⊗ φT−t1

)
= µ

[1]
A ◦

(
φ−t0 ⊗ φ−t1

)
The general case follows a completely parallel argument. Moreover, Ψ is an equiva-

lence due to the fact that φt is an equivalence for every t. This proves the lemma.

The theorem follows from the following string of equivalences:

∫
S1L

Aφ ≃
∫
[0,L]

ρ∗A
φ

≃
∫
[0,L]

(A,A⊗ Aop,LA−L)

≃ HC∗(A,LA−L)

The second equivalence is supplied by Ψ, and the functoriality of the colimit. The

third equivalence follows from theorem 3.19 of [AF]. The first equivalence follows from

the finality of the map Diskor,∂1/[0,L]

ρ−1

→ DiskR1/S1L
. We now verify this is the case.

By Quillen’s Theorem A, we must show that for every U ∈ DiskR1/S1L
the category

U/(Diskor,∂1/[0,L]) has a contractible classifying space. We can recognize this as the

partially ordered set of opens in V ⊂ [0, L] whose preimage in S1
L contains U . As

this partially ordered set has an minimal element, namely the image of U under ρ,

its classifying space is contractible.
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CHAPTER 4

FACTORIZATION HOMOLOGY

We give a brief account of a selection of definitions, results, and examples within

the theory of factorization homology.

4.1 Algebraic and Geometric Preliminaries

As before, we begin with some geometric preliminaries in order to arrive at our

algebraic input. This algebraic input may be conceptualized as the local theory.

Definition 78. Let Mfld∂
n denote the category of smooth n-manifolds with boundary

and open embeddings which send boundary components to boundary components.

This has the structure symmetric monoidal category, Mfld∂,⨿
n , under disjoint union.

We let Disk∂n denote the full symmetric monoidal subcategory of Mfld∂
n containing

n-manifolds equivalent to a finite disjoint union of Euclidean spaces.

We let Mfldn and Diskn denote the full subcategories of Mfld∂
n and Disk∂n contain-

ing those manifolds without boundary.

We now define ∞-categorical analogs of the above, so as to more easily discuss

isotopy invariants of n-manifolds.

Definition 79. The compact open topology gives Mfld∂
n the structure of a symmetric

monoidal topologically enriched category. The homotopy coherent nerve construction

produces a symmetric monoidal ∞-category, Mfld∂
n. We let Disk∂n and Disk∂n denote

the full symmetric monoidal subcategory of Mfld∂
n and Mfld∂

n, respectivley containing

n-manifolds equivalent to a finite disjoint union of Euclidean spaces.
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Example 80. Unraveling the homotopy coherent nerve construction shows that the

data of a composition:

∆2 →Mfldn

is the data of three embeddings: f : M0 → M1, g : M1 → M2, h : M0 → M2, along

with an isotopy ι : f ◦ g ≃ h.

In particular, when n = 1 there exists a factorization of

[−2, 0)⨿ (0, 2]→ [−2, 2]

through

[−2,−1)⨿ (−1, 1)⨿ (1, 2]→ [−2, 2]

This factorization clearly does not exist in Disk∂n.

Example 81. Although topological categories and funtors therebewteen are easy to

construct, a general, succint, intrinsic notion of homotopy coherent diagrams is not

so easy to come by. For example, one might like the process of taking the connected

components to witness an equivalence:

∆op ≃ Disk∂1/R,

as an embedding of a disjoint union of intervals into a larger interval is uniquely

determined, up to isotopy, by an ordering of the connected components of the source

of the embedding. This is true, when we interpret the under-category construction

in an ∞-categorical sense.

Remark 82. We emphasize that this is the primary reason we use ∞-categories:

it provides a convenient language discuss and manipulate homotopy invariant and

homotopy coherent constructions. The above example illustrates how this can help:
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certain geometric constructions simplify into something completely combinatorial.

This provides a bridge between certain algebraic structures (∆op) and geometric

(Disk∂1/R) constructions.

In summary, we obtain the following commutative diagram amongst symmetric

monoidal ∞-categories:

Disk∂n Mfld∂
n

Disk∂n Mfld∂
n

which rigorously arose from taking the homotopy coherent nerve of the obvious dia-

gram of topologically-enriched categories.

Remark 83. One can decorate these categories with geometric structures admitting

a description as the lift of a classifying map. For example, a notion of orientation

or framing. We will not pursue this avenue, as it would take us too far afield. The

interested reader may consult the second section of [AF].

Throughout our discussion, we fix a symmetric monoidal category C⊗, whose un-

derlying category is presentable, and whose symmetric monoidal structure distributes

over colimits in each variable. In other words, ⊗-presentable. See definition 3.4 of

[AF] for a precise definition.

Definition 84. An n-disk algebra, A, in C⊗, is a symmetric monoidal functor:

Diskn
A−→ C⊗

The category of n-disk algebras in C is the category of symmetric functors from Diskn

to C:

AlgDiskn(C
⊗) := Fun⊗(Disk⨿n ,C

⊗)

Remark 85. Note that A(Rn) = A inherits a natural action of the orthogonal group.
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This is obtained via:

O(n) ↪→ MapsDiskn(R
n,Rn)

A→ MapsC(A,A)

Remark 86. The data of an n-disk algebra is equivalent to an En algebra with an

action of the orthogonal group, see [AFT] Proposition 2.12.

We now review

4.1.1 A Few Classic n-Disk Algebras.

Our first example reflects the deep relationship between n-disks algebras and

Example 87. Unordered Configuration Spaces

Throughout, we’ll let Confk(M) denote the ordered configuration space of n points

in a manifold M, and

B(M) :=
∐
n≥0

Confk(M)Σk

the disjoint union of all the unordered configuration spaces. B(−) is functorial with

respect to open embeddings, and therefore defines a functor into the category of

(‘good”) topological spaces:

B : Diskn → Top

A subset of a disjoint union decomposes as a subsets of each factor. Following

this logic, the standard homeomorphism:

B(M ⨿N) ≃ B(M)× B(N)

shows that functor is in fact symmetric monoidal. Moreover, one can verify that

the above process is continuous with respect the compact open topology on the set

of maps of topological spaces. As the ∞-category associated to the topologically
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enriched category of topological spaces is equivalent to the ∞-category of spaces,

taking the homotopy coherent gives an n-disk algebra of spaces:

Disk⨿n
B(−)−→ Spaces×

which one can show is free n-disk algebra generated by a point. For obvious reasons,

we can compose this functor with chains,

Disk⨿n
C∗(B(−))−→ Ch⊗

k

obtaining an n-disk algebra in chain complexes.

Example 88. n-Fold Loop Spaces

A similar line of reasoning shows that every pointed topological space X∗ gives

an Diskn-algebra:

Ωn
∗X : Diskn → Spaces∐

I

Rn ↦−→ Mapsc(
∐
I

Rn, X∗)

The functor evaluates on an embedding by the obvious “extension by zero”. This

admits an obvious extension to Mfldn.

Example 89. Commutative Algebras The data of a unital commutative algebra

in C⊗ may be encoded equivalently as:

Fin⨿ A→ Ch⊗
k

For example, the value on the map: ∗ ⨿ ∗ → ∗ is (by definition) the multiplication

map. Precomposing with π0 (which is continuous and symmetric monoidal) gives an
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n-disk algebra:

Diskn
π0−→ Fin

A→ Ch⊗
k

Example 90. Associative Algebras

When n = 1, the equivalence mentioned in remark 81 gives a method for extract-

ing an associative algebra:

∆op ≃ Disk1/R → Diskor1
A−→ C⊗

As there are two nonisotopic embeddings of two 1-disks into a larger 1-disk, there

are more than one connected components of the space of binary operations. In

other words, this associative algebra need not be commutative. Moreover, by the

above remark, this associative algebra comes with a natural involution. Therefore,

extending an associative algebra to a 1-disk algebra requires additional data.

Example 91. Ordinary Homology Every abelian group gives an n-disk algebra:

Disk⨿n → Spaces⨿
C∗(−,A)−→ Ch⊕

Z

reflecting the fact that the notion of “algebra” depends upon the nature of the sym-

metric monoidal structure of the target. Algebras of this type may be viewed as

“many one-bodies”, as it is given by the left Kan extension of it’s restriction to disks

with at most one connected component. See [B] for details.

The work of Arnol’d [A] and Cohen [Co] constructs a deep relationships between

Lie theory and the theory of En- algebras. This relationship was further formalized

in [K2]. In this work, he constructs, for every Lie algebra, an

Example 92. Higher Enveloping Algebras Fix a lie algebra, g, in Ch⊗
R . Re-

call that the homological Chevalley-Eilenberg construction determines a symmetric
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monoidal functor:

CE∗ : AlgLie(Chk)
× → Ch⊗

k

This determines an n-disk algebra, denoted Un(g):

Disk⨿n → AlgLie(Chk)
× → Chk

M ↦→ Ω•
c(M)⊗ g ↦→ CE∗(Ω

•
c(M)⊗ g)

Here, the commutative, nonunital commutative algebra structure on Ω∗
c(−) gives

Ω•
c(M)⊗ g the structure of a Lie algebra. Integration gives an equivalence:

Ω•
c(Rn)⊗ g ≃ g[n]

One can show, [K2] page 3, that this Lie algebra will always be abelian, so that:

Un(g)(Rn) ≃ Sym(g[n− 1])

as Chevalley-Eilenberg chains on an abelian/trivial Lie algebra is cofree.

Therefore, when n = 1, this restricts to the PBW-equivalence:

U1(g)(R) ≃ Sym(g)

In fact, [K2] shows that the composite:

∆op ≃ Disk1/R → Diskor1 → Ch⊗
R

coincides with the classical universal enveloping algebra. See section 4.6 of [G] for

an illuminating discussion. Loosely, the fundamental relation in the lie algebra is

encoded by coupling the Chevalley-Eilenberg differential (which includes the muliti-
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plication of compactly supported forms) with the geometry of the real line.

Remark 93. One can check that the O(1) action coincides with the standard involu-

tion on the universal enveloping algebra.

Formal categorical nonsense identifies the first leg of this construction as the n-fold

loop space of the Lie algebra g allows one to interpret this construction as:

CE∗(Mapsc(−, g))

As given any space X, the categorical cotensor gX+ admits an explicit model as:

Ω∗
c(X)⊗ g

This construction is especially useful in applying Lie-theoretic methods to study

of the rational homology of configuration spaces. For example, theorem A of [K2]

states:

FreeEn(V ) ≃ Un(FreeLie(V [n− 1]))

There is a similar description, taking into account O(n) actions, which greatly sim-

plifies for Q with its trivial O(n)-action:

C∗(B(−),Q)) ≃ FreeDiskn(Q) ≃ Un

(
FreeLie

(
R[n− 1]

))

We now demonstrate a common maneuvre in homotopy theory for extending a

local invariant to a global one: left Kan extension of a restriction to a comprehensible

full subcategory. In our context, this procedure is conventionally referred to as:
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4.2 Factorization Homology

4.2.1 Factorization Homology: Definitions

Remark 94. Throughout, C⊗ will denote a presentable symmetric monoidal∞-category

whose symmetric monoidal structure distributes over colimits in each variable. In the

language of [AF] C⊗ is ⊗-presentable. The example to keep in mind is the∞-category

of chain complexes with tensor product.

Definition 95. Factorization Homology For every n-disk algebra A, there exists

a symmetric monoidal functor:

∫
(−)

A : Mfld⨿
n −→ C⊗

M ↦→
∫
M

A

which is a left Kan extension along the inclusion:

Diskn ↪→Mfldn

evaluating on M as:

∫
M

A := colim
(
Diskn/M → Diskn

A→ C
)

Remark 96. This “definition” is really a theorem. It implicitly invokes the existence of

a well-behaved homotopy coherent left Kan extensions. That this left Kan extension

may in fact be enhanced to a symmetric monoidal functor is the primary reason for

our insistence on ⊗-presentability.

As the last part of the above suggests, the existence of a factorization homology

functor only requires C to contain (sifted) colimits. One can define factorization

homology of an n-disk stack (which involves a limit). When C⊗ is the ∞-category of
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chain complexes and tensor product, this may not naturally extend to a symmetric

monoidal functor, due to the incompatibility of the tensor product with, for example,

totalizations.

Remark 97. As one can imagine, factorization homology admits an extension toMfld∂
n

given an extension of A to Disk∂n

4.2.2 Finality Theorems

The fundamental building blocks of this theory are a variety of finality theorems.

These types of results are the primary entree of techniques in differential topology.

The most famous relates factorization homology to bar constructions, a proof of which

may be found in section 3.2 of [AF]:

Theorem 98. There exists a final functor:

∆op → Disk∂1/[−1,1]

Therefore, factorization homology may be computed as a bar construction.

Remark 99. Writing this functor down on a point set level (e.g. as a map of simplicial

sets) is quite laborious, and in some sense superfluous. [AF] construct this map via

zig-zags which only requires an existence proof, which can be efficiently accomplish

via point-set methods (contractibility of embedding spaces).

Theorem 100. As stated previously, the composition:

∆op → Disk∂1/[−1,1]

classifies the data of an associative unital algebra, a unital left and right module

thereover. It’s colimit computes the classical bar construction.
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The a proof of the following may be found in proposition 2.19 of [AF] or propo-

sition 5.5.2.13 of [Lu2]

Theorem 101. The natural functor:

Diskn/M → Diskn/M

is a localization along the set of maps which induce a bijection on connected compo-

nents. In particular, it is final.

Remark 102. The above theorem forms a useful bridge from differential geometric

methods. For example, one can imagine the efficiently constructing functors out of

Diskn/M via more classical means. The theorem gives a tractable condition to check

to produce a factorization through the more intricate Diskn/M .

4.2.3 Factorization Homology: Pushforwards and Formal Properties

As factorization homology is covariant with respect to embeddings, one should

expect it to behave as precosheaf. For example, there should be a pushforward

operation.

Definition 103. Given a smooth map f : M → Y , and an n-disk algebra A, we let:

f∗A : Mfld∂
k/Y

f−1

−→Mfld∂
n/M

∫
A−→ C⊗

be the pushfoward of A along f . We will denote it’s colimit as:

∫
Y

f∗A

Example 104. A classical example to keep in mind is when f = |r|2 : Rn → R≥0,

the projection: x0 : Rn+1 → R, a projection M × N → N , and f : M → [−1, 1]
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whose restriction to ±1 and (0, 1) is a smooth fibre bundle. The last example may

be obtained from the data of a codimension 1 properly embedded submanifold and

a partition of the complement.

The following is lemma 3.18 of [AF]:

Theorem 105. When the restriction of f to the boundary and interior are smooth

fibre bundles respectively, the natural map:

∫
Y

f∗A ≃
∫
M

A

is an equivalence.

These theorems combine to relate factorization homology to bar constructions,

the details of which may be found in Section 3 of [AF]:

Example 106. A deconstruction of M ≃ M− ⨿M0×R M+ can be encoded as some

map f : M → [−1, 1]. The preimage under f gives a functor:

Diskor,∂1/[−1,1]

f−1(−)−→ Diskn/M

which we can precompose with aany n-disk algebra A to give:

Diskor,∂1/[−1,1]

f−1(−)−→ Diskn/M
A→ C⊗

By the above remarks, this functor classifies the data of an associative algebra,

(f |(−1,1))∗A, a right module (f |(−1,1])∗A, and a left module (f |[−1,1))∗A. The un-

derlying objects are
∫
M0×R A,

∫
M+

A, and
∫
M−

A, respectively.

Precomposing with the above final functor gives a simplicial object in C⊗

∆op → Diskor,∂1/[−1,1]

f−1(−)−→ Diskn/M
A→ C⊗
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Combining the above finality theorems gives a string of equivalences:

∫
M

A ≃
∫
[−1,1]

f∗(A) ≃
∫
M+

A
⨂

∫
M0×R A

∫
M−

A

4.3 Computations and Applications

We begin by presenting a result relating a factorization homology with a more

classical perspective on ordinary homology:

Example 107. Ordinary Homology

[B] shows that: ∫
X

C∗(−, A) ≃ H∗(X,A)

By showing that C∗(−, A) may be obtain by the left Kan extension of its restriction

to the category of embedding disks with at most two connected components, one of

which is required to contain a fixed point.

Example 108. Dold-Thom

Recall that the classical-Dold Thom Theorem relates the homology of a topolog-

ical space, X, with coefficients in an abelian group, A, with the homotopy groups of

a topological space, called the infinite symmetric product of X with coefficients in A,

Sym(X,A). Every point of this space takes the form of an unordered configuration

of points (of an arbitrary cardinality) labelled by elements of A. Loosely, the topol-

ogy is so that nearby points can collide, adding their labels, and points labelled by

the identity can spontaneously appear. In [B], Bandklayder uses the machinery of

factorization homology to prove, (when X is an n-manifold) this theorem:

π∗(Sym(X,A)) ≃ H∗(X,A)

One appealing aspect of factorization homology is that it does not just give man-
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ifold invariants: it also constructs invariants of algebraic objects. This would be akin

to viewing a manifold as a potential invariant of a field theory.

Example 109. Hochschild Homology

A common heuristic for Hochschild homology is that it produces an invariant of

associative algebras by tensoring over the circle. Factorization homology makes this

intuition precise: ∫
S1
A ≃ HC∗(A)

Theorem 5.5.3.11 of[Lu2] proves this by relating factorization homology directly to the

cyclic bar construction, while Theorem 3.19 of [AF] use the expression of Hochschild

homology as a bar construction:

A⊗Aop⊗A A

When the algebraic input is simple, factorization homology yields a potentially

more familiar object: labeled configuration spaces. The following is proposition 5.5

of [AF]

Example 110. Configuration Spaces

Given a chain complex V , formal nonsense allows one to define the free n-disk

algebra generated by V , Freen(V ). In this case, a “hypercover argument” shows that:

∫
M

Freen(V ) ≃
∐
k≥0

C∗
(
Confk(M)

)
⊗Σk

V ⊗k

In particular, when V = Q, we see that factorization homology computes the rational

homology of configuration spaces:

∫
M

Freen(Q) ≃ C∗(B(M),Q)

67



A similar result holds for manifold with boundary, but one quotients by configu-

ration with at least one point lying on the boundary:

∫
M

Freen(V ) ≃
∐
k≥0

C∗
(
Confk(M,∂M)

)
⊗Σk

V ⊗k

When M is the closed unit ball Dn:

∐
k≥0

Confk(D
n, ∂Dn)Σk

≃ ∗ ⨿ Sn

as

Confk(D
n, ∂Dn)Σk

≃ ∗

for k ≥ 2 and

Conf1(D
n, ∂Dn) ≃ Sn

Putting this together, we see that:

∫
Dn

Freen(V ) ≃ Q⊕ V [n]

Remark 111. Note the computation of the homology of configuration spaces are not

amenable to the standard techniques in algebraic topology. For example, as the

diagonal will cut through any cell decomposition of M , a cell decomposition of M

does not lift to a CW decomposition of its configuration spaces.

Remark 112. These examples illustrate dual applications of factorization homology,

which we view as a pairing between a “local” algebraic object and a “global” ge-

ometric object. When the geometric object is simple (e.g. a circle), factorization

homology can be viewed as an invariant of algebraic objects (Hochschild homology).

When the algebraic object is simple (e.g. a free algebra) factorization homology may

be viewed as an invariant of the geometric object (labelled configuration spaces).
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Factorization homology is intimately connected to two forms of duality. The first

form is

Example 113. (Non-Abelian) Poincare Duality

Broadly speaking, Poincare Duality is a dictionary between homological invariants

of an n-manifold and cohomological invariants of its one-point compactification. For

example, when factorization homology is taken with respect to an n-fold loop space,

its cohomological counterpart is the space of compactly supported maps into X.

As factorization homology is a left Kan extension, one can construct a “scanning

map”: ∫
M

Ωn(X)→ Mapsc(M,X)

Note that although, this functor can be constructed through purely higher categorical

means, one can obtain a more geometric description. Loosely, Pontryagin-Thom

collapse maps provide a diagram:

Diskn/M Diskn

(
Diskn/M

)▷

Top

∗

Ωn
∗ (X)

Mapsc(M,X)

that provides the necessary data to induce the above scanning map.

That these two maps agree (up to homotopy) follow from the universal property

of left Kan extensions.

In general, this map is not an equivalence. However, it is when X is n-connective.

For example, when M is the closed unit ball, factorization homology provides a

delooping.

Loosely, the scanning maps surjects onto the subspace of maps which send the

(n − 1)-skeleta of some triangulation of M to the basepoint. In some zany higher
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categorical sense, the left hand side is a “perturbative approximation” of the right

hand side.

The above result passes through to manifolds with boundary, so that when M is

a closed unit ball, Dn, and X is n-connective:

∫
M

Ωn(X) ≃ X

factorization homology provides a delooping of Ωn
∗ (X).

Proposition 3.19 of [K] computes factorization homology of

Example 114. Higher Enveloping Algebras

When factorization homology has coefficients in a higher enveloping algebra of a

Lie algebra, the result admits a Lie-theoretic description

Theorem 115. There exists an equivalence:

∫
M

Un(g) ≃ CE∗
(
MapsO(n)

c (FrM+ , g)
)

Where the right-hand side involves the space of compacting supported O(n)-equivariant

maps from the frame bundle of the one-point compactication of M into g. Further-

more, a framing on M induces an equivalence:

∫
M

Un(g) ≃ CE∗
(
Mapsc(M, g)

)
In the case of a framing, we can combining this result with the equivalence above
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gives:

H∗(B(M),Q) ≃
∫
M

FreeDiskn(Q)

≃
∫
M

Un

(
FreeLie(Q[n− 1])

)
≃ CE∗(Ω

∗
c(M)⊗Q[n− 1])

Furthermore, the nilpotence of FreeLie(Q[n− 1]) “dampens” any Massey product in

M . Consequently, Ω∗
c(M)⊗Q[n− 1] is in fact formal, so that:

H∗(B(M),Q) ≃ CE∗(H
∗
c (M)⊗Q[n− 1])

One can further show that this equivalence is compatible with the cardinality/weight

filtrations, allowing one to pick out the homology of the each unordered configuration

spaces inside the Chevalley-Eilenberg complex. For a general n-manifold, the rational

O(n)-equivariant formality of the n-sphere produces a similar equivalence, where Q

is replaced by the orientation sheaf.

In summary, this computation splits the computation of the rational homology of

configuration spaces of any manifold into two pieces: an explicit representation of the

rational cohomology ring of M , and a formal exercise in Lie homology. In Knudsen’s

words [K1]:

Locally, then, configuration spaces enjoy a rich algebraic structure;
factorization homology, our primary tool in this work, provides a means of
assembling this structure across coordinate patches of a general manifold,
globalizing the calculation of Arnold and Cohen.

This was exploited in [D-CK], where they compute the Betti numbers of all sur-

faces of finite type. They state an interesting feature that comes out of this work,

their approach deals with the configuration spaces of all cardinalities simultaneously.
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In their words: “It is this simultaneity that renders the computations feasible in

practice”.

Remark 116. We emphasize that, although factorization homology requires a signifi-

cant background in abstract homotopy theory to define, it enjoys a myriad of powerful

formal properties which make it amenable to explicit computations. Moreover, these

formal properties have been rigorously established in the literature. In the author’s

opinion, [D-CK] is the best illustration of this: upon the application of factorization

to the relationship between Lie homology and configuration spaces, [D-CK] have no

need to make any explicit reference to either factorization homology or∞-categories.
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CHAPTER 5

FACTORIZATION ALGEBRAS

Whereas factorization homology is defined for every manifold of a fixed dimension

and geometry, factorization algebras live on a single manifold. We begin by recalling

the definition of a factorization algebra, following [CG1].

5.1 Prefactorization Algebras

Definition 117. For a topological space X, we define a multicategory Disj(X) as

follows. An object of Disj(X) consists of an open set of X. There is a single multi-

morphism from (U1, . . . , Un) → V whenever {Ui} are disjoint and contained within

V .

Throughout, we will assume X to be a smooth manifold of dimension n.

Definition 118. A prefactorization algebra on X with values in C⊗ is a Disj(X)-

algebra in C⊗. We call a prefactorization algebra locally constant if it sends any

inclusion of open disks to an equivalence in C⊗.

Remark 119. Note that a prefactorization algebra Fgives in particular a precosheaf

on X:

F : Opens(X)→ C

along with a compatible family of equivalences:

F(
∐
i∈I

Ui) ≃
⨂
i∈I

F(Ui)
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in C.

Definition 120. A prefactorization algebra F is locally constant if given any inclusion

of open sets:

U ↪→ V ↪→ X

so that U and V are diffeomorphic to Rn, the induced map:

F(V )→ F(U)

is an equivalence.

Example 121. The following is an very nonrigorous example, which requires defining

a well-behaved symmetric monoidal category of vector spaces decorated with suitable

analytic structures, which we’ll abusively denote as Vect⊗. Such a category may be

found in appendix B of [CG1].

Fix a vector bundle E → X, the assignment of sections:

E : Opens(X)op → Vect⊗

is a presheaf. “Formal functions” on this:

OE : Opens(X)→ Vect⊗

U ↦→ Sym(E∨(U))

extends to a prefactorization algebra. In fact, one can use this example to reverse

engineer many of the analytic details in [CG1].

The essential technical ingredients underlying this theory provide a well-behaved

setting to perform standard cohomological and operadic maneuvres. most of which

is provided by paramatrix methods in the theory of elliptic operators. We refer
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the interested reader to the Appendices of [CG1] for details. [Mn] provides a clear

exposition on how these techniques relate to more familiar physics approaches to field

theory.

Remark 122. The primary motivation behind this definition lies in the fact that the

observables of a statistical field theory should give rise to a prefactorization algebra.

However, notice that when X = Rn, the values of a prefactorization algebra need not

carry a representation of the special orthogonal group. Therefore, a prefactorization

algebra lacks an essential ingredient of any field theory. However, this is more a

reflection of the difficulty of quantizing symmetries than a lack of desire for such a

representation. See page 178-179 of [CG1] for more.

5.1.1 Examples of Prefactorization Algebras

We know give a few formal examples of prefactorization algebras.

Example 123. Massive Scalar Field Theory

A theorem of [CG1] show that massive scalar field theory on an oriented Rieman-

nian n-manifold admits a relatively elementary “differential graded” description. As

a graded vector space, it is:

Obsq = Sym(C∞
c ⊕ C∞

c [1])[ℏ]

Its differential is coderivation. It is the sum of a weight one term:

C∞
c [1]

dcl−→ C∞
c

ϕ†[1] ↦→ (∆g +m2)ϕ†
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and a weight two term, given as the symmetrization of:

C∞
c ⊗ C∞

c [1]
ℏ∆BV−→ R{ℏ}

ϕ⊗ ϕ†[1] ↦→ ℏ
∫

ϕ · ϕ†

The assembly of this data into a rigorous object requires a significant effort, the

details of which may be found scattered throughout [CG1]. Note that the functional:

S(ϕ) =

∫
ϕ · (∆g +m2)ϕ

can be expressed using the above data as:

∆BV(ϕ⊗ dclϕ)

[CG1] show that that this data assembles into a locally constant prefactorization

algebra.

The following shows how factorization homology produces examples of prefactor-

ization algebras.

Example 124. Every n-disk algebra, A gives a prefactorization algebra on X, FA:

U ⊂ X ↦−→ FA(U) :=

∫
U

A

Note that the topology on the mapping spaces of Diskn imply that FA is locally

constant.

Example 125. We now utilize factorization homology to briefly outline how to re-

extract the Lie bracket from its higher enveloping algebra, using the concrete defini-

tion:

CE(Ω∗
c(−)⊗ g)
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Here, we are thinking of the standard presentation of the Chevalley-Eilenberg chains

using the Chevalley-Eilenberg differential. Before doing so, we introduce a convenient

notation. We’ll denote:

ϕ⊗ c = cϕ ∈ Ω∗
c ⊗ g

This notation is so that:

[cϕ0 , c
′
ϕ1
] = (−1)|ϕ1|·|c||[c, c′]ϕ0ϕ1

As the purpose of this discussion is purely expository, we’ll take g to be concentrated

in degree 0.

Our Lie bracket will arise from evaluating factorization homology on:

B0(ϵ)
∐

Sn−1 × (ϵ, 2ϵ) ↪→ Rn

Which gives a map:

CE∗(Ω
∗
c(Bϵ(0))⊗ g)⊗ CE∗(Ω

∗
c(S

n−1 × (ϵ, 3ϵ))⊗ g)→ CE∗(Ω
∗
c(Rn)⊗ g)

We will use the following forms in our discussion:

• ρ ∈ Ωn
c (Bϵ(0)) integrating to one and closed. In other word, this form is a

Poincare dual to the origin.

• η ∈ Ω1
c(S

n−1×(ϵ, 2ϵ)), a Thom class for the normal bundle of Sn−1×{2ϵ}. This
form is Poincare Dual to Sn−1 × {2ϵ}.

Note that both of these forms are closed. Neither are coexact.

By construction, the image of cρ and c′η inside of CE∗(Ω
∗
c(Rn)⊗ g) is:

cρ · c′η

77



Although η was not coexact inside of Ω∗
c

(
Sn−1× (ϵ, 3ϵ)

)
, it is when extended by zero

inside of Ω∗
c(Rn), by the Poincare Lemma. That is, there exists ϕ so that:

• ddrϕ = η

• ϕ|supp(η) = −1

We will now use this form to construct a homotopy from cρ · cη to a form repre-

senting the Lie bracket of c and c′.

Lemma 126.

dCE(cρ · c′ϕ) = cρ · c′η − [c, c′]ρ

Proof. The proof is a straightforward computation:

dCE(cρ · c′ϕ) = cρ · c′ddrϕ + [cρ, c
′
ϕ]

= cρ · c′η + [c, c′]ρϕ

But the second property of ϕ implies that ρϕ = −ρ. Therefore, we can conclude:

dCE(cρ · c′ϕ) = cρ · c′η − [c, c′]ρ

Remark 127. We emphasize that, despite the notation, cρ · c′ϕ does not arise from

factorization homology applied to some embedding, as the support of ρ and ϕ are

not disjoint (Chevalley-Eilenberg chains do not form a commutative algebra!). The

“ordering” of an expression being multiplied is encoded in the support of the forms,

not the ordering of the ”multiplication” inside of Sym. This reflects the general

benefit of operads: it frees one from the (at times awkward and oppressive) geometry

of conventional type setting.

Passing to homology, we obtain:

78



Corollary 128. Under the equivalence (given by integration):

cρ · c′η = [c, c′]ρ

where the left hand side is the multiplication supplied by the factorization algebra

structure.

Remark 129. This reflects one of the advantages of factorization homology. The

ability to evaluate an En-algebra on a general manifold permits“”descent”-type de-

scriptions of the (1− n) shifted Lie bracket of a Lie algebra.

In order to obtain a more tractable object, we articulate a locality condition on

a prefactorization algebra.

5.2 Weiss CoSheaves: The Appropriate Notion of Locality

One shouldn’t expect observables of field theory to be local with respect to the

ordinary topology. For example:

Mfld0 ≃ Fin→ VectR

I ↦−→ Sym(RI) ≃ R[x1, . . . , x|I|]

is not determined by a Kan extension of its restriction to ∗ ∈ Mfld0, as a polynomial

in multiple variables may contain nonzero mixed partial derivatives. Therefore, this

functor is not local in with respect to the standard Grothendieck topology. It is

however, local with respect to the Weiss topology.

Definition 130. A set of open embeddings {Ui ↪→ X} is a Weiss Cover, if, for any

finite subset S ⊂ X, S ⊂ Ui for some i.

Definition 131. A prefactorization algebra F is a factorization algebra if its under-
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lying precosheaf:

F : Opens(X)→ C

is a cosheaf with respect to the Weiss topology on X

Remark 132. A more precise, general definition of a prefactorization/factorization

algebra may be found in section 3 of [AF2].

The locality of factorization algebras can be used to prove the following, the

details of which may be found in chapter 7 of [CG1].

Theorem 133. If a map of factorization algebras on an n-manifold M :

F
f−→ G

induces an equivalence on their restriction to:

Diskn/M ↪→ Opens(M)→ C

then f is an equivalence. In particular, it induces an equivalence on global cosections:

F(M) ≃ G(M)

Remark 134. The most important feature of this theorem is that the condition to be

checked involves constructions living on disjoint unions of Euclidean neighborhoods.

For example, if F is given by some PDE-type construction, the above theorem trans-

lates a condition about PDE’s on manifolds into a condition about PDEs on Rn

The following is Proposition 3.4 of [AF2]:

Theorem 135. Given any n-disk algebra A, the prefactorization algebra

∫
(−)

A : Opens(X)→ C⊗

80



is in fact a locally constant factorization algebra.

Example 136. We imagine the following situation. Say we’re given a locally con-

stant factorization algebra, Obsq on a connected n-manifold M . For example, the

observables of field theory constructed in some analytic/BV formalism. For example,

[CG1] use a spectral sequence argument to show that massive scalar field theory is

in fact a factorization algebra on any Riemannian 1-manifold (whose cohomology

depends discontinuously on the circumference).

Furthermore, let’s say we have constructed an n-disk algebra A, a map of algebras:

A|Diskn/M
→ Obsq|Diskn/M

along with a proof that the map:

A(B(x))→ Obsq(B(x))

is an equivalence for some euclidean neighborhood of some x ∈M . Then the natural

map: ∫
M

A
≃−→ Obsq(M)

is an equivalence. Note we still have a comparison map, even if the algebra map is

not an equivalence locally.

Example 137. What’s important about this technique is that factorization homol-

ogy has tools not easily obtainable through the formalism of [CG1]. For example,

[CG1] and [AF2] utilize different filtrations. Although, the approach in [CG1] and

[CG2] is inspired by Koszul duality, factorization homology has explicit and rigorous

applications of Koszul (and Poincare) duality [K2].
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APPENDIX A

QUILLEN’S THEOREM A

Before proceeding, we will briefly review a key technical tool in the analysis be-

low: Quillen’s Theorem A. Our discussion will be relatively informal. The reader

may find more details in [Lu], which contains a rigorous proof in the language of

quasicategories. Those familiar with these techniques may safely skip to the next

section.

D

The basic setup is the following. We are interesting in studying colimits of the form:

F : D→ A

for a wide range of A and F . One might try to understand a piece of this colimit by

producing a functor

C
ι→ D

and analyzing its induced map on colimits:

colim
(
D

F→ A
)
→ colim

(
C

ι→ D
F→ A

)
Quillen’s Theorem A gives a condition under which this map is an equivalence in A.

The condition consists of checking, for every object d ∈ D, the contractibility

of the classifying space of a category (over C) built from the data of ι and d. In

particular, the condition is independent of F and A, and therefore holds for the
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colimit of any functor out of D. In other words, it allows one to replace a colimit

over D with a colimit over (the hopefully simpler) C.

Before stating the theorem, we review the requisite categorical constructions and

definitions.

Definition 138. We call a functor ι : C→ D between ∞-categories final if, for any

functor F : D→ A, the natural map:

colim
(
D

F→ A
)
→ colim

(
C

ι→ D
F→ A

)
is an equivalence.

We now review a standard construction in category theory, extended to ∞-

categories.

Definition 139. Given a functor ι : C → D and object d ∈ D, we define the space

of (J→ C)-points of d/C→ C to be the fillers

∗

J▷ D

J C

d

ι

Where J▷ is defined to be:

J▷ = colim
(
J× {0 ≤ 1} ←↩ J× {1} → ∗

)
∈ Cat∞

One obtains the definition in the setting of ordinary categories by noting that

[n]▷ = [n+ 1]. For example, an object of d/C is the data of a c ∈ C along with a map

ι(c) → d. A map in d/C is the data of a map f : c → c′, along with a commutative

83



triangle in D of the form:

ι(c) ι(c′)

d

ι(f)

Example 140. If D is a partially ordered set, and ι is a full inclusion of a subset,

the d/C is the partially ordered set of elements of C less than d.

Example 141. Applying the above construction to Id : C→ C gives c/C, the ”cate-

gory of elements of c”. The Yoneda Lemma states that the inclusion:

∗ Idc→
c/

C

witness the identity as a terminal object.

We now review the classifying space of an ∞-category:

Definition 142. Given an ∞-category J, we define its classifying space as:

BJ ≃ colim
(
J→ ∗ → Spaces

)

The standard nonsense states that this extends to a colimit preserving functor:

B : Cat∞ → Spaces

whose right adjoint is the functor that views a space as an ∞-groupoid. coincides

with the familiar ”geometric realization of the nerve of J”. Moreover, the counit of

this adjunction gives a natural map:

C→ BC
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Example 143. A standard result states that the classifying space of a category with

an initial (or terminal) object is contractible. This can be seen by noting that the

pullback of a map of spaces S → BC along the counit map, and factoring the associate

map into S̃ → C through S̃◁ → C (which is guaranteed to exist by assumption).

After proving the classify space of a cone is contractible, taking the classifying space

of this diagram gives a factorization of S → BC through a point, thus proving the

contractiblity of BC.

With these, in place, we are now able to state:

Theorem 144. Quillen’s Theorem A

Let ι : C → D be a functor between ∞-categories. Then ι is final if and only if,

for each object d ∈ D

B(d/C) ≃ ∗

Example 145. We can use this to see that the inclusion of a terminal object ∗ x→ C

is final. This follows from the fact that the category d/∗ is the space of maps from

d into x, which is equivalent to a point. This reflects the well-known fact that the

colimit over a category with a terminal object is the evaluation of functor on the

terminal object.

Example 146. When ι is the inclusion: {a, a+ 1, . . .} ↪→ N, then n/{a, a+ 1, . . .} is

subset of natural numbers greater than or equal to n. As this always has a minimal

element, either n or a, this functor is final. This reflects, for example, the obvious

fact about unions of topological spaces:

⋃(
U0 ↪→ U1 ↪→ . . .

)
≃

⋃(
Ua ↪→ Ua+1 ↪→ . . .

)
We now give some examples of how this theorem may be applied to the theory of

factorization algebras/homology.

85



Example 147. Another important class of final functors come from localizations. In

particular, Dwyer-Kan localizations of ordinary categories. For example, Proposition

2.9 of [AF] asserts that the natural functor:

Diskn/M → Diskn/M

is a localization along isotopy equivalences. This results provides a means of comput-

ing a colimit over the ∞-operad of embedded disks in terms of point-set level data

provided by differential topology/geometry.

Proving this non-trivial result requires the application of classical methods in

differential topology, along with results originally intended for applications in abstract

(A1-)homotopy theory. In some sense, the theory of ∞-categories provides one with

the conditions one must check with more context-specific methods.

We now outline how these arguments may be used to relate the theory of locally

constant factorization algebras (and therefore a large class of field theories) to classical

constructions in homological algebra.

Example 148. A special case of Proposition 2.22 of [AFT] demonstrates that the

functor Diskor,∂1/[0,L] → Diskor,∂1/[0,L] is a localization, and is therefore final.

The contractibility of the latter ∞-category’s mapping spaces allows one to rec-

ognize Diskor,∂1/[0,L] as equivalent to the ∞-operad parameterizing the data of a unital

associative algebra, and unital left and right A-modules M and N (See section 3.2

of [AF]). Therefore, such data may be extracted from the data of a locally con-

stant prefactorization algebra on a closed interval. Lemma 3.11 of [AF] constructs a

functor:

∆op → Diskor,∂1/[0,L]

sending [n] to a union of the left and right half intervals and n open subintervals.

86



Therefore, the composition of such an (M,A,N) evaluates as:

[n] ↦−→M ⊗ A⊗n ⊗N

sends degeneracies maps to ”insertion of the identity”, and face maps to multipli-

cations. Therefore the precomposition of this functor with (M,A,N) shows the

resulting diagram is the simplicial object whose homotopy colimit (when (M,A,N)

takes values in an appropriate model category) computes:

M ⊗L
A N

As Lemma 3.11 of [AF] proves that this functor is a final, stringing these results

together shows that:

M ⊗A N ≃ colim
(
Diskor,∂1/[0,L]

(M,A,N)−→ C⊗
)

This is in accord with the relationship between the factorization condition on a locally

constant prefactorization algebra on a closed interval in terms of the above tensor

product [CG1][G].
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APPENDIX B

SYMMETRIC MONOIDAL CATEGORIES

We begin by presenting a definition of a symmetric monoidal category. However,

before doing so, it will be convenient to recall some of the basic vocabulary around

the category parametrizing unital, commutative multiplicative structures:

B.1 Pointed Finite Sets

Morphisms in Fin∗ factor into two classes, “active” and “inert”. These classes

serve different purposes.

Note that there is another functor from the category of finite sets and injections:

(Fininj)op
(−)+

↪→ Fin∗

which is a discrete Pontryagin-Thom collapse map. Maps in the image of this functor

are referred to as “inert”. Inert maps “only throw things away”. Here, we are thinking

of the basepoint as a trash can.

Example 149. βI := (∅ → I)+. This maps “throws everything away”

Example 150. ρiI := (∗ i→ I)+. This maps “throws away everything but i ∈ I.

These are conventionally referred to as the ”Segal maps”. They give an equivalence:

I+
∨ρi≃

⋁
i∈I

∗

Coming from the covering maps: {∗ i→ I}i∈I .
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The active maps are what we are primarily interested. These are in the image of

the (essentially surjective, faithful) one-point compactifiction functor:

Fin
(−)+−→ Fin∗

Note that given an active map f : I+ → J+, f 1(∅+) = ∅+This property characterizes

active maps. Active maps ”don’t throw anything away”.

Example 151. Let µI : (I → ∗)+. This map ”collapses everything in I to a point”.

Example 152. Let 1 : (∅ i→ ∗)+. This map ”identifies the basepoint”.

Remark 153. Note that every map f : I+ → J+ produces a decompostion:

I ≃
(∐
j∈J

f−1(j)
)∐

f−1(∅+)

Given a pair of sets I and J and a map from a subset of of I into J produces a

unique map in Fin∗. Because of this, many think of Fin∗ as a the category of finite

sets and partially defined functions.

With these ingredients in places, we may define:

Definition 154. A symmetric monoidal ∞-category is a functor:

C⊗ : Fin∗ → Cat∞

So that:

• The product of the Segal Maps induce equivalences:

C⊗(I+) ≃ C⊗(∗+)×I

for every pointed finite set I+. This is equivalent to the more conceptually
appealing condition that

(Fininj)op
(−)+−→ Fin∗

C⊗
−→ Cat∞
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is a sheaf. This is commonly referred to as the Segal condition.

• The value on ∗+ is terminal. In other words:

C⊗(∅+) ≃ ∗

We let C denote C⊗(∗+), and refer it as the underlying ∞-category of C⊗.

A priori, when C is an ordinary category the above definition consists of more

than the classic definition of a symmetric monoidal category. Fortunately, this is not

the case, as is shown in section 2.0 and 2.1 of [Lu2].

Remark 155. We note that [Lu2] gives a different, equivalent, definition in terms of

coCartesian fibrations. Therefore, one needs to appeal to both chapter 2 of [Lu2]

along with section 3.2 of [Lu] to obtain the construction . Heuristically, although the

above definition is relatively straightforward to state, it is much easier to construct

examples from point-set level data using the language of coCartesian fibrations.

A perk of this definition is the ease with which one can define

Definition 156. A symmetrical monoidal functor is a natural transformation.

We now outline how to extract the interesting data present in the above defintion.

Remark 157. All classical structures in a symmetric monoidal category arise from

evaluating C⊗ on an appropriate diagram in Fin∗.

Evaluating on 1 ∈ Arr(Fin∗) gives an object of C:

1C : C⊗((∅ → ∗)+) ≃ (∗ → C)

Which we could define as the symmetric monoidal unit. Evaluating the obvious

diagram in Fin∗ shows that this in fact behaves as the monoidal unit.

In particular, a symmetric monoidal category gives, for every finite set I, a functor:

C×I ≃ C⊗(I+)
C⊗(µI)−→ C
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Therefore, given an I-indexed copy of objects {ci}i∈I , we obtain an object of C, given

by:

(ci)
⊗I : ∗ ≃ ∗×I {ci}−→ C×I → C

The Segal property states that a permutation of I acts in the obvious way on C×I .

Therefore, given a permutation σI ∈ ΣI , the evaluation of C⊗ on the commutative

triangle

I+

I+ ∗+

µI

µI

(σI)+

in Fin∗ gives a commutative diagram in Cat∞:

C×I

C×I C

C⊗(µI)

C⊗(µI)

C⊗(σi)

We note that although the above triange commute in Fin∗ due to a property, the

commutativity of the above triangle in Cat∞ is (a priori) data. For example, it gives

a natural isomorphism of functors:

µ∗
IC

⊗(µI) ≃ C⊗(µI)

corresponding to the classical braiding ismorphism when I has cardinality two. This

in turn gives rise an automorphism of (ci)
⊗I .
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