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The elastic behavior of liquid crystalline materials plays an important role in the

design of responsive electrical, mechanical, and optical devices. This dissertation

focuses on developing, extending, and implementing sampling methods to predict

the elastic properties of liquid crystals from molecular simulation. The utility of

molecular simulation in predicting elastic properties of liquid crystals has historically

been limited due to the immense time and length scales needed to generate accurate

estimates of quantities such as the bulk elastic moduli. A recently proposed free

energy perturbation method was shown to overcome many of these limitations and

produce reliable estimates of the elastic constants. However, there remained a number

of challenges to be addressed which would eliminate the use of approximations and

extend the technique to molecular systems.

We begin by introducing uniaxial nematic liquid crystals and Frank elastic theory.

Next, a series of studies of increasing complexity investigating the elastic properties of

liquid crystal systems are presented. First, we perform comprehensive study of binary

liquid crystal mixtures represented by the multicomponent Lebwohl-Lasher lattice

model. Then we use density-of-states simulations to systematically study the elastic

properties of four common Gay–Berne nematogenic models. The third study inves-

tigates the elastic and thermodynamic properties of chromonic liquid crystals which
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exhibit a unique self–assembly process. Finally, we present the first direct simulations

of the bulk and surface-like elastic constants for molecular 4-5-alkyl-4’-cyanobiphenyl

which challenge indirect experimental observations that suggest spontaneous elastic

curvature in certain geometries.
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FIGURES

2.1 (a) Snapshot of a typical liquid crystal mixture at xB = 0.5, εAA/εBB =
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temperature is homogeneous, as evidenced by the random distribution
of A (red) and B (blue) species. (b) This system exhibits a phase tran-
sition at T ∗NI ≈ 1.1229, which may be calculated directly through tar-
geted canonical ensemble (NV T ) simulations [64] or through density-
of-states (DOS) formalism [65]. We observe excellent agreement be-
tween these two methods. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Probability distribution of a LL binary mixture with εAA/εBB = 0.35
at T ∗ = 0.50. The dashed blue line represents P (xB) at a starting guess
of µ = 2.0. Coexistence was identified by numerically determining the
position of two peaks in probability, and automatically adjusting the
chemical potential until the integrated areas under these peaks were
equal. The solid red line represents that final value, µeq = 1.451. . . . 11

2.3 Extending the DOS approach to binary mixtures by sampling com-
position space NA at a fixed β improves upon earlier findings [59],
increasing accuracy in the NI coexistence region and permitting ex-
tension to the nematic–nematic (NN) coexistence region previously
examined only in the mean-field limit [82]. . . . . . . . . . . . . . . . 16

2.4 Lebwohl-Lasher lattice binary phase diagrams at εAA/εBB = (a) 0.20,
(b) 0.30, (c) 0.40 and (d) 0.50. Moderate values of εAA/εBB (b)–
(d) exhibit a continuous I-N region spanning between the pure-species
transition points, with a homogeneous nematic phase giving way to
A and B-rich phases at low temperature. Reducing εAA/εBB causes
broadening of the nematic–isotropic (NI) coexistence region towards
xB as a consequence of large asymmetry in interaction energy, which
concomitantly promotes the nematic–nematic (NN) region to higher
temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.5 Elastic coefficient measurements performed using free energy pertur-
bations as a function of composition (a) for εAA/εBB = 0.30, 0.40, 0.60,
0.80. Measurements are performed at a temperature T which is 97%
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close to the NI transition nonlinear effects (b) become prominent. For
εAA/εBB = 0.40 at temperatures between 90% and 130% of TANI the
elastic response exhibits a high degree of nonlinearity at low xB. Co-
existing compositions along each curve are represented by open circles. 20

2.6 The dependence of the order parameter S and z-component of the
layer director 〈nz〉 on temperature at (a) xA = 0.5 and (b) xA =
0.9 for εAA/εBB = 0.4 in the presence of induced twist. The arrows
indicate increasing temperature ranging from T/TNI = 0.4 to 1.0 at
each composition. The twist is applied to the central and periodic edge
x-coordinate, with one symmetric half shown above (L here denotes
the box length). As the temperature approaches TNI , the twist no
longer propagates across the length of the box and the profile of the
director becomes highly nonlinear. This effect is responsible for the
nonlinearity observed in the elastic coefficient measurements. . . . . . 22

2.7 The presence of a nonlinear external field (a-c) induces segregation
of a homogeneous nematic mixture. An applied Gaussian field influ-
ences the weaker elastic component to migrate to regions of high stress
(a). This segregation is accompanied by decreasing nematic order (b)
and disordering of spin orientations (c) [quantified by the nematic or-
der parameter S and average absolute z component of the director
(nz) respectively], signifying apparent elastic melting near the highly
deformed center layers. In all the systems studied here, the overall
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2.10 Compositions (a) taken from defect cores and centers for a binary
system under cylindrical confinement at various temperatures with
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orientations in the central region of the simulation box are biased using
basis function sampling [76] according to the appropriate order param-
eter to excite the desired elastic mode. Shown here are arrows repre-
senting splay deformations from the non-perturbed state. (c) Over the
course of a simulation, molecules enter and exit the respective regions.
Only those molecules which lie within the regions shown in purple
(edges) and orange (center) are biased. A gradient is produced across
the box dimension as a result of the sampling and the corresponding
free energy is calculated. The resulting bulk elastic coefficients (kii)
for 5CB (d) are compared to experimental data from Madhusudana
and Pratibha [152] (squares) and Chen and coworkers [195] (trian-
gles). Connected circles represent elastic constant calculations using
the methodology outlined in this work. Uncertainties are calculated
using 1500 bootstrap cycles on the collected decorrelated samples. . 102

x



5.3 Snapshot of 5CB cylindrical system (a) with solvent removed. Due to
finite anchoring-induced ordering within cylinder, the transition tem-
perature TNI is shifted slightly (b) by ≈ 5K. Calculated saddle-splay
surface-like elastic constant (k24) for 5CB (c) shows no violation of
the Ericksen bound, delineated by k22 − k24 ≥ 0. To validate k24

stability, we test the unbiased director probability distribution p(nθ)
against the normal distribution (d) using a Kolmogorov–Smirnov test
(representative data at 296 K shown; distributions obtained at other
temperatures are plotted in Figure 5.4) Uncertainties in the elastic
measurements are estimated using 1500 bootstrap cycles on the col-
lected decorrelated samples, yielding error bars comparable to the size
of the points. Roughness in trendlines is not due to statistical uncer-
tainty of each measurement, but instead due to underlying fluctuations
in nematic order and volume that arise under NPT preparation. . . 105

5.4 Data from simulations probing the k24 elastic coefficient. The three
columns show: evolution of the order parameter nθ over the course
of the simulation (left), the unbiased histogram acquired over ∂rnθ
(center), and the resulting free energy and P2 projection (right). . . 107

5.5 Radial profile of nθ averages in 5CB cylinders show approximately
linear behavior across the sample region. . . . . . . . . . . . . . . . . 109

xi



TABLES

3.1 Densities and temperatures of Gay–Berne models studied in this work. 47

xii



ACKNOWLEDGMENTS

I am deeply grateful to the University of Notre Dame, and in particular the

chemical and biomolecular engineering department, for believing in me and admitting

me into their graduate program when few others did. I am honored to be a part of

this institution and proud to call it my Alma Mater.

First, I would like to thank my adviser, Dr. Jonathan Whitmer, for his guidance

and support throughout my graduate studies. As his first student, I had the rare

opportunity of being able to demand all of his attention, which he so generously

provided. I thank him for tolerating my idiosyncrasies and allowing me considerable

freedom to initiate and pursue ideas of my own under his mentorship; I have it on

good authority that this is very difficult to come by. I thank Dr. Edward Maginn

who convinced me to switch disciplines from experiment and modeling to molecular

simulation. It has turned out to be more enriching and fascinating than I had ever

imagined.

A work of this size and duration cannot be completed through the sole effort of

one person. I offer my sincere gratitude to Ken Newcomb whose friendship I consider

to be one of the greatest gifts of my time at Notre Dame. I could not have asked for

a more supportive, engaging, and caring friend. Thanks to Vikramjit Singh Rathee

for his perpetual lightheartedness which kept me going on difficult days. I thank

Dr. William Schneider for his mentorship, advice, and brutal racquetball takedowns.

Thank you Eliseo, Ryan, and Brian for the many stimulating scientific discussions and

critical feedback on my often-ludicrous ideas. I thank the entire COMSEL student

body and all those I have interacted with for shaping my graduate school experience.

xiii



A special thanks and a debt of gratitude to Manish Kelkar for encouraging me

to apply to graduate school one last time, and for personally recommending me to

Dr. Edward Maginn. I acknowledge my University of Chicago collaborators for their

contributions and work on the advanced sampling suite, SSAGES. Thanks to Dhagash

Mehta, who introduced me to the wonderful world of algebraic geometry, and to my

ACMS adviser Dr. Jonathan Hauenstein for his mentorship and instruction.

To my wife Dunia, whose name means “world”, and whose patience, support,

and love mean the world to me. She had no idea what she was getting herself into,

yet somehow managed to be my anchor. I shall forever be grateful for her personal

sacrifices over the past few years. To my family for their everlasting and unconditional

support and encouragement. I could not have accomplished anything without them.

To my cat Whiskers who kept me company day and night and took it upon herself

to replace my alarm clock.

To my mother. There are no words to express what she has done for me. I know

that my years of study have been difficult for her as I was not able to be with her in

times of need. I dedicate this dissertation to her.

I would like to thank the department administrative staff, especially Nadia Casas

and Anne Veselik for helping me navigate the finer aspects of graduate school. I ac-

knowledge the Notre Dame Center for Research Computing for their computational

resources and support, and the National Science Foundation Graduate Research Fel-

lowship (NSF-GRFP) for financial support and recognition.

Finally, I would like to thank God, for truly His blessings are innumerable. My

success lies with Him alone.

xiv



CHAPTER 1

INTRODUCTION

Liquid crystals (LC) are molecules that organize into intermediate phases of mat-

ter having liquid-like positional and solid-like orientational order. Transitions be-

tween these mesophases may be induced through a change in temperature (ther-

motropic LCs), or density (lyotropic LCs). Such phases exhibit a curvature elasticity

which disfavors deviations from global orientational order. Thermotropic LCs, in par-

ticular, are prominent in the manufacture of liquid crystalline displays (LCDs) [1, 2],

where ordering transitions in LCDs are forcibly triggered through external stress,

exploiting competition between elastic restoring forces, surface forces, and imposed

fields. The combined stresses modify the internal morphologies of the LC and change

how light propagates through them. This property also makes LCs particularly useful

in sensing applications [3–6], where intriguing new devices exploit intraphase mor-

phological transformations of LC droplets for biomolecule detection [7, 8]. Local

LC morphologies have similarly been utilized to facilitate nanoparticle and colloidal

self-assembly [9–16], owing to the character of surface-imposed defects present in the

system. It is clear that a fundamental molecular-level understanding of elasticity

and ordering transitions arising through external stress and geometric frustration is

crucial in advancing applied LC technologies.

Many theoretical frameworks have been developed to describe the phenomenol-

ogy of LCs. Onsager [17] formulated a purely entropic model for systems of hard

rods, while the Maier–Saupe mean field model [18, 19] captured anisotropic van der

Waals interactions more explicitly, using a description based on enthalpic interac-

1



tions. Each represents an ideal situation targeting one part of the entropy–enthalpy

balance. To unify both concepts, molecular simulations have augmented theoreti-

cal arguments, replacing hard rods with ellipsoidal particles having orientationally

dependent attraction [20], and full molecular models [21–23]. Lattice approaches de-

rived from Maier–Saupe theory have also been modified to define spatially dependent

interactions [24].

In particular, cases involving uniaxial nematic liquid crystals, where individual

molecules in bulk align on average with a global nematic director n̂, have been greatly

informed by the use of molecular simulations [25–29]. It is often of interest to under-

stand how boundaries, particle inclusions, and external fields can perturb a system

away from homogeneous bulk conditions. These situations incur an order-elastic

free-energy penalty in the nematic liquid, with each individual deformation charac-

terized by its own elastic constant [30]. In practice symmetry concerns reduce the

independent degrees of freedom considerably [31, 32]. In the absence of molecular po-

larity and chiral interactions, the linear-order elastic free energy density of a uniaxial

nematic may be represented in the Frank-Oseen form [33, 31, 32, 34]

fFO =
1

2
k11 (∇ · n̂)2 +

1

2
k22 (n̂ · ∇ × n̂)2 +

1

2
k33 (n̂×∇× n̂)2

+
1

2
(k22 + k24)

[
Tr (∇n̂)2 − (∇ · n̂)2] . (1.1)

This expression contains the most commonly used elastic terms: splay (k11), twist

(k22) and bend (k33). The additional term, referred to as “saddle-splay”, depends

on k24 and penalizes bidirectional deformations. This surface-like term has been the

subject of considerable recent interest due to its role in dictating confined morpholo-

gies of liquid crystals [35–38], though it has often been ignored in bulk studies. The

free-energy density is phrased so that it is positive definite, and globally homogenous

in equilibrium, which places bounds on the values of the four elastic constants [39].

Terms which imply a spontaneous deformation of the global nematic texture (such
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as the chiral term t0 [31, 32]) are not present in this expansion.

Though this energy is relatively simple to phrase, elastic properties are difficult to

measure experimentally. The saddle-splay constant k24, in particular, which penal-

izes bi-directional deformations, [40] is only accessible through indirect measurements

that rely on morphological instability thresholds. [41–43, 36, 37] Past experimental

studies have reported conflicting measurements, and some of the published values of

k24 have in fact been found to lie outside stability criteria established by Ericksen, [39]

hinting at new physics that may be used to purposely engineer instability into nematic

materials. Note that the form above contrasts with another common theoretical rep-

resentation (the Landau–de Gennes free energy [44]) which utilizes the nematic order

tensor Q, which can simultaneously handle phase and elastic behavior—such a repre-

sentation is debatably more relevant due to recent observation of biaxial ring defects

in otherwise uniaxial mesophases [16]. Though these two representations cannot be

easily mapped onto each other, and the elastic coefficients in the Q representation

are often inferred from the Frank–Oseen form above [44].

An intriguing subset of LCs are lyotropic chromonic liquid crystals (LCLCs),

which derive their name from early studies on the anti-asthmatic Chromolyn (dis-

odium cromoglycate, or DSCG), [45] and encompass many molecularly similar drugs

and dyes. [46] The predominant forms are flat molecules with aromatic cores which

experience energetically favorable π-stacking interactions, causing the molecules to

arrange into elongated rod-like assemblies. As the length of these aggregates ap-

proaches a critical value, the rods will spontaneously order into a nematic phase.

Further densification leads to the formation of a columnar phase. As one might

expect from the enthalpic origins of stacking, these phases possess a partial ther-

motropic character, as stacks cannot elongate sufficiently if the temperature is too

high. [47]

Additional complexity occurs in the presence of depletants, and, if the molecules
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are charged, salt. [48–50] This latter case, which we will refer to as an ionic lyotropic

chromonic liquid crystal (iLCLC) includes many common LCLCs such as DSCG

and sunset yellow dye (SSY). [22, 51] These latter systems have been the subject

of intense recent scrutiny due to novel morphologies and defect formations which

arise from large elastic anisotropy, with the “twist” elastic mode having a tenfold

cheaper elastic cost in many cases. [52, 53, 51, 37, 54] Such behavior is similar to that

predicted by Meyer and co-workers [55] for long flexible polymer chains, and thus

must be determined directly by the equilibrium stacking behavior of mesogens.

This dissertation explores and predicts the elastic behavior of thermotropic and

lyotropic chromonic liquid crystals using molecular simulation. A new methodology

is presented throughout which utilizes enhanced sampling calculations to estimate

in silico the Frank elastic free energy of both coarse-grained and atomistic systems.

Chapters 2-5 consist of a series of independent published studies of increasing com-

plexity investigating lattice, coarse-grained, chromonic, and molecular LCs. The

publications constituting each chapter are:

• Chapter 2: Hythem Sidky and Jonathan K. Whitmer, “Elastic response and
phase behavior in binary liquid crystal mixtures” Soft Matter, 12, 19, 4489-4498
(2016).

• Chapter 3: Hythem Sidky and Jonathan K. Whitmer, “Elastic properties of
common Gay-Berne nematogens from density of states (DOS) simulations” Liq-
uid Crystals, 43, 13-15, 2285-2299 (2016).

• Chapter 4: Hythem Sidky and Jonathan K. Whitmer, “The emergent nematic
phase in ionic chromonic liquid crystals” Journal of Physical Chemistry B, 121,
27, 6691-6698 (2017).

• Chapter 5: Hythem Sidky, Juan J. de Pablo, and Jonathan K. Whitmer, “In
silico measurement of elastic moduli of nematic liquid crystals” Physical Review
Letters, 120, 10, 107801 (2018).

The final chapter provides a summary of the work in this dissertation and discusses

potential improvements and future directions.
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CHAPTER 2

ELASTIC RESPONSE AND PHASE BEHAVIOR IN BINARY LIQUID

CRYSTAL MIXTURES

2.1 Introduction

The elastic responses of liquid crystals (LCs) may be targeted by molecular engi-

neering of LC materials. In the absence of readily identifiable LCs expressing desired

elastic properties, one may choose between synthetically altering moieties or explor-

ing mixtures of existing mesogens. The latter is prominent in industry, with eutectic

blends such as E7 often utilized [21, 56, 57]. These often broaden the nematic–

isotropic (NI) transition or reduce the operating potential for LCDs by raising the di-

electric constant anisotropy. The non-trivial nature of elasticity measurement makes

it desirable to have a theoretical or computational approach that can provide deep

insight into the underlying microscopic interactions and correlations reflected at a

macroscopic scale.

While recent work [58] has examined the phase behavior of binary mixtures in the

entropic limit as hard-sphere chain fluids, little work has explored the role of enthalpy

in mixtures (though, cf. Refs. [59, 60]). Importantly, none of these investigations have

studied the elastic response of mixtures, even though nematic elasticity is known to

induce local phase segregation [61]. In this work, we utilize advanced Monte-Carlo

sampling techniques applied to the multicomponent Lebwohl–Lasher (LL) model [62].

Mean field analogs, extended from Maier–Saupe theory by Palffy-Muhoray, have

been shown to describe orientational behavior in real experimental systems in great
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Figure 2.1. (a) Snapshot of a typical liquid crystal mixture at xB = 0.5,
εAA/εBB = 0.4 and T/TBNI = 0.4 for an N = 323 lattice. The composition at
this temperature is homogeneous, as evidenced by the random distribution

of A (red) and B (blue) species. (b) This system exhibits a phase
transition at T ∗NI ≈ 1.1229, which may be calculated directly through

targeted canonical ensemble (NV T ) simulations [64] or through
density-of-states (DOS) formalism [65]. We observe excellent agreement

between these two methods.

detail [63]. We therefore expect the LL model, which incorporates fluctuations, to

provide valuable molecular-level insight into ordering and elastic phenomena. The

model is used to detail the phase diagrams and elastic behavior in binary mixtures

of liquid crystals, representing a new framework for characterizing the properties of

materials via comprehensive free energy sampling.

2.2 Lebwohl-Lasher Model

The LL model [62] is a lattice version of the Maier–Saupe description [18, 19] of

nematic liquid crystals. The multicomponent Hamiltonian for these systems may be
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phrased as

H = −
∑
i,j

εαβP2(cos θij) (2.1)

where εαβ is the strength of interaction between nearest neighbors i and j (of species

α and β, respectively), P2(x) = 1
2
(3x2 − 1) is the second Legendre polynomial and

cos(θij) = n̂i · n̂j for nearest neighbors i, j. This model is incapable of treating steric

interactions, and represents a simplified thermotropic model containing orientational

entropy and enthalpic interactions. The NI transition occurs at TNI = 1.1229ε for a

system with uniform composition (εαβ := ε) [66]. Elastic coefficients in the pure model

are determined solely by the temperature T ∗ = T/ε for T < TNI. When two species

are present (denoted A and B, where without loss of generality εBB > εAA), we utilize

standard rules for polarization-driven interactions, resulting in εAB =
√
εAAεBB. A

typical configuration for this simplified model of binary nematic mixtures is given in

Figure 2.1(a).

2.3 Simulation Details

2.3.1 Binary phase behavior

Traditionally, identifying phase boundaries in binary systems involves use of an

ensemble which allows the composition to vary; on lattices this is often the semi-grand

canonical ensemble which fixes the relative chemical potential ∆µ of the two species.

The choice of appropriate ∆µ is guided by approximations and/or exploratory sim-

ulations. A series of simulations supplemented by histogram re-weighting tech-

niques [67, 68] then obtains the coexistence chemical potentials. Alternatively, one

may employ flat-histogram methods to sample phase space along the relative compo-

sition. Here, we adapt the multicanonical method of Wang and Landau [65]. As our

interest is the equilibrium composition at a specific temperature, we choose the vari-

ables (∆µ = µA−µB, ∆N = NA−NB) relevant to the semi-grand canonical ensemble
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(SGE). Our adaptation of the Wang–Landau algorithm allows direct evaluation of

phase equilibria by sampling the partition function at each accessible composition,

Z(∆N).

The n-species semi-grand canonical partition function is [69]

Ξ′ =
∑
~N

′
(
qN1
N !

n∏
i=1

(
qi
q1

)Ni
exp [β(µi − µr)Ni]

)
V N

∫
ds exp [−βH(~s)] (2.2)

where qi is the kinetic contribution to the partition function of species i, β is 1/kBT ,

µi is the chemical potential of species i, µr is an arbitrary reference chemical potential,

~N = (N1, N2..., Nn) is an n-tuple of populations with Ni the number of particles of

species i, V is the system volume, H is the Hamiltonian of the mixture and s is the

coordinate containing the classical degrees of freedom in the system, and the prime

′ denotes that the sum is restricted by
∑n

i=1Ni = N . This yields a probability

p(s, Ni) ∝ exp

[
−βU(~s) +

n∑
i=1

(µi − µr)Ni

]
(2.3)

where µr an arbitrary reference chemical potential. Recognizing the Helmholtz free-

energy F is related to Ξ
′

by [70]

F −
n∑
i=1

(µi − µr)Ni = −kBT ln Ξ
′
, (2.4)

permits the definition of a one-dimensional DOS biasing on the variable ∆N yielding

an estimate Zest(∆N) of the relative weight for each composition state in Equa-

tion 2.3, resulting (up to an arbitrary constant) in an estimate of the Helmholtz

energy −βF est(∆N) = lnZest(∆N). Such a construction results in an acceptance

probability

Pacc = min

(
1,
Zest(∆Nold)

Zest(∆Nnew)
exp [−β∆H]

)
. (2.5)
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Notably absent from this expression is ∆µ, highlighting the strength of this technique:

no a priori estimate of the chemical potential is necessary—only post-simulation

reweighing of the DOS is necessary to obtain the desired value.

The details of our bias updating and convergence schemes are consistent with

previous methods described elsewhere [65, 71, 72]. In short, each simulation pro-

ceeds by randomly selecting a particle from the ensemble and performing either an

identity swap move or a random rotation. After each trial move, lnZest(∆N) is up-

dated with the final compositional state lnZest(∆N) → lnZest(∆N) + ln f , where

f is a convergence factor. This process is repeated until the histogram achieves a

flatness of 0.85, whereupon the convergence factor is updated to fnew =
√
fold. We

have defined flatness as the ratio min(H(∆N))/〈H(∆N)〉∆N , with H the histogram

of visited composition states. Simulations are halted when the convergence factor

reaches O(10−8).

To accelerate DOS convergence, a multiple-window–multiple-walker implemen-

tation was used. The composition ∆N was evenly divided across windows with

50% overlapping regions. Individually converged segments were reassembled using a

fourth-order central finite difference. Derivative errors at the joining point were typ-

ically on the order of 10−7 for high energy barrier points (low T ) and as low as 10−9

along the nematic-isotropic coexistence regions. No replica exchange was necessary

between windows, since at each composition ∆N , all of configurational space is ac-

cessible by the spins. This was validated by computing the mean absolute percentage

error between a single-window/single-walker run and corresponding parallel version,

which was 0.1291%, indicating a high degree of agreeability.

Equilibrium compositions at a particular β are obtained via re-weighing using the

following relationship[73]:

P (∆N ; ∆µ, β) ∝ e−βF (∆N)+β∆µ∆N (2.6)
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Coexisting phases may then be obtained by performing a parameter sweep on ∆µ

using distribution data from the DOS simulations described above. Phase composi-

tions are obtained using an equal-area construction applied to the resulting bimodal

distributions, as illustrated in Figure 2.2. It is worth emphasizing that unlike other

histogram reweighing techniques, the identification of µeq is exact to an accuracy

proportional [74] to
√
ffinal and the result of a single simulation and since the simu-

lation spanned the entire composition space, the existence of a two phase region can

be definitively known.
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Figure 2.2. Probability distribution of a LL binary mixture with
εAA/εBB = 0.35 at T ∗ = 0.50. The dashed blue line represents P (xB) at a

starting guess of µ = 2.0. Coexistence was identified by numerically
determining the position of two peaks in probability, and automatically
adjusting the chemical potential until the integrated areas under these

peaks were equal. The solid red line represents that final value, µeq = 1.451.
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2.3.2 Elastic coefficient measurement

Mixture elastic coefficients were measured using a free energy perturbation ap-

proach first described for Gay–Berne systems and later applied (using polynomial

expansion biases) to a pure LL system [75, 76]. For a uniaxial nematic, the elastic

free energy density may be written in the Frank–Oseen form [34],

fFO =
1

2
K1(∇ · n̂)2 +

1

2
K2(n̂ ·∇× n̂)2 +

1

2
K3(n̂×∇× n̂)2 , (2.7)

with K1, K2, and K3 being the splay, twist and bend elastic constants. The Hamil-

tonian describing the LL model is fully rotationally symmetric with regard to global

spin alignment—this permits deformation of one elastic mode into another, resulting

in all three elastic constants being equal [77, 24]. This affords freedom in the choice

of which elastic coefficient to measure. The equality of the three elastic modes are

a special case of more generalized multiple–elastic constant models [24]. Following

the methods derived in Ref. [75] and in keeping with previous investigations of pure

species [77, 76], the K2 (twist) mode was chosen as the deformation coordinate.

We chose to implement the expanded-ensemble DOS (ExEDOS) formalism [72] to

calculate elastic free energies. The update is similar to Equation 2.5, with Zest(∆N)

replaced by Zest(ξ), where ξ is the expanded ensemble coordinate (here, one rep-

resenting twist deformation). Within this formalism, it is useful to consider the

prefactor Zest within the exponent as a biasing potential Φ, Φ = lnZest [76], so that

the biasing potential flattens the free energy surface, negating variations in F . Elas-

tic constant simulations were performed on a N = 323 fully periodic system. The

nematic director of the spins in the first layer of the box (x = 0) was constrained

to the z-direction using P2 of the dot product between this vector and each spin

as the penalty function. The magnitude of the constraint potential was set to 105.

Approximately 217 canonical moves were then performed to relax the system. After
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relaxation, DOS sampling began by creating an estimator with 200 bins with a twist

order parameter range of [−0.01, 0.01]. The twist biasing potential was applied to the

spins in the central layer (x = 16). The DOS convergence factor was initially set to

10−6, a value commensurate with the estimated free energy difference due to a small

perturbation in order parameter. A target flatness of 0.90 was used to achieve the

desired accuracy. In accordance to the ExEDOS formalism, the final bias potential

Φ equates to −βF . The elastic constant was extracted by fitting a quadratic form to

this resulting free energy density surface using the relation F = KΦ2/2 [75, 76]. It

was then normalized by the system volume and non–dimensionalized via K∗ = Ka/ε

where a is equal to the lattice spacing.

2.3.3 Externally applied stress

The elastic response of a bulk binary LC mixture under stress is modeled by an

N = 323 lattice with varying composition, interaction potential ratio and tempera-

ture. An external field given by

Ufield = −U0P2(n̂L · d̂), (2.8)

where n̂L is the local nematic director of a single layer of spins in the x direction

and d̂ = (0, sin θ(x), cos θ(x)) is the field director, augments the Hamiltonian to pro-

vide tunable elastic deformations within the simulation box. This penalty is applied

collectively to a layer of spins with the same x position to retain fluctuations in the

relative orientation of adjacent spins. U0 is scaled accordingly as U0/(NLεBB) = 1

where NL is the number of spins in a layer; this corresponds to an orienting strength

commensurate with spin-spin interactions.

To understand the response of our system to nonlinear deformations, we utilize

nonlinear perturbations with a Gaussian form for the angle θ(x) ∈ [0, π] centered

13



about the lattice with σ = 3a; simple linear stresses may also be applied using

a profile θ(x) = πx/L. These simulations were performed in the NV T ensemble

with the standard Metropolis[78] acceptance rule. Each iteration involved randomly

selecting either a rotation move performed on an individual spin or an identity swap

move where the species of two spins are exchanged. The local nematic director n̂L is

computed each iteration for each x-layer from the order parameter tensor

Q =
3

2NL

[
NL∑
i=1

ûiûi −
δ

3

]
(2.9)

where ûiûi is the outer product of spin i with itself and δ is the Kronecker delta. n̂L

is then taken as the eigenvector corresponding to the largest eigenvalue of Q. Several

short runs (105 sweeps) were performed with production runs of 107 MC sweeps.

2.3.4 Cylindrical confinement

Simulations of the LL mixtures under cylindrical confinement were carried out on

an N = 323 cubic lattice. The cylinder was centered at (x0, y0) = (15, 15) and spins

with R =
√

(x− x0)2 + (y − y0)2 > 15 were removed. Homeotropic anchoring was

imposed on the spins comprising the boundary using a P2 penalty function, with the

constraint direction being d̂ = (x− x0, y − y0, 0)/ ‖R‖. Numerical experiments were

performed to choose the appropriate anchoring coefficient, striking a balance between

the applied strength and suppression of local fluctuations; a value of 104 was chosen.

Periodic boundaries were applied in the z–direction.

Each cylinder was initialized with spins pointing in the axial, radial and random

directions to identify possible metastability due to initial configurations. All three

initial configurations yielded identical results presented below. Production runs con-

sisted of 235 total moves, with directors and compositions averaged axially to yield

the reduced composition and ordering data.

14



2.4 Results and Discussion

We begin by validating our DOS convergence algorithm, computing the NI transi-

tion of a single nematic species on N = 323 lattice with periodic boundary conditions;

this transition has been previously studied extensively [79, 66], and as such provides

a robust assessment of sampling and convergence criteria. We explicitly compare our

results to those computed in Ref. [64] by sampling the density of states in energy Ω(U)

for a single-component system [cf. Fig. 2.1(b)], obtaining exact agreement. We then

proceed to apply DOS to binary mixtures, utilizing N = 253 sites. Though previous

investigations had calculated the phase diagram for select energies [59], our method

permits a comprehensive study, including nematic–nematic (NN) phase transitions

at temperatures which are practically inaccessible with standard methods. These

simulations were facilitated by implementing a multiple-window–multiple-walker al-

gorithm [80]. Our results for εAA/εBB = 0.4 are given in Figure 2.3. Our results

for the NI phase transition of this mixture in Figure 2.3 are consistent with those

of Ref. [59]. The novel NN separation, which occurs in some polymer–nematic mix-

tures [81], has been previously predicted for LC mixtures by mean-field theory [82].

Interestingly, the critical region exhibits Ising-like behavior expected of unstructured

binary liquid mixtures despite the presence of orientational fluctuations, though the

mean-field theory is accurate at lower temperatures when compositional and orien-

tational fluctuations become quenched.
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Figure 2.3. Extending the DOS approach to binary mixtures by sampling
composition space NA at a fixed β improves upon earlier findings [59],

increasing accuracy in the NI coexistence region and permitting extension
to the nematic–nematic (NN) coexistence region previously examined only

in the mean-field limit [82].

Agreement with theoretical mean field predictions which have been confirmed by

experiment [63] provides justification for studying LC ordering and elastic behavior
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using the LL model. In fact, the mean field model shows agreement in order parameter

and composition across the entire phase diagram, which we calculate below. The

distinct advantage of our simulation approach is the ability to measure corresponding

elasticities due to spatial inhomogeneity of the thee-dimensional lattice.

Expanding upon these results, Figure 2.4 presents phase diagrams at four repre-

sentative values of εAA/εBB. Intriguingly, the resulting curves display both a widening

of NI coexistence and an upwards shift of the NN regime as εAA/εBB is decreased.

At values of εAA/εBB . 0.30 these regions intersect, creating a vast two-phase re-

gion which restricts the existence of a single homogeneous nematic phase to the

extremes in composition. This results in a curious feature where the system may

transition directly from NN coexistence to NI coexistence through a temperature

increase that induces demixing, promoting formation of a nearly-pure A-rich phase

[cf. Fig 2.4(a)]. Such nearly pure phases are particularly interesting, representing

LC media which have been doped by a miscible species. This suggests that mixtures

containing disparate species are susceptible to phase separation under relatively small

perturbations to the free energy, resulting in partial demixing. It is worth noting that

latent heat effects have been shown to play a significant role in the kinetics of the

NI transition [83, 84], consistent with experimental observations for pure LCs, where

competition between free energy and curvature insufficiently describes the growth of

a nematic nucleus. The combination of compositional segregation with the nematic–

isotropic transition could lead to interesting effects in fast-switching materials near

this boundary.
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Figure 2.4. Lebwohl-Lasher lattice binary phase diagrams at εAA/εBB =
(a) 0.20, (b) 0.30, (c) 0.40 and (d) 0.50. Moderate values of εAA/εBB

(b)–(d) exhibit a continuous I-N region spanning between the pure-species
transition points, with a homogeneous nematic phase giving way to A and
B-rich phases at low temperature. Reducing εAA/εBB causes broadening of
the nematic–isotropic (NI) coexistence region towards xB as a consequence
of large asymmetry in interaction energy, which concomitantly promotes

the nematic–nematic (NN) region to higher temperatures.
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Kinetic pathways for the NI transition were previously studied in detail for the

single-component LL model [66], with spinodal decomposition (SD) identified as the

mechanism. Early–stage dynamics of SD in binary LC mixtures were also studied us-

ing a linearized time–dependent Landau-Ginzburg (LG) model [85]. It was found that

SD was driven by concentration fluctuations within the isotropic spinodal curve while

instabilities of the orientational order parameters induced SD outside the spinodal

curve. Further investigations into the dynamics of phase transitions for LC–polymer

mixtures using similar LG models identified possible isotropic-isotropic metastable

coexistence buried below NI equilibrium [86]. Our density-of-states investigations are

capable of obtaining both thermodynamically stable and metastable states. As our

interest is in the equilibrium structure adopted by liquid crystalline mixtures under

elastic stress, we have focused here on the stable binodal regions and the effects of

interaction disparity between the LC species.

Molecular theory and experimental studies [87, 88] involving LC–nanoparticle

mixtures have shown a significant broadening of the NI coexistence region, not un-

like what is observed at low εAA/εBB. Furthermore, phase separation of homogeneous

nematic phases are observed at low temperatures except for extremely low nanoparti-

cle concentrations. The disparity in LC–nanoparticle interaction in addition to large

isotropic attractions are highlighted there as dominant effects in phase separation.

We will return to this result later when discussing the behavior of confined mixtures.

For now, we utilize the NN coexistence curve to ensure we are examining mixtures

in the homogeneous nematic state.
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(b)(a)

Figure 2.5. Elastic coefficient measurements performed using free energy
perturbations as a function of composition (a) for εAA/εBB = 0.30, 0.40,

0.60, 0.80. Measurements are performed at a temperature T which is 97%
of TANI . The LL model exhibits an elastic response which is linear in
composition over a wide range, suggesting that these systems retain

uniform mixing [89] within the linear stress regime. In the region close to
the NI transition nonlinear effects (b) become prominent. For

εAA/εBB = 0.40 at temperatures between 90% and 130% of TANI the elastic
response exhibits a high degree of nonlinearity at low xB. Coexisting

compositions along each curve are represented by open circles.

We continue our free-energy mapping approach by applying the properties, we

apply the expanded ensemble DOS algorithm (ExEDOS) to extract the parabolic free-

energy profile associated with the twist elastic coefficient, as discussed in Section 2.3.2.

The elastic coefficients of binary mixtures, obtained as a function of composition at

T/TANI = 0.97, are plotted in Figure 2.5(a) for a wide range of εAA/εBB. It is clear

that LL mixtures exhibit elastic coefficients which follow linear mixing rules over

the majority of compositions. Such mixing was previously noted to be consistent
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with experiments on mixtures of the apolar mesogens 1PHCE5 and 5PBE01 [89],

though it was indicated that to within experimental error, a quadratic form mixing

rule also matched the data. It is likely that the linear mixing rules will be modified

in practice for eutectic mixtures such as E7, which incorporate strongly interacting

mesogens such as 5CT which are solid at room temperature and thus exhibit divergent

elasticities. In particular, E7 is comprised of four species, three of which (5CB, 7CB,

8OCB) have a TNI in the range 305 K–355 K, and a fourth (5CT) at 512K [90].

Such a mixture is effectively represented by a much lower value of εAA/εBB where the

quadratic form and measured elasticity vary significantly.

Exploring the model further, we also note a divergence from linearity in the

K∗(xB) curve for mixtures near the NI coexistence region. These results are plotted

in Figure 2.5(b). Specifically, we examine a system with εAA/εBB = 0.40 at tem-

peratures ranging from T/TANI = 0.90 to 1.30. At these temperatures, the initial

phase may be nematic or isotropic; the coexisting values for xB are denoted for each

temperature studied. While zero elastic coefficient is expected (and observed) when

either a homogeneous or coexisting isotropic phase is present, the elastic response is

demonstrably nonlinear after the phase transition. The limit xB ≈ 0 is particularly

relevant to cases where a more rigid species is added in nematogenic mixtures to raise

the NI transition temperature, or increase elastic resistance [91, 92], thus a detailed

understanding of this behavior is relevant for engineering applications.
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Figure 2.6. The dependence of the order parameter S and z-component of
the layer director 〈nz〉 on temperature at (a) xA = 0.5 and (b) xA = 0.9 for

εAA/εBB = 0.4 in the presence of induced twist. The arrows indicate
increasing temperature ranging from T/TNI = 0.4 to 1.0 at each

composition. The twist is applied to the central and periodic edge
x-coordinate, with one symmetric half shown above (L here denotes the

box length). As the temperature approaches TNI , the twist no longer
propagates across the length of the box and the profile of the director

becomes highly nonlinear. This effect is responsible for the nonlinearity
observed in the elastic coefficient measurements.
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To ascertain the cause of the observed nonlinearity in elasticity, we induce a small

twist in a N = 323 system with εAA/εBB = 0.4. The applied nematic director is set to

d̂ = (0, 0, 1) at the center and d̂ = (0, sin π/10, cos π/10) at a periodic edge. For xA =

0.5 and 0.9, canonical simulations are performed at various temperatures ranging

T/TNI = 0.4 to 1.0. Figure 2.6 plots one symmetric half of the systems and shows

that for low temperatures, the twist, indicated by the z-component of the nematic

director 〈nz〉, is able to propagate from the center to the edges of the simulation

cell. However, as the transition temperature is approached, this uniform profile can

no longer be sustained due to increasing fluctuations, resulting in localized melting

away from the applied stress induced by the field. The order parameters as shown

in Figure 2.6(b) indicate near-complete disorder at the nonlinear conditions. This

phenomenon can be thought of as a yield stress, wherein the deformation threshold

is reached near the NI transition. The elastic constants, which measure a material’s

resistance to elastic deformation, exhibit a nonlinear decrease as a result.

One may inquire if elastic demixing extends in any way to homogeneous mixture

compositions. While these are stable against small linear perturbations away from

TNI , areas exhibiting stronger deformations through nonlinear perturbations may

recruit the weaker elastic species. We directly probe this by applying an external

field potential as described by Equation 2.8.

Figure 2.7 shows the results of these calculations. For each interaction strength

ratio, temperatures T = εAA were specifically chosen to be within the nematic state,

but far from the NI and NN coexistence regions. Application of a Gaussian pertur-

bation θ(x) with amplitude π and width 3a [cf. Fig. 2.7(a)] results in enrichment of

the weaker-interacting A species within the regions of strongest elastic deformation.

The nonlinear stress thus modulates local phase separation. Figure 2.7(b) shows that

although compositional segregation becomes less pronounced as εAA/εBB increases,

there is still a significant orientational penalty in the high stress regions, resulting
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in localized melting. This is affirmed by observing that the average absolute value

of nz = n̂ · ẑ, which should approach zero when θ(x) = π/2, instead melts into the

random configuration 〈|nz|〉 ≈ 0.5 [cf. Fig. 2.7(c)]. The dynamic response to stress

through compositional and orientational means is a strong indication that the driv-

ing force is truly elastic in nature. The system would rather melt, paying substantial

free-energetic costs to do so, than remain a homogeneous (but elastically deformed)

fluid. Note that, though there is a slight enthalpic gain for phase separation, it is the

entropic gain associated with mixing that dominates the bulk phase behavior. In the

presence of a nonlinear elastic perturbation, the free energy penalty may be offset by

partial demixing to gain enthalpy and the rotational freedom of localized isotropic

fluid. In the absence of nonlinear deformations, this system is unable to perform such

a balance.

We also explore the role of temperature in the segregation effects observed. Fig-

ure 2.8 shows that this phenomenon is insensitive to temperature. Simulations across

a broad region of the homogeneous nematic regime show little change in compositional

fractionation towards regions of high stress by the weaker elastic species. This further

supports the elastically driven nature of the phase separation. Enthalpy dominated

effects would certainly exhibit a significant change over a nearly two–fold increase in

temperature. A removal of the field for the systems studied resulted in a restoration

of the original homogeneous unperturbed state.
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Figure 2.7. The presence of a nonlinear external field (a-c) induces
segregation of a homogeneous nematic mixture. An applied Gaussian field
influences the weaker elastic component to migrate to regions of high stress
(a). This segregation is accompanied by decreasing nematic order (b) and

disordering of spin orientations (c) [quantified by the nematic order
parameter S and average absolute z component of the director (nz)

respectively], signifying apparent elastic melting near the highly deformed
center layers. In all the systems studied here, the overall composition was

xB = 0.5.
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Segregation effects are even more pronounced upon examining topological defect

structures imposed on confined LC systems. For pure LC systems cylindrically con-

fined with homeotropic anchoring, competition between bulk elastic and surface free

energies can give rise to symmetry–breaking configurations. In particular, two +1/2

split core arrangements, known as planar–polar (PP), have been seen experimentally

and shown to always be of lower free energy than alternate planar–radial disclinations

provided that the defect structures have the same radii and K1 ≈ K3 [41]; the lat-

ter condition is true for our LL model. Note that the PP designation is occasionally

split [93] into versions which have disclinations within the LC phase, and those where

anchoring is weak enough to merely distort the surface, expelling defects from the

phase.
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Figure 2.8. The compositional segregation resulting from external
nonlinear stress responds weakly to changes in temperature. For

εAA/εBB = 0.40 there is little change in profile of xA throughout nearly the
entire homogeneous nematic regime.

Numerical solutions to the dynamic alignment tensor equation in a (cylindrical)

capillary show that the PP solution is favored over the planar–radial for all but the

narrowest capillaries [95]. This configuration persists across almost the entire nematic
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xA

S

Figure 2.9. Under cylindrical confinement with homeotropic anchoring the
system exhibits two +1/2 split core defects (from top: εAA/εBB = 0.80, 0.60,
0.40, 0.30). Such morphology agrees with that of Ref. [94] for pure systems.

In all the systems studied here, the overall composition was xB = 0.5.

region until the NI transition temperature. Computer simulations using the LL model

for a single component nematic yielded planar-polar structures [94], as did molecular

dynamics simulations of a rod-like model [93] for a variety of cylinder heights, radii

and anchoring strength. The lack of an escaped radial configuration (ER) was later

found to be due to surface extrapolation lengths exceeding bulk to surface energy

ratios except at very low temperatures [96] (also, cf. [97]). Confined to concentric

cylinders however, the LL model presented ER structure along the cylinder axis [98].

We simulate cylindrically confined binary LL mixtures and observe the formation

of PP structures for various εAA/εBB, with T = εAA, shown in Figure 2.9, consis-

tent with results for single component systems. The presence of a secondary species

introduces additional enthalpic competition to the existing bulk and surface contri-

butions. This causes a migration of the weaker species A towards the defect cores.

As the disparity of the mixture increases, the size of the A aggregates grow larger.
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This effect is most prominent in mixtures with small εAA/εBB, but is present to some

degree in all systems studied. The unique behavior of the binary system is that the

order parameter at the disclinations remain ≈ 1/2 despite variations in εAA/εBB and

temperature, enlarging to accommodate the increase in aggregation of A. As εAA/εBB

approaches unity, the single–component result [94] is recovered.

(a) (b) 1.0

0.8

0.6

0.4

0.2

0

xA

Figure 2.10. Compositions (a) taken from defect cores and centers for a
binary system under cylindrical confinement at various temperatures with

εAA/εBB = 0.40 and an overall composition of xB = 0.6. As the NI
transition is approached, the compositions at the center appears to

approach isotropic bulk values obtained from Fig 2.4. However, at TNI
fractionation is no longer present in the system. Shapshots (b) at

T/TNI = 0.24, 0.48, 0.72, 0.96 (top left to bottom right) show the evolution
of the PP defect towards a radial configuration near the transition

temperature. The compositions at the center and defect cores are unique to
cylindrical confinement, where a bulk system would reside well in the single

phase nematic regime.
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The fractionation present in the cylinders is studied in greater detail for εAA/εBB =

0.4. Compositions from the defect core and the center of the cylinder for species A

are plotted against temperature in Figure 2.10(a). Approaching the transition, the

system shifts from a PP to a radial configuration; data plotted at T/TNI = 0.96

reflects this, and is obtained from the defect core at the cylinder’s center and from an

annulus at a radius 0.9 from the center of the cylinder. Both compositions exhibit a

nonlinear temperature dependence which is enhanced approaching the NI transition.

This temperature dependence is notably stronger in the defect cores compared to the

center of the cylinder. Near the NI transition, the composition at the center appears

to approach the isotropic bulk value obtained previously (cf. Figure 2.4), though

these values are slightly offset within the cylinder due to surface effects in cylindrical

confinement. As can be seen from snapshots of the cylinder in Figure 2.10(b), the

compositional segregation disappears near TNI . Concomitantly, we observe the split

defect core of the plane polar morphology transforming into a single +1 disclination.

This is characteristic of imposed stress relaxation by persistent localized melting, a

phenomenon repeatedly shown previously. It is clear, then, that the presence of differ-

ent elastically active species in the nematic phase has the potential to fundamentally

alter the stress-induced morphologies relevant for sensing applications. Further, ow-

ing to the fact that the measured compositions in cylindrical confinement correspond

to a single homogeneous region in bulk, and that the compositions are drastically

different from their bulk two-phase region counterparts, we see direct evidence of a

unique elastically-driven phase separation.

2.5 Conclusion

Utilizing DOS sampling, we were able to map out the entire phase diagram and

and measure elastic constants of model binary liquid crystal mixtures. At low tem-

peratures, nematic-nematic coexistence is observed, consistent with mean field pre-
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dictions. Our results show that elastic segregation can be induced through a variety

of different means. Near the NI transition, small linear perturbations are enough

to cause melting, driving phase segregation and resulting in observed nonlinearity

in elasticity. In the homogeneous nematic region, nonlinear stress is also found to

cause localized melting and segregation which is largely independent of tempera-

ture; this effect is reversible. Finally, cylindrical confinement presents two +1/2 split

core defects which cause enrichment of the weaker elastic species at the defect cores

and associated melting. At temperatures approaching the transition temperature, the

symmetry breaking disclinations give way to a radial configuration with homogenized

composition. All three distinct stresses give rise to similar responses characteristic of

elastically driven behavior.

These results have the potential to affect many developing areas of liquid crystal

technology. For instance, elastic segregation effects have profound implications for

systems with a small component of ‘dopant’ species exhibiting stronger or weaker

elasticity added to alter response behavior in many industrial blends. Further, we

expect induced compositional differences to be particularly relevant for nanoparticle

self-assembly or templated polymerization where defects may be used to guide the

formation of complex heterostructures. Colloid in liquid crystal gels, for instance,

are known to exhibit an enhanced NI transition temperature relative to bulk LC,

consistent with segregation of weak elastic species to surface-mediated defects [99].

These effects might even be exploited to enhance the relative solubility of included

species for templated defect regions. Compositional differences also have the potential

to significantly affect the stability of liquid-crystalline droplets where topological

defects play a significant role. This is due to their delicate surface–bulk interplay,

which may enhance the molecular recognition of sensors through selective solvation

within surface defects.
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CHAPTER 3

ELASTIC PROPERTIES OF COMMON GAY–BERNE NEMATOGENS FROM

DENSITY-OF-STATES SIMULATIONS

3.1 Introduction

The unique ordering properties of liquid crystals imbue these materials with novel

electrical, mechanical or optical properties, and are key to several emerging appli-

cations [8, 27, 100, 101]. While there remains much interest in the use of liquid

crystals in displays [102, 34], self-assembly [100, 103, 14, 10, 104, 15, 105–109] and

molecular sensing [110, 3, 111–114, 8, 7, 115] have received substantial interest re-

cently. Topological defects formed by surface interactions with embedded colloidal

particles have been used to create gel-like liquid-crystalline materials and ordered

arrays of microspheres [99, 116, 11]. Assembly is driven either by defects on the

colloidal surface, which attract in order to minimize elastic deformations, or by the

desire of a liquid crystal to partially alleviate the elastic stress and imposed melting

at nematic disclinations or smectic boundaries [117, 118, 104]. The nature and struc-

ture of these defects, and thus the subsequent assemblies, are controlled by elastic

properties. Molecular sensing applications have demonstrated exquisite sensitivity

to bacterial toxins by controlling the interplay of surface and bulk forces within a

liquid crystalline film or in droplet confinement [7, 8]. Much of this work utilizes

nematogenic cyanobiphenyls (in particular 5CB), though these methods could make

use of the any nematogenic system.

As the elastic properties of LCs play a key role in their function, it is impera-

tive that molecular models accurately capture not only molecular sizes and ordering
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properties, but also the elastic behavior crucial to real-world applications. Here, our

primary interest is in the coarse-grained modeling of uniaxial nematics through the

Gay–Berne (GB) potential [119, 20]. Despite widespread use, little is known about

the elastic properties of individual models, which makes understanding their appli-

cability to real systems challenging. In particular, though a few GB potentials have

been parameterized to match the interaction properties of real nematogens [120, 121],

GB models have largely been used primarily to generate a “typical” nematic medium,

devoid of molecular specificities and often having some unphysical features such as a

significant density difference between nematic and istropic phases [28]. As new appli-

cations can depend on a sensitive balance of the elastic coefficients, it is imperative

to elucidate their properties.

While use of the Gay–Berne potential is widespread, measurements of the nematic

elastic coefficients have focused primarily on the well-characterized (3, 5, 2, 1) model

(utilizing the notation of Bates and Luckhurst [122], explained further below) [123,

75, 124], though a few notable exceptions exist[125, 124]. Here, we will examine four

additional models for measuring the elastic coefficients in nematic liquid crystals,

using free-energy perturbation methods [75]. Each of the models examined was chosen

for a particular reason, and all but one lacks significant elastic characterization. The

(3, 5, 1, 2) model, primarily studied when augmented with a chiral interaction term,

where it may be used to form cholesteric, blue, and chiral smectic phases within

a coarse-grained model. The (3, 5, 1, 3) model [126], which broadens the nematic

range relative to the (3, 5, 1, 2) model, and has been used in studies of LC adsorption

onto graphite surfaces [127], also represents the only model other than (3, 5, 1, 2) to

receive significant elastic characterization [123, 124]. The (4.4, 20, 1, 1) [122] model,

derived from a parameterization for p-terphenyl, has been used to study important

surface–elastic properties in confinement. Finally, the (0.345, 0.2, 1, 2) parameterized

for a triphenylene core [121] is a common discogen used to study systems exhibiting
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nematic and columnar phases [128], and is closely related to models proposed to

function as model chromonic liquid crystals [129].

Our results, which utilize a recently developed density-of-states formalism [75],

obtain elastic coefficients within each model for significant portions of the nematic

range from the isotropic phase to the more highly ordered smectic or columnar phases.

We find very good agreement between our elastic measurements for the (3, 5, 1, 3)

model and previous measurements [124]. Our results are further able to demonstrate

that the (4.4, 20, 1, 1) model represents an exceptional coarse-grained model for liquid

crystalline systems—in particular it matches the elastic ratios of p-azoxyanisole, and

presents a solid foundation upon which representations of cyanobiphenyls may be

developed. This work serves to present a base-line understanding of the elasticity of

Gay–Berne models and to inform and systematize their application to modeling real

liquid-crystalline systems.

3.2 Gay–Berne Potential

The Gay–Berne (GB) potential [119, 130, 20] is an anisotropic generalization of

the standard 12–6 Lennard–Jones potential describing the short range interactions

of uniaxial ellipsoidal particles. The ability to tune the aspect ratio and potential

asymmetry has made it widely used to model liquid crystalline systems. Various

generalizations of the original model exist [131, 132], one of which [133] overcomes

the numerical difficulties associated with capturing both oblate and prolate spheroids

simultaneously. The GB interaction between two particles i and j may be written as

UGB(ûi, ûj, r̂ij) = 4ε(ûi, ûj, r̂ij)
[
R12 −R6

]
(3.1)
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where ûi is the orientation of particle i, r̂ij is the distance vector between particles i

and j, and R approximates the surface to surface distance by

R =
dwσ0

rij − σ(ûi, ûj, r̂ij) + dwσ0

(3.2)

with the range parameter σ(ûi, ûj, r̂ij) having the form

σ(ûi, ûj, r̂ij) =

σ0

[
1−

{
χα2(ûi · r̂ij)2 + χα−2(ûj · r̂ij)2 − 2χ2(ûi · r̂ij)(ûj · r̂ij)(ûi · ûj)

1− χ2(ûi · ûj)2

}]− 1
2

(3.3)

where

χ =

[
(l2i − d2

i )(l
2
j − d2

j)

(l2j + d2
i )(l

2
i + d2

j)

]1/2

, (3.4)

and

α2 =

[
(l2i − d2

i )(l
2
j + d2

i )

(l2j − d2
j)(l

2
i + d2

j)

]1/2

. (3.5)

Here, dw describes the “softness” of the potential which allows for appropriate

scaling of oblate spheroids and l and d are the length and diameter of each particle

respectively. In general, dw is set to 1, though it is customary in discotic models to

use it to shorten the range of face–face interactions. We note that although σ0 is

commonly defined as σ0 =
√
d2
i + d2

j for mixed-particle systems, we choose to use

the arithmetic mean σ0 = (di + dj)/2 and omit a factor of
√

2 for like particles, in

keeping with standard treatments for the diameters of identical species.

The total molecular anisotropic potential is calculated as

ε(ûi, ûj, r̂ij) = ε0ε
ν
1(ûi, ûj)ε

µ
2(ûi, ûj, r̂ij) (3.6)

36



where ε0 is the well depth of the cross configuration. The orientation dependent

strength terms are calculated as follows:

ε1(ûi, ûj) =
[
1− χ2(ûi · ûj)2

]−1/2
, (3.7)

ε2(ûi, ûj, r̂ij) =

1−
{
χ′α′2(ûi · r̂ij)2 + χ′α′−2(ûj · r̂ij)2 − 2χ′2(ûi · r̂ij)(ûj · r̂ij)(ûi · ûj)

1− χ′2(ûi · ûj)2

} (3.8)

where

χ′ =
1− (εE/εS)1/µ

1 + (εE/εS)1/µ
, (3.9)

α′2 =
[
1 + (εE/εS)1/µ

]−1
. (3.10)

The parameters εE and εS refer to the potential well depths of the end–to–end and

side–to–side configurations for prolate spheroids respectively. For oblate spheroids, εE

is often replaced with εF representing a face–to–face configuration and εS is referred

to as εE for the edge–to–edge configuration. For clarity and consistency, we use

the former notation throughout. Variables µ and ν are adjustable parameters with

typical values of 2 and 1 respectively. In keeping with Ref. [133], the terms χα2,

and χα−2 are treated as inseparable to avoid imaginary numbers for arbitrary aspect

ratios and are computed as

χα2 =
l2i − d2

i

l2i + d2
j

, (3.11)

χα−2 =
l2j − d2

j

l2j + d2
i

. (3.12)
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It is convenient to define the ratios κ = l/d and κ′ = εS/εE which permits the use

of the compact notation [122] (κ, κ′, µ, ν) to fully describe the GB model, a convention

which is used throughout this paper. Reduced units are adopted, with distance r

scaled as r∗ = r/σ0, density ρ as ρ∗ = Nσ3
0/V , temperature T as T ∗ = kBT/ε0,

energy U as U∗ = U/ε0, pressure P as P ∗ = Pσ3
0/ε0 and elastic constants kii as

k∗ii = kiiσ0/ε0.

3.3 Studied Models

One apparent drawback of the original (3, 5, 2, 1) GB model is the narrow nematic

range [134]. By choosing µ = 1 and ν = 2, Luckhurst et al. [135] proposed the (3, 5,

1, 2) model which stabilized side–side interactions and generated nematic phases with

a wider temperature rage. This parametrization has since been used as the the basis

for chiral LC models [136, 137] and the subject of further characterization in bulk

and under confinement [138], and is the first model we study in this work. A closely

related model, the (3, 5, 1, 3) model proposed by Berardi et al. [126] supports an even

wider nematic range. As its elastic properties have characterized for a sampling of

configurations [123, 124], this serves as further testing and validation for free-energy

perturbation methods.

Explicit parameterization of the GB potential to a model mesogen, p-terphenyl

was initially undertaken by Luckhurst and Simmonds [120] where the biaxiality of a

site–site potential was projected out into a (4.4, 39.6, 0.80, 0.74) uniaxial GB model.

This was later simplified to a (4.4, 20, 1, 1) potential [122] while retaining the rich

isotropic, nematic, smectic A and smectic B phase behavior. Further investigations

of the model have characterized the nematic–isotropic (NI) transition in detail [139],

structural dynamics [140], looked at behavior under nano–confinement [141] and in

an aligning field [142, 143] and importantly, studied the Fréedericksz transition of

the nematic phase [125]. The explicit mapping to a mesogen and the extensive
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characterization makes it a suitable model which we have chosen to study.

Figure 3.1. Snapshots showing representative nematic configurations for
the Gay–Berne models (a) (3, 5, 1, 2) at ρ∗ = 0.301, (b) (4.4, 20, 1, 1) at
ρ∗ = 0.193 and (c) (0.345, 0.2, 1, 2) at ρ∗ = 2.360 with S ≈ 0.65. The

corresponding T/TNI are approximately 0.87, 0.75 and 0.83 respectively.
The (3, 5, 1, 3) model is visually indistinguishable from the (3, 5, 1, 2)

model, and thus not shown.

A discotic GB potential was parameterized to a triphenylene core by Emerson et

al. [121] with phase equilibria, structure and diffusivity exhaustively characterized

more recently [128]. The system was found to exhibit isotropic, nematic, and disor-

dered and ordered columnar phases. The resulting model was a (0.345, 0.2, 1, 2) GB

potential. To our knowledge, no attempt has been made to measure the elasticities of

discotic LCs in simulation. Therefore, a characterization of the elastic constants is a

logical addition to the experimentally relevant model. Representative configurations

for the (3, 5, 1, ν), (4.4, 20, 1, 1) and (0.345, 0.2, 1, 2) models are shown in Figure 3.1.
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3.4 Methods

Density of states (DOS) flat histogram methods are a powerful class of Monte

Carlo sampling algorithms capable of directly measuring free energies along defined

order parameters. Examples include Wang–Landau sampling [65] which was later

generalized to arbitrary expanded ensembles (ExEDOS) [72], basis function sam-

pling [76] and more recently Green’s function sampling [144]. Continuous analogs of

these methods include metadynamics [145] and adaptive biasing force [146]. Utiliz-

ing the expanded ensemble formalism, the probability of observing a specific point

along an order parameter ξ is proportional to Qξ(N, V, T, ξ), the expanded canonical

partition function at particular point [73]. To generate a flat histogram along ξ, we

define a biasing function η(ξ) which yields the probability

p(ξ) ∝ Qξ(N, V, T, ξ) exp[−η(ξ)]. (3.13)

A choice of η ≡ lnQξ = −βF (ξ), with F (ξ) the associated Landau free energy,

results in uniform sampling with respect to ξ. In this work we make use of an

expanded–ensemble density of states (ExEDOS) generalization of the Wang–Landau

scheme [72, 65] in determining βF (ξ) where ξ is an elastic deformation coordinate

chosen to extract the Frank elastic constants. Our order parameter is based on the

free energy perturbation method proposed by Joshi et al. [75] who used metadynamics

to measure the elastic constants of the (3, 5, 2, 1) GB model. However, we perform

our simulations in Monte Carlo utilizing the expanded ensemble formalism previously

described. Our current approach is similar to other Monte Carlo adaptations used

to measure elastic coefficients of the lattice-based Lebwohl–Lasher model in pure [76]

systems and binary mixtures [147].

Several other methods have been proposed to measure elastic constants in simula-

tion. Cleaver and Allen [77] determined the elastic constants of the Lebwohl–Lasher
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model using long wavelength director fluctuations and by direct simulation of the

Fréedericksz transition. The latter method is noted [77] to be unreliable, subject to

relatively high errors, and particularly sensitive to inhomogeneous finite size effects.

The fluctuation approach is much more reliable but requires accurate statistics from

large simulation boxes. Allen and co-workers adopted this method in Refs. [123]

and [124] to measure elasticities of the (3, 5, 2, 1) and (3, 5, 1, 3) GB models. Stelzer

et al. [148, 149] used orientation dependent direct correlation functions to infer the

elastic constants of the (3, 5, 2, 1) GB model. However, the numerical complexity in-

volved in performing the exact calculation limits the versatility of this method [150].

Luckhurst et al. [125] simulated the Fréedericksz transition for the (4.4, 20, 1, 1) GB

model and extracted the elastic constant at a single state condition. The method is

difficult to control, with potential inaccuracies due to confinement induced effects on

the scalar order paramter, S. By contrast, the DOS method of Ref. [75] has excellent

agreement with previously published works, and permits accurate determination of

elastic coefficients in relatively small systems.

The DOS method requires definition of a suitable coordinate to sample deforma-

tions relevant to the Frank–Oseen free energy (see Eq. 1.1). For small deformations

applied to a system aligned in the z–direction, we choose the DOS order parameter

ξ as follows [75]:

splay : ξ := ∂nx/∂x

twist : ξ := ∂ny/∂x

bend : ξ := ∂nx/∂z

(3.14)

where nx, ny and nz are the Cartesian components of the local nematic director. In

practice, we define a DOS sampling region of finite length βLi, where Li corresponds

to the box vector along the deformation, in the plane orthogonal to that direction. An
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equally sized region spanning the periodic box edge is used to restrict orientations of

the global director, n̂ = ẑ. For example, the sampling region for splay would include

all mesogens within the region x ∈ [Lx/2(1− β), Lx/2(1 + β)] and the restriction

region would be x ∈ [0, βLx/2] ∪ [Lx(1 − 1/2β), Lx]; we take β = 0.2 in all of the

following work. To compute the appropriate gradient from Eq. 3.14, we calculate the

nematic director in the sampling region using the tensor order parameter

Q =
3

2N

[
N∑
i=1

ûiûi −
δ

3

]
, (3.15)

where N is the number of mesogens in the sampling region; for this representation

n̂ is the eigenvector associated with largest eigenvalue S, which quantifies the degree

of nematic ordering within the system. This allows us to define the splay order

parameter as

ξ =
nx
Lx/2

. (3.16)

An important distinction between our implementation and that described in

Ref. [75] is the explicit use of the local nematic director in sampling the order pa-

rameter, and the slight difference in choice of anchoring, facilitated by Monte Carlo

sampling. Our application of the restriction region involves using a penalty function

defined using the second Legendre polynomial P2(x),

Urestrict = U0P2(n̂ · d̂), (3.17)

with d̂ = (0, 0, 1), and n̂ computed over the entire restriction region. This contrasts

with the Lagrange multiplier restrictions on Qxz and Qyz implemented previously by

Refs. [123] and [75]. With the appropriate choice of anchoring coefficient U0, this

approach is equally valid.

For each GB model, we begin by selecting an appropriate pressure and correspond-
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ing density at which to measure the elastic constants. Our aim is to select conditions

with a wide nematic range over which the elastic constants may be probed. NPT

Monte Carlo simulations are carried out to equilibrate the systems. Translations,

rotations and volume scaling moves are performed with the standard Metropolis ac-

ceptance criteria [69], optimized to achieve ≈ 60% acceptance which we found to be

optimal for enhanced DOS sampling. After stabilization of ρ and S, an additional 1

million sweeps are carried out to fully relax the system. The final configurations are

used as initial conditions for restriction-free NV T simulations measuring S. These

simulations are run for 10 million MC sweeps each at different temperatures across

the nematic range after an equilibration period of 1 million MC sweeps. The nematic

order parameter thermodynamic average S is calculated from independent configu-

rations as the largest eigenvalue of Eq. 3.15.

Each DOS simulation is then carried out at constant NV T starting from a state

obtained from the output of the previous calculation, and utilize 12 independent

walkers [80]. The chosen order parameter (see Equation 3.14) is discretized into 500

bins. An equilibration period of 3×105 sweeps, during which no updating of the bias

occurs, permits equilibration of the global orientation n̂ to ẑ. After equilibration, in

accordance with Eq. 3.13, the biased acceptance rule becomes

Pacc = min (1, exp[−β∆U −∆η(ξ)]) . (3.18)

After each trial move, the estimator ln η(ξ) is updated with the final state ln η(ξ)→

ln η(ξ)+ln f where f is a convergence factor. Each walker synchronizes with the global

bias and histogram at 200 sweep intervals. This proceeds until a running histogram

H(ξ) of visited states achieves a chosen flatness, defined as min(H(ξ))/〈H(ξ)〉ξ, of

0.90, after which the histogram is reset. The initial value of f is set to 10−5 for all

systems studied, and simulations are complete when f reaches O(10−9). The average
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number of MC sweeps required to achieve convergence for the systems studied was

≈ 15× 106.
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Figure 3.2. Representative parabolic free energy profile obtained using the
DOS method described compared to a least squares fit. The bend elastic

constant (cf. Eq. 3.14) is calculated using Eq. 3.12. This measurement was
performed on the (3, 5, 2, 1) GB model at ρ∗ = 0.338 and T ∗ = 1.0.
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The resulting estimator ln η(ξ) corresponds to a high fidelity approximation of

the parabolic free energy profile βF (ξ) of the splay, bend or twist order parameter.

Figure 3.2 shows a typical parabola derived via the aforementioned method. The

elastic constant kii is then obtained by a least squares fit of the following expression,

representing the excitation of a single elastic mode,

F =
1

2
kii

(
1

1− 2β

)(
∂ni
∂xj

)2

V. (3.19)

Here kii is the elastic constant of interest, 1/(1− 2β) is a correction factor for the

finite restriction region and V is the box volume [75]. A detailed discussion of finite

region effects can be found in Ref. [75]. We use the value specified earlier, β = 0.2, to

define our restriction region. To ensure that the anchoring coefficient is sufficiently

large, we measure k33 of the (3, 5, 2, 1) GB model with a cutoff radius of 5σ0 at

T ∗ = 1.00, ρ∗ = 0.338 for increasing values of U0. Figure 3.3 shows the evolution of

k33 as a function of Monte Carlo sweep. It is apparent that the k33 value saturates

for U0 between 103 and 104, thus the latter was chosen for the remainder of the

simulations. The measured k33 is also in good agreement with the results obtained

in Ref. [75] near the smectic–nematic transition where we obtain k33 = 3.3 compared

to ≈ 3.8 at T ∗ = 1.0 and k33 ≈ 3.2 at T ∗ = 1.05 reported there. This small difference

is likely due to the use of a different cutoff radius; Ref. [75] used the larger value

rcut = 6σ, which would slightly enhance cohesive forces (and thus elastic constants)

relative to our calculation.
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Figure 3.3. Evolution of k33 over time for various anchoring strengths, U0.
The measured elastic constant stabilizes between 104 and 105 indicating

that the mesogens in the slab region are sufficiently constrained. Data was
collected for the (3, 5, 2, 1) GB model at ρ∗ = 0.338 and T ∗ = 1.0, and is in

good agreement with Ref [75].

We chose N = 338 for all measurements carried out unless otherwise stated. Joshi
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et al. [75] previously investigated finite size effects and determined that they are min-

imal for elastic constant measured in the nematic phase, which is the focus of this

study. Uncertainties in the elastic constants are obtained by computing the standard

deviation of the averaged kii over the sweeps at the final convergence factor. Inde-

pendent values are taken every 10,000 sweeps to ensure de–correlated measurements.

3.5 Results and Discussion

After verifying our methods against the (3, 5, 2, 1) GB model, we turn our

attention to four other GB models previously described: the (3, 5, 1, 2) model of

Luckhurst et al. [135], the (3, 5, 1, 3) model of Berardi et al. [126], the (4.4, 20, 1,

1) parameterization of p-terphenyl [120, 122] and the (0.345, 0.2, 1, 2) triphenylene

core discotic model [121]. Table 3.1 lists the densities and temperature ranges at

which the elastic constants were measured for each potential. All simulations were

performed using SAPHRON, [151] an open–source Monte Carlo molecular simulation

engine.

TABLE 3.1

DENSITIES AND TEMPERATURES OF GAY–BERNE MODELS

STUDIED IN THIS WORK.

GB potential ρ∗ T ∗min T ∗max Reference(s)

(3, 5, 1, 2) 0.301 1.50 2.50 Ref. [135]

(3, 5, 1, 3) 0.300 2.80 3.70 Refs. [126, 124]

(4.4, 20, 1, 1) 0.193 3.00 7.00 Ref. [122]

(0.345, 0.2, 1, 2) 2.360 2.60 5.00 Refs. [121, 128]
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The (3, 5, 1, 2) model (rcut = 5.0σ0) is studied at a density of ρ∗ = 0.301, which

is close to the previous elastic studies [75, 123, 124] of the (3, 5, 2, 1) potential.

However, this model presents a broad smectic phase which transitions into a nematic

at a much higher temperature. The volumetric phase diagram in Ref. [138] shows

the presence of smectic–A and smectic–B phases near the nematic at the density

investigated here, but at lower temperatures. Elastic constants for this model at

ρ∗ = 0.301 are presented in Figure 3.4. They appear to exhibit a linear temperature

dependence throughout the nematic phase, dropping off at the NI transition. The

measured k11 and k22 are largely indistinguishable with k33 being significantly larger

in magnitude. The k33/k11 ratio, and by extension k33/k22, narrows as S decreases,

not unlike the observed behavior for the (3, 5, 2, 1) [75] model. In fact, the general

trends between the two models are similar, though the temperature dependence of

the elastic constants in the (3, 5, 1, 2) model is more pronounced.
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Figure 3.4. Splay, bend and twist elastic constants for the (3, 5, 1, 2) GB
model at ρ∗ = 0.301 plotted alongside S. The elastic constants appear to

vary linearly with temperature in the nematic region with a more significant
drop at the NI transition, an effect which is most prominent in k33.

We proceed then to the (3, 5, 1, 3) model at ρ∗ = 0.30, which is the density

examined in Refs. [123] and [124]. Both report elastic measurements at T ∗ = 3.40

and T ∗ = 3.45 using long wavelength director fluctuations. Finite size effects were
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analyzed in Ref. [124] by carrying out measurements at two system sizes, N = 512, 000

and N = 8, 000. Using the same rcut = 5σ0, we measure the elastic constants over

a wide range of temperatures encompassing the previous measurements. Figure 3.5

compares our results to these earlier measurements [124]. Values for k11 and k22

are in excellent agreement with their results for N = 8, 000, though our reported

k33’s are measurably lower. This is perhaps unsurprising, as the bend deformation

is measured along the axis of alignment, effectively resulting in less nematogens per

unit length. The result is an increased sensitivity to finite size effects compared

to k11 and k22. Ref. [124] also notes the largest drop in k33 from N = 512, 000

to the smaller system at N = 8, 000. Nonetheless, the results are remarkable as

they highlight the strength of the free energy perturbation method. Our systems

contain only N = 338 mesogens yet are capable of accurately capturing the elastic

constants with limited impact of finite size scaling. This facilitates rapid and accurate

determination of elastic constants for a large set of conditions as demonstrated in this

work. As with Ref. [124], we make no direct comparison to the results of Ref. [123]

due to the use of a different rcut which has a non–negligible impact on the measured

elastic constants [124]. The change in ν from 2 to 3 appears to result in a slight

but noticeable separation of k11 and k22 across all studied temperatures. This is a

slight improvement in terms of expected elastic ratios for cyanobiphenyls, though not

quantitatively accurate [152]. This same model is reported to match birefringence

data for 5CB closely [126], highlighting the nontrivial relationship between key liquid

crystalline properties.

50



2.8 3.0 3.2 3.4 3.6

T ∗

0

1

2

3

4

5

6

7

8

9

10

11

k
ii
(ǫ

0
/σ

0
)

0

0.2

0.4

0.6

0.8

1

S

k11
k22
k33
k11 [54]

k22 [54]

k33 [54]

S

Figure 3.5. Measurements of the elastic constants for the (3, 5, 1, 3) GB
model at ρ∗ = 0.30 compared to reported values by Humpert and

Allen [124] for N = 8000. We see good agreement for k11 and k22 but
measure a significantly lower value for k33. The bend elastic constant is

likely to be the most sensitive to finite size effects.

The (4.4, 20, 1, 1) model is perhaps the most realistic model in common use,

having been formulated to represent p-terphenyl. Bates and Luckhurst [122] provide

51



S–T diagrams at two pressures, P ∗ = 1.0 and P ∗ = 2.0, for the (4.4, 20, 1, 1)

model (using the alternate notation 〈P2〉 for S). The P ∗ = 2.0, T ∗ = 1.40 state

corresponding to ρ∗ = 0.1932 is used as the starting condition for our investigation.

We use a cutoff rcut = 6.0σ, which differs slightly from the original study. After

NPT equilibration, the final configuration is used to obtain S and kii. Figure 3.6

shows the measured elastic constants for the model. Separation of the k11, k22 is

immediately apparent and distinct from other models. Examination of the elastic

ratios (cf. Figure 3.7) shows them to be constant across the entire nematic regime.

We compare these values to those for p–azoxyanisole (PAA) reported in de Gennes

and Prost [153] and find excellent agreement. This is a remarkable result given

that the original model was coarse–grained to represent p-terphenyl. The semi–rigid

nature and shape equivalence of PAA may be a contributing factor to the similarity

of the elastic ratios.
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Figure 3.6. Elastic constants and order parameter S for the (4.4, 20, 1, 1)
GB model at ρ∗ = 0.193. Unlike the (3, 5, 2, 1) and (3, 5, 1, 2) models, this
shows significant k11, k22 separation. Both k11 and k22 also remain nearly
constant until the onset of the NI transition with k33 roughly tracking S.

Ref. [125] also measured k22 for this model using the Fréedericksz transition

method at T ∗ = 1.65, P ∗ = 2.0 with N = 1728 mesogens, obtaining k22 = 4.7.

For comparison, we carry out the same measurement at the equivalent NV T con-

ditions with rc = 5.5σ0, but slightly reducing T ∗ to 1.62 to match their reported
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S in the Fréedericksz cell. We obtain a value of k22 = 0.70 which is substantially

lower than their reported value. Luckhurst and Satoh [125] note that that based on

data from Allen et al. [123], the elastic constants of a GB fluid should decrease with

decreasing volume fraction. Given that Ref. [123] reports k22 = 0.676 for the (3, 5, 2,

1) model, measured at a higher volume fraction, one should expect that k22 for the

(4.4, 20, 1, 1) be somewhat smaller. In contrast to the observation of Ref. [125], our

recorded value is more in line with expectations, though not strictly lower than the (3,

5, 2, 1) value. The choice of volume fraction here (0.45) is also consistent with that

studied for the κ = 3 models (0.47). Both k11 and k22 for our κ = 4.4 measurements

are equal-to or smaller than those in the κ = 3 models. However, k33 is noticeably

larger, likely due the dramatically increased anisotropy. This observation is an im-

portant one; the role of shape and potential anisotropies are not immediately clear

and result in complex behavior. We also note that the value of k22 at the conditions

in Figure 3.6 commensurate with S in Ref. [125] is larger, affirming the basic density–

elasticity relationship for the same model. It is difficult to ascertain precisely why

our measured k22 is so different from that reported in Ref. [125]. The Fréedericksz

transition is an approximate measurement [124] that involves a heterogeneous system

with boundaries. The threshold field which is related to k22 is approximated from a

series of discrete field strengths. We also note that their measurement was carried

out in the NPT ensemble while ours was in the NV T ensemble. Furthermore, a slab

must be chosen from which the director orientation is used to deduce the threshold

field.
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(a)

(b)

Figure 3.7. Ratio of elastic constants for the (4.4, 20, 1, 1) GB model in the
nematic phase compared to PAA [153]. All three ratios, (a) k33/k11, k33/k22

and (b) k22/k11 are approximately constant for the GB model. Excellent
agreement between the GB model and PAA for all three elastic ratios.

Using our computed k22 of 0.70, we calculate the unscaled twist elastic constant to

be 5.6×10−12 N for PAA which compares favorably to the actual value of 4.3×10−12 N

[125]. This, in addition to excellent matching of the elastic ratios, shows that in fact

the (4.4, 20, 1, 1) GB model may well be an exceptional uniaxial coarse–grained model
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both in phase and elastic behavior of a real LC mesogen—an objective of the original

development. In contrast, the (3, 5, 2, 1) model was not explicitly parameterized to a

real molecule, but rather chosen to be the minimum shape anisotropy that exhibited

liquid crystalline behavior [122].

Finally, we also examine the discotic (0.345, 0.2, 1, 2) model [121], parameterized

initially for a triphenylene core. The model has been shown the exhibit isotropic,

nematic and hexagonal columnar phases [154, 128], a sequence of phases which

has been observed in experiment for some benzoate esters of triphenylene [155]. A

systematic variation of the shape and potential aniosotropy of the original potential

also showed energy induced orthorhombic phases [154]. Here we set the softness of

the GB potential, dw, to 0.345, corresponding to the GBDII classification [156], with

rcut = 1.6σ0. Cienega-Cacerez et al [128] studied the phase behavior of this model

in great detail, and we carried out an initial NPT simulation to match the system

density at P ∗ = 30, T ∗ = 2.70, in the discotic–nematic phase. Measurements of the

elastic constants are shown in Figure 3.8.
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Figure 3.8. Elastic constants and order parameter S for the (0.345, 0.2, 1,
2) GB model at ρ∗ = 2.360. k33 is smaller than k11, k22 which is in line with

expectations for the discotic–nematic phase.

The most striking feature of the measured elastic constants is that bend defor-

mations become the cheapest elastically, in stark contrast to the prolate GB models.

This agrees with predictions which state that k11 ≈ k22 > k33 [157]. Theoretical

predictions for perfectly ordered plate–like molecules show k33 < k22 and k22 > k11
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but only marginally so [158] depending on the ratio of S and the fourth-rank scalar

order parameter 〈P4〉. Our measurements do not definitively counter this, and are

generally consistent with the model predictions. A more complex relationship ex-

ists between the elastic constants for real discotics. Benzene and naphthalene-based

discotics typically have k11/k33 > 1 [159]. This can also be the case for truxene deriva-

tives though depending on the location of the nematic phase relative to the columnar

phases, the ratio may be inverted [159, 160]. Additional k11, k33 measurements for

a homologous series of non–polar nematic discotics show a decrease in k11/k33 with

increasing temperature or increasing alkyl chain length [161]. We also see a similar

trend in the temperature dependence of the elastic constant ratio for the (0.345, 0.2,

1, 2). Although the temperature dependence of splay and bend elastic constants of

the discotic–nematic have not been widely studied, a recent report measuring them

for a pentalkynylbenzene derivative shows similar mild convexity in k33 temperature

dependence [162].

Of particular interest is how well the model reproduces the elastic properties of

triphenylene based discotics since the original model was developed to represent a

triphenylene core [121]. The elastic properties of two triphenylene derivatives were

characterized by Phillips and co-workers [163] who observed a rather high value for

k11/k33 (> 3) in both cases. Intriguingly, for those systems the temperature depen-

dence is unusual with the anisotropy increasing as the nematic–isotropic temperature

is approached. They attribute this behavior to short range columnar order and an-

tiparallel dipole correlations. The (0.345, 0.2, 1, 2) model may require explicit inclu-

sion of dipolar behavior [164] or distributed point charges to capture such behavior.

However, it appears to do a good job of representing nonpolar discotic nematic liquid

crystals.
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Figure 3.9. Elastic constants scaling with S for (a) (3, 5, 1, 2) (b) (3, 5, 1,
3) (c) (4.4, 20, 1, 1) and (d) (0.345, 0.2, 1, 2) Gay–Berne models. Mean field
theory predicts kii ∝ S2. There is markedly different behavior for each GB
model, but a general lack of agreement with theory. Similar observations
have been made for other GB models and in experimental LC systems.
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For each of these models, we also examine the S dependence of the elastic con-

stants. Maier–Saupe mean field theory predicts kii ∝ S2 [19, 165], though both

simulation [123] and experiment [162] have also observed otherwise. In the previous

free-energy perturbation study of the (3, 5, 2, 1) model [75], the elastic constants for

values of S between 0.6 and 0.75 were found to satisfy this dependence. In Figure 3.9

we plot kii/S
2 vs S for all four models studied. The (3, 5, 1, 2) model shows fairly

constant values for k11 and k22 with a slight increase as TNI is approached. This

is consistent with what Allen et al. [123] observed for the (3, 5, 2, 1), which is an

increasing kii/S
2 ratio with decreasing S. The trend for the bend elastic constant

is more pronounced with a drop after the smectic–nematic transition and a subse-

quent increase as the nematic–isotropic transition is approached. Results are quite

prominent for the (3, 5, 1, 3) GB model where kii/S
2 for all three elastic constants

experiences a dramatic drop after the smectic–nematic transition, after which obeys

mean field theory until the onset of the isotropic–nematic transition.

An opposite trend is found for GB(4.4, 20, 1, 1); kii/S
2 decreases linearly with

increasing S. It is clear from our observations that there is significant deviation

from mean field theory, changing substantially with not just shape anisotropy, but

with interaction anisotropy as well, as the differences between the (3, 5, 1, ν) models

demonstrate. Finally, the (0.345, 0.2, 1, 2) discotic GB potential conforms well to

mean field theory within the nematic range, S ≈ 0.55 to S ≈ 0.75. Crossing through

the nematic–isotropic transition however, kii/S
2 increases substantially. In fact, this

is noticeable for all the models studied, with the exception of k33 for the (3, 5, 1, 3)

potential. It is perhaps unsurprising as the mean field prediction is only valid within

the nematic region.
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3.6 Conclusion

The elastic constants of four Gay–Berne models, including one discotic system,

are measured using density–of–states simulations. We find that for the (3, 5, 1, ν)

model, k22 . k11 < k33. Splitting of the k11, k22 elastic constants occurs for the (4.4,

20, 1, 1) model which offers a much more realistic picture of the elastic constants

to a real mesogen. Comparison of the elastic constant ratios to PAA [153] yields

surprisingly good agreement. Direct mapping of a single k22 value to PAA is also

within 30% of the experimental value. The (4.4, 20, 1, 1) model proves to be not

only a good model in terms of phase behavior, but also in representing the elastic

behavior of real liquid–crystals. For the first time, elastic constant measurements in

simulation for of a discotic liquid crystal are reported. The (0.345, 0.2, 1, 2) dis-

cotic model shows unusual k33 temperature dependence, with k11 ≈ k22 > k33. The

elastic constant ratios are commensurate with theoretical [158, 157] and experimen-

tal [160, 161] observations. The interesting temperature dependence is not unlike

recent experimental results for room temperature discotic liquid crystals [162].

A comparison of the elastic constants for the (3, 5, 1, 3) model measured in

this work using small systems (N = 338) to published values [124] for large (N =

8× 104, 5.12× 105) systems shows excellent agreement for k11 and k22, given the dis-

parity in system sizes. The deviation in k33 is attributed to enhanced finite size effects

along the long axis of the nematogens. Nevertheless, this free energy perturbation

technique proves to be an accurate and powerful tool in efficiently measuring elastic

constants in simulation using small to moderate system sizes. Our results provide a

systematic look into the elastic properties of common Gay–Berne mesogens, which is

a cornerstone of any successful quantitative coarse–graining of real liquid crystalline

media. In particular, we note that two common models capture very well the elastic

ratios and the temperature-dependent elasticity of real mesogens. Further, our work

on the (3, 5, 1, 2) makes possible systematic investigation of the interplay of k22
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and chiral pitch terms often incorporated into that model. Such investigations will

allow a quantitative understanding of the role of molecular interactions in determin-

ing the onset of cholesteric and blue phases. We expect DOS techniques to facilitate

the explicit accounting for elastic properties in future LC model development, yield-

ing accurate potentials that can capture complex ordering phenomena, LC–collodial

interactions and naonconfined morphologies.
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CHAPTER 4

THE EMERGENT NEMATIC PHASE IN IONIC CHROMONIC LIQUID

CRYSTALS

4.1 Introduction

Liquid crystalline (LC) materials encompass a wide array of molecular systems

and mixtures with structural properties midway between a solid and a liquid. The

nematic phase in particular, which is liquid-like, yet exhibits orientational ordering

of molecular or supramolecular structures, enables many technological applications

due to its ability to act as a dynamic, responsive polarizer for impinging light. [34]

The response of the LC is determined by a curvature elasticity for orientational or-

dering in the nematic phase, whose elastic constants determine the energetic cost of

local reorganization. [34, 153] Traditionally, applications have centered on optics, in

particular in the display industry, where LCs have been utilized to manipulate the

passage of light. [166] More recent applications utilize mesoscale ordering in liquid

crystal defects to self-assemble functional materials, [167, 25] to create artificial elas-

tomeric muscles, [168] and to detect harmful agents. [7] In each of these applications,

it is important to finely control surface interactions and elastic properties.

Liquid crystals come in two primary flavors—thermotropic LCs experience or-

dering transitions in response to changes in the temperature, while lyotropic LCs

order as a system becomes more concentrated. [153, 34] Ionic lyotropic chromonic

liquid crystals (iLCLCs) are a unique subset of LCs consisting of flat disc or blade-

like molecules that self-assemble into stacks which themselves form ordered nematic
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phases. While these phases have been known for decades, the full process of stacking

into LC phases remains mysterious, and has been the subject of considerable theoret-

ical and computational investigations discussed at length in a recent review. [169] It

is becoming apparent that the there can be significant differences in the self–assembly

process and the resulting aggregate distributions across different LCLCs. One of the

primary assumptions involved in describing said process is the isodesmic nature of

the stacking, where each additional molecule added to a stack is accompanied by

a constant free energy change. [170] However, a growing body of experimental and

computational evidence seems to indicate that this is only strictly the case in dilute

systems [169, 171]. Furthermore, recent computer simulations, where theoretical ex-

pectations can be directly validated, have required conflicting modifications [171, 172]

to isodesmic stacking models in order to explain observations. While this remains

a useful model, it is unclear as yet if isodesmic stacking remains accurate in dense

systems.

Here, we demonstrate a model for iLCLCs which captures all essential features

of the LCLC phase through a competition of charge-like long-range repulsion and

anisotropic attraction. Such a model exhibits self-limiting stacking behavior in dilute

conditions due to the buildup of electrostatic repulsion along the stacking direc-

tion. In what follows, we present the results of extensive testing in the dilute and

concentrated regimes to demonstrate that the model presents features which closely

mirror those of experimental LCLCs, including the expected stack distributions, and

near-isodesmic behavior in early formation. Further, utilizing advanced free-energy

algorithms, [75, 76, 147, 151] we calculate the elastic properties of the nematic phase

in iLCLCs and demonstrate explicitly how elastic anisotropy is intimately tied to

the stack length in dense systems. This model presents a fundamental step toward a

comprehensive understanding of microscopic structure–property relationships in ionic

lyotropic liquid crystals.

64



4.2 Computational Details

While the process of self-assembly in lyotropic chromonic liquid crystals is not ex-

plicitly known, it has been hypothesized to be isodesmic. [173, 169, 174] Chromonic

behavior arises in both ionic and non-ionic materials. One of the key features uni-

fying many chromonic materials is the presence of stiff cores containing aromatic

groups that allow for π–π stacking. The isodesmic behavior, however, should pri-

marily apply to small-N aggregates, where N is the number of molecules in a stack,

as some free-energetic mechanism must exist whereby stacking is self-limited under

sufficiently dilute conditions. If the free energy of stacking is always favorable, one

would expect large, extended aggregates to form at even the most dilute conditions,

quickly approaching the Onsager limit and resulting in nematic ordering. Kinetic

limitations could play a role, as suggested by a previous study [175] which examined

energetic barriers to stacking; such features were seen to stabilize chromonic stacks.

This is suggestive of a potential role that entropic or enthalpic repulsions can play in

the formation of the phase. Here, we build on previous works exploring self-limiting

clustering arising from interplay of short-range and long-range interactions [176] to

develop a model which captures the salient features of ionic LCLCs (iLCLCs) through

a combination of directional stacking interactions and long-range charge-like repul-

sions. Importantly, we aim to demonstrate that simply through the competition of

these two interactions, a phase arises which includes all of the salient features of

iLCLC phases.

Our model builds on the well-known Gay–Berne (GB) ellipsoidal model for dis-

cotic liquid crystals. We start with a GB pair potential [119, 20, 121] whose dimen-

sions are chosen to mimic that of a typical iLCLCs (see Fig. 4.2). The form of the

GB potential used is presented previously in Chapter 3, which overcomes numerical

difficulties often found when modeling oblate ellipsoids. The key addition we make

in this model is the inclusion of a long-ranged isotropic repulsion using the damped-
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shifted force (DSF) potential. [177] This has the effect of penalizing long stacking

through cumulative effects arising from the long-ranged repulsions. This repulsion

potential [177] has the form:

USF = qiqj

[
1

r
− 1

Rc

+

(
1

R2
c

)
(r −Rc)

]
(4.1)

where qj and qj are the nominal charges on particles i and j respectively, and Rc

represents the cutoff radius for the potential. This repulsive interaction is applied to

a virtual site placed at the center of each GB disc described above. It is intended

to describe a fast–decaying electrostatic repulsion in an aqueous dielectric medium,

without the need to explicitly account for counterions. The potential is thus seen as

a coarsening of the charge neutral chromonic stacks in which net repulsion within the

ionic chromonic stack core is enveloped in stabilizing oppositely–charged counterions.

In the process of developing our model, we also tried the Debye–Hückel potential

which mimics the screening effect of a polar solvent and saw qualitatively similar

behavior. However, DSF was used because the repulsive buildup along a stack is

more realistically represented.

4.2.1 Model optimization

Optimization of the forcefield parameters began by factoring in the molecular

requirements of chromonic mesogens. Low aspect ratios (L/D) of around 0.10 in

addition to a typical stack repeat distances of approximately 3 Åare noted as being

characteristic of LCLCs. We attempt to capture these features by setting our GB

shape and interaction anisotropies 0.2 and 0.1 respectively. In compact notation [122]

this corresponds to a (0.2, 0.1, 1, 2) GB model. The geometry is scaled to a diameter

of 16.27 Å representing a rigid triphenylene core. The cross interaction term, ε0, is

set to 0.1 kcal/mol which results in a face–face interaction of 10 kBT at 300 K.
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The choice of interaction parameters are important given the expected domi-

nance of enthalpic interactions in the self–assembly process. In the case of an ionic

chromonic this naturally corresponds to charge, where the attractive π–π interaction

between a mesogen residing at a stack end and new mesogen is penalized through ad-

ditive long range electrostatic repulsion; the gain in free energy of adding a mesogen

to a stack decreases with stack length. This is supported by the observation of par-

tial condensation of sunset yellow counterions around chromonic stacks in atomistic

simulations [22], allowing for repulsive charge accumulation in the axial direction.

In our model, we embed a virtual site with effective charge of 1.4 e− in an aqueous

medium at the center of the GB disc to mimic this effect, which also weakens the

face–face interaction to approximately 8.5 kBT . Another important added effect is

the introduction of an energy barrier to binding which will be discussed below.

The remaining parameter dw is the softness of the potential and controls the width

of the GB potential, which in turn alters the onset volume fraction of nematic order.

To illustrate this, 100 nanosecond NVT simulations containing 2048 discs are carried

out for dw values ranging from 0.1 to 0.4 at 300 K between volume fractions φV

of 0.1 and 0.4. Figure 4.1 shows a clear orientational phase transition as measured

by S, the nematic order parameter. The onset of this transition, denoted as φNI ,

is a strong function of dw as expected. As the softness increases, the width of the

attractive well in the GB potential broadens while maintaining an approximately

constant depth. This effect of tuning the nematic–isotropic transition point allows

us to choose dw = 0.4 which corresponds to φNI ≈ 0.22 - a transition volume fraction

similar to that of SSY [178, 48]. Subsequently we chose to investigate all phase

behavior and elasticity using dw = 0.4
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Figure 4.1. Nematic order parameter S as a function of volume fraction φv
at 300 K for dw = 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40. The the onset of the

nematic phase occurs earlier for larger dw due to broadening of the
attractive well. The ability to easily tune φNI allows for molecular

specificity, in this case dw = 0.4 approximating the transition volume
fraction of SSY.
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4.2.2 Potentials of mean force

The thermodynamics of aggregation are investigated by computing the free en-

ergy of stacking from a series of PMF measurements at 300 K. The order parameter

ξ was the Euclidean distance between the center of mass of N − 1 discs in a stack

and an additional disc N . Stacks containing N discs are pre–assembled and al-

lowed to equilibrate, after which the PMF measurement begins by sampling along

ξ. A flatness target of 0.9 is chosen and the final converged free energy profiles βF

are adjusted for the increasing volume of configurational space by adding the term

2kBT log(r/r0) [179].

4.2.3 System preparation

Initial NPT simulations are carried out to compress the GB systems close to the

desired densities. Snapshots are then scaled to the target densities and equilibrated

for 5 nanoseconds under NVT conditions. Subsequent 50 nanosecond production runs

are used to collect statistics. OpenMD 2.4 [180] was used for all unbiased molecular

dynamics simulations while advanced sampling using expanded ensemble density of

states (ExeDOS) [72] was carried out using Monte Carlo software SAPHRON. [151]

Boxes in all simulations were fully periodic.
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Figure 4.2. Approximate diameters of SSY and DSCG chromonic liquid
crystals used to develop the Gay–Berne coarse grained model. The

potential shown represents the effective interaction between two 16.27 Å
diameter discs in face–face and side–side orientations.

After initial simulations are performed to calculate the nematic ordering tensor

~Q and scalar order parameter S associated with a given concentration, expanded
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ensemble biased simulations are performed to extract elastic constants as described in

Chapter 3. We have included a detailed explanation of our methods in the supporting

information. Briefly, the simulation box is divided into four regions. In the “edge”

region straddling a periodic boundary, an umbrella-like bias is applied to the largest

eigenvector of the ~Q-tensor, corresponding to n̂, so that it aligns with the ẑ-axis.

In the central region, statistics are gathered on the orientation of the eigenvector

~n in order to influence the system to comprehensively sample configurations with

small deviations from the fixed edge orientations. Within the remaining two regions,

between the edge and center, no bias is applied. This permits a linear-like deformation

to be established, which can select out a single elastic deformation—bend, twist, or

splay. The resulting parabolic free energy profile is used to obtain the elastic constant

of interest by fitting the expression for free energy density

f =
1

2
kii

(
1

1− 2β

)(
∂nj
∂xj′

)2

, (4.2)

where kii defines the elastic mode of interest, and j nd j′ define the deformation in

terms of the vector component biased, and direction along which the bias is applied.

Note that the parameter β within this equation is determined by the fraction of the

box occupied by the restriction region as in prior works. [76, 147]

4.3 Results and Discussion

4.3.1 Phase behavior

We initially demonstrate that this model exhibits a nematic–isotropic (NI) transi-

tion consistent with chromonic stacking. Figure 4.1 shows how the potential ‘softness’

dw plays a key role in determining the location of the phase transition. After perform-

ing some exploratory simulations, we settle on the parameter dw = 0.4, which induces

a transition at volume fraction φNI ≈ 0.22, similar to experimental observations of
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SSY. [178, 48] Subsequently we examine only this model.

The low computational cost of our model enables us to study stacking and phase

behavior in larger systems than previous atomistic investigations have allowed [22].

As illustrated in Figure 4.4, the first observed ordered phase is identified as a chromonic

N phase wherein a nematic array of columns is formed with no positional ordering.

The nematic order parameter S is approximately 0.8 at 300 K - much larger than

the typical degree of alignment for a typical nematogen. [181, 152] However, we find

that this is commensurate with the reported value for SSY (≈ 0.75) at the same

temperature. [178] Densification of the chromonic N phase gives rise to an M phase,

distinguished by hexagonal alignment of the column array. The richness of the phase

behavior exhibited and by this simple model indicates that the salient molecular char-

acteristics necessary for chromonic behavior have been well represented. Stacking

defects are also prevalent throughout the N and M phases, predominantly as lateral

shifts of mesogens within individual columns. This is particularly interesting as such

lateral shifts, referred to as a “C” or junction defects, have been proposed as a mech-

anism to explain a discrepancy between the length of SSY chromonic aggregates and

Onsager model predictions [48] and the presence of an additional fluctuation mode

detected in the bend scattering geometry of DSCG. [52]

Figure 4.3 plots a phase diagram for this system in temperature T and volume

fraction φV . This is very prominent in the case of the isotropic–N transition, as shown

in Figure 4.1. The N–M transition is far more subtle, with the phase boundary

demarcated by a change from S ≈ 0.8 to S ≈ 0.9. While at 300 K, the volume-

dependence of ordering in SSY is quantitatively matched well by our model, our model

is not as sensitive to temperature as the experimental systems. [178, 48] Importantly,

no curvature is apparent in the N–M phase boundary within the temperature range

of this work.
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Figure 4.3. Phase diagram of the proposed minimal chromonic model as
identified by S, the scalar order parameter. A 441 point grid (21× 21) of

NVT simulations were carried out spanning T ∈ [280, 320] K and
φV ∈ [0.15, 0.35]. The phase boundaries are approximated by identifying
the volume fractions at either side of a discrete jump in S. Raising the

temperature has a modest impact on φNIv .
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Figure 4.4. Snapshots of LCLC system at 300 K and varying volume
fraction. At φV = 0.18 (a) the system exhibits no nematic order. Monomer
and dimer stacks are prevalent though aggregates of lengths between 3 and
5 are also clearly present. Through the NI transition (b) with φV = 0.22 we
observe an increase in stack length and a preferential alignment of longer
aggregates towards the nematic axis. The chromonic N phase (c) shows
global orientational but no positional order (S ≈ 0.8) at φV = 0.24. The

presence of column defects are apparent with circles added to select stacks
for emphasis. Hexagonal ordering in the chromonic M phase (d) is

highlighted with blue dots surrounding a central red dot with defects still
present at φV = 0.32. Though stacks are significantly larger than in less

dense phases, most do not persist across the periodic boundary and there
remains a significant distribution of monomer and dimer aggregates.
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4.3.2 Self–assembly

A striking feature of the model, demonstrated in Figure 4.4 is its tendency to self-

assemble into aggregates at low volume fractions where no nematic order is present in

the system. This is a key characteristic of LCLCs. [173, 47] At low volume fractions,

dimers dominate the assembly landscape, with fewer aggregates consisting of more

discs. As the system is densified toward φNI , there is a clear increase in mean stack

length driven by particle crowding but no substantial increase in global orientational

alignment. This is also in accordance with the expected behavior of LCLCs, [173, 47]

and a key difference with standard GB discotic models. The self limiting nature of

the stacking is apparent, as at such densities, a discotic columnar phase is observed

in GB models not containing long–range repulsion. [156, 128]

Self-assembly within this model is distinct from prior coarse-grained works, in-

cluding models based on rigid arrangements of Lennard-Jones spheres, [170] which

exhibited wormlike micellar (rather than columnar) phases at high concentration, and

models of sticky–ended cylinders, which form a nematic phase of linear semi–flexible

chains. [182] Each of these models exhibits a deep attraction minimum, but does

not include additional repulsive barriers which will arise in the assembly of iLCLCs

of interest here. This repulsive barrier necessarily plays a key role the kinetics of

stacks, and size limiting of aggregates. It should be noted, however, that even non–

ionic LCLCs exhibit repulsions, due (e.g.) to a loss of chain entropy, which serve to

penalize the formation of longer stacks. [183] Even with this barrier, stacks within

our model are dynamic. Though the average stack distribution in the system is well

defined, each individual aggregate is formed and reformed by the transient joining

and leaving of individual discs. A prior atomistic molecular study of SSY [22] showed

similar behavior where the correlation time of molecular orientation corresponding to

the memory of stack arrangement was shown to be on the order of 10 nanoseconds.
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Figure 4.5. A detailed look at the distribution of stack lengths throughout
the system shows (a) an exponential–like distribution across volume

fractions immediately before, near and after φNIv at a fixed temperature of
300 K. This seems to agree with proposed isodesmic stacking

models. [169, 48] This exponential gives way to a bimodal distribution with
a small preference for moderate stack lengths N ≈ 5 approaching the M
phase. Mean stack lengths as a function of volume fraction φv at various

temperatures (b) show increased growth of mean stack length when passing
through the I–N transition as indicated by the logarithmic axis. The equal
spacing between lines at low volume fractions demonstrates stack length

grows exponentially as temperature is lowered.

Using distance |~r1 − ~r2| and orientational thresholds (n̂1 · n̂2)2 of 7.0Å and 0.8Å

respectively between the locations ~r and orientations n̂ of two mesogens, we obtain

the probability distribution of nematic stack lengths within each studied system.

Figure 4.5 (a) highlights the distribution of aggregates containing a given number of

discs at 300 K for various volume fractions. Our distributions are distinctly exponen-

tial at low volume fractions, with a slight enhancement in aggregate size occurring
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as the system is densified toward the M phase. Our distributions contrast notably

with prior studies of non-ionic LCLCs, [183, 171] where isodesmic behavior is appar-

ently violated by a relative lack of free mesogens in solution. Our model exhibits a

pronounced probability for free particles at all concentrations studied, even as the

exponential character of the distribution is lost approaching the M phase through an

enhancement in stacks of length N ≈ 5 relative to smaller aggregates; some temper-

ature dependence is observed in the relative distributions, as typified by the mean

stack length plotted in Figure 4.5 (b).

To examine this more deeply, we investigate the thermodynamics of aggregation

by computing the free energy of stacking from a series of PMF measurements at

300 K. Beginning with a stack of N discs, we compute the stacking free energy as a

function of the Euclidean distance rij =
√
~rN−1 − ~rN between the centers of mass of

N − 1 discs and the N th disc; this is given in Figure 4.6.

The free energy of dimer and trimer formation are approximately equal at 6 kBT ,

which is comparable to the experimentally measured and simulated values of 7 kBT for

DSCG and SSY, [184, 22] though it contrasts with the stacking free energies obtained

from atomistic simulations of non-ionic TP6EO2M, which are significantly higher,

depending on the forcefield. [183] These differences are not of particular concern as

stacking energies for chromonic LCs are known to vary within the range of 7 to 12

kBT . [184] Ref. 183 points out that the stacking free energy is roughly proportional

to the size of the aromatic core, and given our choice of molecular dimensions and

interaction well depth our result fits in nicely within this trend of reported stacking

free energies; our discogens expose less cross sectional surface area compared to the

simulated non-ionic LCLCs (cf. Fig. 4.2) hence the lower stacking free energy.
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(a) (b)

Figure 4.6. Free energy of stacking (a) obtained through PMF
measurements for N = 2–8 stacks at 300 K as a function of center of mass
distance between a stack and new disc (b). Dimer and trimer free energies
are approximately equal and show no barrier to association. Larger stacks

both exhibit an energetic and entropic penalty (∝ 2 log(rij)) for the
addition of a new disc to an existing stack.

Importantly, beginning with N = 4, we observe a marked decrease in the free

energy of stacking. Concomitantly, a small energy barrier to binding begins to appear,

peaking at N = 6. These striking features offers some partial validation of isodesmic

stacking in the dilute limit as has often been argued, [169] and helps explain the

large proportion of small aggregates in solution at all densities (cf. Fig. 4.5(a)). Both

the decrease in free energy and the barrier arise from interplay between short and

long-ranged interactions in the stack. As with the proposed two–dimensional corona

model, [175] this energetic barrier increases the penalty to de–stacking despite the

shallower well, effectively mimicking the on-off kinetics of shorter stacks. The result

is an appearance of quasi–isodesmic stacking manifest in the stack size distribution

(see Figure 4.5(a)). In the large stack limit however, the net free energy of binding
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decreases in such a way that the effective energy scale is commensurate with thermal

fluctuations and prevents further aggregation.

It is important to note that the PMF measurements in Figure 4.6 were carried out

under dilute conditions. Consequently, it does not represent the environment in which

the N and M phases occur, which can exhibit substantial crowding. Undoubtedly,

the entropic cost to de–stacking will play a larger role in the resulting PMF, which

would lead to larger equilibrium stack lengths, as witnessed. However, the mechanism

elucidated by the PMF measurements at low concentrations is vital in understanding

the self–limiting behavior of chromonic stacking. In a two–rate model, [171, 169]

there would effectively be nothing to prevent the precipitation of long stacks from

solution, even in dilute conditions. Our results point to a systematic decrease in

binding energy with thermal fluctuations playing an increasingly important role in

limiting the stack sizes and thus controlling the onset of the nematic phase.

Figure 4.5(b) shows the mean stack length as a function of volume fraction for

various temperatures. As expected, the mean stack length at low volume fractions

in the isotropic phase is insensitive to temperature. At higher volume fractions, an

increase in enthalpic interactions leads to a greater temperature-dependent effect as

witnessed. This is unlikely to be due solely to increased orientational ordering alone

due to the weak temperature dependence of the order parameter. In fact, the data

in Fig. 4.5(b) is remarkable in two ways. First, the rate at which the mean stack

length grows displays a sharp change at the respective NI transition points for the

each temperatures. Second, and perhaps more interesting, is that the rate of growth

in the ordered phase is exponential. This enormous rate of growth has been observed

previously in a highly idealized LCLC model. [170] What is peculiar here is that this

growth rate is belied by the fact that the mean stack size is limited by the finite size

of the box, yet there appear to be no signs of slow–down even in the very dense case.

Such behavior hints at an intrinsic underlying thermodynamic equilibrium governing
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the stack size distribution.

To rule out the role of system size on the equilibrium stack distribution we perform

two additional simulations containing fewer (N = 1024) and greater (N = 4096) num-

ber of particles. Figure4.7 shows a near–identical mean stack length across the entire

range of volume fractions for the system sizes studied, which signifies approaching the

thermodynamic limit. It is also an important result for the purpose of characterizing

the elastic properties. Given the prominent elastic anisotropy observed in real–world

LCLCs, in particular with both DSCG [52] and SSY [53], the equilibrium aspect ratio

of the stacks will likely play a key role in determining kii/k22.
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Figure 4.7. Mean stack length as a function of volume fraction φv for three
different system sizes at 300 K. Near–perfect agreement suggests that by
N = 1024 there are little finite size effects involved in the equilibrium stack

distribution.

81



4.3.3 Elastic properties

One of the most prominent features of chromonic liquid crystals is the dramatic

elastic anisotropy present in systems that have been experimentally studied. In par-

ticular, both SSY [53] and DSCG [52] have k11 ≈ k33 >> k22 where k22 is approx-

imately an order of magnitude smaller than k11 and k33. A common theoretical

reasoning for this odd relationship is that twist deformations result in minimal dis-

ruption of flexible stacks by arranging aggregates into layers [52, 55]. The flexibility

of the stacks allows their deformation to accommodate their bending, while splay de-

formations necessarily create vacancies between existing stacks requiring new stacks

to intercalate; each of these modes comes at significant free-energetic cost.

Our work represents the first attempt at characterizing the elastic properties of a

model chromonic liquid crystal system. Figure 4.8 shows the measured Frank elastic

constants for the model in the chromonic N phase at 300 K. Obvious is the lack

of significant anisotropy in k22, although it is smaller than splay and bend. A plot

of the elastic ratios (see Fig. 4.9) demonstrates this further, with kii/k22 increasing

at higher concentrations, but never exceeding 1.3. Furthermore, k33/k11 remains

approximately constant though this is clearly not the case in SSY [53] and DSCG. [52]

The absolute magnitudes of the elastic constants we calculate are reasonable and

within experimental bounds.
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Figure 4.8. Frank elastic constants of our chromonic minimal model (open
symbols) in the N phase at 300 K compared to the theory of Meyer et

al. [55] for long polymer chains (solid lines). The twist (k22) elastic
constant of our is lower than splay and bend, but not to the degree seen in
experiment for DSCG [52] and SSY. [53] There is qualitative agreement in
the general trend predicted via Meyer’s theory, with k33 ' k11 > k22. Note
that the data for S here comes directly from elastic simulations and thus

differs marginally with that in Figure 4.1, though the values are consistent
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Figure 4.9. Elastic ratios for our model showing significantly less elastic
anisotropy than observed experimentally. k11/k33 is also nearly flat across

concentrations which is unexpected.

The semi-flexible chain theory due to Meyer and co-workers [55] is the prevailing

theory utilized to describe the elastic behavior of LCLCs. [53, 52] Comparing our

measured elastic constants to those predicted, as shown in Figure 4.8, demonstrates

qualitative agreement in the concentration dependent trends, but not the absolute
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values or ratios. This is not surprising as the limitations of this theory in the context

of LCLCs have been discussed at length elsewhere. [52] Nonetheless, our results run

counter to expectations for a chromonic system. We may draw on similar geometric

arguments to those stated previously and propose a new hypothesis for our results,

which could help elucidate the behavior of LCLCs in the limit of smaller aggregates.

The system in question exhibits a large distribution of small aggregates across a

broad concentration range. This results in a significant proportion of stacks hav-

ing sufficiently large L/D aspect ratios such that they can be treated as individual

calamitic-like mesogens. Then, our system can be thought of as a mixture of said

nematogens and discotic LCs. Comparing to extensive prior elastic measurements

of Gay–Berne models, [147] k22 < k11 . k33 is seen in calamitic systems. However,

k33 is also typically much larger in those systems than what we observe here. For

discotic systems of similar aspect ratio however, k33 < k22 ≈ k11. As the chromonic

system is necessarily a mixture of these two regimes, a system exhibiting ideal mixing

properties [151] should admit elastic properties which are similar to those seen here.

This does not, however, necessarily violate the theory of Meyer, [55] as sufficiently

long stacks may be well-approximated by the semi-flexible chain. Therefore, we hy-

pothesize that there is an enthalpically driven crossover between the mixture-like

behavior observed in our model to semi-flexible chain behavior when longer stacks

may be achieved in dilute solution.

It is interesting to put this model in the context of recent experimental mea-

surements by Nayani and co-workers, [185] who observed interesting behavior in the

scalar order parameter and in the elastic constants of SSY solutions just below the

nematic transition. Importantly, below the NI transition temperature appropriate for

each concentration of SSY, universality is observed in measurements of the nematic

order parameter S (P2 in Ref. 185), and the higher moment P4. We also observe

universality in P2 as illustrated in Figure 4.10, which further supports the validity of
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our model. Interestingly, in that paper it is claimed that adoption of particular con-

figurations by LCLC tactoids is driven by the relative scaling of splay with aggregate

length L rather than persistence length λp, as outlined by Meyer. For our model, all

three elastic constants grow as the length of aggregates grows, which would appear

to disagree with these results. It is important to note that aggregates must be larger

than the persistence length for the predictions of Meyer to hold, a limit which is not

reached by the aggregates in our model. The persistence length of aggregates in our

model may be calculated from the correlation function n̂i · n̂j correlation function

along the axial direction of each stack in the chromonic N phase (φv ≈ 0.25). As an

illustrative example, at 300K such a calculation yields a value of 12.06 which well

exceeds the mean stack length at those conditions (cf. Fig. 4.5).
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Figure 4.10. Nematic order parameter as a function of scaled temperature
for various volume fractions at 300K illustrates universality in P2. This is
consistent with observations in Ref. 185. Due to finite size effects, P2 does

not equal zero in the isotropic regime.
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4.4 Conclusion

We present a minimal model capturing the salient features of ionic chromonic

liquid crystals. The interaction potential involves an anisotropic short range attrac-

tion and long range isotropic repulsion, which produces complex thermodynamic be-

havior consistent with experiments on lyotropic chromonic liquid crystals, including

self–assembly at low concentrations into self–limiting stacks, isodesmic aggregation

in dilute conditions and both chromonic N and M phases. Our model is capable of

demonstrating the stacking defects in the chromonic phase which have been theo-

rized to be present in real systems. This is particularly powerful given the simplicity

of the proposed model. Importantly, we have shown the stack-size distribution to

be broadly consistent with assumptions underlying many experiments, predicting a

significant number of free mesogens exist within each phase, even at high densities.

Our work represents an important advancement in understanding the precise

molecular requirements which give rise to chromonic phases. Importantly, through

application of advanced free-energy sampling algorithms to obtain stacking free en-

ergies and elastic constants, our work has shown microscopically how a system can

be both self-limiting and approximately isodesmic. The interplay of attractive forces,

charge repulsion, and entropy implores further study and refinement of this model,

particularly the inclusion of counterion models. We additionally have demonstrated

how anisotropy of elastic constants begins to arise as stack length increases, present-

ing a base-line measurement for LCLCs which are dominated by small aggregates. As

stack length is seen to be system-size agnostic, this is clearly a feature of the assem-

bly properties of each mesogen and solvent conditions. Building on our basic model

through tuning of these interactions, future work will fully unravel the molecular

processes influencing stack structure and elasticity, enabling quantitative prediction

of the response and phase behavior of LCLCs.
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CHAPTER 5

IN SILICO MEASUREMENT OF ELASTIC MODULI OF NEMATIC LIQUID

CRYSTALS

5.1 Introduction

Though liquid crystals[32] (LCs) have long been central components of display

technologies,[102] their optically responsive and highly controllable nature has lead

to a host of emerging applications in nanoscale and colloidal templating,[186] or-

ganic electronics,[187] biosensing [188, 3], compact lenses,[168] and switchable diffrac-

tion gratings.[189] These applications rely on their ordering elasticity, which through

competition with applied fields and surface interactions can lead to topological de-

fects whose nature and structure is governed by a precise interplay.[41, 43, 190] The

balance between these different contributions to the free energy is apparent in the

morphologies adopted by confined liquid crystals,[114, 8, 191] where it is possible

to manipulate different variables to develop exquisitely sensitive systems for sensing

applications;[7, 3] a properly chosen liquid crystal can in fact be balanced on a knife’s

edge, ready for a vanishingly small concentration of analyte to induce a mesoscopic

transformation, visible under standard crossed-polarizer optics. Precision engineer-

ing of such new devices requires an in-depth understanding of the elastic behavior of

the underlying liquid crystalline phases.

Here, we demonstrate that it is possible to rely on detailed molecular simulations

to predict the elastic moduli of nematic liquid crystals. By extending methods that

rely on real-space free-energy perturbations[75, 151] to utilize an accurate atomistic

89



force field,[192] we are able to characterize the elastic coefficients and their tempera-

ture dependence, including the elusive k24. Our results lead to values consistent with

Ericksen’s bounds and in agreement with a subset of the experimental literature,

implying that previously observed morphological instabilities in confined 5CB[35, 36]

could have been due to inappropriate ansätze, surface effects or higher-order elastic

moduli.

For the common case of apolar, achiral, and uniaxial nematic liquid crystals, the

phase may be described by a local orientation vector n̂. In the absence of boundaries

and external fields, this is a global vector. The local order, however, can be perturbed,

leading to small distortions that incur a free energy penalty and a corresponding

elastic restoring force. To order (∇n̂)2, the elastic free energy can be written as[32]

f =
1

2
k11 (∇ · n̂)2 +

1

2
k22 (n̂ · ∇ × n̂)2 +

1

2
k33 (n̂×∇× n̂)2

+
1

2
(k22 + k24)

[
Tr (∇n̂)2 − (∇ · n̂)2] . (5.1)

This expression contains the three most commonly used terms and their corre-

sponding coefficients, or elastic moduli: splay (k11), twist (k22) and bend (k33). The

additional, divergence-like term (∝ k22 + k24) is referred to as “saddle-splay”. It

penalizes bidirectional deformations, and can be defined so that the free energy is

positive definite to quadratic order for all deformations as outlined by Ericksen.[39]

An illustration of these elastic modes is presented in Figure 5.1. While originating

from bulk interactions,[40] the saddle-splay may be transformed into a surface-like

term in a global free energy integral by invoking Gauss’s Law. For that reason, it

has generally been overlooked in elastic studies,[32, 193] and it is only recently that

studies of confined nematic LCs have unearthed its relevance. It likely contributes

far more than initially believed, to the point where under some conditions it is sug-

gested to lie outside the Ericksen bounds,[35, 37] a feature that hints at an incom-

plete understanding of elasticity within the framework of a Frank–Oseen description.
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One implication of this is a spontaneous twisting of toroidal[36] or cylindrical[75]

geometries, as depicted in Figs. 5.1 (d,e). It should be noted that for k24, all pub-

lished measurements have been indirect, and have relied either on elastic instability

thresholds in various geometries or a fit to a continuum model that matches polarized

microscope measurements.[41–43, 36, 37] This has lead to disagreements in the values

of k24 reported in the literature.

It should be noted that the questions that surround elastic deformations go be-

yond k24. Published values of kii reported in the literature are often in conflict,

even for some of the most commonly studied nematic materials, such as 5CB.[194,

152, 195] Reported values were historically measured using the Fréederickz transition

technique,[196] where elastic properties may be extracted from an instability thresh-

old triggered by competitions between field-induced and surface-induced ordering.

Such measurements may be coupled to optical measurements of the director distri-

bution in order to determine both elastic ratios and the magnitudes of individual

modes.[152] Direct torsional measurements have also been reported for k22,[194] and

optical methods have been utilized for other elastic terms.[195] Importantly, for the

particular case of k24, all published measurements have been indirect, and have relied

either on elastic instability thresholds in various geometries or a fit to a continuum

model that matches polarized microscope measurements.[41–43, 36, 37] This has lead

to wide disagreement for the values of k24 in the literature.
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Figure 5.1. Top row shows idealized bulk elastic modes (a) splay (b) twist
and (c) bend, which can be directly probed in experiment. Bottom row

shows the 5CB molecule (d) and cylindrical twist deformations, which rely
on the saddle-splay elastic constant k24, in stable (e) and unstable (f)

configurations under conditions of degenerate planar anchoring
representative of the commonly studied 5CB–water interface. Saddle-splay

is not directly measurable through experiment but can be inferred
indirectly. The positive-definiteness of the elastic free energy expressed
through the Ericksen bound k22 − k24 ≥ 0 is thought to be violated for

5CB, though experiments are not conclusive.

The goal of this chapter is to present a direct method for calculation of the elas-

tic moduli of nematic materials from molecular simulations of atomistically detailed
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models, where predictions can be directly compared to experimental measurements.

In such systems, the average orientation n̂ and degree of nematic alignment S are

known and, as shown in this work, one can apply nanoscopic deformations to the

material in order to excite distinct modes with extraordinary precision, thereby lead-

ing to direct, unambiguous characterization of all elastic moduli, including k24. We

hasten to note that past efforts to determine elastic coefficients of liquid crystals

have focused on coarse-grained models.[62, 20] Certain features underlying liquid

crystalline ordering,[197–199] however, are inaccessible without molecular specificity,

and thus a set of experimentally-tuned atomistic force fields have been developed

for in particular for the widely studied cyanobiphenyls,[192] as well as more general

systems.[200] With such force fields, it has been possible to describe liquid crystal or-

dering with an extraordinary degree of precision, as revealed by comparison to x-ray

reflectivity[199, 198] and NMR data [201], and by studies of the molecular structure

within nematic disclinations.[197]

Building on the pioneering work of Cleaver and Allen,[77] several methods have

been proposed to calculate the elastic constants of coarse-grained LC systems from

molecular simulations. As useful as they have been, past methods have been ham-

pered by limited accuracy, numerical complexity, or significant finite-size effects.[77,

148, 124] These limitations have prevented applications to atomistic systems without

invoking theoretical assumptions that limit the reliability of the calculations. Indeed,

in one of the few studies that considered a bulk model of 5CB, elastic constants were

obtained using three different approaches, leading to significantly different elastic

coefficients.[202] Though one set of predictions was found to be in good agreement

with experimental measurements, it was regarded as “fortuitous” by the authors

due to the crudeness of the underlying assumptions.[202] Another notable effort uti-

lized a hybrid molecular field theory [203] to account for molecular flexibility from

structures predicted by density functional theory (DFT) and geometry optimizations.

93



Good agreement with experiment was reported for the kii elastic constants of sev-

eral 4-n-alkyl-4’-cyanobiphenyls (nCBs) and para–azoxyanisole. Unfortunately, that

method cannot capture all molecular conformations and, in particular, the mutual

arrangements that nearby molecules adopt in response to bi-directional deformations,

which are essential to capturing k24.

Recently, we proposed a new method [75] in which orientational perturbations and

free energy sampling techniques are coupled to obtain elastic constants by exciting

distinct modes within the Frank free energy formulation (Eqn. 5.1). The proposed

method was shown to exhibit minimal sensitivity to finite size effects [75, 151], and

was successfully applied to a broad range of Gay–Berne ellipsoids [151] and Lebwohl–

Lasher lattice models.[76, 147] Here, we demonstrate the ability to directly predict in

silico the elastic constants of an atomistic model of 5CB. This molecule is amongst

the most widely studied and well characterized LCs. Despite its individual asym-

metry, 5CB behaves largely as a uniaxial nematic. For the following investigations,

we employ the force field of Tiberio and coworkers,[192] which has been validated

against experimental data in a variety of situations.[199, 198, 201, 197] From our

elastic measurements, we aim to gain additional insight into the relationship be-

tween molecular geometry and elasticity. More generally, we outline a computational

methodology that in the future may be used for reliable screening of the elasticity of

liquid crystalline materials for specific applications.

5.2 Computational Methods

5.2.1 Simulation details

All 5CB molecules were represented using the united atom forcefield parame-

terized by Tiberio et al. [192] to match experimental densities and nematic transi-

tion temperature. The model represents each non-hydrogen atom in 5CB using a
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Lennard-Jones site. Partial charges are included in each atom, and torsional po-

tentials are included to impart a conformation to the molecule that was inferred

from electronic structure calculations. For raw parameters and a discussion of the

methods utilized to obtain the forcefield, readers are referred there. To assist read-

ers in reproducing the results within this paper, we have posted all Gromacs run-

files, topologies, and forcefields, in addition to the SSAGES advanced sampling input

files and Python scripts used to generate all runs in a free online repository located

at https://github.com/hsidky/atomistic_elastics. Further descriptions of the

simulation protocols followed here are below.

Systems containing 400 5CB molecules are prepared for bulk elastic measurement

by running 400 nanosecond NPT simulations at 1 atm in GROMACS [204] 5.1.3

from the reported transition temperatures [192] to TNI − 20. A Langevin thermostat

and Parrinello-Rahman barostat with τp = 5 picoseconds were used with a time step

of 2 femtoseconds for all simulations. The final average volumes at the respective

temperatures are used to initiate a second set of NVT simulations with edge restric-

tions applied using a harmonic restraint with k = 105 kJ/mol in order to align the

molecules along the ẑ axis. Four replicas of each point with different seeds are used

to generate de-correlated trajectories for later use. Parabolic free energy profiles re-

sulting from Basis Function Sampling are used to extract the desired elastic constant

as f = 1
2
γkiiξ

2, where γ is a geometric factor accounting for the finite restriction

region.

The free energy perturbation approach requires an order parameter, ξ, to select

for deformations that excite a particular elastic mode. We take ξ to be ∂nx/∂x for

splay, ∂ny/∂x for twist, and ∂nx/∂z for bend in a system that is constrained to orient

along the ẑ axis at the periodic boundary. The director at the center of the box is

then tilted using a bias applied to the chosen order parameter to produce chevron-like

patters, resulting in a uniform- magnitude gradient between the restriction and bias
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regions. Figures 5.2 (a)–(c) illustrate this approach in practice. A stiff harmonic

potential is used to maintain alignment to the ẑ direction at the periodic boundaries

of the box. A second region in the box center is actively biased along a chosen

deformation ξ using an adaptive sampling method. Here we choose basis function

sampling [76] (BFS), which is constructed in way such that material properties are

easily extracted from the converged parabolic simulation bias. A similar approach is

adopted for k24 by imposing a cylindrical geometry with degenerate planar anchoring

and selecting ξ as ∂nθ/∂r.[75]

For k24 measurements, we generate an initial cylinder containing 1600 5CB molecules

using Packmol [205] with a diameter of approximately 12 nm and a height of 8.5 nm.

Degenerate planar anchoring is also necessary to avoid spontaneous twist. This is ac-

complished by submerging the cylinder in water, as the 5CB-water interface is known

to impart the requisite degenerate planar anchoring. 42,000 SPC/E water molecules

are packed surrounding the cylinder corresponding to the appropriate density at 298

K. As with the bulk elastic measurements, a range of temperatures were chosen below

the transition temperature and equilibrated for 200 ns at NPT conditions. The final

averaged volumes were used to initiate single-walker simulations probing the ∂nθ/∂r

deformation for 1 µs, utilizing 4 Nvidia 1080 Ti GPUs each.

5.2.2 Free energy perturbation

The free energy perturbation approach requires an order parameter, ξ, to select

for deformations that excite a particular elastic mode. We take ξ to be ∂nx/∂x for

splay, ∂ny/∂x for twist, and ∂nx/∂z for bend in a system that is constrained to orient

along the ẑ axis at the periodic boundary. The director at the center of the box is

then tilted using a bias applied to the chosen order parameter to produce chevron-like

patters, resulting in a uniform- magnitude gradient between the restriction and bias

regions. Figures 5.2 (a)–(c) illustrate this approach in practice. A stiff harmonic
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potential is used to maintain alignment to the ẑ direction at the periodic boundaries

of the box. A second region in the box center is actively biased along a chosen

deformation ξ using an adaptive sampling method. Here we choose basis function

sampling [76] (BFS), which is constructed in way such that material properties are

easily extracted from the converged parabolic simulation bias. A similar approach is

adopted for k24 by imposing a cylindrical geometry with degenerate planar anchoring

and selecting ξ as ∂nθ/∂r.[75]

The elastic constants are measured by implementing the order parameter in the

advanced sampling software suite, SSAGES.[206] Basis function sampling [76] is used

with N = 14 Legendre polynomials to measure the free energy of director defor-

mation over the interval [−0.5, 0.5]. Using the final de-correlated trajectories from

the previous simulations, four walkers contribute to the overall free energy estimate.

Simulations are carried out at NVT conditions for 1 µs at which point the polynomial

coefficients converge to within O(10−6). The elastic constants are computed from the

final free energy surface as previously described.

5.2.3 Liquid crystalline order parameter

For a uniaxial nematic, n̂ can be calculated as the eigenvector corresponding to the

largest eigenvalue S of the Q tensor, where S is the scalar nematic order parameter.

Using index notation, where Greek variables imply summation over the dimension,

Qαβ =
3

2N

N∑
i=1

uiαu
i
β −

1

3
δαβ. (5.2)

Here, N is the number of molecules contributing to Q and uiα is orientation vector

of molecule i and δαβ is the Kronecker delta operator. We choose to define uα as

the primary principal axis of each molecule, which is the eigenvector of the molecule

inertial tensor (I) with the highest degree of symmetry. This selection corresponds
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to the eigenvector pair to the smallest eigenvalue of I,

Iαβ =
M∑
i=1

mi(δαβx
i
γx

i
γ − xiαxiβ), (5.3)

where M is the number of atoms in a molecule and xiγ are the Cartesian coordinates

of atom i in the inertial frame. From this representation, the overall nematic director

n̂ and order parameter S are easily determined. We note that while other definitions

for the orientation vector could be used in our simulation [192], this definition has

the benefit of applying torque to the molecule as a whole rather than to specific

sites on the molecule, and thus avoids applying unphysical stretching to molecular

conformations which could affect our measurements.

Biasing on flexible molecules, rather than the rigid bodies or rotors utilized in prior

applications to coarse-grained systems [123, 75] necessitates a few important exten-

sions. This has consequences for the precise definition of the biasing order parameter

ξ and the application of bias and restriction forces. The original work [75] used a

harmonic constraint on elements of the nematic Q tensor such that Q2
xz + Q2

yz = 0,

an approach adapted from early studies by Allen et al. [123] intended to maintain

the nematic director along ẑ. However, such a restriction is unstable and may spon-

taneously split into a biaxial orientation while still satisfying the constraint [123].

Though no issues appear in standard simulations of Gay–Berne particles, molecular

systems proved in practice to be highly susceptible to this phenomenon, resulting

in insufficient orientational stability to sample the elastic free energy. Additionally,

while in previous work orientations of the nematic vector could be obtained from

averages over the molecular orientations in the regions of interest,[75] this is an ap-

proximation which requires correction after a converged surface is obtained.

Importantly, both of these compromises were introduced due to the difficulty of

applying a bias directly to n̂. Molecular Dynamics requires that an order parameter
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be differentiable with respect to the atomic coordinates enabling calculation of bias

forces via the chain rule. Here, we address these issues by biasing on n̂ directly

after obtaining it from the Q tensor [153]. Since we have connected the molecular

orientations to the Q tensor elements in the previous section, what remains is to use

this relation to connect molecular configurations to the force gradients in n̂ imposed

by the bias potential. In the context of molecular dynamics, this necessitates the

explicit gradient of n̂ with respect to the contributing atomic coordinates xi. We

begin by deriving the gradient of an eigenvector vα with respect to a symmetric

matrix Aγδ, which is applicable to both Q and I tensors. The eigenvalue problem

can be defined as follows:

Aαβv
i
β = λiviα, (5.4)

where λi,vi are the ith eigenvalue/eigenvector pair. Taking A to be some function

of x and differentiating, gives

∂Aαβ
∂xγ

viβ + Aαβ
∂viβ
∂xγ

=
∂λi

∂xγ
viα + λi

∂viα
∂xγ

. (5.5)

Recalling that the eigenvectors of a real symmetric matrix form an orthonormal

basis, viα∂xβv
i
α = 0. Taking the inner product of Equation 5.5 w.r.t. viγ reveals,

Aαβ
∂viβ
∂xγ

viα = Aαβ
∂viα
∂xγ

viβ = λi
∂viα
∂xγ

viα = 0,

which gives ∂xγλ
i = ∂xγAαβv

i
βv

i
α. Repeating the inner product with vjα, j 6= i, taking

advantage of symmetry and using Equation 5.4 gives,

∂Aαβ
∂xγ

viβv
j
α + λj

∂viβ
∂xγ

vjβ = λi
∂viα
∂xγ

vjα. (5.6)
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Rearranging gives the final expression,

∂viη
∂xγ

=
∑
j 6=i

1

λi − λj
∂Aαβ
∂xη

viβv
j
αv

j
γ. (5.7)

The gradient of Q with respect to each orientation vector is

∂Qαβ

∂uiγ
=

3

2N

(
uiαδγβ + uiβδγα

)
, (5.8)

and I with respect to the atomic coordinates is

∂Iαβ
∂xiγ

= mi
(
2xiγδαβ − xiαδβγ − xiβδαγ

)
. (5.9)

Sorting the three eigenvalues for both tensors in ascending order, j = 1, 2, 3, and

applying the chain rule to Equations 5.7 and 5.8 and 5.7 and 5.9 gives

∂n
(3)
α

∂uiβ
=(λ(3) − λ(1))−1 3

2N

(
uiγn

(1)
γ n(3)

α + uiγn
(3)
γ n(1)

α

)
n

(1)
β +

(λ(3) − λ(2))−1 3

2N

(
uiγn

(2)
γ n(3)

α + uiγn
(3)
γ n(2)

α

)
n

(2)
β

(5.10)

and

∂u
(1)
α

∂xiβ
=(λ(3) − λ(1))−1mi

(
xiγu

(3)
γ u(1)

α + xiγu
(1)
γ u(3)

α

)
u

(3)
β +

(λ(2) − λ(1))−1mi
(
xiγu

(2)
γ u(1)

α + xiγu
(1)
γ u(2)

α

)
u

(2)
β

(5.11)

respectively. Finally we define an function φ(n̂) which selects out the appropriate

deformation and represents the collective variable. For example, for the twist elastic

mode k22, φ(n̂) = nαδα2. Thus the complete gradient of φ with respect to the atomic
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coordinates becomes:

∂φ

∂xiα
=

∂φ

∂n
(3)
β

∂n
(3)
β

∂u
(1)
γ

∂u
(1)
γ

∂xiα
. (5.12)
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Figure 5.2. (a) A harmonic restraint is applied to the periodic edges of a
simulation box in order to align the molecules in the ẑ direction. (b)

Molecule orientations in the central region of the simulation box are biased
using basis function sampling [76] according to the appropriate order
parameter to excite the desired elastic mode. Shown here are arrows

representing splay deformations from the non-perturbed state. (c) Over the
course of a simulation, molecules enter and exit the respective regions.

Only those molecules which lie within the regions shown in purple (edges)
and orange (center) are biased. A gradient is produced across the box

dimension as a result of the sampling and the corresponding free energy is
calculated. The resulting bulk elastic coefficients (kii) for 5CB (d) are
compared to experimental data from Madhusudana and Pratibha [152]
(squares) and Chen and coworkers [195] (triangles). Connected circles

represent elastic constant calculations using the methodology outlined in
this work. Uncertainties are calculated using 1500 bootstrap cycles on the

collected decorrelated samples.
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5.3 Results and Discussion

We begin our studies by examining the standard bend, twist and splay elas-

tic constants of 5CB, for which multiple measurements exist in the literature. We

choose, for comparison, the results of Madhusudana and Pratibha [152] and Chen

and coworkers,[195] which represent the span of available experimental elastic mea-

surements for 5CB. After locating the nematic–isotropic transition temperature TNI ,

we proceed to measure elastic coefficients at a range of temperatures down to 15◦C

below TNI . The 5CB model in question has been parameterized to accurately repre-

sent the thermodynamics of the nematic–isotropic transition, including appropriate

densities and orientational order. Strikingly, though elastic behavior is not included

in this parameterization, the measured coefficients we obtain (see Figure 5.2 (d)) lie

directly on top of the experimental data range, intercalating the high and low esti-

mates, when plotted as a function of T − TNI . It should be noted that the actual

transition temperature predicted by this model is slightly higher (by two degrees)

than the experimental value. This is suggestive that elasticity of a molecular model

may be accurately obtained from modest thermodynamic parameterizations, and

may be controlled primarily by molecular topology and flexibility, as is presumed in

single-molecule in mean-field models.[203]

Having established the validity of the proposed method, we proceed to apply

the free energy perturbation technique to obtain k24. It is convenient to work in a

cylindrical geometry to isolate the normal twist mode,[40] which is directly analogous

to double-twist arrangements observed in blue phases and toroidal geometries. Here,

a larger system is required to achieve a stable cylinder with sufficient diameter to

probe the normal twist mode. To ensure that only this mode is probed, one must

remove the effects of surface interactions from the free energy profile. It is sufficient to

choose a system that has degenerate planar anchoring, so that any preferred surface

orientations are imposed only by the bulk nematic order. It is well known, and
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has been validated in simulations,[198] that aqueous interfaces impose exactly this

type of anchoring. Hence, we embed a periodic cylinder of liquid crystal within a

solvent of SPC/E water.[207] A typical configuration of this cylindrical geometry

is given in Fig. 5.3(a). The presence of an interface, while not affecting orientation,

nevertheless imposes order on the 5CB cylinder, effectively shifting TNI by ≈ 5 K (see

Fig 5.3(b)) while retaining similar ordering behavior [plotted as S(T ) in Fig. 5.3(b)]

as a function of relative temperature. Hence, to relate these measurements to bulk

elastic constants, we compare values at equivalent T − TNI .
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Figure 5.3. Snapshot of 5CB cylindrical system (a) with solvent removed.
Due to finite anchoring-induced ordering within cylinder, the transition

temperature TNI is shifted slightly (b) by ≈ 5K. Calculated saddle-splay
surface-like elastic constant (k24) for 5CB (c) shows no violation of the

Ericksen bound, delineated by k22 − k24 ≥ 0. To validate k24 stability, we
test the unbiased director probability distribution p(nθ) against the normal
distribution (d) using a Kolmogorov–Smirnov test (representative data at
296 K shown; distributions obtained at other temperatures are plotted in
Figure 5.4) Uncertainties in the elastic measurements are estimated using
1500 bootstrap cycles on the collected decorrelated samples, yielding error
bars comparable to the size of the points. Roughness in trendlines is not
due to statistical uncertainty of each measurement, but instead due to

underlying fluctuations in nematic order and volume that arise under NPT
preparation.
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The measured k24 elastic constants are shown in Figure 5.3(c). It is apparent

that the Ericksen bound k22 − k24 ≥ 0 remains valid across the nematic range. This

is a striking result, as indirect measurements in toroidal droplets,[36] escaped radial

morphologies,[43] and aperiodic nematic films [42] yield a value for k24 for which the

normal modes of deformation[40] are either nearly zero or in violation of the Ericksen

bound. From our calculations, saddle-splay retains a finite value throughout the

nematic range that is, surprisingly, essentially constant. While this appears to be

at odds with the behavior of most elastic coefficients near the nematic–isotropic

transition, it is important to note that k24 never appears by itself within expressions

for bidirectional modes,[40] and that the cost of the bidirectional twist does trend

toward zero, as one expects, when disorder is approached. Importantly, the approach

of k22 − k24 to zero may help explain some experimental observations, which are

typically conducted at temperatures near TNI . Our measurements also contradict the

predictions made for 5CB using a hybrid molecular field theory [203] (MFT), which

suggested that k24 varies significantly over the nematic range, and even predicted the

value to switch sign at a crossover temperature of T − TNI ≈ −7. Since that theory

predicts k22 commensurate with experiments, this indicates non-vanishing normal

twist as the transition temperature is approached. The differences in the present

work and MFT predictions could be due to to the underlying assumptions of MFT,

which does not capture spatial dependencies and mutual deformations that play an

important role in k24. The k24 calculations reported here are significant in that saddle-

splay contributions to the free energy play a critical role in stabilizing defects[190] and

affect morphological transitions.[114] That we observe no lack of positive-definiteness

in our measurement suggests that the origin of spontaneous radial[35] and double-

twist[36] morphologies observed in experiments on 5CB must be revisited.
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Figure 5.4. Data from simulations probing the k24 elastic coefficient. The
three columns show: evolution of the order parameter nθ over the course of
the simulation (left), the unbiased histogram acquired over ∂rnθ (center),

and the resulting free energy and P2 projection (right).

107



We emphasize again that, to our knowledge, published experimental measure-

ments of k24 are indirect, and utilize an ansatz to extract a result. In contrast,

we directly simulate 5CB using a molecular model that has been parameterized to

match experimental densities and orientational order, and report bulk (kii) elastic

constants that are in full agreement with experiment. Hence, we were able to use

the predictive power of molecular simulations to obtain a quantity that has proved

elusive experimentally. As this prediction contradicts mechanisms hypothesized in

experiment, it is important that we rigorously support the results of our simula-

tions. To rule out the possibility that pre-transitional ordering induced by anchoring

or spatial inhomogeneity result in misleading measurements, we also plot the radial

profiles of the nematic director within each cylinder at all studied temperatures in

Fig. 5.5 and show that they are linear. We also generate unbiased distributions of the

director fluctuations in the outer annulus of each cylinder and perform a one-sample

Kolmogorov–Smirnov test at a 1% significance level against a centered normal distri-

bution. A representative data set at T = 296K is shown in Fig. 5.3(d). All samples

reject the null hypothesis, which indicates that there is no statistically detectable

metastability at non-zero deflection. We include all director time profiles, resulting

distributions, and parabolic free energy profiles with P2 projections in Figure 5.4.

One might also object to our k24 measurements on the basis of finite size ef-

fects. The free energy perturbation approach adopted here has been shown [75, 151]

to be insensitive to finite size effects, particularly in bulk measurements.[151] This

is supported by the striking agreement of our kii measurements with experiment.

However, k24 is measured in cylindrical confinement, which may exhibit different

scaling behavior. While an explicit study of finite size effects on k24 is currently

intractable due to immense computational costs, we propose that it is not relevant

for the broader observation that Ericksen’s equalities are satisfied. Finite-size scal-

ing may change the absolute magnitude of the reported values, but will not change
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Figure 5.5. Radial profile of nθ averages in 5CB cylinders show
approximately linear behavior across the sample region.

the stable morphology—the cylinder either is or is not unstable to twisting. Un-

like prior coarse-grained studies, which found no appreciable free energy penalty to

twisting[75], and experiments and theory demonstrating twisting in toroidal geome-

tries is similarly not penalized[36, 38], these results demonstrate that k24-containing

modes have a positive-definite free energy for 5CB.

5.4 Conclusions

Our methods and calculations serve to shed light into some long-standing concerns

about the experimental value of k24 and its role in driving morphology transitions in

confined systems.[191, 36, 42, 35, 43] However, in doing so, we have opened up new

questions about the true reason for such striking morphologies. If k24 is not respon-

sible, then what is? Perhaps there are important third or fourth-order terms that
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arise to stabilize spontaneous deformations. Perhaps anchoring and explicit solution

chemistry play a larger role than previously appreciated. Regardless, our calculations

represent a useful milestone in material property prediction. We demonstrate that

it is possible to predict bulk elastic constants in agreement with experiment for a

molecular system from simulation, and we provide the only direct measurements of

saddle-splay k24 for the otherwise extensively characterized 5CB. With these new de-

velopments, the tools are in place to begin unraveling the role of higher order elastic

coefficients and subtle anchoring behaviors across the landscape of liquid-crystalline

materials. A key challenge will be the calculation of the Lij elastic coefficients utilized

in the Landau–de Gennes Q-tensor formalism, which are not directly accessible to

experiment, and are not directly mappable onto the Frank elastic theory.[208] In each

of these arenas, the methodology and framework employed here provide a foundation

for computer-aided characterization and design of novel mesogenic compounds.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE OUTLOOK

The work in this dissertation represents the development and extension of new

methods which combine advanced sampling and molecular simulation to predict the

elastic properties of liquid crystals. Existing techniques utilizing molecular simulation

often rely on equilibrium simulations and numerical analyses which are inherently

inaccurate or scale poorly with system size. As a consequence, systematic studies

of coarse-grained systems or any realization of a molecular system were intractable.

Enhanced sampling methods accelerate the occurrence of rare events, thus providing

a means by which free energetic perturbations can be applied and measured. By

correcting and expanding the formalism proposed by Joshi et al. [75], it becomes

possible to directly estimate the bulk elastic moduli of liquid crystals using both

Monte Carlo and molecular dynamics. Furthermore, the surface-like saddle-splay

elastic constant k24, which is not directly measurable in experiment, can be estimated

in cylindrical geometries. This dissertation develops this methodology through a

series of increasingly complex coarse-grained and atomistic simulations.

The first study in this dissertation begins with a comprehensive study of binary

liquid crystal mixtures represented by the multicomponent Lebwohl-Lasher lattice

model. Density-of-states simulations are used to characterize the complete binary

phase diagram, including nematic-nematic phase separation predicted by mean-field

theories, but previously not observed in simulations. Mapping this phase diagram

permits detailed study of elastic properties across the miscible nematic region. Im-

portantly, we observe local phase separation and disordering driven by the application
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of small linear perturbations near the transition temperature and more significantly

through nonlinear stresses. These findings are of key importance in systems of blended

nematics which contain particulate inclusions, or are otherwise confined.

The second study uses density-of-states simulations to systematically study the

elastic properties of four common Gay–Berne nematogenic models; two with a length-

to-diameter ratio κ = 3 [(3, 5, 1, 2) and (3, 5, 1, 3)], a model with κ = 4.4 param-

eterized for p-terphenyl (4.4, 20, 1, 1), and a discogen with κ = 0.345 (0.345, 0.2,

1, 2). In accordance with previous measurements, we find that for κ = 3, models,

k22 . k11 < k33. We find the latter two models in particular accurately capture the

experimentally measured elastic ratios in apolar achiral systems. The (4.4, 20, 1, 1)

model reproduces the elastic constant ratios of p–azoxyanisole remarkably well, and

maps to within 30% of the absolute. The (0.345, 0.2, 1, 2) model elastic constants

exhibits an unusual temperature dependence similar to recent experimental studies.

We find k11 ≈ k22 > k33, in line with theoretical predictions. All models deviate from

the mean-field expectation kii ∝ S2. These results represent a crucial first step to-

ward quantitatively accurate coarse-grained liquid crystalline models of self-assembly

and response, enabling one to choose a Gay–Berne model based its measured elastic

ratios rather than just its shape and energy anisotropy.

The third study investigates chromonic liquid crystals which exhibit a unique

self–assembly process that is of both theoretical and practical interest. A char-

acteristic feature of chromonics is the occurrence of molecular association through

stacking at extremely low concentrations. Concomitantly, these phases exhibit a

separation of energy scales for elastic deformations that leads to novel bulk mor-

phologies and defect arrangements. Experimental evidence has suggested that this

process is approximately isodesmic across a broad concentration range. To date,

only a handful of computational studies have managed to reproduce crucial aspects

of chromonic phases, with ionic chromonics treated only by expensive fully atomistic
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simulations. We present a simple model based on the competition between long-range

repulsions and short range anisotropic attractions capable of capturing all features

of the chromonic phase. Molecular simulations of coarse-grained mesogens are used

to map out the phase behavior and explore how structural and energetic anisotropies

influence their ordering and response. This study also presents the first computa-

tional investigation into the nematic elasticity of these phases, and demonstrates key

correlations between elastic response and stack growth.

Finally, the fourth study challenges experiments on confined droplets of the ne-

matic liquid crystal 5CB, which have questioned long-established bounds imposed on

the elastic free energy of nematic systems. This elasticity, which derives from molec-

ular alignment within nematic systems, is quantified through a set of moduli which

can be difficult to measure experimentally and, in some cases, can only be probed

indirectly. This is particularly true of the surface-like saddle-splay elastic term, for

which the available experimental data indicate values on the cusp of stability, often

with large uncertainties. We demonstrate that all nematic elastic moduli, includ-

ing the saddle-splay elastic constant k24, may be calculated directly from atomistic

molecular simulation. Importantly, results obtained through in silico measurements

of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity

alone is unable to describe the observed confined morphologies.

Much work remains to be done in the domain of elastic property prediction from

molecular simulation. Our binary mixture studies were performed using a model

potential and would certainly benefit from molecular specificity. Elastic segregation

effects are known to have profound implications for systems with a small component

of ‘dopant’ species exhibiting stronger or weaker elasticity added to alter response

behavior in many industrial blends. Further, we expect induced compositional differ-

ences to be particularly relevant for nanoparticle self-assembly or templated polymer-

ization where defects may be used to guide the formation of complex heterostructures.
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Molecular simulation provides an ideal way to control mixture composition and sys-

tem geometry while elastic properties are estimated.

The techniques presented also facilitate explicit accounting for elastic properties

which can be used in future LC model development, yielding accurate potentials that

can capture complex ordering phenomena, LC–collodial interactions and naoncon-

fined morphologies. In principle, it becomes possible to combine machine learning

techniques with elastic property prediction to engineer, in silico, new LC molecules

that exhibit chosen elastic properties. Achieving this may dramatically improve the

ability to design highly responsive and selective LC devices, as a broad chemical

space can be explored with minimal human intervention. Of course, such large-scale

simulations are only possible if the cost of elasticity measurements is substantially

reduced. Currently, up to 4 µs of simulation runtime is required to generate a reli-

able estimate of a single elastic mode at a single temperature. Using newer advanced

sampling algorithms or utilizing transfer learning techniques may significantly reduce

this time.

There remain a wide variety of systems that can be explored using the methods

developed in these studies. Our coarse–grained studies of chromonic LCs indicate

that a large elastic anisotropy is not necessary for LCs to display the hallmarks of

the chromonic phase. However, the reason for this remains unclear. Studying the

elastic properties of chromonic LCs using an atomistic model may provide new insight

into the precise molecular underpinnings behind the elastic anisotropy and its role

in chromonic self-assembly — a longstanding question in the field. Other exotic

liquid crystals such as bent-core mesogens or polar compounds that give rise to novel

mesophases are of great interest and can be studied. In particular, the apparent

inability of the Frank elastic free energy formalism to predict a stable ground state

for these phases can be quantified in detail. A key challenge will also be the calculation

of the Lij elastic coefficients utilized in the Landau–de Gennes Q-tensor formalism,
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which are not directly accessible to experiment, and are not directly mappable onto

the Frank elastic theory.

The studies presented in this dissertation are only the beginning of what we

anticipate will be a very fruitful endeavor. The techniques and software now exist

which position molecular simulation as a first-class tool for the study of liquid crystal

elasticity. What remains is for the algorithms to be optimized and applied to new

and more interesting systems.
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liquid crystals in a strong aligning field. Mol. Phys., 104(18):2919–2927, 2006.

144. J. K. Whitmer, A. M. Fluitt, L. Antony, J. Qin, M. McGovern, and J. J. De
Pablo. Sculpting bespoke mountains: Determining free energies with basis ex-
pansions. J. Chem. Phys., 143(4), 2015.

126



145. A. Laio and M. Parrinello. Escaping Free-Energy Minima. Proc. Natl. Acad.
Sci., 99(20):12562–12566, 2002.

146. E. Darve, D. Rodrguez-Gmez, and A. Pohorille. Adaptive biasing force method
for scalar and vector free energy calculations. J. Chem. Phys., 128(14):144120,
2008.

147. H. Sidky and J. K. Whitmer. Elastic response and phase behavior in binary
liquid crystal mixtures. Soft Matter, 12:4489–4498, 2016.

148. J. Stelzer, L. Longa, and H.-R. Trebin. Elastic constants of nematic liquid
crystals from molecular dynamics simulations. Mol. Cryst. Liq. Cryst. A, 262
(1):455–461, 1995.

149. J. Stelzer, L. Longa, and H.-R. Trebin. Molecular dynamics simulations of
a Gay-Berne nematic liquid crystal: Elastic properties from direct correlation
functions. J. Chem. Phys., 103(8):3098, 1995.

150. N. H. Phuong, G. Germano, and F. Schmid. Elastic constants from direct
correlation functions in nematic liquid crystals: A computer simulation study.
J. Chem. Phys., 115(15):7227–7234, 2001.

151. H. Sidky. SAPHRON - A Lightweight C++11 Monte Carlo Molecular Simula-
tion Engine. https://github.com/hsidky/SAPHRON, 2016.

152. N. V. Madhusudana and R. Pratibha. Elasticity and orientational order in
some cyanobiphenyls: Part IV. reanalysis of the data. Mol. Cryst. Liq. Cryst.,
89(1-4):249–257, 1982.

153. P. G. de Gennes and J. Prost. The Physics of Liquid Crystals, volume 4. Oxford
university press, second edition, 1994.

154. D. Caprion, L. Bellier-Castella, and J.-P. Ryckaert. Influence of shape and
energy anisotropies on the phase diagram of discotic molecules. Phys. Rev. E,
67:041703, 2003.

155. N. H. Tinh, H. Gasparoux, and C. Destrade. An homologous series of disc-like
mesogens with nematic and columnar polymorphism. Mol. Cryst. Liq. Cryst.,
68(1):101–111, 1981.

156. M. A. Bates and G. R. Luckhurst. Computer simulation studies of anisotropic
systems. XXVI. Monte Carlo investigations of a Gay-Berne discotic at constant
pressure. J. Chem. Phys., 104(17):6696–6709, 1996.

157. E. Kats and M. I. Monastyrsky. Ordering in discotic liquid crystals. J. Phys.
France, 45(4):709–714, 1984.

158. M. Osipov and S. Hess. The elastic constants of nematic and nematic discotic
liquid crystals with perfect local orientational order. Mol. Phys., 78(5):1191–
1201, 1993.

127

https://github.com/hsidky/SAPHRON


159. H. K. Bisoyi and S. Kumar. Discotic nematic liquid crystals: science and tech-
nology. Chem. Soc. Rev., 39(1):264–285, 2010.

160. V. A. Raghunathan, N. V. Madhusudana, S. Chandrasekhar, and C. Destrade.
Bend and splay elastic constants of a discotic nematic. Mol. Cryst. Liq. Cryst.,
148(1):77–83, 1987.

161. G. Heppke, A. Ranft, and B. Sabaschus. Bend and splay elastic constants of
some discotic nematic compounds. Mol. Cryst. Liq. Cryst. Lett., 8(1):17–25,
1991.

162. D. Venkata Sai, G. Mirri, P. H. J. Kouwer, R. Sahoo, I. Musevic, and S. Dhara.
Unusual temperature dependence of elastic constants of an ambient-temperature
discotic nematic liquid crystal. Soft Matter, 12(11):2960–2964, 2016.

163. T. J. Phillips, J. C. Jones, and D. G. McDonnell. On the influence of short
range order upon the physical properties of triphenylene nematic discogens.
Liq. Cryst., 15(2):203–215, 1993.

164. R. Berardi, S. Orlandi, and C. Zannoni. Monte carlo simulation of discotic gay–
berne mesogens with axial dipole. J. Chem. Soc., Faraday T., 93:1493–1496,
1997.

165. A. Poniewierski and J. Stecki. Statistical theory of the Frank elastic constants.
Phys. Rev. A, 25:2368–2370, 1982.

166. R. H. Chen. Liquid Crystal Displays. John Wiley & Sons, Inc., 2011. ISBN
9781118084359.

167. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama. Polymer-
stabilized liquid crystal blue phases. Nat. Mater., 1(1):64–8, 2002.

168. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. Giridhar,
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