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ON PRESBURGER ARITHMETIC, NONSTANDARD FINITE CYCLIC

GROUPS, AND DEFINABLE COMPACTIFICATIONS

Abstract

by

Somayeh Vojdani

It is known that any model of Th(Z,+) can be decomposed into a direct sum of

a torsion-free divisible abelian group and an elementary substructure of the group Ẑ.

We give a similar result for models of Th(Z,+, <), the theory of Presburger arithmetic

and discuss orderings on direct summands. We show that the torsion-free divisible

abelian group is densely ordered and the number of non-isomorphic expansions of the

group Ẑ to a model of Presburger arithmetic is 22ℵ0 . We also give a description of

the f-generic types of saturated models of Presburger arithmetic.

We consider nonstandard analogues of finite cyclic groups as a family of groups

defined in an elementary extension of (Z,+, <). Since the theory of Presburger

arithmetic has NIP, any such group H has a smallest type-definable subgroup of

bounded index, H00. Each quotient H/H00 is a compact group under the logic

topology. The main result of this thesis is the classification of these compact groups.

The universal definable compactification of a group G, in a language in which

all the subsets of G are definable, coincides with the Bohr compactification bG of G

considered as a discrete group. For an abelian group G, in particular the group Z of

integers, we compute the type-connected component. We show that adding predicates

for certain subsets of G is enough to get bG as the universal compactification.
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INTRODUCTION

The main objective of this thesis is to study models of Th(Z,+, <), the theory

of Presburger arithmetic, and groups interpretable in this theory. We give a class

of compact groups which are interpretable in Th(Z,+, <), as quotients (universal

definable compactifications) of nonstandard finite cyclic groups. The class contains

certain groups which are inverse limits of compact groups which are direct sums of

the circle group S1 with a finite cyclic group.

We also study definable compactifications of abelian groups, in particular the

group of integers. Definable compactification is a notion similar to topological com-

pactification, defined for definable groups rather than topological groups. We give

a new case where the universal definable compactification of a definable group G

coincides with the Bohr compactification of G considered as a discrete topological

group.

In Chapter 1, we give preliminaries on model theory and topological groups.

Familiarity with the basics of both of these subjects is assumed.

Among model theory background material, of higher importance in our work are

the definitions of model theoretic connected components, and the logic topology, and

a fact stating the relation between f-generic types and type-connected components

in NIP theories.

Among background material on topological groups, of higher importance in our

work are the definition and properties of the group Ẑ, a fact about compact groups

as inverse limits that we use frequently, and the definition and properties of amalga-

mated direct products of topological groups over their common subgroups.
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In Chapter 2, we study models of Presburger arithmetic. Given G a nonstandard

model of Presburger arithmetic, since G is also a model of Th(Z,+), we get a decom-

position of G into a direct sum of a divisible torsion-free abelian group and a group

isomorphic to an elementary substructure of Ẑ. We discuss orderings on the direct

summands.

(Ẑ,+) is the largest reduced model of Th(Z,+) which is also important in the

direct sum decopmosition of models of Presburger arithmetic. We consider expansions

of this model and show that the number of non-isomorphic expansions of (Ẑ,+) to

models of Presburger arithmetic is 22ℵ0 . We also give a description of the f-generic

types of saturated models of Presburger arithmetic.

In Chapter 3 we consider the groups Ha = ([0, a), + mod a) for nonstandard

positive a, a family of groups uniformly definable in a saturated elementary extension

of (Z,+, <). We study the properties of these groups (e.g. their torsion subgroups)

for different choices of a. Note that if two elements a and a′ have the same divisibility

type, then Ha
∼= Ha′ .

Given a type-definable equivalence relation E of bounded index on a definable

group G, G/E can be equipped with the logic topology making it a compact topo-

logical group. In particular, if L is a type-definable subgroup of G of bounded index,

then G/L is a compact group under the logic topology.

The main result of this thesis is to classify the compact quotients H/H00. We

describe these compact quotients as certain inverse limits. We define K to be the

subgroup of infinitesimals of H, and show that H/K ∼= S1, for every choice of a.

We give results about the connected component and the type-conned component of

H. We show that H00 =
⋂
n nK. The method we use depends on the fact that

the underlying theory has NIP, and does not generalize to structures on Z with the

independence property. In the general case, the description of the type-connected

component can be more challenging.
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In Chapter 4, we consider definable compactifications of abelian groups. In [10],

Gismatullin, Penazzi and Pillay introduced the notion of definable compactification

and proved among other things that the universal definable compactification of a

definable group in which every subset is definable, coincides with the Bohr compact-

ification of the group considered as a discrete topological group.

We show that by adding predicates for certain subsets of an abelian group G,

the universal definable compactification of the resulting structure is bG, the Bohr

compactification of G. In particular, we give an expansion of (Z,+) for which the

universal definable compactification is bZ.
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CHAPTER 1

PRELIMINARIES

1.1 Model Theory

In this section we recall some model theory definitions and background. For more

on model theory see [21].

We do not distinguish in notation between a model and its universe. We assume

T is a complete theory in a first order language L. Given a model M |= T , by a set

definable in M we mean a subset of Mn definable with parameters. We use x, y, · · · to

denote (finite tuples of) variables and a, b, · · · to denote (finite tuples of) constants.

Let A ⊆ M . Recall that a partial type over A is a consistent set of formulas

with parameters from A. A complete type is a maximal such consistent set. The

collection of complete types is a topological space with the Stone topology. We use

the notation SMn (A) for the space of complete types in n variables over A in a model

M .

Definition 1.1.1. Let κ be an infinite cardinal. We say that M |= T is κ-saturated

if, for all A ⊆M , if |A| < κ and p ∈ SMn (A), then p is realized in M .

Let M |= T be saturated of cardinality κ, where κ is very large. We fix such a

model and call it the monster model of T .

All M |= T that we consider are elementary submodels of M with |M | < κ.

If ϕ(v, a) is a formula with parameters, we assume a ∈ M . We write tp(a/A) for

tpM(a/A) and Sn(A) for SMn (A). By a global type we mean a complete type over the

monster model.
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Small and bounded mean of cardinality less than κ, the saturation of the monster

model. By a type-definable set (over A) we mean the set of all elements of M

satisfying a given collection of formulas over a small set (A).

Definition 1.1.2. Let k be a positive integer. We say that a formula ϕ(x, b) k-

divides over a set C, if there is a sequence {bi}i<ω of realizations of tp(b/C) such that

{ϕ(x, b) : i < ω} is k-inconsistent, i.e. every k-element subset of it is inconsistent.

We say that ϕ(x, b) divides over C, if it k-divides over C for some positive integer k.

A formula ϕ(x, b) forks over C if it implies a finite disjunction of formulas each

of which divides over C.

A complete type is said to divide (fork) over C if it contains some formula which

divides (forks) over C.

Definition 1.1.3. A complete type p(x) is called definable if for every formula

ϕ(x, y), the set {b : ϕ(x, b) ∈ p(x)} is definable.

Now we recall the definition of stability. For more on stable theories see [27].

Definition 1.1.4. The model M has an order if there are n < ω, a formula ϕ(x, y)

with |x| = |y| = n and n-tuples ai in M for i < ω such that for i, j < ω

M |= ϕ(ai, aj) iff i ≤ j.

T has an order if there is M |= T where M has an order. T is stable if T has no

order.

Example 1.1.5. Th(Z,+) is stable.

Now we recall the following definition and facts from [32].

Definition 1.1.6. T does not have the finite cover property (does not have f.c.p.) iff

for every ϕ(x, y) there exists k = k(ϕ) < ω such that for every set of parameters A

and every p ⊆ {ϕ(x, a),¬ϕ(x, a) : a ∈ A} the following implication holds.
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If p is inconsistent then ∃q ⊆ p (|q| ≤ k ∧ q is inconsistent).

One can think of the above property as a generalization of compactness.

Fact 1.1.7. If T does not have the f.c.p., then T is stable.

Fact 1.1.8. If T is stable, then the following are equivalent:

1. T has the f.c.p.

2. There exists a formula ϕ(x, y, z) and there exists {an : n < ω} such that for every
a, ϕ(x, y, a) is an equivalence relation and for every n < ω we have

n < |M/ϕ(x, y, an)| < ℵ0.

1.1.1 NIP Theories and Presburger Arithmetic

In this section we recall the definition of NIP theories form [12]. See also [20].

There are alternative equivalent ways of defining NIP theories. See for example [34].

The NIP theory that we are interested in throughout Chapters 2 and 3 is the

theory of the ordered group of integers, also known as Presburger arithmetic or Pr.

For a collection C of subsets of a set X, one can define a dimension called VC-

dimension (after Vapnik and Chervonenkis) which measures the combinatorial com-

plexity of C.

Having finite or infinite VC-dimension turns out to be an important difference in

terms of complexity. In particular, for the collection of definable subsets of a model,

one can ask whether the VC-dimension is finite or infinite. In the following we recall

what it means for a theory to have the independence property and how it is related

to infinite VC-dimension.

Let X be a set and let C ⊆ 2X . We call C a concept class on X. One can either

think of C as a collection of subsets of X, or a collection of functions from X to {0, 1}.

For notational simplicity we assume the second. To define the VC-dimension of C we

need the following:
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Definition 1.1.9. If C is a concept class on X and Y ⊆ X, then

C �Y = {f �Y : f ∈ C}.

We say that C shatters a set Y ⊆ X if C �Y = 2Y .

Definition 1.1.10. The VC-dimension of a concept class C on X is the size of the

largest finite subset of X that can be shattered by C. If arbitrarily large finite subsets

of X can be shattered by C, then we say C has infinite VC-dimension.

Definition 1.1.11. C is called a VC-class if it has finite VC-dimension.

Definition 1.1.12. A formula ϕ(x, y) does not have the independence property (has

NIP) if the family of all sets of the form ϕ(a,M) for a ∈ M
|x|

, is a VC-class. In

other words, there exists n < ω such that, for all b0, · · · , bn−1 ∈ M
|y|

, there do not

exist aI ∈M
|x|

for each I ⊆ n so that for all i < n, I ⊆ n,

|= ϕ(aI , bi) iff i ∈ I.

We say that the theory T is NIP if all formulas have NIP.

Example 1.1.13. Every stable theory has NIP.

Fact 1.1.14. Pr is an NIP theory.

The above fact is a special case of a more general result stating that the theory

of any ordered abelian group is NIP. See [13] or [5].

Fact 1.1.15. Pr has quantifier elimination (QE) in the language

L = {+,−, <, 0, 1, Pn}n>0,

where each Pn is a unary predicate symbol for the set of elements divisible by n.
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1.1.2 The Logic Topology

Let G be a group definable in M . We recall the definition of G0
A and G00

A , the

model theoretic connected components of G over some small set of parameters A.

See for example [9].

Definition 1.1.16. Let A be a small set that includes the parameters over which G

is defined. Then

G0
A =

⋂
{H < G : H is A-definable and [G : H] < ω},

and

G00
A =

⋂
{H < G : H is type-definable over A and [G : H] < κ}.

We call G0
A the connected component of G over A, and G00

A the type-connected com-

ponent of G over A.

Remark 1.1.17. G0
A and G00

A are normal subgroups of G.

If G0
A (G00

A ) does not depend on A, we say that G0 (G00) exists. An important

example is the case of NIP theories.

Fact 1.1.18. If T has NIP then G0 and G00 exist.

A proof of the above fact can be found in [17]. We need to use the following

corollary of this fact in Chapter 3:

Corollary 1.1.19. If H is a group definable in a model of Pr, then H0 and H00

exist.

Proof. By Fact 1.1.14, Pr is NIP, so we can apply Fact 1.1.18.

It is well-known that for an arbitrary saturated expansion G of the additive group

of integers Z, the connected component G0 exists and equals
⋂
n∈N nG.
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The following fact from [2] gives a sufficient condition for a similar description of

G0 to hold for an arbitrary infinite group.

For the following fact we assume (G, ·) is a group definable in a model M , and

we denote by G∗ the group defined in M by the formula defining G.

Fact 1.1.20. Suppose that for every positive integer n the set {gn : g ∈ G} generates

a subgroup of G of finite index in finitely many steps. Then (G∗)0 exists and

(G∗)0 =
⋂
n∈N

〈{gn : g ∈ G∗}〉.

Moreover, every subgroup of finite index in a group elementarily equivalent to G is

definable in the language of groups.

Now, we recall the definition of the logic topology from [26]. See also [19]. Again,

let G be a group definable in M . Under the logic topology the quotients of G by

its type-definable subgroups of bounded index (in particular by its model theoretic

connected components) are compact groups. These compact groups are invariants of

the definable group G.

The logic topology can be defined in the following more general setting. Let X

be a type-definable set. Given a type-definable equivalence relation E on X with a

bounded number of classes, consider the quotient X/E.

Definition 1.1.21. Let π : X → X/E be the natural surjection. We say C ⊆ X/E

is closed if π−1(C) is type-definable.

The complements of the closed sets defined as above form open sets of a topology

on X/E.

Fact 1.1.22. Suppose that X is a type-definable subset of G, and E is a bounded

equivalence relation on X. If E is type-definable, then X/E with the logic topology is

compact Hausdorff.
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Note that in particular, the logic topology can be defined on G/G0
A and G/G00

A ,

making them compact topological groups.

Remark 1.1.23. Let SG(M) be the set of complete types over M extending the

formula saying x ∈ G. The quotient map G→ G/G00
A factors through the type space

SG(M) for any small model M containing A.

1.1.3 f-Generic Types and Stabilizers

Let (G, ·) be a definable group in a model M . SG(A) denotes the set of complete

types over A extending the formula saying x ∈ G.

A left translate of a formula ϕ(x, a) is defined as ϕ(g−1x, a) for some g ∈ G. A

left translate of a type p in SG(A) is a type containing all the left translates of the

formulas in p, by a g ∈ G. Right translates can be defined similarly.

Definition 1.1.24. We say that a set X ⊆ G is generic if some finitely many left

translates of X by elements of G cover G. We say that a formula ϕ(x) is generic

if the set ϕ(G) of elements of G realizing ϕ is generic. Finally, we say that a type

p(x) ∈ SG(A) is generic if every formula ϕ(x) in p(x) is generic.

Now we recall the definition of f-generic types. See [4], [16], or [28]. The notion

of f-generic is a weaker notion than generic. See [25] for more on weak generic types.

Definition 1.1.25. Assume T is NIP. Let p ∈ SG(M). We say that p is left f-generic

if every left translate of p does not fork over M .

By a result from [3], forking and dividing over models are the same in NIP theories.

So we get:

Fact 1.1.26. Assume T is NIP. Let p ∈ SG(M). p is left f-generic if every left

translate of p does not divide over M .
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Now we recall that under the NIP assumption, a global f-generic type can be used

in computing G00. First, we recall the definition of the stabilizer of a type p ∈ SG(M).

Definition 1.1.27. Let p ∈ SG(M). The stabilizer of p is the group of all g ∈ G

such that gp = p.

The following fact gives the connection between global f-generic types and type-

connected components in NIP theories.

Fact 1.1.28. Assume T is NIP. Suppose that G has a global left f-generic type p.

Then Stab(p) = G00.

1.2 Topological Groups

All the topological spaces we consider in this section are assumed to be Hausdorff.

Recall that a topological group is a group G together with a topology on G such

that the group operation and the inverse function are continuous maps with respect

to the topology. Morphisms in the category of topological groups are continuous

homomorphisms. For topological groups G1 and G2, a topological isomorphism is

a function ρ : G1 → G2 which is simultaneously a homeomorphism and a group

isomorphism.

See [14] for more and topological groups, and for proofs of the following facts.

Definition 1.2.1. A topological space X is connected if it is non-empty and there

are no non-empty, disjoint open subsets A and B of X such that X = A ∪B.

Thus a non-empty space X is connected iff the only subsets of X which are both

open and closed are ∅ and X.

Fact 1.2.2. Let G be a topological group. Then every open subgroup of G is closed

and every closed subgroup of finite index is open.
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Fact 1.2.3. A connected topological group has no proper open subgroups. A connected

topological group is generated as an abstract group by any neighborhood of identity

(or by any non-empty open subset).

Definition 1.2.4. For an abelian topological group G we let

div(G) =
⋃
{H : H is a divisible subgroup},

and

Div(G) =
⋂
n∈N

nG.

For a proof of the following fact see [15].

Fact 1.2.5. If G is a compact abelian group or a discrete torsion-free abelian group,

then div(G) = Div(G).

Note that in the general case we have div(G) ⊆ Div(G).

Definition 1.2.6. The circle group denoted by T, is the multiplicative group of all

complex numbers with absolute value 1, i.e. the unit circle in the complex plane or

simply the unit complex numbers

T = {z ∈ C : |z| = 1}.

Note that S1 = R/Z is isomorphic to T, and is also called the circle group.

In this chapter we use the symbol T to denote the circle group. We also write its

group operation as multiplication.

Recall the notion of a character defined for any abstract group.

Definition 1.2.7. A character on a group G is a homomorphism from G to the circle

group T.
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The set of all characters on G is itself a group under pointwise multiplication. For

topological groups, one can consider continuous characters.

Definition 1.2.8. Let G be an abelian topological group. The dual group of G is the

group of all continuous characters on G and is denoted by Ĝ.

One can define a topology on Ĝ turning it into a topological group. We recall

this topology in Chapter 4.

1.2.1 Compact Groups

A compact group is a topological group whose topology is compact.

Example 1.2.9. The circle group T is a compact group.

Definition 1.2.10. Any topological group isomorphic to an inverse limit of finite

groups is called a profinite group.

Example 1.2.11. The profinite group Ẑ = lim←−n Z/nZ is a compact group.

There are other ways of defining the group Ẑ. We recall a more explicit way here.

First we recall the definition of p-adic integers. See [1] for more on p-adic integers.

Definition 1.2.12. Let p be a prime number. A sequence of integers

{xn} = {x0, x1, · · · , xn, · · · },

satisfying

xn ≡ xn−1 (mod pn)

for all n ≥ 1, determines an object called a p-adic integer. Two sequences {xn} and

{x′n} determine the same p-adic integer iff for all n ≥ 0,

xn ≡ x′n (mod pn+1).
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One can easily see that the operation {xn} + {yn} = {xn + yn} makes the set of

p-adic integers a group. We denote this group by Zp.

The following fact is well-known.

Fact 1.2.13. Ẑ ∼=
∏

p prime Zp.

The above fact suggests the following description of the elements of Ẑ. Every

element x in Ẑ corresponds to an infinite tuple (x2, x3, x5, · · · ) where xp ∈ Zp for

every prime p. Note that for every y ∈ Zp, y ≡ 0 (mod qk) for every prime q 6= p and

every k > 0.

Remark 1.2.14. The group Ẑ has size 2ℵ0.

A proof of the following fact about compact groups can be found in [30].

Fact 1.2.15. Any compact group is an inverse limit of compact Lie groups.

Recall that:

Definition 1.2.16. A Lie group is a group that is also a differentiable manifold, with

the property that the group operations are compatible with the smooth structure.

Under certain assumptions, a compact group can be approximated in a certain

sense by factor groups G/N modulo smaller and smaller normal subgroups N . See

[15] for a proof of the following fact.

Fact 1.2.17. Assume that G is a compact group with a filter basis N of compact

normal subgroups with
⋂
N = {0}. For M ⊆ N in N let fNM : G/M → G/N

denote the natural morphism given by fNM(gM) = gN . Then the fNM form an

inverse system whose limit is isomorphic to G under the map G → lim←−N∈N G/N

defined by g 7→ (gN)N∈N . With this isomorphism, the limit maps are equivalent to

the quotient maps G→ G/N .
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1.2.2 Amalgamated Direct Products

In this section we recall the definition of amalgamated direct products of topo-

logical groups. We mostly focus on abelian topological groups.

We first recall the notion of amalgamated products of groups and their universal

property. This notion is a generalization of the direct products of groups. See [18].

Amalgamated direct product of two groups over a common subgroup can be

defined for subgroups of any group. Here we restrict our attention to its definition

for abelian groups.

Definition 1.2.18. Let G be an abelian group. G is said to be the direct product

of its subgroups A and B with amalgamated subgroup C if A ∩ B = C, and G is

generated by A ∪B. This amalgamated direct product is denoted by A×C B.

The following fact states the universal property of amalgamated direct products.

Fact 1.2.19. Let the abelian group G be the direct product of its subgroups A and B

with amalgamated subgroup C. If H is any group and Φ1 : A→ H and Φ2 : B → H

are any homomorphisms such that Φ1 �C= Φ2 �C, then there exists a homomorphism

Φ : G→ H such that Φ �A= Φ1 and Φ �B= Φ2.

Remark 1.2.20. Since A ×C B is generated by A ∪ B, each element g in A ×C B

is of the form g = a + b, where a ∈ A and b ∈ B. In the above fact, Φ : G → H

is defined by Φ(ab) = Φ1(a) + Φ2(b). One can show that Φ is a well defined function

and a homomorphism.

Notation 1.2.21. If A is a subgroup of G, then the centralizer of A in G is denoted

by CG(A).

The following is the definition of amalgamated direct products of topological

groups. Here we do not assume G to be abelian.
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Definition 1.2.22. A topological group G is said to be the (topological) direct product

of its topological subgroups A and B with amalgamated subgroup C = A∩B if it has

the following properties.

1. G is generated algebraically by A ∪B,

2. B ⊆ CG(A), and

3. if Φ1 and Φ2 are any continuous homomorphisms of A and B, respectively, into
any topological group H such that Φ1 �C= Φ2 �C and Φ2(B) ⊆ CH(Φ1(A)), then
there exists a continuous homomorphism Φ : G → H such that Φ �A= Φ1 and
Φ �B= Φ2.

Note that amalgamated direct products of topological groups are defined so that

they have the same universal property as amalgamated direct products of groups.
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CHAPTER 2

PRESBURGER ARITHMETIC

2.1 Models of Th(Z,+)

Recall from Section 1.1.1 that Presburger arithmetic, or Pr, is the theory of the

ordered group of integers. Any model of Pr is also a model of Th(Z,+), for which

a decomposition into a direct sum is known. In the next section, we give a similar

decomposition for models of Pr, and we discuss the ordering on the direct summands.

Recall the definition and properties of Ẑ from Section 1.2.1. It is well-known

that any saturated model G of Th(Z,+) is isomorphic to a direct sum of Ẑ and a

torsion-free divisible abelian group. In this decomposition, the torsion-free divisible

group is the largest divisible subgroup of G, called the divisible part of G, but the

choice of a subgroup of G isomorphic to Ẑ is not unique. Every model of Th(Z,+)

can be decomposed into a direct sum of a torsion-free divisible abelian group and a

subgroup isomorphic to an elementary substructure of Ẑ.

Definition 2.1.1. A is called reduced if A has no non-zero divisible subgroups.

Remark 2.1.2. Ẑ is the largest reduced model of Th(Z,+).

The following fact is about divisible subgroups being direct summands, and is

used to prove the fact we mentioned about the decomposition of models of Th(Z,+).

For more on the material in this section see [23].

Fact 2.1.3. Suppose G is a torsion-free group, D is a divisible subgroup of G and H

is a subgroup of G such that H ∩ D = {0}. Then there is a subgroup F of G such

that F ⊇ H and G = F ⊕D.
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For a proof of the above fact see [8]. The proof depends on Zorn’s lemma and

does not specify F uniquely. Although F is in general not unique, it is isomorphic to

G/D and hence is unique up to isomorphism. If we take D to be the largest divisible

subgroup of G (and use the fact for H = {0}), the resulting F must be a reduced

group (otherwise F ∩D 6= {0}).

Fact 2.1.4. Let κ > 2ℵ0 be a cardinal and let G be a κ-saturated model of Th(Z,+)

of cardinality κ. Then we have:

G ∼=
∐
κ

Q⊕ Ẑ.

One way to see why the above fact holds is to note that the group of integers is

elementarily equivalent to the saturated group
∐

κQ⊕Ẑ, and elementarily equivalent

saturated structures of the same cardinality are isomorphic. See [6].

Remark 2.1.5. Let G be a saturated model of Th(Z,+), and D be the divisible part

of G. Then any subgroup of G, which is isomorphic to Ẑ, is a direct summand of G.

Note that there are several subgroups of G isomorphic to Ẑ, since every a ∈ G\
⋂
n nG

can be in a copy of Ẑ.

Proof. The exact sequence

0→ Ẑ→ G→ G/Ẑ→ 0

splits since G/Ẑ is isomorphic to D which is a subgroup of G.

Fact 2.1.6. Let G be a model of Th(Z,+). Then there exist an elementary substruc-

ture A of Ẑ and a cardinal κ such that G ∼=
∐

κQ⊕ A.

If (G, 1) is a model of Th(Z,+, 1). Then there exist an elementary substructure

A of Ẑ containing 1 and a cardinal κ such that (G, 1) ∼=
∐

κQ⊕ (A, 1).
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2.2 Models of Presburger Arithmetic

In this section we consider the decomposition of models of Pr similar to the

decomposition of the models of Th(Z,+), and we discuss the orderings on the direct

summands.

Proposition 2.2.1. Let G be a model of Presburger arithmetic. Then

G = G1 ⊕G2,

where G1 is an elementary substructure of G and isomorphic to an elementary sub-

structure of (Ẑ,+, <) (for some expansion of Ẑ to a model of Pr), and G2 is a densely

ordered divisible abelian group.

Proof. Since G is also a model of Th(Z,+), by Fact 2.1.6 we have the decomposition

as groups. In particular, G1 is an elementary substructure of G containing 1 and also

isomorphic to an elementary substructure of Ẑ containing 1.

G has a unique subgroup that works as G2 here, namely
⋂
n nG. This subgroup is

divisible torsion-free abelian and ordered with the order it gets from G. The ordering

on G2 is dense, because if d1, d2 ∈ G2, then (d1 + d2)/2 ∈ G2.

Let G be a saturated model of Pr. There are several subgroups of G isomorphic

to Ẑ. Using the following remark, we show that different orderings on copies of Ẑ in

G are non-isomorphic.

Remark 2.2.2. The structure (Ẑ,+, 1) has no non-trivial automorphism.

Proof. Every two different elements of Ẑ have different types over {1}, since for every

two different elements c1, c2 ∈ Ẑ, there is a prime p and a positive integer n so that

c1 6≡ c2 (mod pn).

Corollary 2.2.3. Any two different expansions of (Ẑ,+, 1) to models of Pr are non-

isomorphic.
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We show that the number of non-isomorphic expansions of (Ẑ,+) to a model of Pr

is 22ℵ0 . By Corollary 2.2.4 it is enough to show that the number of different orderings

on Ẑ which make it a model of Pr is 22ℵ0 . Note that this is the maximum number of

orderings possible.

Proposition 2.2.4. There are 22ℵ0 expansions of (Ẑ,+, 1) to a model of Pr, up to

isomorphism.

Proof. Let B be a set containing 1 that generates Ẑ and has the property that for

every b ∈ B and any b 6∈ B′ ⊆ B we have b 6∈ 〈B′〉. Then no non-trivial linear

combination of elements of B is zero, i.e. for every k > 0, b1, · · · , bk ∈ B distinct,

and n1, · · · , nk ∈ Z not all equal to 0, we have

n1b1 + · · ·+ nkbk 6= 0.

B has size 2ℵ0 since it generates Ẑ. Note that we need to use Zorn’s lemma to

show that such a set B exists.

We show that any ordering on the set B can be extended to an ordering on Ẑ

that makes it a model of Pr. Let p = tp(Ẑ/∅) in the language {+, 1} (with a variable

xa for each a ∈ Ẑ).

Let {<i}i∈22ℵ0 be the collection of all linear orderings on the set B. For each

i ∈ 22ℵ0 , let qB,i ⊇ p be the partial type in the language {+, <, 1} stating (in addition

to the formulas in p) that B is ordered according to <i.

We claim that qB,i is consistent with Th(Z,+, <), hence qB,i ∪ Th(Z,+, <) has

a model (which is an expansion of (Ẑ,+, 1) to a model of Pr, in which B is ordered

according to <i).

By compactness, it suffices to show that any finite subset of qB,i can be realized

in (Z,+, <).
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Let Σ be a finite subset of qB,i. Then Σ has the form:

xb1 ≡ k11 (mod m1)

...

xbk ≡ kk1 (mod mk)

xb1 < · · · < xbk

n1
1b1 + · · ·+ n1

t1
bt1 6= 0

...

ns1b1 + · · ·+ nstsbts 6= 0,

for some t, k, s,m1, · · · ,ml ∈ N, k1, · · · , kl ∈ Z, and b1, · · · , bk ∈ B, toghether

with some congruence relations and linear dependencies and independencies among

xc1 , · · · , xcl , for some l ∈ N and c1, · · · , cl ∈ Ẑ \B.

In each inequality ni1b1 + · · · + nitibti 6= 0, we are assuming that ni1, · · · , niti ∈ Z

and niti 6= 0.

Using the Chinese Remainder Theorem, we may assume that all the xbi ’s are

distinct. Note that there are no equalities among the xc’s since p says xc 6= xc′ for

every distinct c, c′ ∈ Ẑ.

Now we show that Σ can be realized in Z. First we find realizations for xb1 , · · · , xbk .

Choose an element ab1 for xb1 in m′Z + k′1.

Assume we have chosen an element abt′−1
for xbt′−1

. We need to choose an element

abt′ for xbt′ so that

• xb1 < · · · < xbt′−1
< xbt′ ,

• xbt′ ∈ mt′Z + kt′ , and

• n1xb1 + · · ·+ nt′xbt′ 6= 0.
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For n1xb1 + · · · + nt′xbt′ to be non-zero, it is enough to be not zero modulo mt′ .

Note that

n1xb1 + · · ·+ nt′xbt′ ≡ n1k1 + · · ·+ nt′kt′ (mod mt).

Now we find realizations for xc1 , · · · , xcl . If some ci is in the subgroup of Ẑ

generated by {b1, · · · , bk}, then we choose a realization for xci accordingly. This

realization automatically satisfies the congruence relations needed.

For the rest of xci ’s, if any, there are no dependencies with xbi ’s and we can find

realizations one by one, as we did for xbi ’s.

Note that linear independencies among xci ’s can be easily satisfied since there are

infinitely many choices in each congruence class.

Corollary 2.2.5. There are 22ℵ0 expansions of (Ẑ,+) to a model of Pr, up to iso-

morphism.

Proof. There are countably many choices for 1 in (Ẑ,+).

2.3 Description of f-Generic Types

In this section we describe f-generic types of a saturated model of Th(Z,+, <).

Throughout this section, we fix G a saturated model of Pr. By a result from [33],

the types at +∞ and −∞ in G are f-generic.

Remark 2.3.1. The only f-generic types of G are the types at +∞ and −∞.

Proof. We show that any global type other than the types at +∞ and −∞ is not

f-generic. Let q be such a type. Then some translate of q contains the formulas

x < a1 and x > a2 for some a1, a2 ∈ G \Z. The formula x < a1 ∧ x > a2 divides over

Z, so q is not an f-generic type.

We get the following well-known fact as a corollary:
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Corollary 2.3.2. G0 = G00.

Proof. G0 =
⋂
n nG stabalizes any f-generic type, since each type is determined by a

cut in G and a coset of G0 =
⋂
n nG. Now use Fact 1.1.28.

Remark 2.3.3. The f-generic types of G are definable.

Proof. Let p be an f-generic type of G. For a formula ϕ(x, y) of the form x < y, the

set of b ∈ G for which ϕ(x, b) ∈ p is either equal to G or ∅, depending on whether p

is a type at +∞ or −∞, so this set is definable in each case.

For a formula ϕ(x, y) of the form x ≡ y (mod n), the set of b ∈ G for which

ϕ(x, b) ∈ p is a coset of nG and hence definable.

Note that by Fact 1.1.14, Pr has QE up to the above formulas. So we conclude

that p is a definable type.
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CHAPTER 3

NONSTANDARD FINITE CYCLIC GROUPS

3.1 Choice of the Language

A finite cyclic group is a group of the form Z/aZ for a ∈ Z positive. We consider

the nonstandard analogues of these groups. The following is the reason why the

language of groups is not suitable for this purpose.

Remark 3.1.1. The family of all finite cyclic groups is not uniformly definable in

(Z,+).

Proof. Th(Z,+) is a stable theory that does not have the finite cover property. By

Fact 1.1.8, given a family of finite definable sets, there is a bound on the size of the

sets. So the family of finite cyclic groups is not uniformly definable.

Hence we need to consider an expansion of (Z,+) in order to define analogues of

finite cyclic groups in an elementary extension. One natural structure to consider is

the ordered group of integers.

In this chapter we work in the theory of the ordered group of integers, Presburger

arithmetic. As we said in Section 1.1.1, Pr is an NIP theory.

In the language of Pr, the family of all finite cyclic groups is uniformly definable

and hence one can define nonstandard finite cyclic groups in an elementary extension

of (Z,+, <). These groups have the same description as finite cyclic groups, with a

positive nonstandard, i.e. with a > n for every n ∈ Z.

The sets that we call nonstandard finite are the finite sets in the sense of internal

set theory. See [24]. Some authors use the word hyperfinite. See for example [7].
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Note that nonstandard finite cyclic groups are special cases of pseudofinite groups

(ultraproducts of finite groups). See for example [29].

Throughout this chapter, we fix G, a saturated elementary extension of (Z,+, <).

Definition 3.1.2. Let a ∈ G be a nonstandard positive element, i.e. a > n for every

n ∈ Z. We define Ha = ([0, a), + mod a). Wherever a is understood, we simply call

this group H.

Recall that by Corollary 1.1.19, H00 exists, for a nonstandard finite cyclic group

defined as above in Pr. Recall also that by Fact 1.1.22, H/H00 is a compact topolog-

ical group under the logic topology. Our goal is to classify these compact groups, for

different choices of a. We address this problem in the last section of this chapter.

3.2 Properties of Nonstandard Finite Cyclic Groups

In this section, we explore some properties of the nonstandard finite cyclic groups

H for different choices of a.

First, we point out that depending on the divisibility type of a, H has different

properties (e.g. different torsion subgroups). Since G is saturated, every consistent

divisibility type is realized in H, e.g. there is h ∈ H which is divisible by 2 and not

by 4, infinitely divisible by 3, and not divisible by any prime other than 2 and 3.

Note that here by h is divisible by n we mean h ≡ 0 (mod n) which can be stated in

the language of Pr. We will also sometimes use the notation n|h. The two extreme

cases are the case where a is divisible by every natural number, and the case where

a is not divisible by any n > 1.

Remark 3.2.1. The torsion subgroup of H is {ma/n : a ≡ 0 (mod n), m < n}

which is isomorphic to the subgroup of Q/Z generated by {1/n+Z : a ≡ 0 (mod n)}.

In particular, if a is not divisible by any n > 1, then H has no non-zero torsion

element.
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Example 3.2.2. If a is divisible by 2, then H/2H ∼= Z/2Z, but if a is not divisible

by 2, there is b ∈ H so that 2b = a− 1, so in H we have: 2b + 2 = (a− 1) + 2 = 1,

which implies 1 ∈ 2H. Hence, if a is not divisible by 2, we have 2H = H.

The next lemma generalizes the above example. Before stating the lemma, we

introduce the following notation.

Notation 3.2.3. For a positive integer n, let ga(n) be the largest positive integer m

dividing n such that a ≡ 0 (mod m).

Lemma 3.2.4. nH = ga(n)H.

Proof. If q1 and q2 are powers of different primes, then ga(q1q2) = ga(q1).ga(q2), so

we may assume that n is a power of a prime.

First we show that for every prime p and every k > 0, if p does not divide a

then pkH = H. It is enough to show that pH = H. The index of pG in G is p and

pG ∩H ⊆ pH, so the index of pH in H is either 1 or p.

In G, we have a = pb + k, for some 0 < b < a and 1 ≤ k ≤ p − 1. Now working

in the group H, the cosets pH and k + pH are equal since pb+ k = 0. We conclude

that the index of pH in H is 1.

Now we show that if pt divides a and pt+1 does not divide a, then pkH = ptH, for

every k > t. It is enough to show that pt+1H = ptH. Note that the index of pt+1H

in ptH is either 1 or p.

In G, we have a = ptc, for some 0 < c < a and a = pt+1b+ k, for some 0 < b < a

and 1 ≤ k ≤ pt+1 − 1. So k = ptk′ for some 1 ≤ k′ ≤ p − 1. From here we can

conclude pt+1H = k′pt + pt+1H, hence the index of pt+1H in ptH is 1.

As a corollary of the above lemma, we can give a description of H0, the connected

component of H. Note that by Fact 1.1.20 the definable subgroups of H of finite

index are the subgroups nH, and H0 =
⋂
n nH.
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Corollary 3.2.5. H0 =
⋂
m|amH.

And the next corollary gives a description of the quotients H/nH.

Corollary 3.2.6. H/nH ∼= Z/ga(n)Z.

Proof. By Lemma 3.2.4, H/nH = H/ga(n)H, so we may assume that a is divisible by

m. Let m|a. Then we have i+mH 6= j+mH for every distinct i, j ∈ {0, 1, · · · ,m−1},

and hence H/mH ∼= Z/mZ.

3.3 The Subgroup of Infinitesimals

Now we aim to describe H00, the type-connected component of H. First we

introduce K, the subgroup of infinitesimals of H, and we show that K is definably

isomorphic to an elementary substructure K ′ of G. Next, we show that K has

bounded index in H and hence includes H00. Then we give the description of H00 in

terms of K.

Consider the case where a ≡ 0 (mod n) for every n > 0. The infinitesimal

elements of H (with respect to a) are those elements smaller than all the elements

a/2, a/3, · · · , a/n, · · · .

For the general case, let rn be the unique natural number for which a ≡ rn (mod n)

and 0 ≤ rn ≤ n − 1, and consider those elements smaller than all the elements

(a − rn)/n. The group generated by these infinitesimal elements also includes their

additive inverses, the elements bigger than all the elements a − (a − rn)/n. This

observation yields us to the following definition.

Definition 3.3.1. The subgroup of infinitesimals of H is

K = {x : 0 ≤ x < (a− rn)/n for all n}

∪{x : a− (a− rn)/n < x < a for all n}.
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Lemma 3.3.2. The subgroup K ′ of G defined by

K ′ = {x : −(a− rn)/n ≤ x ≤ (a− rn)/n for all n },

is definably isomorphic to K.

Proof. The function f : K → K ′, where

f(x) =


x if 0 ≤ x < (a− rn)/n for all n

x− a if a− (a− rn)/n < x < a for all n

is a definable isomorphism between the two groups K and K ′.

Corollary 3.3.3. For every positive integer n,

K/nK ∼= Z/nZ.

Proof. One can easily check that K ′ is an elementary substructure of G, hence a

model of Presburger arithmetic.

Now we aim to show that K has bounded index in H. First we need the following:

Remark 3.3.4. If H is a definable group in a saturated model and K is a subgroup

type-defined by a countable intersection of generic sets in H, then K has index at

most continuum in H.

Proof. Let K =
⋂
nAn. We may assume that Ai−Ai ⊆ Ai−1. For each Ai, there are

finitely many translates of Ai, say Yi,1, ..., Yi,ki , which cover H. Fix b in H. For each

i let Yi,ji be such that b ∈ Yi,ji . Then the coset b + K is precisely
⋂
i Yi,ji , because if

also c ∈
⋂
i Yi,ji , then b− c ∈ Ai − Ai, for each i.

28



Lemma 3.3.5. The index of K in H is 2ℵ0.

Proof. Let An = {x : 0 ≤ x < (a − rn)/n} ∪ {x : a − (a − rn)/n < x < a}. Then

K =
⋂
nAn.

Note that each set An is generic. K is a countable intersection of generic subsets

of H. Now we use Remark 3.3.4.

K is a subgroup of H of bounded index and hence H00 ⊆ K. These two groups

are never equal since K has subgroups of finite index but H00 does not. In fact,

H00 is divisible since nH00 ⊆ H00 is also a type-definable subgroup of H of bounded

index, for every n > 1.

By Fact 1.2.5, we have div(K) =
⋂
n nK. Using the fact that H00 is divisible, one

can show that H00 ⊆ div(K) =
⋂
n nK.

We end this section by showing that these two groups are actually equal.

Proposition 3.3.6. H00 =
⋂
n nK.

Proof. We only need to show that Div(K) ⊆ H00. We use Fact 1.1.25. We point out

that Div(K) stabilizes a global f-generic type.

Let p(x) be the type saying that x is divisible by every n, x > b for every 0 < b ∈ K

such that b < (a − rn)/n for all n, and x < (a − rn)/n for every n > 0. p is generic

since the formulas in p are of the form x ≡ 0 (mod n), x > b, b ∈ K, x ≤ (a− rn)/n,

or x < (a− rn)/n. Hence p is f-generic.

Div(K) stabilizes p, since the set

{y : 0 < y < (a− rn)/n for all n > 0}

is closed under addition, and also adding by an element of Div(K) does not change

the divisibility type. Now we get Div(K) ⊆ Stab(p) = H00.
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3.4 Compact Quotients

In the previous sections we introduced H and talked about its type-definable

subgroups K, H0, and H00. In this section we consider the following diagram, and

describe the corresponding quotients.

H

K H0

H0 ∩K

H00

First, we determine the structure of H/K and K/H00. Then we describe some

other compact quotients.

In the next section we answer our main question about the compact groups H/H00

and we classify them using results of this section.

Here we give a summary of what is going to be done in this section. We are going

to show that for every choice of a, H/H00 is an extension of S1 by Ẑ, i.e. we have

the following exact sequence of compact groups:

0→ Ẑ→ H/H00 → S1 → 0.

If a is divisible by every n, then the above exact sequence splits and hence we get

H/H00 ∼= Ẑ⊕ S1.

In the other extreme case, i.e. if a is not divisible by any n > 1, H/H00 is

isomorphic to the inverse limit of the inverse system (Si)i∈N where N is ordered by

divisibility, Si ∼= S1 for every i ∈ N, and for all n1, n2 ∈ N with n1 dividing n2 there

is a map from Sn2 to Sn1 corresponding to multiplying by n2/n1.
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In the other cases we both describe H/H00 as a certain inverse limit, and as

the amalgamated direct product of two subgroups, K/H00 and H0/H00, over their

intersection.

Now, we aim to show that for every a, H/K is isomorphic to the circle group.

First we need the following two lemmas.

Lemma 3.4.1. H/K is connected.

Proof. H has no subgroup of finite index containing K, so H/K has no subgroup of

finite index. Hence H/K is a connected topological group.

Lemma 3.4.2. There exists c ∈ K such that a − c ≡ 0 (mod n) for every positive

integer n.

Proof. We show that the partial type

q = {0 < x <
a− rn
n

: n > 0} ∪ {x ≡ a (mod n) : n > 0},

is finitely satisfiable in Z. Let Σ ⊆ q be finite. Let Σ ∩ {x ≡ a (mod n) : n >

0} = {x ≡ a (mod n1), · · · , x ≡ a (mod nl)}, and let m = lcm(n1, · · · , nl). Then

rm satisfies Σ. By saturation, we conclude that q is satisfiable in G. Take c to be

a realization of q. By definition of q, c will be an element of K with the desired

property.

Now we show that H/K is isomorphic to the circle group.

Proposition 3.4.3. H/K ∼= S1.

Proof. By Lemma 3.4.1, H/K is connected. By Fact 1.2.15 it is enough to show that

the torsion subgroup of H/K is isomorphic to Q/Z. Let c ∈ K be as in Lemma

3.4.2. s(a − c)/n is a torsion element of H/K for every 0 < s < n. These elements

form a subgroup isomorphic to Q/Z. Every other torsion element is in the same class

modulo K with one of the elements of {s(a− c)/n : 0 < s < n}.

31



Now we use the material explained in Section 1.2.1 to describe compact groups

as inverse limits.

Lemma 3.4.4. K/H00 ∼= Ẑ.

Proof. Consider the family {nK/H00}n of compact subgroups of K/H00. We have⋂
n nK/H

00 = {0}, since by Proposition 3.3.6,
⋂
n nK = H00. Now we apply Fact

1.2.17. Note that by Corollary 3.3.3, K/nK ∼= Z/nZ.

We can conclude that H/H00 is an extension of S1 by Ẑ, as claimed at the begin-

ning of this section.

Corollary 3.4.5. We have the following exact sequence of compact groups:

0→ Ẑ→ H/H00 → S1 → 0.

Proof. We have the following exact sequence of compact groups:

0→ K/H00 → H/H00 → H/K → 0.

Now, use Proposition 3.4.3 and Lemma 3.4.4.

The following lemma gives the structure of the compact group H/H0.

Lemma 3.4.6. H/H0 ∼= lim←−m|a Z/mZ.

Proof. We consider the family {nH/H0}n of compact subgroups of H/H0 and use

Fact 1.2.17. So we get H/H0 ∼= lim←−nH/nH. Now, by Corollary 3.2.6 the statement

follows.

Remark 3.4.7. In particular, if a is divisible by every n, then H/H0 ∼= Ẑ.

Now we describe H0/H00. This compact group together with K/H00 that we

have already described, are essential in giving a description of H/H00. Also, we need
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to describe their intersection, (H0 ∩K)/H00. Note that (H0 ∩K)/H00 is isomorphic

to a subgroup of Ẑ, since we have the following exact sequence:

0→ (H0 ∩K)/H00 → K/H00 → K/(H0 ∩K)→ 0,

and also by Lemma 3.4.4, K/H00 ∼= Ẑ.

Lemma 3.4.8. H0 ∩K =
⋂
m|amK.

Proof. By Corollary 3.2.5, H0 =
⋂
m|amH.

In the general case, nH ∩K = ga(n)K, so if m|a then we have mK = mH ∩K.

Hence we get H0 ∩K =
⋂
m|amK.

In determining the structure of (H0 ∩K)/H00, we need (a corollary of) the fol-

lowing lemma.

Lemma 3.4.9. H0 + nK = ga(n)H.

Proof. First we show that the left side is included in the right side. Let x ∈ H0+nK.

Then x = h+nk for some h ∈ H0 and k ∈ K. We have H0 ⊆ ga(n)H, so there exists

h1 ∈ H such that h = ga(n)h1. Now, x = ga(n)h1 + nk. Also note that ga(n)|n.

Hence x ∈ ga(n)H.

Now we show that right side is included in the left side. Fix h ∈ H. We need

to show that ga(n)h ∈ (
⋂
m|amH) + nK, or equivalently, there exists k ∈ K such

that ga(n)h − nk ∈
⋂
m|amH. So, we need to show that the following system of

congruences has a solution k in K for z.

{ga(n)h ≡ nz (mod m)}m|a.

We may assume that m is a power of a prime and gcd(m,n) = 1.

The above system is finitely satisfiable in K and hence has a solution by com-

pactness.
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Corollary 3.4.10. (H0 ∩K) + nK = ga(n)K.

Proof. We have:

(H0 ∩K) + nK = (H0 + nK) ∩K = ga(n)H ∩K = ga(n)K,

using Lemma 3.4.9. Note that the last equality holds because ga(n) divides a.

In the following proposition, we give a description of (H0 ∩K)/H00 as an inverse

limit.

Proposition 3.4.11. (H0 ∩ K)/H00 ∼= lim←−n∈N ga(n)Z/nZ where N is ordered by

divisibility, and the maps between ga(n)Z/nZ’s are the natural maps.

Proof. Consider the family {(H0 ∩ nK)/H00}n and use Fact 1.2.17. This gives:

(H0 ∩K)/H00 ∼= lim←−
n

(H0 ∩K)/(H0 ∩ nK).

Using the second isomorphism theorem for topological groups we have:

(H0 ∩K)/(H0 ∩ nK) ∼= ((H0 ∩K) + nK)/nK

∼= ga(n)K/nK (by Corollary 3.4.10)

∼= ga(n)Z/nZ (by Corollary 3.3.3).

Recall the definition of the group of p-adic integers Zp from Section 1.2.1, and

recall that Ẑ ∼=
∏

p prime Zp.

In the following remark, we give an explicit description of (H0 ∩ K)/H00 as a

subgroup of Ẑ.
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Remark 3.4.12. Let P1 be the set of all primes that do not divide a, and P2 the set

of all primes that divide a but do not infinitely divide a. Then

(H0 ∩K)/H00 ∼=
⊕
p∈P1

Zp ⊕
⊕
q∈P2

qkqZq,

where kq is so that qkq divides a and qkq+1 does not divide a.

We need the following variant of Lemma 3.4.9 and Corollary 3.4.10, in order to

give the structure of H0/H00.

Lemma 3.4.13. If n1|n2 then

((H0 ∩K) ∩ n1K) + n2K = lK,

where l = lcm(n1, ga(n2)).

Proof. First note that n1|n2 and ga(n2)|n2, so l|n2 and hence n2K ⊆ lK. Also,

ga(n2)|a, so (
⋂
m|amK) ⊆ ga(n2)K. So we get

(
⋂
m|a

mK) ∩ n1K ⊆ ga(n2)(K) ∩ n1K = lK.

For the other direction, we need to show that the following system of congruences

has a solution for z in K:

{lk ≡ n2z (mod m)}m|a or m=n1

n1|l and n1|n2, so we can remove the condition m = n1. In fact, if we have lK ⊆

(
⋂
m|amK) + n2K, then we automatically have lK ⊆ (

⋂
m|amK) ∩ n1K + n2K.

By Lemma 3.4.9, (
⋂
m|amK) + n2K = ga(n2)K, and since ga(n2)|l, we have

lK ⊆ ga(n2)K.
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Remark 3.4.14. We have

H0/(H0 ∩ nK) ∼= ga(n)H/nK.

In fact, the following two exact sequences are isomorphic:

0→ (H0 ∩K)/(H0 ∩ nK)→ H0/(H0 ∩ nK)→ H0/(H0 ∩K)→ 0,

0→ ga(n)K/nK → ga(n)H/nK → H/K → 0.

Proof. We have:

H0/(H0 ∩ nK) ∼= (H0 + nK)/nK = ga(n)H/nK.

The first isomorphism holds by the second isomorphism theorem for topological

groups, and the second holds using Lemma 3.4.9.

For any a, H0/H00 is a connected compact group and hence an inverse limit of

compact connected Lie groups, by Fact 1.2.15.

In the following proposition, we describe the structure of these compact groups,

which depends on the divisibility type of a. Note that in the case where a is not

divisible by any n > 1, H0 = H and hence H0/H00 = H/H00.

Proposition 3.4.15. H0/H00 ∼= lim←−n∈N ga(n)H/nK. For n1, n2 ∈ N with n1|n2,

the map ga(n2)/n2K → ga(n1)/n1K has kernel isomorphic to lZ/n2Z, where l =

lcm(ga(n2), n1).

Proof. Consider the family {(H0 ∩ nK)/H00}n of subgroups of H0/H00. Using Fact

1.2.17 we get:

H0/H00 ∼= lim←−
n

H0/(H0 ∩ nK).
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Note that H0/(H0 ∩ nK) ∼= ga(n)H/nK by Remark 3.4.14.

Now we describe the maps ga(n2)/n2K → ga(n1)/n1K for n1|n2. Consider the

following exact sequence:

0→ (H0 ∩ n1K)/(H0 ∩ n2K)→ H0/(H0 ∩ n2K)→ H0/(H0 ∩ n1K)→ 0.

The groups (H0 ∩ n1K)/(H0 ∩ n2K) are finite and are the kernels of the maps

ga(n2)/n2K → ga(n1)/n1K in the inverse limit.

Now we compute these kernels. We have:

(H0 ∩ n1K)/(H0 ∩ n2K) = ((
⋂
m|a

mK) ∩ n1K)/((
⋂
m|a

mK) ∩ n2K).

By the second isomorphism theorem for topological groups we get:

((
⋂
m|a

mK) ∩ n1K)/((
⋂
m|a

mK) ∩ n2K) ∼= (n2K + ((
⋂
m|a

mK) ∩ n1K))/n2K.

Now by Lemma 3.4.13,

n2K + ((
⋂
m|a

mK) ∩ n1K) = lK.

where l = lcm(ga(n2), n1). So,

((
⋂
m|a

mK) ∩ n1K)/((
⋂
m|a

mK) ∩ n2K) ∼= lK/n2K.

The following lemma is crucial for our main result. It gives the structure of the

compact groups H/nK.
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Lemma 3.4.16. For every n > 0, we have

H/nK ∼= Z/ga(n)Z⊕ S1.

Proof. Consider the following exact sequence:

0→ ga(n)H/nK → H/nK → H/ga(n)H → 0.

We have

ga(n)H/nK ∼= H/K ∼= S1,

by Remark 3.4.14 and Proposition 3.4.3, and

H/nH ∼= Z/ga(n)Z,

by Corollary 3.2.6.

Consider the inclusion homomorphism from H/ga(n)H to H/nK. Since it is

continuous and the composition with H/nK → H/ga(n)H is identity of H/ga(n)H,

the above exact sequence splits as a sequence of topological groups and the result

follows.

Remark 3.4.17. In particular, if a is divisible by n, then H/nK ∼= Z/nZ⊕ S1, and

if no prime divisor of n divides a, then H/nK ∼= S1.

Before getting to the description of H/H00 in the general case in the next section,

we describe H/H00 in one of the extreme cases.

By Corollary 3.3.6, we have the following exact sequence:

0→ Ẑ→ H/H00 → S1 → 0.

Now we restrict our attention to the case where a is divisible by every n.
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In this case, H00 = H0 ∩K =
⋂
n nK and hence we have

H0/H00 = H0/(H0 ∩K).

Note that by the second isomorphism theorem for topological groups,

H0/(H0 ∩K) ∼= (K +H0)/K.

We have K +H0 = H by Lemma 3.4.9, and hence

H0/H00 = H0/(H0 ∩K) ∼= H/K ∼= S1.

The last congruence holds by Proposition 3.4.3. In this case we also have

H/H0 ∼= Ẑ.

So we have the following exact sequence:

0→ H0/H00 → H/H00 → H/H0 → 0.

The map H0/H00 → H/H00 is inclusion hence continuous. The composition of this

map with the map H/H00 → S1 gives the identity of S1.

Hence in the case where a is divisible by every n, the exact sequence

0→ Ẑ→ H/H00 → S1 → 0

splits as a sequence of compact groups. We conclude that in this case,

H/H00 ∼= Ẑ⊕ S1.
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3.5 Main Result

In this section we classify the compact groups H/H00 for different a with different

divisibility types.

First we describe each of these groups as a certain inverse limit using Fact 1.2.17

and Lemma 3.4.16. Then we describe them as the amalgamated direct product of

the subgroups K/H00 and H0/H00 over their intersection.

Theorem 3.5.1. We have

H/H00 ∼= lim←−
n∈N

Yn,

where the set N is ordered by divisibility, Yn = Z/ga(n)Z ⊕ S1 for every n ∈ N, and

for every n1, n2 ∈ N with n1 dividing n2, the map from Yn2 to Yn1 is the map sending

(x+ ga(n2)Z, s) to (x+ ga(n1)Z, (ga(n2)/ga(n1))s).

Proof. Consider the family {nK/H00}n of closed subgroups of H/H00. By Fact 1.2.17

we get:

H/H00 ∼= lim←−
n

H/nK.

Now, apply Lemma 3.4.16.

At the end of Section 3.4, we talked about the extreme case where a is divisible

by every n.

For the other extreme case where a is not divisible by any n > 1, H/H00 is

isomorphic to the inverse limit of the inverse system (Si)i∈N where N is ordered by

divisibility, Si ∼= S1 for every i ∈ N, and for all n1, n2 ∈ N with n1 dividing n2 there

is a map from Sn2 to Sn1 corresponding to multiplying by n2/n1, as we pointed out

at the beginning of section 3.4.

Recall the definition of (topological) amalgamated direct products from Section

1.2.2.
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Theorem 3.5.2. H/H00 is the amalgamated direct product of K/H00(∼= Ẑ) and

H0/H00 over their intersection L = (H0 ∩K)/H00:

H/H00 ∼= Ẑ×L H0/H00.

Proof. H/H00 is generated algebraically by H0/H00 ∪ K/H00 since H0 + K = H.

Suppose that D is a topological group and Φ1 : H0/H00 → D and Φ2 : K/H00 → D

are continuous homomorphisms which agree on (H0 ∩ K)/H00 and also assume

Φ2(K/H
00) ⊆ CD(Φ1((H

0 ∩ K)/H00)). Then by Fact 1.2.19 there exists a homo-

morphism Φ : H/H00 → D extending Φ1 and Φ2. Φ is continuous since by Remark

1.2.20, it is the sum of two continuous functions.
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CHAPTER 4

DEFINABLE COMPACTIFICATIONS

4.1 The Bohr Compactification

In this section we recall some facts about the Bohr compactification of a topo-

logical group, in particular a locally compact abelian group. Later in this chapter

we restrict our attention to the case of discrete abelian groups, and after recalling

the notion of a definable compactification, we discuss when topological and definable

compactifications coincide.

Again, all the topological groups we are considering are Hausdorff, unless stated

otherwise.

First, we recall the definition of a compactification of a topological group. For

more explanation see [11] or [31].

Definition 4.1.1. A compactification of a topological group G is a compact topological

group C together with a continuous homomorphism f : G→ C with dense image.

Also recall that the universal compactification of a topological group is called the

Bohr compactification, and is denoted by bG.

Definition 4.1.2. If f : G → C is a compactification which is universal among

compactifications of G, i.e. whenever g : G → K is another compactification there

exists a unique homomorphism h : C → K such that g = h ◦ f , then f : G → C is

called the Bohr compactification of G.

The Bohr compactification of any topological group G exists and is unique up to

isomorphism.
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Remark 4.1.3. For a non-abelian topological group G, bG might not be a very useful

object. It might even be trivial for non-trivial G.

Recall from Definition 1.2.8 that for an abelian group G, Ĝ (the dual of G) is

the group of continuous characters of G. One can define a topology on Ĝ, related to

the topology on G, turning Ĝ into a topological group. This topology is defined as

follows.

For any open subset V ⊆ T and any compact subset K ⊆ G, define

U(K,V ) = {γ ∈ Ĝ : γ(K) ⊆ V }

and let this act as a sub-basis for a topology on Ĝ. This topology is known as the

compact-open topology on Ĝ.

In the remainder of this section we restrict our attention to locally compact abelian

groups for which nice facts about the Bohr compactification hold.

Definition 4.1.4. A topological group which is locally compact and abelian is called

an LCA group.

In the case where G is an LCA group, the Bohr compactification of G can be

described using characters. For proofs of the following facts see [22].

Remark 4.1.5. If G is an LCA group, the compact-open topology makes Ĝ an LCA

group.

Fact 4.1.6. (Pontryagin duality theorem) Let G be an LCA group. Then the map

τ : G → ˆ̂
G such that τ(g)(γ) = γ(g) for g ∈ G, γ ∈ Ĝ is an isomorphism of

topological groups.

Remark 4.1.7. For all g1, g2 ∈ G with g1 6= g2, there is a character γ ∈ Ĝ such that

γ(g1) 6= γ(g2). As a consequence, if G is non-trivial then Ĝ is non-trivial. We say

that the set of continuous characters separates points.
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For an LCA group G which is compact,
ˆ̂
G (∼= G) is also compact. In some sense,

ˆ̂
G is compact because Ĝ is discrete. In general, if we take Ĝ as a group assigned

with the discrete topology (denoted Ĝd), then its dual will be compact. For any LCA

group G, the dual of Ĝd is the Bohr compactification of G.

G maps injectively into bG in a canonical way. The following fact illustrates the

nature of this map.

Fact 4.1.8. Let G be an LCA group and let σ : G → bG be the natural map from

G into bG defined by σ(g)(γ) = γ(g) for g ∈ G, γ ∈ Ĝ. Then σ is an injective

continuous homomorphism of groups, and σ(G) is dense in bG.

4.2 Discrete Abelian Groups

Throughout this section we assume that G is a discrete abelian topological group.

Remark 4.2.1. Ĝ = Hom(G,T), since every map from a discrete group to a topo-

logical space is continuous.

We describe the compact-open topology on Ĝ. Recall that the sets U(K,V ) for

V ⊆ T open and K ⊆ G compact, form a sub-basis for the compact-open topology

on Ĝ. Note that every compact subset of G is finite. Let K = {g1, · · · , gm}. We

have:

U(K,V ) = {γ ∈ Ĝ : γ(K) ⊆ V }

= {γ ∈ Hom(G,T) : γ(K) ⊆ V }

=
m⋂
i=1

{γ ∈ Hom(G,T) : γ(gi) ∈ V }.

Remark 4.2.2. bG = Hom(Hom(G,T),T).

Now we describe the compact-open topology on bG. Note that bG is the dual of

Ĝd. Since Ĝd is discrete, a subset of Ĝd is compact iff it is finite. The sets of the
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form

U(K,V ) =
n⋂
i=1

{γ ∈ Hom(Hom(G,T),T) : γ(fi) ∈ V },

for V ⊆ T open and K = {f1, · · · , fn} ⊆ Hom(G,T) form a sub-basis for the

compact-open topology on bG.

In the following example we describe the compact open topology on the dual and

the Bohr compactification of the discrete group of integers.

First, note that Hom(Z,T) ∼= T, and hence bZ ∼= Hom(T,T). We identify

Hom(Z,T) with T, and f ∈ Hom(Z,T) with f(1) ∈ T.

Example 4.2.3. Consider the discrete abelian group Z of integers.

The sets of the form

n⋂
i=1

{γ ∈ Hom(T,T) : γ(ti) ∈ V }

for t1, · · · , tn ∈ T and V ⊆ T open, form a sub-basis for the compact-open topology

on bZ.

A basic open subset of bZ is a finite intersection of sets of the form

{γ ∈ Hom(T,T) : γ({t1, · · · tm}) ⊆ V },

where t1, · · · tm ∈ T and V ⊆ T is open, i.e. a set of the form

m⋂
j=1

nj⋂
i=1

{γ ∈ Hom(T,T) : γ(tji ) ∈ Vi},

where V1, · · · , Vm ⊆ T are open and tji ∈ T.

Note that the identity of bZ is the homomorphism 1 : T → T, x 7→ 1. We have

the following:

1 ∈
⋂m
j=1

⋂nj

i=1{γ ∈ Hom(T,T) : γ(tji ) ∈ Vi} iff 1 ∈ Vj for every j = 1, · · · ,m.
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Remark 4.2.4. A basic neighborhood of identity in bG is a set of the form

m⋂
j=1

nj⋂
i=1

{γ ∈ Hom(Hom(G,T),T) : γ(tji ) ∈ Vj},

where tji ∈ T, and V1, · · · , Vm ⊆ T are basic open neighborhoods of identity.

Proof. Similar to Example 4.2.3.

4.3 Topological vs. Definable Compactifications

In this section, first we recall some definitions and facts about definable com-

pactifications from [10]. Then we formulate a question that we answer in the next

section.

Let M and M be as in Section 1.1. By a set definable in M we mean a set

definable in Mn for some n > 1.

Definition 4.3.1. Let Y be a definable set in M and C a compact space. By a

definable map f from Y to C we mean a map f such that for any disjoint closed

subsets C1, C2 of C there is a definable subset Y ′ of Y such that f−1(C1) ⊆ Y ′ and

Y ′ ∩ f−1(C2) = ∅.

The following is a reformulation of the definition, in case we are working in a

saturated model.

Remark 4.3.2. Let X be a definable set in M . Suppose C is a compact space, and

f : X → C. Then f is a definable map, if for any closed subset D of C, f−1(D) is

type-definable over M .

The notion of a definable map from a definable group to a topological space can

be used to define an analogue of topological compactification for definable groups, as

follows.
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Definition 4.3.3. Let G be a group definable in M . By a definable compactification

of G we mean a definable homomorphism from G to a compact group C with dense

image.

For a set Y definable in M , we set Y ∗ = Y (M).

Fact 4.3.4. Suppose Y is a definable set in M . Suppose f : Y → C is a definable

map from Y to a compact space C. Then f extends uniquely to an M-definable map

f ∗ : Y ∗ → C.

Remark 4.3.5. In the proof of the above fact, the definition of f ∗ is as follows. Let

c ∈ Y ∗ and let p(y) = tp(c/M). For ϕ(y) a formula in p, let f(ϕ(M)) denote the

closure of f(ϕ(M)) in C. One can show that
⋂
ϕ∈p f(ϕ(M)) is a singleton in C.

f ∗(c) is defined to be the unique element in
⋂
ϕ∈p f(ϕ(M)).

Fact 4.3.6. Let G be a group definable in M . Then there is a (unique) universal

definable compactification of G, and it is precisely G∗/(G∗M)00 (where the homomor-

phism from G to G∗/(G∗M)00 is that induced by the identity embedding of G in G∗).

Remark 4.3.7. If G is a definable group with all of its subsets definable, then the uni-

versal definable compactification of G and the Bohr compactification of G considered

as a discrete topological group coincide.

Example 4.3.8. If M is any expansion of (Z,+) in which every subset of Z is

definable, then Z∗/(Z∗M)00 ∼= bZ. For example if M is the group of integers with a

predicate for every subset of Z.

Now one can ask the following question.

Question 4.3.9. What is a sufficient set of predicates to add to (Z,+) to get bZ as

the universal definable compactification in the resulting structure?

We give an answer to this question in the next section.
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4.4 Definable Compactifications of Abelian Groups

Recall from Fact 4.3.6 that the universal definable compactification of G is related

to the type-connected component of G. In [2] an expansion M of (Z,+) by one

predicate P is constructed for which the type-connected component is not equal to

the connected component, but the type-connected component is not computed. Note

that this implies that Th(Z,+, P ) is not stable.

We also know that for any expansion of (Z,+) in which every subset of Z is

definable, the universal definable compactification is bZ. See Remark 4.3.7.

For an abelian group G, we ask in what expansions is the universal definable

compactification equal to bG.

In the following proposition, we compute the type-connected component of G, in

case M is a model in which every subset of G is definable. Our goal is to find out

which subsets of G are needed in order for (G∗)00M = ker(σ∗) to be type-definable in

a structure.

Proposition 4.4.1. Let G be an abelian group and let M be an expansion of (G,+)

in which every subset of G is definable. Then we have

(G∗)00M =
⋂
U

(σ∗)−1(U),

where the intersection is over all the basic neighborhoods U of identity in bG, and

σ∗ : G∗ → bG is the unique extension of the natural homomorphism σ : G→ bG.

Proof. Let c ∈ G∗. Recall that by Remark 4.3.5 we have σ∗(c) =
⋂
ϕ∈p σ(ϕ(M)),

where p(y) = tp(c/M), and σ(ϕ(M)) denotes the closure of σ(ϕ(M)) in bG. Now we

compute the kernel of σ∗. Note that ker(σ∗) = (G∗)00M and G∗/(G∗)00M
∼= bG.

σ∗(c) = 1 iff for all ϕ ∈ tp(c/M), 1 ∈ σ(φ(M)). Note that for ϕ ∈ tp(c/M) we

have

σ(ϕ(M)) = {σ(n) ∈ Hom(Hom(G,T),T) : n ∈ ϕ(M)},
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and 1 ∈ σ(ϕ(M)) iff every basic neighborhood of identity in bG intersects σ(ϕ(M)).

Let Ot,V = {γ ∈ Hom(Hom(G,T),T) : γ(t) ∈ V }. By Remark 4.2.4, any basic

neighborhood of identity in bG is of the form
⋂m
j=1

⋂nj

i=1Otji ,Vj
.

For σ(ϕ(M)) to intersect
⋂m
j=1

⋂nj

i=1Otji ,Vj
, there must exist n ∈ ϕ(M) so that

σ(n) ∈
m⋂
j=1

nj⋂
i=1

Otji ,Vj
.

c ∈ ker(σ∗) iff for every ϕ ∈ tp(c/M), and for every V1, · · · , Vm ⊆ T open all

containing 1,
m⋂
j=1

nj⋂
i=1

(σ−1(Otji ,Vj
) ∩ ϕ(M)) 6= ∅.

So c ∈ ker(σ∗) iff for every ϕ ∈ tp(c/M),

(
⋂
t,V

(σ−1(Ot,V ))∗) ∩ (ϕ(M))∗ 6= ∅,

where t ∈ T and V ⊆ T is a basic open neighborhood of identity, and hence

ker(σ∗) =
⋂

t∈T,V open

(σ−1(Ot,V ))∗,

where t ∈ T and V ⊆ T is a basic open neighborhood of identity.

Theorem 4.4.2. Let M be the expansion of (G,+) by the predicates σ−1(Ot,V ) for

t ∈ T and V ⊆ T basic open neighborhood of identity. Then the universal definable

compactification of M is bG.

Proof. Since all the sets σ−1(Ot,V ) are definable in M , the subgroup
⋂
t,V (σ−1(Ot,V ))∗

is type-definable in M .

By proof of Proposition 4.4.1, we know that Z∗/
⋂
t,V (σ−1(Ot,V ))∗ is isomorphic

to bZ. Hence (Z∗)00M is
⋂
t∈T,V open(σ−1(Ot,V ))∗, and the result follows.
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In the following example we consider the special case of the group of the integers.

Example 4.4.3. Since Hom(Z,T) ∼= T, we have

Ot,V = {γ ∈ Hom(T,T) : γ(t) ∈ V }.

For t ∈ T, let ft : Z → T be defined by n 7→ tn. One can easily see that

σ−1(Ot,V ) = f−1t (V ).

Corollary 4.4.4. Let M be the expansion of (Z,+) by the predicates f−1t (V ) for

t ∈ T and V ⊆ T basic open neighborhood of identity. Then the universal definable

compactification of M is bZ.

One can ask questions about the properties of the above structure, for example

the following:

Question 4.4.5. Is the theory Th(Z,+, f−1t (V ))t,V (where ft : Z→ T, n 7→ tn) NIP?

Note that Th(Z,+, f−1t (V ))t,V is an expansion of Th(Z,+, P ) as mentioned from

[2] at the beginning of this section, and hence Th(Z,+, f−1t (V ))t,V is not stable.
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