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Superconducting vortices and magnetic skyrmions are two types of mesoscale

magnetic vortices that arrange themselves into periodic lattices in condensed matter

systems. One method to study these structures is small angle neutron scattering

(SANS), which is uniquely capable of resolving magnetic order throughout the bulk of

a crystal in reciprocal space. Through careful modelling, the information that SANS

provides can be used to extract more than just the magnetic structure, including the

fundamental energetics and symmetries which are at play. This dissertation discusses

three projects of this nature.

Skyrmions are of direct interest for future spintronic memory applications due to

their intrinsic topological protection. Measurements of the energy barrier associated

with this protection have often relied on generating metastable configurations of

skyrmions which decay away over an observable period of time. We have developed

a method of measuring the energy barrier in equilibrium (not metastable) skyrmion

lattices (SkLs) by exploiting a hysteresis in the SANS signal of the prototypical

skyrmion material MnSi. By modelling this hysteresis with a simple Preisach free

energy and comparing it with atomistic spin simulations, the activation barrier is

found to be several eV/ skyrmion. Additionally, it is confirmed that the SkL forms

progressively in domains several hundred skyrmions in size.



Allan Leishman

The most promising applications of skyrmions involve using them as bits in a

racetrack memory device. Such devices will likely drive the skyrmions into motion

by using electric currents, and while the current density required to move skyrmions

is substantially less than what is required to move domain walls, it still results in

significant power consumption. We have sought to develop a new skyrmion device

architecture to more efficiently produce SANS-visible SkL motion. By exploiting the

Magnus force that current exerts on the SkL, we believe our new device will drive

the SkL into a rotation at lower current densities than previously reported. Since

rotations are visible in reciprocal space, this motion will be observable with SANS.

Additionally, by measuring the rotation as a function of current density, we will be

able to directly map the SkL-crystal lattice interaction potential and measure elastic

properties of the SkL.

Superconducting vortex lattices (VLs) are highly sensitive to anisotropies in the

underlying superconductivity. In the two-band superconductor MgB2, orientation of

the triangular VL is dictated by competing 6 and 12 fold anisotropies in the ab crystal

plane. When these two contributions are comparable in energy, the VL fragments

into counter rotated domains in the so called L phase. We have observed that when

the VL is rotated out of the ab plane, the L phase rapidly shrinks in size. Above a

critical rotation angle Ω0, the phase disappears entirely, which can be explained by

the 12 fold term in the superconducting anisotropy reversing sign.
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CHAPTER 1

MAGNETIC VORTICES IN CONDENSED MATTER

In this chapter I will provide a brief introduction to two types of mesoscale mag-

netic vortices that form in condensed matter systems: magnetic skyrmions and su-

perconducting vortices. I will discuss the fundamental physics that leads to their

formation, motivate their relevance to technological applications, and summarize the

basic science questions surrounding these structures that this dissertation seeks to

answer. These important questions are highlighted in bold.

1.1 Superconducting Vortex Lattices

In this section I will provide a brief introduction to superconductivity, one of the

most fascinating and complex discoveries in the 20th century. I will summarize three

models of superconductivity, the London Model, the Ginzburg Landau Model, and

BCS Theory, and by combining all three motivate the emergence of the supercon-

ducting vortex lattice (VL). I will then provide a brief overview of the properties and

behaviors of VLs, and finally introduce the novel VL of MgB2, which is the subject

of research in Chapter 4.

If not otherwise cited, the material in this section is based on the superconduc-

tivity chapters of Simon [122], Kittel [69], Ashcroft and Mermin [9], and Annett

[8].
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Figure 1.1. Superconducting phase transition of tin measured by Onnes.
Here, temperature is determined from the vapor pressure of the liquid
helium bath. Tc is observed at ∼464 mm Hg, or ∼3.7 K. From Sizoo et

al.[123]

1.1.1 Introduction to Superconductivity

In 1911, Heike Kammerlingh Onnes observed a new phase of matter while cryo-

genically cooling mercury with liquid helium. When the temperature of the solid

mercury cooled below 3 K, its electrical resistance dropped well below both what

Onnes could measure and what was predicted from the otherwise linear resistivity

of the metal [109]. It was later recognized that this rapid increase of conductivity

was actually a phase transition into an entirely new phase which was given the name

“superconductivity.” In the following years, other materials were confirmed to host

superconducting phases, including lead below the critical temperature (Tc) ∼7 K and

tin below 3.7 K (Fig. 1.1).
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These phases exhibited a collection of novel properties, the first of which being

zero resistivity. This lack of resistance allowed persistent currents to remain in a

superconductor without the need for a maintained applied voltage. This arguably

was (and still is) the most attractive property of superconductors as it allows for the

construction of high current devices for applying magnetic fields and transmitting

power with minimal energy losses as long as the material is kept cooled below Tc.

Superconductors also demonstrated a peculiar opposition to magnetic fields, for

whenever a superconductor was placed in an applied field H (or indeed if H was

increased around a superconductor), the superconductor would become exactly op-

positely magnetized such that the total magnetic field B within the superconductor

was zero. Beyond that, if a conventional material was placed in a constant magnetic

field and cooled below Tc, the superconductor would once again become magnetized

and expel the field B (Fig. 1.2). This active expulsion of constant field demon-

strates that a superconductor is not a zero resistance metal responding to a change

in flux according to Faraday’s Law, but something unique entirely. This phenomenon

was named the Meissner effect after Walther Meissner (and Robert Ochsenfeld) who

discovered it in 1933 [96].

It is important to note that the perfect diamagnetism of the Meissner effect can

only be maintained up to a small applied field. Above its critical field Hc each

superconductor reverts to the normal state, and indeed for all superconductors there

exists a continuous curve in the (H,T ) plane which separates the superconducting

phase from the normal phase. A cartoon of this phase diagram is shown in Fig 1.3.

Along this phase boundary, a second-order transition between the two phases occurs.

1.1.1.1 The London Model

One of the first successful attempts to model the behavior of a superconductor

under the influence of electromagnetic fields was put forth by Heinz and Fritz London
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B = 0

Above  Tc Below  Tc

Figure 1.2. Magnetic field distribution before and after a superconducting
phase transition. Since flux is conserved, the field density becomes greater
in the region immediately outside the superconducting material. This

increase in external field density is how Meissner and Ochsenfeld were able
to confirm the effect.

superconducting

HC

T

H

TC

normal

Figure 1.3. Superconducting phase diagram of a (type I) superconductor.
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in 1935. They proposed that while charges flowing in conventional conductors follow

Ohms Law,

j⃗ = σE⃗ (1.1)

charges in a superconductor should instead be constantly accelerating when electric

field is applied, as if they are free particles

∂j⃗

∂t
=
ne2

m
E⃗ (1.2)

where n, e, and m are the density, charge, and mass of charges, respectively. The

first London equation can be found by taking the curl of both sides

∂

∂t
(∇× j⃗) =

ne2

m
(∇× E⃗) (1.3)

and by applying Faraday’s Law

∇× E⃗ = −∂B⃗
∂t

(1.4)

∂

∂t
(∇× j⃗ +

ne2

m
B⃗) = 0 (1.5)

so that we find

∇× j⃗ = −ne
2

m
B⃗ (1.6)

One can gain more insight into the predictions of these equations by using Ampere’s

Law1

∇× B⃗ = µ0j⃗ (1.7)

1Assuming no displacement current.
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to adjust Equation 1.6

∇× (∇× B⃗) = −ne
2µ0

m
B⃗ (1.8)

Next, by using the vector derivative identity for the curl of a curl

∇(∇ · B⃗)−∇2B⃗ = −ne
2µ0

m
B⃗ (1.9)

and finally by using Gauss’ Law for magnetism we are left with

∇2B⃗ =
ne2µ0

m
B⃗ (1.10)

Solutions to this equation take the form of exponentials, and if we consider for in-

stance the z component of B

Bz = A ez/λL + C (1.11)

where

λL ≡
√︃

m

µ0ne2
(1.12)

it is clear that any solutions for a finite volume of superconductor must require B

to exponentially decay of field upon entering the superconductor. The lengthscale of

this decay is set by λL, and is named the “penetration depth” as it defines roughly

how far the magnetic field B can penetrate into the superconductor. To get an

estimate of the size of λL, let us consider a free electron gas with density of 1029

m−3, which is roughly the order of magnitude of valence electron density in common

metals [69]. Plugging in the free electron mass and charge, we find that λL ∼ 10−8

m. Therefore, the field is truly confined to the outermost shell of the superconductor.

Any macroscopic measurement of a London superconductor would therefore observe

perfect diamagnetism as Meissner and Ochsenfeld did.
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It is also sometimes useful to express the current j⃗ in terms of the vector potential

A⃗, where ∇× A⃗ ≡ B⃗. One suitable choice of gauge, called the London gauge, sets

∇ · A⃗ = 0 (1.13)

so that we are left with

j⃗ = −ne
2µ0

m
A⃗ (1.14)

One final, special case worth considering is that of a small region of normal phase

being enclosed by a superconductor. If we place a normal phase region along an

infinitesimal line at the origin aligned with z, then from symmetry the field must

point along z and cylindrical symmetry applies. Therefore, we can express 1.10 as

∂2Bz

∂r2
+

1

r

∂Bz

∂r
− Bz

λ2L
= 0 (1.15)

This Bessel’s Equation with n = 0, and has a solution in the form of the Bessel

function J0(x)

Bz(r) = CJ0(r/λL) (1.16)

Using the large x and small x approximations of J0, we can get a better picture

of the field profile in this structure. Near the normal region at r = 0, we have a

concentrated region of field density

Bz(r) ≈ C ln
λL
r

r << λ (1.17)

and far from this point we once again have an exponential decay of field set by λL.

Bz(r) ≈ Ce
− r

λL r >> λ (1.18)
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Figure 1.4. The London vortex.

This structure is called the “London vortex” (Fig. 1.4), and while it is not ener-

getically favorable in the superconductors we have discussed so far, it will become

relevant in later sections.

1.1.1.2 The Ginzburg Landau Model

Ginzburg and Landau attempted to take a more thermodynamic approach to

modelling superconductivity by introducing a quantity called the order parameter ψ

[76]. We now know |ψ|2 to be a direct measure of the density of superconducting

charge carriers, but for simplicity it can just be considered as a complex2 quantity

that distinguishes between the normal phase (ψ = 0) and the superconducting phase

(ψ ̸= 0). This value can vary throughout the superconducting phase pocket, but as we

approach superconducting phase boundary, ψ should become vanishingly small. Since

the superconducting phase transition is second order, the energy of the two phases

must be equal along the phase boundary. Therefore, the free energy separation of

these two phases fsc − fnorm = 0 at all points all along the superconducting dome.

If we take the special case of H = 0, then the free energy separation of the two

2Complex as in ψ = a+ bi, not complicated, although it is that too.
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phases just within the superconducting phase can be expanded in terms of the order

parameter as follows:

fsc(T,H = 0)−fnorm(T,H = 0) = a(T )|ψ(T )|2+ b(T )

2
|ψ(T )|4− h̄2

2m
|∇ψ(T )|2 (1.19)

Here, we have excluded odd terms in ψ since the free energy must be a real (measur-

able) quantity, and higher order terms because near Tc the order parameter should be

small. Finally, if we assume the simplest spacial scenario, a uniform superconductor

for all space, then symmetry requires that ψ should be constant for all space and

∇ψ = 0. Therefore,

fsc(T,H = 0)− fnorm(T,H = 0) = a(T )|ψ(T )|2 + b(T )

2
|ψ(T )|4 (1.20)

Next, to find the most energetically favorable solution of this equation, we will look

for |ψ| such that the free energy of the superconducting phase (and therefore also

fsc − fnorm
3.) is minimized. Taking a derivative to look for minima with respect to

|ψ|, we get

∂(fsc(T,H = 0)− fnorm(T,H = 0))

∂|ψ(T )|
= 0 = 2a(T )|ψ(T )|+ 2b(T )|ψ(T )|3 (1.21)

0 = 2|ψ(T )| [a(T ) + b(T )|ψ(T )|2] (1.22)

Here we find two roots of the equation, ψ(T ) = 0 and |ψ(T )|2 = −a
b
. Taking one final

derivative to determine which roots are minima, we find.

0 < 2a(T ) + 6b(T )|ψ(T )|2 (1.23)

3The free energy difference of the two phases must also be minimized as fnorm is not and cannot
be a function of ψ
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ψψ

a > 0 a < 0

F F

+√(a/b)-√(a/b)

∆E

Figure 1.5. Ginzburg Landau model of the superconducting phase
transition, with the free energy landscape above Tc (a > 0) and below Tc

(a < 0) shown. The energy of condensation ∆E is also shown.

Therefore, ψ(T ) = 0 will be a minimum only when a(T ) > 0, and |ψ(T )|2 = −a
b

will only be a minimum when a(T ) < 0. Since the order parameter ψ serves as

our “measure” of superconductivity in an a material, we can now recognize that

the material transitions from the normal state to the superconducting state when a

switches from positive to negative (Fig. 1.5). Therefore a(T ) must change signs from

positive to negative as the sample is cooled through Tc. One simple and dimensionless

functional form that accomplishes this is

a(T ) = a0[
T

Tc
− 1] (1.24)

where −a0 is the minimal value that a(T ) takes at zero temperature. When a(T )

crosses zero, the free energy of the system is reduced by an amount called the “energy

of condensation.” This is illustrated as ∆E in Fig. 1.5. The significance of this name

will be discussed in Section 1.1.1.3.

One final piece of insight that we can gain from Ginzburg Landau theory is to
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once again return to Equation 1.5 in the limit of small ψ (i.e. T close to but less

than Tc).

fsc(T,H = 0)−fnorm(T,H = 0) = a(T )|ψ(T )|2+ b(T )

2
|ψ(T )|4− h̄2

2m
|∇ψ(T )|2 (1.25)

In order to understand the behavior of ψ near a SC-normal boundary, we need to

look for solutions of ψ which are spatially inhomogeneous (i.e. ∇ψ ̸= 0). Minimizing

the free energy to find such solutions requires extensive calculus and algebra4, and

the result of this process is the differential equation

0 = a(T )ψ(T ) + b(T )|ψ(T )|2ψ(T )− h̄2

2m
∇2ψ(T ) (1.26)

If we consider the simple 1D case, where a SC-normal boundary occurs at x = 0,

with the x > 0 region being superconducting, then this equation has solutions of the

form

ψ(x, T ) = ψ0 tanh (
x√

2 ξ0(T )
) (1.27)

where

ξ0(T ) ≡

√︄
h̄2

2m|a(T )|
(1.28)

Here we have found our second important lengthscale in superconductivity, the

Ginzburg Landau “coherence length” ξ0. This parameter describes the intrinsic

lengthscale over which the order parameter ψ can change. Personally, I think of ξ0

as a measure of the flexibility of the order parameter in a given material. For long ξ0

materials, ψ is very rigid and it takes a large distance from a superconductor-normal

boundary to reach a maximum value. For short ξ0 materials, the order parameter

is more fluid, and ψ can quickly be restored to its bulk value over a minimal range.

4This is covered rigorously in Annett [8] Chapter 4.4.
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Finally, if we combine 1.28 and 1.24, we find

ξ0(T ) ∝ [1− T

Tc
]−1/2 (1.29)

making it clear that ξ0 grows very rapidly as T approaches Tc.

1.1.1.3 Insights from BCS Theory

While it is beyond the scope of this dissertation to rigorously develop the mi-

croscopic theory of superconductivity proposed by Bardeen, Cooper, and Schrieffer

(BCS), it is nonetheless useful to qualitatively discuss their findings and the insights

it can provide into the behavior of superconductors.

The simplest “cartoon” picture of BCS theory explains that superconductivity is

a fundamentally quantum mechanical phase of matter that arises when electrons in

a material experience an effective attraction to each other [15]. Normally, electrons

strongly repel each other due to the Coulomb force. However, when moving through a

material, they are also attracted to the positively charged ions fixed into the crystal

lattice surrounding them. While both the electron and the lattice ions experience

the same attractive force, the much greater mass of the ion makes it much slower

to accelerate under said force. This means that the distortion of the crystal lattice

lags behind the movement of a passing electron, creating a region of slightly higher

charge density that follows in the wake of an electron (Fig. 1.6). At low temperatures,

this region of slight positive charge can attract another electron and allows the two

electrons to form a quasiparticle called a “Cooper pair” (Fig. 1.6.A).

Free electrons in a metal have spin 1/2 and therefore must follow Fermi-Dirac

statistics. In the Drude Sommerfeld model, this forces one electron into each energy

level, building all the way up to the highest occupied state5 at the Fermi level ϵF (Fig.

5at zero temperature
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Figure 1.6. A) Cartoon picture of BCS theory, where a passing electron
distorts the ionic charge distribution. Red shaded area represents the region
of local positive charge density that could couple to a second electron. B)
Density of states of a free electron gas at zero temperature. C) Density of

states of a BCS superconductor at zero temperature (not to scale).
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1.6.B). Cooper pairs, on the other hand, have an integer total spin and therefore are

bosons. Unlike fermions, multiple bosons in a closed system can occupy the same

quantum mechanical state, and so the density of states below ϵF rises rapidly. This

destabilizes the Fermi surface, opening a small energy gap ∆ at ϵF . Cooper pairs

below the Fermi energy are highly correlated, and are said to have “condensed” 6 into

a single quantum state. If the temperature is low enough (kbT < ∆), then thermal

excitations within the lattice are too small to excite quasiparticles across the gap and

the Cooper pairs therefore cannot be scattered. This allows the Cooper pairs to pass

through the lattice uninhibited, and since they have a charge of 2e, they can carry

current without resistance.

This theory has several relevant implications for our discussion of superconduc-

tors. Firstly, the condensation of Cooper pairs and opening of an energy gap finally

provides a microscopic mechanism for our system to reduce its free energy by en-

tering the superconducting phase, explaining the condensation energy. Additionally,

BCS theory allows us to better understand the meaning of Ginzburg Landau theory.

The order parameter ψ is the Cooper pair wavefunction, such that |ψ|2 measures

the Cooper pair probability density. Additionally, the coherence length ξ0 can be

understood as the “size” of our Cooper pairs7. Finally, since it is Cooper pairs that

carry the supercurrent, we need to be a bit more cautious about the properties we

assume for our charges. Specifically, the charge 2e will make an appearance in several

upcoming results, and we will transition to using the effective quasiparticle mass m∗

where necessary.

6Hence, “condensation energy”

7More specifically, the size of the Cooper pair wavepacket.
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1.1.1.4 Type I and Type II Superconductors

With the development of λL and ξ0 we have introduced two lengthscales that

are crucial to understanding the behavior of different superconductors. While λL

describes the response of the supercurrent j to an external field, ξ0 describes the

“flexibility” of the underlying superconductivity. At this point it is important to note

that the actual values of these parameters (λ and ξ) can vary substantially from the

“optimal” values introduced by these theories (λL and ξ0). For an example, adding

defects or impurities to a crystal reduces the mean free path l of the quasiparticles,

which has the effect of both increasing λ and decreasing ξ.

Until this point, we have only discussed the case of superconductors perfectly

screening external fields via the Meissner effect up until a maximum field of Hc. This

is the case for many elemental superconductors, especially those that were first dis-

covered. However, as more superconductors were discovered, it became clear that

some did not entirely leave the superconducting phase upon leaving the Meissner

state but instead entered a “mixed state”, where the bulk remains electrically super-

conducting, but small regions of normal phase intermix with the superconductor and

allow magnetic flux to penetrate the bulk8 (Fig. 1.7). This new class of superconduc-

tors were called “type-II” superconductors to distinguish them from the previously

discussed “type-I” superconductors. A cartoon of the type-II phase diagram is shown

in Fig. 1.8, with the mixed state located between critical fields Hc1 and Hc2.

A useful way to distinguish between these two types of superconductor is by intro-

ducing the Ginzburg Landau parameter κ ≡ λ
ξ
. Type-II superconductors have larger

values of κ than type-I’s, with the exact cut off line between the two classes normally

set at κ = 1√
2
. The reason for this difference can be understood qualitatively by con-

8In fact, the London brothers discussed the experimental observation of “frozen in” field lines in
their seminal work, however dismissed it at as being due to defects since it was inconsistent with
the Meissner effect.
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Figure 1.7. Behavior of a type-II superconductor in the Meissner
(H < Hc1) and mixed state phases (Hc1 < H < H < Hc2).
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Figure 1.8. Phase diagram of a type-II superconductor.
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Figure 1.9. Visualization of the penetration depth and the coherence length
in a type-I (top) and type-II (bottom) superconductor.

sidering an interface between a superconducting region and normal phase region (Fig.

1.9). For a strongly type-II material, λ > ξ, and so the superconductor can quickly

reach the maximal value of the order parameter despite the deeply penetrating fields.

From an energetics standpoint, this means that the superconductor gains benefits of

reducing its free energy via condensation while also not paying the energy penalty

to expel the field out of the material. Because of this, it is actually energetically

favorable for the type-II superconductor to form as many superconducting-normal

interfaces as possible. This is accomplished by introducing many microscopic nor-

mal phase regions into the superconducting bulk, each of which carries the minimal

amount flux allowed by quantum mechanics, the flux quantum Φsc
0 = h

2e
, through
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Figure 1.10. The superconducting vortex.

the sample9. These small regions are called “vortices” due to the supercurrents that

circulate around them to screen the magnetic field (Fig. 1.10). The central, normal

phase region of the vortex is referred to as the “vortex core”, and its size is dictated

by the coherence length. The field density outside of the vortex core, as well as the

supercurrents which screen the field, decay with a lengthscale set by the penetration

depth.

1.1.1.5 The Vortex Lattice

Since each vortex carries one quantum of flux, the density of vortices in a supercon-

ductor is directly proportional to the applied field. Each vortex repels its neighbors

due to their magnetization, and so in suitably clean materials10 the vortices will be

uniformly distributed throughout the crystal. These vortices tend to follow the di-

rection of the applied field, however anisotropies within the underlying crystal lattice

9Note the Cooper pair charge 2e which distinguishes Φsc
0 from the single electron flux quantum

Φe
0.

10Here, clean means free of crystal impurities and defects, which have a tendency to “pin” vortices
to one location. In the superconducting crystal studied in this dissertation, MgB2, pinning is
negligible.
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can distort the vortex lines away from the external field direction [73, 111].

In 1957, Alexei Abrikosov found a periodic solution to the Ginzburg Landau

equation which described the mixed state in clean type-II superconductors [5]. This

solution described a 2D lattice of vortices lying in the plane perpendicular to the

applied field, with the vortices themselves extending parallel to the field direction.

This structure came to called a “flux line lattice” or, for the purposes of this disser-

tation, a “vortex lattice” (VL). It was later demonstrated that the most energetically

favorable VL structure in a perfectly isotropic superconductor was a triangular lat-

tice, which is not suprising considering that it is the most efficient packing of circles

in 2D. However, the theoretical difference in free energy between the triangular and

square VLs was only ∼ 2% [70]. Because this difference is so small, anisotropies in

the superconductivity or underlying crystal lattice can tilt the energetics in favor of

a square VL or even more exotic VL symmetries. This is especially relevant at higher

fields, where the higher density of vortices increases the importance of short range

vortex-vortex interactions.

Since each vortex carries one quantum of flux, the unit cell of the VL must always

have the same area regardless of lattice symmetry. The area of this cell A is given

by the flux density of the applied field µ0H:

A =
Φsc

0

µ0H
(1.30)

From here we can calculate the lattice parameter of any arbitrary VL symmetry

subject to the constraint |a⃗1 × a⃗2| = A. Taking the most symmetric extremes for

example, we find for the four-fold square VL

asqr0 =

√︄
Φsc

0

µ0H
(1.31)
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Figure 1.11. Scanning tunneling microscopy images of A) the square VL of
CeCoIn5 (from Zhou et al. [138]) B) the triangular VL of MgB2 (from
Eskildsen et al. [34]) . In both images the color indicates the density of
states at the Fermi energy. Brighter regions reflect the higher density of
states due to suppression of the superconducting energy gap within the
vortex core. C) Cartoon of the square VL. D) Cartoon of the triangular

VL. Shaded regions indicate the one-flux quantum unit cells.

and for the triangular VL

atri0 =

√︄
2Φsc

0√
3µ0H

(1.32)

Assuming reasonable applied fields of order 1 T, this leads to lattice parameters

of order ∼50 nm. Since this lattice is so much larger than the underlying crystal

structure, the two are said to be incommensurate. Images of some vortex lattices are

shown in Fig. 1.11.

20



1.1.2 Effects of Anisotropy on the Vortex Lattice

As suggested in the previous section, the VL is highly sensitive to any anisotropy

in the plane which the screening supercurrents are moving through. Any anisotropy in

the Fermi surface or in the superconducting energy gap ∆ within this plane can corre-

spondingly affect the penetration depth and therefore the VL symmetry. Anisotropy

in the penetration depth results in a distortion of the VL such that the lattice vectors

no longer have equal magnitudes. However, since the VL unit cell area is still fixed by

flux quantization, these vectors are still subject to the constraint that |a⃗1× a⃗2| = Φsc
0

µ0H
.

This effect gets particularly interesting in the case where the superconducting

anisotropy is incompatible with the “ideal” triangular VL, such as the case in the

four-fold symmetric [100] planes of niobium [77, 78, 99]. The result is a rich VL phase

diagram, with many different symmetries and structures. However, interesting VL

structures can still arise in hexagonal superconductors. In these materials, while the

VL normally remains triangular, the alignment of the VL with respect to the crystal

lattice is dictated by otherwise weakly coupling higher order terms in the anisotropy.

This is the case for the VLs of UPt3 [45, 10] and MgB2 [29, 30], the latter of which

we will discuss in detail later.

1.1.3 Practical Relevance of Superconducting Vortices

By far the most common industrial use for superconducting materials is to draw

them into wires to carry the extremely high currents necessary to produce high mag-

netic fields. Since type-II superconductors consistently have higher critical temper-

atures and fields, they are almost universally the choice for these applications. This

means that vortices will form in these materials, and the behavior of these vortices

can have a profound impact on the performance of the superconductor.

When current j is passed through superconductor in a direction perpendicular to

the applied field, the magnetized vortex core experiences an orthogonal Lorentz force
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F⃗L = j⃗ × Φsc
0 ẑ (1.33)

which will drive the vortex into motion across the superconducting bulk. Assuming

the simplest case where the Lorentz force on the vortex is only resisted by a drag

force, the steady state velocity of the vortex can be written as

v⃗Φ =
jΦsc

0

η
ŷ (1.34)

where η is the drag coefficient. This motion of flux lines is called “flux flow”, and the

resulting change of magnetic flux across the sample induces an electric field according

to Faraday’s Law. ∫︂
E⃗ · d⃗l = − ∂

∂t

∫︂
B⃗ · dS⃗ (1.35)

Assuming a uniform slab of width l, the rate of change of flux will just be given by

the vortex velocity times the number of vortices

∂Φ

∂t
=

Φsc
0 ∆NΦ

∆t
=

Φsc
0 nΦl

2

l/vΦ
= Φsc

0 nΦlvΦ (1.36)

where nΦ is the area density of vortices. If we solve for the electric field within the

superconductor

E⃗ = Φsc
0 nΦv⃗Φ =

(Φsc
0 )

2nΦ

η
j⃗ (1.37)

we find a new form of Ohm’s law, where the motion of vortices induces a resistance

in our superconductor, with resistivity

ρflow =
(Φsc

0 )
2nΦ

η
(1.38)

Clearly, this resistance is undesirable in a superconductor, and it has the effect of

limiting both the upper critical field and the critical current density of the material.
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One way to mitigate this effect is to engineer defects into the crystal such that the

vortices get “pinned” in one location, preventing them from drifting under the Lorentz

force. The more effectively that the vortices are pinned, the greater the performance

of the superconducting device, and so to build higher field superconducting magnets

we must develop better understanding of the behaviors of vortices and VLs.

1.1.4 The Vortex Lattice of MgB2

Magnesium diboride (MgB2) was first synthesized by Jones and Marsh in 1953

[62]. It is a hexagonal crystal with a0 = 3.0834 Å and c0 = 3.5213 (spacegroup

P6/mmm) formed of honeycomb planes of boron atoms (B-B separation = 1.780 Å)

separated by triangular planes of magnesium atoms (Mg-Mg separation = 3.083 Å)

(Fig. 1.12). High quality single crystals of MgB2 can be grown by heating elemental

magnesium and boron under high pressures to 1700-1800 ◦C [65]. Crystals grown by

this method are normally smaller than 1 mm in all dimensions.

Although it was synthesized in the 50’s, it wasn’t until 2001 that MgB2 was dis-

covered to be superconducting below a critical temperature of 39 K [103]. While this

Tc was well below the records being set by cuprate based superconductors, MgB2 still

gained notoriety as 39 K is much higher than other conventional11 superconductors.

It was also discovered that MgB2 hosts two bands at the Fermi surface which both

superconduct independently of each other. The two bands are formed predominately

by σ bonding (π bonding) within the boron planes, and as such are called the σ (π)

bands, respectively. The Fermi surface of these bands is shown within Fig. 1.13.

From ab initio calculations, it was discovered that the σ band in particular couples

very strongly to vibrational modes within the boron planes, enhancing Cooper pairing

and leading to extraordinary Tc [26]. This discovery prompted a wave of optimism for

11Here, “conventional” means those superconductors whose pairing can be understood within the
limits of BCS theory.
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Figure 1.12. Crystal structure of MgB2. Adapted from Abanador et al. [4]

a new family of high Tc, BCS superconductors based on comparatively light elements,

like boron, carbon, and nitrogen that so far has not been realized12.

The σ band is composed of four, semi-cylindrical sheets located at the corners

of the Brillouin zone (BZ) and has a superconducting energy gap of ∆σ ≈ 6.8 meV.

Quasiparticles within the σ band are strongly confined to the boron planes, and as

such the σ band is often referred to as a quasi two dimensional band. The π band is

formed of a “webbed tunnel” structure at the center of the BZ, and has much smaller

energy gap of ∆π ≈ 1.8 meV. As magnetic field is increased, superconductivity within

the π band is rapidly suppressed, and the density of states returns to that of a single

gap superconductor.

As it turns out, competition between these two superconducting bands generates

a phenomenally interesting vortex lattice phase diagram (Fig. 1.14)[30]. For all points

within the superconducting phase, MgB2 forms a triangular VL, but the orientation

of the VL relative to the crystal lattice changes throughout (H,T ) space. For low

12At least not at atmospheric pressures.

24



Figure 1.13. A) Fermi surface of MgB2, showing both the sigma (orange)
and pi bands (blue). Adapted from Choi et al. [26] B) Superconducting
energy gap size ∆ for the two bands. Adapted from Choi et al. [26] C)
Suppression of the double gap structure with increasing magnetic field.

From Eskildsen et al. [37]
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Figure 1.14. Qualitative VL phase diagram of MgB2, showing the F, L and
I phases and the corresponding triangular VL alignment.

fields (µ0H < 0.6 T), the high anisotropy of the π band aligns the vortex lattice

vectors along the a crystalline axis in the so-called F phase. However, as field is

increased the influence of the π band becomes suppressed, and above ∼ 1 T, the

anisotropy of the sigma band rotates the VL vectors 30◦ such that they are aligned

with the a∗ crystal axis. This region is known as the I phase. In between the F phase

and the I phase, the two bands compete for superiority, and the VL experiences a

region of continuous rotation from a to a∗, known as the L phase. Since there are

two, degenerate directions the VL can rotate (clockwise and counterclockwise), the

VL fractures into counter-rotating domains roughly ∼1 to 10’s of microns in size [86].

The domain walls within the L phase have a profound impact on the behavior of

the VL, as phase transitions between the L and F phases, and between the L and

I phases require either forming or destroying these domain walls. There is a steep

energy barrier associated with both processes, and the result is that very robust

metastable VL structures can be formed if a phase boundary is crossed without

providing enough energy to overcome the barrier [30]. These metastable states can be
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Figure 1.15. Quantitative VL phase diagram of MgB2, showing the F, L
and I phases. From Das et al.[30]

destroyed by oscillating the magnitude of the applied field, which in turn oscillates the

vortex density [116]. The rate of decay to the equilibrium VL configuration depends

on the magnitude of the field oscillations, and can be modelled as an activated phase

transition, much like martensitic phase transitions observed in steel [88, 87]. These

metastable states are demonstrably not a result of vortex pinning due to defects

within the material, but instead are a result of the intrinsic VL structure [116].

The preferred alignment of the VL within the L phase can be well modelled as

a result of competing six- and twelve-fold rotation symmetric anisotropies [137]. We

can write down the free energy of the VL orientation

δF (φ) = K6 cos (6φ) +K12 cos (12φ), (1.39)

where φ is the angle between the a axis and the VL vector. Minimizing this free
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energy, we find the preferred orientation to be determined by

κ = −4 cos (6φ), (1.40)

where κ ≡ K6

K12
. From here we see that by varying κ over the range -4 to 4, the VL

continuously rotates from φ = 0 to φ = 30◦.

The vortex lattice within MgB2 is relatively isotropic when field is applied parallel

to the crystalline c axis and the supercurrents therefore lie in the a−b plane. However,

as field is rotated toward the a − b plane, the larger penetration depth and smaller

coherence length along the c direction begins to influence the superconductivity. The

increasing coherence length causes the upper critical field Hc2 to grow very rapidly,

from ∼3.1 T at H ∥ c to ∼18 T at H ⊥ c13 (Fig. 1.16.A)([92]. Additionally, since

the Ginzburg Landau parameter κ is not isotropic within the a − c plane, the VL

distorts from an equilateral triangular VL to an isosceles triangular VL, with the

shorter lattice vector pointing along c (Fig. 1.16.B).

Since the behavior of the VL depends so strongly on the weak six and twelve

anisotropies of the boron planes when H ∥ c, a natural question to ask is how the

VL phase diagram changes when anisotropy is increased even further by forcing the

lattice to form in the a−c plane. This anisotropy can of course be tuned continuously

by rotating the applied field angle between H ∥ c and H ⊥ c. How does the VL

phase diagram respond to increasing anisotropy as the field is rotated

away from c? Is robust metastability maintained between VL phases?

1.2 Magnetic Skyrmion Lattices

In this section I will briefly explain the antisymmetric exchange interaction and

the novel phases of magnetic order that arise when it is added to otherwise ordinary

13Depending on sample quality
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Figure 1.16. A) Increase in the upper critical field Hc2 of MgB2 as the field
direction is rotated from H ∥ c (θ = 90◦) to H ⊥ c (θ = 0◦). Inset shows
the corresponding growth of critical current jc. From Lyard et al.[92] B)
Distortion of the VL of MgB2 to an isosceles triangular structure when
H ⊥ c. Observed in real space via scanning tunneling microscopy. From

Eskildsen et al.[37]

ferromagnets. Among these magnetic phases is the magnetic skyrmion lattice (SkL),

which is of particular relevance for future spintronic research. After motivating the

study of SkLs under application of electric currents, I will finally provide an overview

of the prototypical SkL material MnSi, which is the subject of research in Chapters

3 and 5.

1.2.1 Introduction to Chiral Magnetism

In 1952, Néel and Pauthenet observed a very small magnetization in the antiferro-

magnetic crystal α-Fe2O3 [89]. While this “weak” ferromagnetism could be explained

by the formation of Bloch domain walls between antiferromagnetic domains [82], it

took the work of Dzyaloshinsky [33] and Moriya [98] to demonstrate that such a struc-

ture could be energetically favorable. Moriya demonstrated that by adding spin-orbit

coupling to P.W. Anderson’s model of the superexchange interaction [7], a new term
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Figure 1.17. Dzyaloshinsky-Moriya interaction of spins S1 and S2

moderated through non-magnetic atom m.

is introduced to the spin Hamiltonian:

D⃗ij · [S⃗i × S⃗j] (1.41)

This antisymmetric exchange interaction, often referred to as the Dzyaloshinsky-

Moriya Interaction (DMI), favors spins Si and Sj aligning perpendicular. The vector

D⃗ij is a constant determined by the symmetry of the two interacting spins as well as

the superexchange moderating atom m (Fig. 1.17). For D⃗ to be nonzero, the two

spins must not share an inversion center at their midpoint, but rather possess mirror

symmetry. From here, the direction of D⃗ can be determined from further symmetries

following the rules set forth by Moriya [98]. In the case of Fig. 1.17, D⃗ must point

perpendicular to the S1 −m− S2 plane.

Recognizing the tendency of the DMI to align neighboring spins perpendicular, it

is natural that combining the DMI with the regular (symmetric) exchange interaction

J (S⃗i · S⃗j) and its preference for parallel/antiparallel spins could result in novel spin

structures. Rounding out the Hamiltonian with the Zeeman energy, we reach the full
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extended Heisenberg Hamiltonian:

H =
∑︂
<i,j>

[J (S⃗i · S⃗j) + D⃗ij · (S⃗i × S⃗j)] + µ
∑︂
i

B⃗ · S⃗i (1.42)

In searching for novel magnetic states, promising candidate materials are lim-

ited to those where neighboring spins meet the symmetry requirements to produce a

nonzero DMI. One easy way to break inversion symmetry is to substrate a conven-

tional magnetic system onto a second, nonmagnetic material. In this case, atoms in

the substrate material can serve as a moderators for superexchange between neigh-

boring atoms in the magnetic material, generating a nonzero D⃗ in close proximity to

the interface. These “interfacial DMI” systems are of particular interest for spintron-

ics applications due to their compatibility with other thin film devices and techniques

[41].

Alternatively, inversion symmetry can be broken by placing magnetic atoms on

a crystal lattice that is itself non-centrosymmetric. The most common example of

these crystal structures is the B20 structure (space group P213), a cubic lattice which

is inherently chiral (see Fig. 1.24). In such a case, a nonzero D⃗ can be produced

between next-nearest neighbor magnetic atoms throughout the entirety of crystal. It

is often easier to study the fundamental nature of the resulting magnetic structures

within these “bulk DMI” systems due to the larger relevant sample volume, and as

such they are the focus of this dissertation. What follows is a summary of a few

relevant magnetic phases which arise in bulk materials with nonzero DMI below the

magnetic ordering temperature.

1.2.1.1 Helical/ Cycloidal Magnetization

At low temperature T and magnetic field B, since |D⃗| is normally much smaller

than J , the DMI serves as a small perturbation upon the otherwise ferromagnetic/
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antiferromagnetic ordering of the exchange interaction. Depending on the direction

of D⃗, the DMI tilts the spins either within the plane containing neighboring spins to

produce cycloidal ordering (Fig. 1.18.A), or out of the plane containing neighboring

spins producing helical ordering (Fig. 1.18.B). Naturally, the families of materials

that these structures form in are referred to as conical magnets and helimagnets,

respectively. The wavelength of these periodic structures is given in units of lattice

spacings by the ratio J/|D⃗|, with stronger DMI twisting the magnetization faster. It

is often useful to define a wavevector Q⃗ for these periodic structures, where Q⃗ points

along the axis of the helix/cycloid and has a magnitude |Q⃗| = |D⃗|
J
.

In 3D materials, the orientation of Q⃗ is often largely degenerate, and ultimately

determined by weak coupling to high symmetry directions in the crystal [12]. This has

the effect of fracturing the magnetic ordering into coexisting domains with different

Q⃗’s.

1.2.1.2 Conical Magnetization

For helimagnets, increasing the field above a critical field Bc1 (Fig. 1.19) breaks

the orientation degeneracy of Q⃗ and all helices reorient such that Q⃗ ∥ B⃗. Additionally,

the local magnetization vectors begin tilting towards Q⃗, giving the conical phase its

name (Fig. 1.18). This tilting grows continuously with field until Bc2 where the

crystal becomes fully ferromagnetically ordered.

1.2.1.3 Magnetic Skyrmion Lattice

One final structure that can form in chiral magnets is the skyrmion lattice (SkL).

In the B20 magnets, this structure occurs in a small region of temperature-field space

near the ordering temperature TN known as the A Phase (Fig. 1.19). The magnetic

structure of this phase can be considered as three separate helices, each oriented with

Q⃗ 120◦ from each other within the plane perpendicular to B. However, it is much
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Figure 1.18. Spins in a 1D chain in forming a A) cycloidal structure, B)

helical structure, C) conical structure. For all structures, Q⃗ points along x
and the spin component out of the page Mz is indicated by the color bar.
Total magnetic field B is also along x. In all structures, all spins have the
same total magnetic moment, only the orientation changes from one site to

the next.
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Figure 1.19. Qualitative phase diagram for the B20 helimagnets.

more common (and often more useful) to consider the structure as a 2D lattice of

quasiparticles called skyrmions14. These 2D particles consist of a central spin oriented

antiparallel to the applied magnetic field and the surrounding region where the spins

rotate 180◦ back to parallel with the field. If forming in a cycloidal magnet, this

rotation of spins occurs along the radius of the skyrmion, forming a “Néel type”

skyrmion (Fig. 1.20.A). On the other hand, if forming in a helimagnet, the rotation

of spins occurs about the radius of the skyrmion, forming a “Bloch type” skyrmion

(Fig. 1.20.B). In both cases the naming convention comes from those previously

established for magnetic domain walls[17]. More colloquially, these two classes of

skyrmions are referred to respectively as “hedgehog” and “vortex” skyrmions, for

obvious reasons. It is important to note that even in bulk systems, skyrmions often

demonstrate individual particle behaviors, such as allowing for SkLs to change lattice

symmetry [104].

14Skyrmions derive their name from nuclear physicist Tony Skyrme who proposed using a similar
vector field structure to model nucleons [124].
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A) 

B) 

Figure 1.20. A) Néel type skyrmion structure. B) Bloch type skyrmion
structure. Adapted from Everschor-Sitte et al. [39]

In bulk materials, the SkL structure is repeated for all crystal planes perpendicular

to H. This has the effect of stretching the 2D skyrmions into long “skyrmion tubes”

that pass through the entire length of the crystal in the field direction (Fig. 1.21).

Since the skyrmion tubes must run parallel to H to maintain translation symmetry,

the alignment of the SkL vectors is ultimately determined the by crystal directions

within the plane perpendicular to H which are preferred by spin-orbit coupling [102].

As this effect is rather weak, the SkL can sometimes be forced into metastable align-

ments which contradict the global free energy minimum [12]. This suggests that the

interaction potential of the SkL and the crystal lattice is quite sophisticated, with

multiple local minima in free energy which could possibly be exploited to generate

novel SkL structures. However, this interaction potential has not yet been measured.

Can we map the SkL-crystal lattice interaction potential? Can we exploit

its shape to generate novel SkL configurations?
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Figure 1.21. A) Cartoon of Bloch type skyrmion tubes in Fe0.5Co0.5Si. This
structure can be imaged in real space via Lorentz transmission electron
microscopy (LTEM) (B) and atomic force microscopy (AFM) (C). From

Milde et al. [97] and Yu et al. [135].

Magnetic skyrmions have the unique property that they are topologically pro-

tected field structures. To identify structures which have this property, it is useful to

define the “topological charge” S

S =
1

4π

∫︂
n⃗ · (dn⃗

dx
× dn⃗

dy
) dxdy (1.43)

where n⃗ is the unit vector of magnetization ( M⃗

|M⃗ |
) [52]. Skyrmionic structures can

then be identified as those which have integer S when evaluated over the 2D mag-

netic unit cell, while topologically trivial structures have S = 0. Mathematically,

no integer S structure can be continuously distorted into one with S = 0 (and vice

versa), and so skyrmionic structures are said to be topologically protected.15 While

this is the mathematical definition of topological stability, a more physical under-

15For the purposes of this dissertation, “skyrmion” will always refer to a structure with S = 1.
In principle, magnetic structures can have integer S > 1. These are said to have a higher “winding
number” than standard skyrmions. Additionally, magnetic structures can have integers S < 0, and
these are often described as “antiskyrmions”.
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standing can be gained from considering the 1D skyrmion shown in Fig 1.22. Here,

we compare the magnetization profile of two, topologically trivial Néel-type domain

walls (Fig 1.22.A) with that of a 1D Néel skyrmion (Fig 1.22.B). The primary differ-

ence of these two structures is that while the skyrmion magnetization winds through

a full 2π of rotation, the domains only complete a rotation of π before reversing

direction and rotating π the other way. If we wish to destroy either structure, we

need to reverse the antiparallel spin at the center of both. For the two neighboring

domain walls, this can be accomplished easily by continuously rotating the central

spin clockwise until the structure disappears. On the other hand, if we try this same

approach with the central spin of the skyrmion, we will eventually reach a point

where we must introduce a discontinuity in the field by causing neighboring spins

to “butt heads” with each other. Since this discontinuity conflicts with the intrinsic

exchange stiffness of the magnetization field, forming it requires surmounting a huge

energy barrier. For magnetic skyrmions, there is no formation or annihilation path

that does not require surmounting this energy barrier, and so skyrmions are said to

be topologically stable.

The topological energy barrier for skyrmions is predicted to be proportional to the

product of the exchange constant J and the thickness of the magnetic layer d (i.e. the

length of the crystal in the field direction for bulk systems) [20]. Recently, theorists

have even predicted optimal thin film systems which could generate energy barriers

that exceed 50 kBT [23]. However, even for systems with smaller energy barriers,

topology can still impact the behavior of the SkL. In the chiral magnet MnSi, the

topological energy barrier stabilizes skyrmions that are quench-cooled well below the

A Phase [104]. The resulting metastable skyrmions are so stable that they can even

transition from a triangular to square lattice symmetry. Similar metastable SkLs

have also been observed in Co8Zn8Mn4 [66] and in Cu2OSeO3 [19]. Furthermore, in

Cu2OSeO3 the energy barrier greatly slows the formation of the SkL upon application
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Figure 1.22. Magnetization profile of two Néel-type domain walls (A) and
one Néel skyrmion (B). Color is used to indicate the orientation of the
magnetization ϕ. Below each is shown the effect of continuously rotating
the central spin clockwise. For the skyrmion, an energetically-unfavorable

discontinuity is introduced in the magnetization field.
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of an electric field. From this effect the authors were able to measure the topological

energy barrier to be ∼1.6 eV/mm·skyrmion [132]. With such a large formation energy

per skyrmion, it is natural to ask whether this also measurably effects the formation

of equilibrium (non-metastable) SkLs. Can we measure the formation energy

of skyrmions in equilibrium systems, i.e. without relying on measuring

the time-dependent decay of a non-equilibrium SkL?

1.2.2 Applications of Skyrmions

The inherent topological stability of skyrmions make them attractive for memory

applications in computers. In particular, significant research has been directed to-

wards developing a so called “racetrack” memory (RM) devices for computation [40].

In a RM device, magnetic bits are stored linearly in a track and then pushed single

file past a read/write head at a constant speed. The presence or absence of a bit

in each interval of time then serves as binary 1’s and 0’s for computation. Unlike a

conventional magnetic hard disk drive which requires the read/write head to be spun

at high speed over the disk surface, RM requires no mechanically moving parts, and

is only limited in computation speed by how quickly the bits can be pushed.

Since the turn of the century, IBM has dedicated efforts towards developing mag-

netic domain wall based RM devices and have predicted that such a device could

combine the affordability of hard disk drives with speediness of solid state RAM

[112]. However, in recent years skyrmions have become the favored candidates for

bits in a future RM device due to their improved stability over domain walls (dis-

cussed in the previous section) and the much lower electric current densities required

to move them [120][63]. Additionally, if we expand the geometry of the racetrack

beyond a simple 1D chain, we open the door for entirely new paradigms of computa-

tion such as racetrack logic gates [136] and machine learning shufflers [114], further

improving performance.
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1.2.3 Skyrmions in Electric Currents

The most promising approach to driving skyrmions through a racetrack device is

the application of a DC electric current. As electrons pass through the topologically

nontrivial structure of the SkL, their spins adiabatically follow the local magnetiza-

tion. This slow rotation of spin accumulates a Berry phase which can be modeled as

an Aharonov-Bohm phase [6] due to an additional effective field B⃗eff

Beff, i =
Φe

0

8π
Dijkn⃗ · (∂jn⃗× ∂kn⃗) (1.44)

where Φe
0 is the single-electron flux quantum Φe

0 = h
e
[22].16 This field exerts an

effective Lorentz force on the electrons and deflects their motion as they move through

the SkL (Fig. 1.23). This deflection gives rise to an additional contribution to the Hall

effect which is proportional to Beff and the spin polarization of the charge carriers P

(i.e. opposite spin electrons are deflected by the SkL in opposite directions, and so if

both spins have equal populations (P = 0), the net Hall effect is zero). Observation

of this “topological Hall effect” is often used as confirmation of skyrmion presence in

a material, and it is anticipated that detection of skyrmions in a RM device will rely

on this effect.

The deflection of spin-polarized electrons moving through the SkL exerts a op-

posite force on the SkL itself (Fig. 1.23) [128]. For convenience, this force is often

broken down into two perpendicular components, one along the direction of current

flow called the drag force FD, and one perpendicular to the current called the Magnus

force FM . Here, the name Magnus force arises from the observation that much like

a spinning baseball or soccer ball, skyrmions moving in a track experience a perpen-

dicular force to their motion proportional to their speed [61][83]. Both the Magnus

16Not to be confused with the superconducting cooper pair flux quantum Φsc
0 = h

2e which will be
discussed in Chapter 1.1
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Figure 1.23. Deflection of an electron passing through a SkL due to the
topological Hall effect, and the resultant force exerted on the SkL.

and drag forces are proportional to the current density passing through the SkL, and

if they grow strong enough to overcome the crystal lattice couple can drive the SkL

into motion. The critical current that this occurs at is often called jc, and is routinely

around ∼ 106 A/m2 for conductive B20 magnets. While this may sound like a lot

of current, it is roughly two orders of magnitude less than the current required to

drive magnetic domain walls [63]. Can we find an even more efficient way to

convert electric current in SkL motion?

1.2.4 The Skyrmion Lattice of MnSi

The prototypical bulk SkL hosting material is MnSi. It is a cubic B20 crystal

with lattice constant a = 4.548 Å[113], and its lack of inversion symmetry allows

the formation of two chiral forms of the lattice (Fig. 1.24). Each unit cell contains

four Mn and four Si atoms, located at positions (u, u, u; 1
2
+ u, 1

2
− u, ū; 1

2
−

u, ū, 1
2
+ u; ū, 1

2
+ u, 1

2
− u), with uMn = 0.138 and uSi = 0.845 [56]. Each Mn
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Figure 1.24. Two chiral forms of the B20 crystal structure, containing
magnetic Mn and non-magnetic Si atoms. Adapted from Stishov et al.[126]

atom carries a magnetic moment of 0.4 µB, and while the Si atoms have negligible

magnetic moment of their own, they serve as moderators for the superexchange which

produces DMI. Since the chirality of the lattice ultimately dictates the handedness

of magnetic structure [49], large single crystals of MnSi are normally grown slowly

from seed crystals to ensure a single chiral phase.

In the 1970’s, the magnetic phase diagram of MnSi was mapped and was con-

firmed to host both helical and conical phases below the magnetic ordering temper-

ature TN ≈ 29 K [131]. The magnetic wavelength of these structures ( 2π

|Q⃗|
) was found

to be ∼180 Å. Additionally, both ultrasound absorption [75] and electron spin reso-

nance [31] measurements detected the presence of another phase roughly 1 K below

TN and at ∼ 0.2 T applied field (Fig. 1.25). This phase was called the “Anomalous

phase” or “A phase” for short. Small angle neutron scattering (SANS) measure-

ments attempted to explain this phase as a small paramagnetic phase nesting within

the conical phase [55]. However, further SANS measurements later confirmed the

formation of a crystallized lattice of skyrmions within the A Phase [102]. These

skyrmions were translationally symmetric along the applied field direction and there-

fore stretched into long tubes that extend through the entire length of the crystal.
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Figure 1.25. Magnetic phase diagram of MnSi. From Mühlbauer et al.[102]

Each skyrmion was found to carry a topological charge S = 1, with a single spin

oriented antiparallel to the applied field at the center of the skyrmion. Theoretical

modelling showed that the free energy of the SkL configuration was very close to that

of the conical phase at the relevant fields, and the addition of thermal fluctuations

allows the SkL to drop lower in energy [102]. This reliance on fluctuations explains

why the SkL is the preferred structure only very near to TN , however quench cooling

through the A Phase has generated metastable skyrmions at a much wider range of

temperatures [104].

As it was the first discovered, the SkL of MnSi has been used as a model system

to observe many interesting properties of skyrmions and their lattices. Previously,

we have discussed the metastable SkLs [104] and SkL orientations [12] that can be

produced in MnSi. Other studies have shown that the A Phase can be tuned through

the application of uniaxial strain [105][25] or hydrostatic pressure [14]. The A Phase

can also be expanded by reducing the dimensionality of the MnSi crystal, both down

to 2D in a thin film [129] and 1D in a nanowire [134]. Finally, some work has shown
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that the SkL phase can be expanded by reducing the Mn availability during crystal-

lization [110]. However, despite all this, measuring the topological energy barrier for

skyrmions in MnSi has remained elusive, largely because the time dependent effects

exploited in insulating SkL materials are not suitable for a metal like MnSi. What

is the topological energy barrier of MnSi?
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CHAPTER 2

SMALL ANGLE NEUTRON SCATTERING

Small angle neutron scattering (SANS) is a fundamental technique for studying

structures of order 10’s - 100’s of nanometers in size in a wide variety of disciplines,

from biology to material science. In this chapter I will begin by providing a brief

introduction to the fundamentals of scattering and motivate why a neutron scattering

technique is useful for the study magnetic vortices. Then I will summarize some of

the more technical details of how SANS is achieved experimentally. Finally, I will

introduce the common types of SANS measurements used to study magnetic vortices

in this dissertation.

Fundamental scattering theory in this chapter is based on the relevant chapters

from Simon [122], Kittel [69], and Ashcroft [9]. For a fantastic introduction into

neutron scattering in particular, please check out Pynn [115]. Finally, for a detailed

review of the application of SANS to magnetic systems, please read Mühlbauer et al.

[100].

2.1 Introduction to Scattering

One of the most useful methods to study condensed matter is to measure how

a wave deflects from it in a process called “scattering.” Since quantum mechanics

dictates that any particle with momentum p will demonstrate wave-like behavior with

a de Broglie wavelength λ = h/p, these waves can be photons or massive particles.

Generally, scattering measures a change of the incident waves momentum, from its

initial state k⃗i to its final state k⃗f due to some interaction with the target material
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Figure 2.1. General scattering of a particle-wave from k⃗i to k⃗f due to
interaction with the target.

(Fig. 2.1). This interaction is quantified by the interaction potential V̂ (r⃗), and

therefore we can write down the transition rate Γ(i,f) from k⃗i to k⃗f following Fermi’s

Golden Rule

Γ(i,f) =
2π

h̄
| < k⃗f |V̂ (r⃗)|k⃗i > |2 ρ(k⃗f ) (2.1)

where ρ(k⃗f ) is the density of states of the outgoing wave. If we assume that both

the incoming and outgoing waves are plane waves, then the matrix element can be

computed as the integral

< k⃗f |V̂ (r⃗)|k⃗i > =

∫︂
A∗e−ik⃗f ·r⃗ V (r⃗) A eik⃗i·r⃗dr⃗

= |A|2
∫︂
e−i(k⃗f−k⃗i)·r⃗ V (r⃗)dr⃗

(2.2)

where A is the normalization factor of the plane waves. At this point, it useful to

introduce the “scattering vector” q⃗ ≡ k⃗f − k⃗i which measures the change in the

wavevector of the scattered particle.

< k⃗f |V̂ (r⃗)|k⃗i >= |A|2
∫︂
e−iq⃗·r⃗ V (r⃗)dr⃗ (2.3)
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In the special case where V is periodic throughout the material (i.e. V (r⃗) = V (r⃗+R⃗)

where R⃗ is any lattice vector), this integral can be performed over each unit cell

separately

< k⃗f |V̂ (r⃗)|k⃗i > = |A|2
∑︂
R⃗

∫︂
cell

e−iq⃗·(r⃗+R⃗) V (r⃗ + R⃗)dr⃗

= |A|2
∑︂
R⃗

∫︂
cell

e−iq⃗·r⃗e−iq⃗·R⃗ V (r⃗)dr⃗

= |A|2[
∑︂
R⃗

e−iq⃗·R⃗] [

∫︂
cell

e−iq⃗·r⃗ V (r⃗)dr⃗]

(2.4)

The first term in brackets here is defined as the “structure factor” S(q⃗, R⃗), and it

contains all information regarding the periodicity of the lattice.

S(q⃗, R⃗) ≡
∑︂
R⃗

e−iq⃗·R⃗ (2.5)

The second term in brackets is named the “form factor” F (q⃗, V (r⃗)) and contains

all information regarding the physical interaction of the scattered particle with the

material.

F (q⃗, V (r⃗)) ≡
∫︂
cell

e−iq⃗·r⃗ V (r⃗)dr⃗ (2.6)

2.1.1 Elastic Scattering

In the special case that scattered particle exchanges no energy with the target

(Ei = Ef and therefore |ki| = |kf |), the scattering process is said to be “elastic”. It

can be shown that the structure factor for elastic scattering is only nonzero when

the scattering vector q⃗ coincides with a reciprocal lattice vector G⃗ of the real space

lattice R⃗.

k⃗f − k⃗i = q⃗ = G⃗ (2.7)
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Figure 2.2. Elastic scattering of a wave from periodic symmetry planes.

This is known as the Laue condition, and it allows us to predict the discrete set of

elastic reflections that will occur for any periodic structure. To get a feel for the

implications of this, let us consider a plane wave with wavevector k⃗ incident at an

angle θ to a set of symmetry planes with reciprocal lattice vector G⃗ (Fig. 2.2). Using

some simple geometry, we find:

k⃗f − k⃗i = G⃗ (2.8)

k⃗f y − k⃗iy = G⃗y (2.9)

|k| sin θ − (−|k| sin θ) = |G| (2.10)

2|k| sin θ = |G| (2.11)

By definition, the magnitude of G is given by the spacing of the symmetry planes

|G| = 2π/d, and the magnitude of the wavevector is given by wavelength |k| = 2π/λ,
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so we find

2
sin θ

λ
=

1

d
(2.12)

2d sin θ = λ (2.13)

This is of course Bragg’s Law1, and so the Laue and Bragg formalisms of elastic

scattering are consistent and predict the same scattering angles 2θ.

The Laue condition allows us to simplify our definition of the form factor if we

consider only those q’s which will produce reflections.

F (G⃗, V (r⃗)) ≡
∫︂
cell

e−iG⃗·r⃗ V (r⃗)dr⃗ (2.14)

From here, it is clear that the form factor represents (and in fact by definition is)

a Fourier transform of the interaction potential V (r⃗). Therefore, by measuring the

form factor experimentally, insights can be gained into the interior structure of the

unit cell.

2.1.1.1 The Ewald Sphere

A useful tool for visualizing elastic scattering is “Ewald’s sphere” (Fig. 2.3). In

this construction, the incident wavevector k⃗i is placed in reciprocal space with its

head starting at a point in the reciprocal lattice. All potential elastically scattered

k⃗f ’s will have the same length and can therefore can be represented as a sphere

centered at the tail of k⃗i. However, due to the Laue condition, scattering will only

occur if the surface of this sphere intersects a second point in the reciprocal lattice

so that k⃗f − k⃗i = G⃗ (Fig. 2.3).

The Ewald sphere is particularly helpful in understanding the different types of

1For the case of first order reflections (n=1). Considering integer multiples of G⃗ allows to find
the higher nth order reflections
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Figure 2.3. Ewald’s sphere of elastic scattering. Each dot is a point in the
reciprocal lattice. The sphere is drawn as a 2D circle for clarity, but in

principle it extends into three dimensions.
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Figure 2.4. Ewald’s sphere for small-angle scattering. The center of the
sphere is far to the left of the figure.

scattering experiments commonly performed. One way to map reciprocal space is to

measure the scattered intensity while rotating the sample with respect to the beam,

as is done with single crystal x-ray diffraction. This is equivalent to changing the

incident vector k⃗i, so the Ewald sphere will rotate about the head of k⃗i, with different

symmetry planes producing a scattering signal as the sphere sweeps through the

corresponding lattice point in reciprocal space. An alternative approach, called Laue

white-beam scattering, is to shine a wide range of wavelengths onto the sample rather

than a monochromatic beam. This forms a continuum of Ewald spheres with a range

of radii, allowing many Bragg peaks to be illuminated at once. One final example that

is of direct interest to this dissertation is small angle scattering, where θ ≪ 1 radian.

In this limit the radius of the sphere is much larger than the spacing of the reciprocal

lattice since |⃗k| ≫ |q⃗|. From the perspective of any lattice point, the surface of sphere

can be well approximated as a plane that rotates to stay perpendicular with k⃗i (Fig.

2.4).
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2.1.2 Neutrons Scattering from Magnetic Order

To carry our discussion of scattering further, we must get more specific about

both the type of wave we are scattering and how it interacts with the target material

(V (r⃗)). Since we are interested in studying magnetic structures (Chapters 1.1 and

1.2), a natural choice of particle-wave is the neutron. Neutrons have an intrinsic

magnetic dipole moment that allows them to couple with the local magnetization in

a material, while their neutral charge allows them to avoid interacting with electrons.

Neutrons scatter via predominantly two mechanisms in a material: strong-force

scattering with the nuclei, and magnetic scattering from the local magnetic field B⃗.

Nuclear scattering enables neutrons to study crystal structure much like x-rays, but

with the advantage that the strength of the scattering signal is not dictated by merely

the number of electrons the target atom has, but rather the magnitude of the strong

force coupling with the nuclei. This short-range interaction potential is normally

modelled as a Dirac delta function for each atom i within the unit cell:

Vnuc(r⃗) ∝
∑︂
i

bi(Z,N) δ(r⃗ − r⃗i) (2.15)

Here, bi is called the “nuclear scattering length”, and it measures the strength of

the coupling between the neutron and the nucleus. Since the strength of the strong

force coupling depends on the complex inner workings of the nucleus, b is a function

of both atomic number and isotope, and can be either positive or negative. This

allows neutrons to scatter strongly from some elements that are too light to study

with x-rays. Additionally, the background scattering can often be reduced through

isotopic enrichment and/ or through scattering length contrast matching.

More relevant to this dissertation is how neutrons can also scatter from magnetic

order in materials. Assuming a dipolar interaction with the local field, this interaction
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takes the form

Vmag(r⃗) = −µnγB(r⃗) (2.16)

where µn = eh̄/2mp is the neutron magnetic moment and γ is the gyromagnetic ratio.

Plugging this into Equation 2.14, it is clear that the form factor for magnetic dipole

scattering is simply a Fourier transform of the local field B(r⃗).

F (G⃗, B(r⃗)) = −µnγ

∫︂
cell

e−iG⃗·r⃗ B(r⃗)dr⃗ (2.17)

Since the field B is a function of the local magnetization M , the scattering signal

contains information about the microscopic magnetic structure of the target. As

the scattering signal is summed over the entire illuminated sample volume, neutron

scattering provides a true probe of the magnetic properties of the bulk of the sam-

ple, rather than being limited to the surface like microscopy. This makes neutron

scattering a powerful tool for studying periodic magnetic order like vortices.

2.1.3 Neutron Scattering from Magnetic Vortices

Combining everything that we have discussed so far, it is possible to predict the

scattering signal that should be expected from a periodic magnetic vortex lattice, such

as a SkL or a VL. Since any real world neutron detector has finite size, it is impossible

to measure the scattering rate of a transition Γ(i,f) independently from all other Γ(i,f ′)s

with similar scattering angles. Therefore we must introduce the measurable quantity

of the scattering “cross section”, which sums over all scattering rates within a given

solid angle Ω. In the limit that the solid angle is infinitesimally small, we end up with

the differential cross section dΣ
dΩ
, which by definition is normalized to the neutron flux
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incident on the sample ϕn.

dΣ

dΩ
=

1

ϕn

∑︂
k⃗f∈dΩ

Γ(i,f) (2.18)

Combining this expression with Equations 2.1, 2.4, and 2.17, we find the magnetic

scattering differential cross section:

dΣ

dΩ
=

1

ϕn

2π

h̄
|A|2|S(q⃗, R⃗)|2|F (q⃗, B(r⃗)|2 (2.19)

From here, by using a proper normalization for the plane waves, and going through

loads of algebra, we can find a final form of the cross section

(︃
dΣ

dΩ

)︃
vortex

= (2π)3(
γ

4Φ0

)2Vsample

∑︂
G⃗

δ(q⃗ − G⃗)[
1

Φ0t

∫︂
cell

e−iq⃗·r⃗B(r⃗)dr⃗]2 (2.20)

where Φ0 is the flux quantum for the relevant vortex (i.e. Φsc
0 for VLs and Φe

0 for

SkLs). In this expression, the Laue condition of elastic scattering has been added

explicitly in the form of the Dirac delta function.

2.1.4 Small Angle Scattering

So far, we have discussed neutron scattering from magnetic vortices as if it is a

straightforward diffraction experiment. However, in practice, the de Broglie wave-

length of neutrons from any user facility is much smaller than the lattice constant of

VLs/ SkLs (λ ∼0.5 nm vs d ∼50 nm). Applying the condition that λ≪ d to Braggs

Law

λ

2d
= sin θ ≪ 1 (2.21)
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reveals that the first order reflections must occur at very small θ. In the small angle

limit, Bragg’s law can be simplified even further by approximating sin θ ≈ θ.

λ

2d
= θ (2.22)

Since the scattered beam lies only a few degrees from the transmitted beam, small

angle scattering poses experimental challenges that are unique amongst scattering

techniques. For this reason, neutron scattering facilities construct beamlines solely to

address these challenges and perform precise small angle neutron scattering (SANS)

(Fig. 2.5). The following section covers the experimental techniques used to achieve

this feat.

2.2 Experimental Details

From Bragg’s Law we can get a clear picture of the experimental requirements to

measure SANS from nanoscale structures. First, if we assume that we are experimen-

tally capable of resolving a minimum scattering angle θ = 1◦ from the unscattered

beam, then the de Broglie wavelength of our incoming neutrons (λ) needs to be at

least 1% of the size of structures we are interested in studying d. For structures in

the ballpark of 50 nm, this means we will need to produce neutron wavelengths of

Velocity
selector

Vortex
Lattice

Collimation apertures

Position
sensitive
detectorNeutron

guide

Figure 2.5. Magnetic SANS schematic From M.R. Eskildsen[35]
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order λ = 5 Å.

2.2.1 Cold Neutron Production

Since free neutrons naturally decay into protons in roughly 10 minutes, neutrons

to be used for scattering must be continuously produced for user operation. There

are two types of experimental facility that can produce high enough quantities of neu-

trons to be suitable for scattering applications: nuclear fission reactors and particle

accelerators.

Fissionable elements are able to maintain a chain reaction because the splitting

of each nucleus releases energetic neutrons which can go on to trigger another fission

event elsewhere. When a fission reactor is operating in a state of criticality, each

fission event triggers exactly one more fission event, so the power output remains

constant. However, fission of Uranium-235 produces on average three free neutrons

per event, and so these additional two neutrons must either be absorbed or directed

elsewhere to maintain criticality. These extra neutrons are exploited in a reactor-

based neutron source by adding an opening to the reactor to allow some of the

neutrons to escape. Neutron moderation will be discussed in further detail later.

Accelerator based sources operate by first producing a beam of protons that can

then be accelerated to high energies (∼500 MeV) via a cyclotron. This beam is

directed into a target made of a heavy, neutron-rich element like mercury or lead, and

the collision of the high energy protons with the heavy elements splits the nuclei and

produces a cascade of smaller elements through a process called spallation. Among

these fission products are many neutrons that can be used for scattering. Spallation

neutron sources often do not produce as many total neutrons per second as fission

reactor sources. However, many spallation sources are “pulsed” sources which means

the proton beam (and therefore the resulting neutron beam) is produced in short2,

2Normally on the order of microseconds in length.
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high intensity bursts. By producing these pulses of neutrons periodically, the different

wavelengths of neutrons can be separated by time of flight to the detector, and so a

wider range of the beam can be used simultaneously for measurement. Alternatively,

in monochromatic mode, high speed time-dependent measurements are possible.

Both fission and spallation produce very high energy neutrons, and so to reach

our desired wavelength of 5 Å we must dramatically reduce the energy of these neu-

trons. This is accomplished through “moderation”, which is the process of allowing

high energy neutrons to collide with other particles to give off energy. The first stage

of moderation occurs inside the reactor/ spallation source itself as the neutrons ther-

malize with the water (or heavy water) moderator. This process continues until the

neutrons are in thermal equilibrium with the water (∼ 290 K), producing “thermal

neutrons”. These neutrons have wavelength of order 1 Å, and so for SANS we must

cool the neutrons even further. To achieve this a second moderator, called a “cold

source” (∼ 20 K) is installed at the beginning of the SANS beamline. The cold

source contains a light cryogenic liquid, often liquid hydrogen, which further cools

the neutrons down to a kinetic energy of roughly 5 meV. This is the “cold neutron”

regime, and cold neutrons have wavelengths precisely in the 5-10 Å range that we

are interested in. The resulting wavelength distributions due to thermal and cold

neutron moderation are shown in Fig. 2.6.

2.2.2 Guiding the Neutrons

After leaving the cold source, the neutrons enter an evacuated tube called a neu-

tron guide. While neutrons are harder to “steer” than photons in many regards, the

different neutron scattering lengths of various materials does produce an effective

index of refraction for neutrons than can be exploited for some limited optics. The

inside of the neutron guide is lined with a material with a particularly high scattering

length so that neutrons incident at shallow angles will be almost entirely reflected,
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Figure 2.6. A) Distribution of neutron wavelength due to hot, thermal, and
cold neutron moderators. B) The combined distribution due to all three

levels of moderation, for a liquid methane cold source (∼ 100 K), and liquid
hydrogen cold source (∼ 20 K). From J. Finney [42].

producing total internal reflection within the guide. This effect allows the guides to

slowly bend as they move away from the reactor/ spallation target with very little

loss of total cold neutron flux. Curving the beamline isolates the cold neutrons from

other particles leaving the reactor (mainly gamma rays) by eliminating line of sight

to the cold source, and therefore protects the detector at the end of the beamline

from being overwhelmed with radiation.

2.2.3 Wavelength Selection

The next step in SANS is to isolate a narrow band of neutron wavelengths so

that we can perform monochromatic Bragg scattering. Fortunately, since neutrons

are massive particles, their de Broglie wavelength is directly related to their speed v:

λ =
h

p
=

h

mv
(2.23)
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Figure 2.7. Neutron velocity selector. From EADS Astrium.[1]

An efficient method to isolate neutrons based on this speed is to use a neutron

“velocity selector”. The velocity selector is a simple device consisting of many thin

fins of neutron absorbing material wrapped in a helix pattern around a central axle

(Fig. 2.7). This drum is then spun at high frequency such that only neutrons of

a particular speed can pass through the device without colliding into one of the

fins. Resolution of a velocity selector is typically measured in “wavelength spread”

∆λ
λ
, where ∆λ is the full-width, half-maximum (FWHM) of the resulting wavelength

distribution. Wavelength spread is chosen in particular because it does not depend

on wavelength or the speed of the drum, only on geometric parameters of the velocity

selector itself. Specifically

∆λ

λ
=
β

α
(2.24)

where α is the pitch angle of the helical fins and β is the angular fin spacing. Typical

values of ∆λ
λ

are around 10%, although this can be increased to increase neutron flux.
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Figure 2.8. Neutron collimation through two pin holes (not to scale). The
maximal angular spread of the neutron beam is shown in blue.

2.2.4 Collimation

After producing a monochromatic beam neutrons, it is now important to collimate

the beam to ensure that our incoming beam has a well defined incident angle. Since

neutrons cannot be steered easily with optics like a photon might be, collimating

the beam once again relies on absorbing all neutrons that that do not meet our

requirements. In particular, the beam is passed through two apertures in a neutron

absorbing material that are placed meters apart from each other (Fig. 2.8). By

reducing the size of the apertures (a1, a2) and increasing their separation (L), the

collimation of the beam can be increased at the cost of neutron flux. The first

aperture the neutrons encounter is naturally referred to as the “source aperture”

while the second is called the “sample aperture”. In practice, the source aperture is

normally the inner diameter of the neutron guide leaving the velocity selector, and

the separation L is controlled by how far this guide extends into a wider region of

beamline. This has the advantage of keeping the sample aperture fixed so that the

sample space and detector do not need to move.
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2.2.5 Sample Environment

SANS facilities are equipped to provide a wide variety of sample environments

corresponding to the many fields of study that regularly use SANS. Of particular

relevance to this dissertation are cryomagnets, as both SkLs and VLs require low

temperatures and magnetic fields to form. To be used with neutron scattering, cry-

omagnets must be equipped with special windows which minimize background scat-

tering. This is particularly challenging for SANS as potential window materials must

avoid both nuclear Bragg peaks from crystalline order, and small angle scattering

from large scale order. For these reasons, single crystal sapphire (Al2O3) or silicon

windows are normally used for SANS as their constituent elements have very low neu-

tron scattering cross sections and their crystallinity prevents scattering from grains.

Similar considerations must also be made in selecting a substrate to hold the sample

in the beam, and for all experiments discussed in this dissertation we have used a

sapphire substrate for its low SANS background and high thermal conductivity.

If studying an anisotropic magnetic structure it is critical that the cryomagnet

be installed on a rotation stage so that the incident neutron angle can be changed

relative to the field. For periodic structures where Bragg diffraction is produced (like

SkLs and VLs), rotations must be possible in both axes which are orthogonal to

the neutron beam so that sample can be rotated arbitrarily through reciprocal space

until the Bragg condition is satisfied. Though not essential, it also often useful for

the entire cryostat/ rotation assembly to be installed on a 3 axis translation stage so

that the sample can be easily moved into the center of the neutron beam.

2.2.6 Detecting Neutrons

The final hurdle in measuring SANS is detecting the scattered neutrons in a

spatially (and sometimes temporally) resolved fashion. This is trickier than detecting

other forms of ionizing radiation as neutrons lack electric charge, so their presence
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must be detected through daughter products of their interaction with matter. Due

to its very high neutron absorption cross section, helium-3 is the usual choice as a

converter gas for neutron detection. Absorbing a neutron converts the helium-3 to

hydrogen-3 and releases a proton in the following reaction:

n + 3He −→ 3H− + p+ + 0.764 MeV (2.25)

These daughter products carry roughly 0.7 MeV of kinetic energy and go on to

produce a cloud of ionized particles which can be detected as a current pulse across the

high voltage of a Geiger counter or similar detector. In order to spatially determine

where a neutron is detected, the neutron detectors are arranged in an array. If the

detectors are small enough, each detector can be one pixel in the array. However,

another common solution is to use long tube detectors which span one dimension of

the array. In order to determine how far along the length of the tube a neutron is

detected, the current pulse is measured from both ends and the difference of pulse

arrival time indicates how close the neutron was to each end.

Standard pixel size for a neutron detector is around 1 cm, so to resolve the small

scattering angles necessary for SANS the detector must be moved tens of meters

away from the sample. In order to avoid secondary scattering from air molecules,

the detector array is placed at the back of an evacuated tank. Within this tank, the

detector array is placed on rails which allow it to be driven closer or further away

from the detector depending on the desired scattering angle range. On these same

tracks a small neutron absorbing “beam stop” is placed in front the detector at the

center of incident beam to shield the detector from the bright, un-scattered neutron

beam (as well as any other unwanted radiation that has made it this far).
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Figure 2.9. D33 and D22 SANS beamlines at the Institut Laue Langevin.
The large cylinders are the evacuated detector tanks of the two beamlines.

The reactor sits behind the far wall in the distance.

2.2.7 SANS Resolution

SANS, like all experimental techniques, has its own resolution limits. Since wave-

length selection and beam collimation both rely “throwing away” neutrons that do not

meet set criteria, neither can be achieved perfectly without eliminating all usuable

neutron flux. Therefore, the finite resolution of these two steps contribute most

heavily to the resolution of SANS. Additionally, as discussed before, cold neutron

detectors have finite pixel size on the order of a few mm up to a cm. However, as

long as measurements are performed on truly small angle (low q) systems and the

detector is positioned towards the back of the detector tank, this pixel size is nor-

mally negligible compared to the size of the Bragg peak produced from resolution

limits upstream. For a full derivation of the following expressions, please consult the

dissertation of P. Harris [50].
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2.2.7.1 Wavelength Resolution

As mentioned previously, velocity selectors are designed to have a fixed wavelength

spread ∆λ
λ

independent of the selected wavelength. From Bragg’s Law in the small

angle θ limit:

2θ =
λ

d
=
qλ

2π
(2.26)

Working from here, it is possible to derive the resolution limit due to wavelength

spread:

∆2θ(λ,
∆λ

λ
) =

qλ

4π

√︃
4 ln 2

3

∆λ

λ
(2.27)

Here, the resolution is expressed as the full width at half maximum (FWHM) ∆2θ,

which introduces the
√
ln 2-related coefficients.

2.2.7.2 Collimation Resolution

As shown in Figure 2.8, the two pinhole collimation approach allows a finite angu-

lar spread of neutrons to continue onto the sample. The resolution of this approach

is a function of the pinhole sizes a1 and a2, as well as their separation L.

∆2θ(a1, a2, L) =
1

2

√
2 ln 2

√︃
(
a1
L
)2 + (

a2
L
)2 (2.28)

2.2.7.3 Resolution of q⃗

It is important to note here that while the spread of wavelengths impacts the

outgoing scattering angle θ, the spread of neutron collimation impacts the incoming

neutron vector k⃗i. This limits resolution in both the scattering angle θ and the

azimuthal angle ϕ, since k⃗i is uncertain in both directions. Assuming these resolution

limits are Gaussian in nature and act independently, we can add them in quadrature

to determine the resolution limit of q⃗ in all three directions in reciprocal space (shown
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Figure 2.10. Uncertainty of the reflected q⃗ in three directions of reciprocal
space, indicated by the finite dimensions of the ellipsoid. Wavelength
spread broadens the uncertainty in qR and qL, while collimation spread

broadens the uncertainty on qR, qL, and qA.

in Fig 2.10): radially,

∆qR =

√︃
[k∆2θ(λ,

∆λ

λ
)]2 + [k∆2θ(a1, a2, L)]2 (2.29)

azimuthally,

∆qA =
√︁

[k∆2θ(a1, a2, L)]2 (2.30)

and longitudinally.

∆qL =

√︃
[q∆2θ(λ,

∆λ

λ
)]2 + [q∆2θ(a1, a2, L)]2 (2.31)

Comparing these equations, it is clear that the longitudinal resolution for SANS

(∆qL) will be much better than along the other directions, as by definition q ≪ k in

small angle scattering. For this reason, it is best practice to align the neutron beam
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along the axis of magnetic order that you are most interested in studying with SANS.

2.3 SANS on Magnetic Vortices

As discussed previously, SANS is an ideal tool for studying the bulk properties of

large scale magnetic order. For SkLs, the periodicity of the helimagnetic precession

Q directly leads to the scattering vector magnitude q = Q. In VLs, since the density

of vortices is a function of magnetic field, so too is the scattering vector. In the case

of square VLs, the largest spacing symmetry planes (and therefore the lowest q Bragg

peaks) lie perpendicular to the [100] vectors, so

qsqr0 =
2π

asqr0

= 2π

√︄
µ0H

Φsc
0

(2.32)

For triangular VLs, the largest spacing planes lie perpendicular to the [110] vectors,

so

qtri0 =
2√
3

2π

atri0

= 2π

√︄
2µ0H√
3Φsc

0

(2.33)

In MnSi, the triangular SkL leads to a six-fold symmetric Bragg pattern in reciprocal

space. Similarly, the triangular VL of MgB2 produces six-fold symmetric Bragg

patterns.

Due to the finite volume and imperfect periodicity of real world magnetic vortex

lattices, Bragg scattering does not only occur at the exact points in reciprocal space

suggested by Equation 2.20. Rather, each reciprocal lattice point has a finite width

in all three directions in reciprocal space that is proportional to the disorder3 of the

magnetic lattice in that direction. This disorder is normally expressed in terms of the

correlation length ζ in each direction (ζR, ζA and ζL), which is inversely proportional

to the width of the lattice point. Studying the structure of a magnetic lattice with

3Or inversely proportional to the finite length of the sample in the case of highly-ordered magnetic
lattices.
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SANS therefore becomes a matter of measuring the shape and size of each reciprocal

lattice point in these three dimensions. Below I discuss a few of the most typical

magnetic SANS measurements and what we can gain from performing them.

2.3.1 Individual SANS Images

Since the Ewald sphere is much larger than the reciprocal lattice spacing in the

small angle limit (|k| ≫ |q|), the flat 2D SANS detector maps well onto the surface

of the Ewald sphere without significant distortion. Therefore, the SANS detector can

be understood as a plane that “slices” through reciprocal space, detecting neutrons

whenever that plane intersects a reciprocal lattice point (Fig. 2.11).

To understand this, it is useful to map reciprocal space with spherical coordinates

(q, θ, ϕ), where q is the length of the scattering vector, θ is the angle of incidence

relative to the applied field, and ϕ is the azimuth, which by convention is measured

clockwise from the vertical. In this way, a single SANS image captures the scattered

neutron intensity as a function of q and ϕ, for a fixed value of θ (Fig. 2.11).

Since a SANS image is only one 2D “slice” of reciprocal space, it does not contain

all information about the structure of the lattice. However, individual images can

be collected very quickly4 and therefore can be incredibly useful when what you

are interested in measuring falls within that plane. For example, in Chapter 3, the

scattered intensity within individual Bragg peaks is used as a measure of the number

of skyrmions within a crystal of MnSi as a function of field, since the intensity of

Bragg scattering is proportional to the number of scattering sites. In Chapter 4,

individual SANS measurements are used to confirm the azimuthal alignment of the

VL with respect to the crystal lattice as a function of field.

4Anywhere from a few minutes to a few seconds per image for the samples discussed in this
dissertation.
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Figure 2.11. A) The Ewald sphere intersecting one reciprocal lattice point
at an incident neutron angle θ. B) The resulting scattered neutron

intensity in the detector plane.

2.3.2 Rocking Curves

Sometimes it is necessary to measure the full, three dimensional size and shape of

a reciprocal lattice point to understand the structure of a magnetic lattice. Due to the

resolution limits discussed in Section 2.2.7, the size of the corresponding measurable

Bragg peaks are a convolution of both the widths of the reciprocal lattice points and

the resolution limits of SANS. Often5, the resolution limit in the azimuthal and radial

directions are much greater than the width of the reciprocal lattice points in these

directions. Therefore, only limited information can be gained about the shape of the

lattice points in these directions. However, as discussed previously, the resolution of

SANS in the longitudinal direction (∆qL) is much better, and so precise measurement

of the longitudinal order is very feasible.

To measure the longitudinal shape of a Bragg peak, the sample must be rotated

within the scattering plane of the Bragg peak (i.e. the plane formed by ki and kf )

to explore a range of scattering angles θ. This causes the Ewald sphere to move

5In all experiments discussed in this dissertation.
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along the kf direction through the lattice point. By recording the scattered intensity

of the Bragg peak as a function of θ, one can generate a so called “rocking curve”

of the Bragg peak6. This process is shown in Figure 2.12, where each set of colors

corresponds to a separate SANS measurement which are then combined to form the

rocking curve.

The shape of the rocking curve is dictated by which contribution to peak broaden-

ing (experimental resolution or sample disorder) is more significant in a given experi-

ment. If experimental resolution dominates, the rocking curve will be predominately

Gaussian in shape due to normally distributed uncertainties on the experimental pa-

rameters. If longitudinal disorder is greater, the rocking curve will be predominately

Lorentzian in shape due to the finite correlation length of the vortices in the field

direction. In intermediate cases where both broadening effects are significant, the

rocking curve is a convolution of Gaussian and Lorentzian profiles, called a Voigt

function.

Rocking curves provide much more in depth information about the structure of

a VL or SkL than an individual diffraction pattern. By summing the SANS images

taken at each point in a rocking curve, multiple Bragg peaks can be observed at

once, allowing for a full determination of the VL/SkL symmetry. In Chapter 4, this

process is used to show the distortion of the VL unit cell in MgB2 from an equilateral

triangular lattice to a scalene triangular lattice. Additionally, measurement of the

rocking curve width can provide priceless information about how a magnetic structure

is changing. In Chapter 3, measurement of the longitudinal correlation length in

MnSi is used to better understand the microscopic dynamics of the SkL-conical phase

transition. One final use of rocking curves worth mentioning is that by integrating

6If the sample is not rotated within scattering plane of a given peak, the Ewald sphere will
not rotate through the lattice point in an a purely longitudinal direction. To account for this, the
rocking curve must be rescaled by the “Lorenz factor” to generate the true longitudinal rocking
curve.
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Figure 2.12. A) Ewald sphere rotating by angle θ through reciprocal space
and taking different slices through the Bragg peak. Each color represents a
separate SANS image, and by summing the scattered intensity in each

image, a rocking curve can be plotted as a function of θ (B).
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over the scattered intensity at all points within a rocking curve and dividing by the

incident neutron flux, the absolute reflectivity of the VL/ SkL can be determined.

This allows for a direct measurement of the magnitude of the VL/ SkL form factor

|F (q⃗, V (r⃗))|2.

2.4 Concluding Remarks

This chapter has discussed the application of SANS to study mesoscale magnetic

vortices. By mapping the location and shape of magnetic Bragg peaks in recipro-

cal space, we can gain many insights into the structure and order of these vortex

lattices. However, as I highlighted in bold in Chapters 1.1 and 1.2, many of the

most interesting unanswered questions about superconducting vortex lattices and

magnetic skyrmion lattices are not structural in nature but energetic. These ques-

tions cannot be directly answered from the reciprocal space information that SANS

provides. However, as I discuss in the following chapters, by combining SANS with

some simple (but nonetheless informative) modelling we can start to address these

more fundamental questions.

In Chapter 3, we have used SANS to observe a hysteresis associated with entering

and exiting the SkL phase in MnSi. By fitting this behavior to a Preisach model,

we have directly measured the topological energy barrier of skyrmion formation.

This demonstrates and quantifies the robust stability of magnetic skyrmions which

is integral to the use of skyrmions in memory devices.

In Chapter 4, we have used SANS to explore how anisotropy impacts the VL of

MgB2. We observe that as the field is rotated away from the high symmetry c axis,

a twelve-fold anisotropic term in the VL free energy is suppressed and the L phase

progressively disappears. This opens the possibility for using the VL of MgB2 as a

model system to study granular systems which experience first-order (discontinuous)

structural phase transitions.
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Finally, in Chapter 5, we have begun the construction of a new type of skyrmion

device that will allow us to more directly observe skyrmion motion due to electric

current with SANS. This device will allow us to directly measure the SkL-crystal

lattice interaction potential, and observe any elastic deformations of the SkL due to

these forces.

72



CHAPTER 3

ACTIVATION BARRIER OF SKYRMION FORMATION IN MnSi

This Chapter is adapted from Leishman et al. [79]. Additions and modifications

have been made for clarity and to add further detail.

3.1 Introduction

As discussed in Chapter 1.2, magnetic skyrmions were first observed in the chiral

magnet MnSi. Despite the resulting flourish of research into MnSi, no experiments

were able to directly measure the magnitude of the most promising property of the

SkL: the topological energy barrier. This barrier inhibits the transition to and from

the SkL to any non-topological magnetic phase (e.g. the conical, helical, or field-

polarized ferromagnetic phases). As a result, both the conical and the SkL phases

are bistable as local minima in the free energy over a finite region of parameter

space, giving rise to phenomena such as quench metastability and field history de-

pendence [66, 94, 13, 106, 104, 67]. Unique skyrmionic spin structures have even

been predicted to be bistable with each other in certain thin film systems [23]. The

metastability gives rise to activated behavior reported for Fe1−xCoxSi [130] and Zn-

doped Cu2OSeO3 [19], and the activation barrier for the destruction of a metastable

SkL in the latter compound was previously determined from time-dependent mea-

surements [132]. Similarly, the activation barrier for single skyrmions in magnetic

thin films have been predicted from theoretical calculations [118, 84, 127, 51]. It is

the inherent stability provided by the topological energy barrier that makes skyrmions

promising candidates for memory applications, and understanding the nature of this
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barrier is the key to the development of new skyrmion-based devices. In spite of

this need, a complete description of the nucleation mechanism of the SkL in chiral

magnets has not yet been fully established.

Here we report direct evidence of the skyrmions’ topological energy barrier through

a measurement of hysteresis in the SkL-conical phase transition in MnSi, using small-

angle neutron scattering (SANS) [100]. Importantly, these measurements were per-

formed on the equilibrium SkL phase rather than metastable configurations as dis-

cussed above. The existence of hysteresis is direct evidence of the bistability of the

SkL and conical phases. We further employ a minimum-energy path analysis, based

on an atomistic spin model, to both understand and quantify the nature of this bar-

rier and the microscopic dynamics of the phase transition itself. The combined data

shows unambiguously that it is energetically favorable for the SkL phase to form

progressively, in domains consisting of hundreds of skyrmions.

3.2 Experimental Details

Initial, exploratory SANS measurements were performed on the the CG2 Gen-

eral Purpose SANS instrument [53] at the High Flux Isotope Reactor at Oak Ridge

National Laboratory, and the D33 instrument at Institut Laue-Langevin [38]. Sys-

tematic SANS measurements of the SkL hysteresis were carried out at the SANS-I

instrument at the Paul Scherrer Institute (PSI) (neutron wavelength and bandwidth:

λ = 0.6 nm, ∆λ/λ = 10%) and the Bilby instrument [125] at the Australian Nuclear

Science and Technology Organization (ANSTO) (λ = 0.5 nm, ∆λ/λ = 10%).

The 3.2 × 2.0 × 1.3 mm3 MnSi single crystal used for the SANS measurements

was cut from a larger crystal grown by the Bridgman-Stockbarger method followed

by a one week annealing at 900 ◦C in vacuum. The parent crystal has previously

been well characterized confirming its high quality. Specifically, different pieces of the

same crystal were investigated by AC magnetic susceptibility and electrical resistivity
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measurements [43, 90]. This confirmed that the phase diagram agrees well with those

reported in literature [102] (Tc = 29 K), and yielded a residual resistivity ratio (RRR)

of 87 (defined as the ratio of the electrical resistivity at 300 K and 2 K). This is

comparable to samples used in previous neutron scattering studies on the SkL in

MnSi performed by other groups [104]. Further pieces were also characterized by

resonant ultra sound measurements and energy dispersive X-ray spectroscopy, with

the latter confirming the correct stoichiometry [90, 91]. Finally, an earlier SANS

study of influence of uniaxial strain on the SkL has been carried out on parts of the

same crystal [43]. For the SANS experiments, the MnSi crystal was aligned with the

[110] direction parallel to both the applied field and the incident neutron beam, such

that only one SkL orientation was energetically favorable, with SkL vector parallel

to the crystallographic [11̄0] direction.

At the beginning of each SANS experiment, temperature sweeps (26–32 K) and

field sweeps (130–240 mT) were performed to locate the A phase boundaries. The

main SANS results consist of hysteresis loops, obtained by sweeping the field between

the SkL and conical phases at constant temperatures. For these loops, temperatures

were selected which correspond to the maximal observed scattered intensity of the

SkL (28.1 K), and to a 50% reduction of this intensity on the warmer (28.4 K) and

cooler (27.8 K) sides of the A Phase. For the “major hysteresis loops”, the field

was swept between 130 and 240 mT using the superconducting cryomagnet. This

traverses the entire A phase, with both field endpoints well within the conical phase.

For the “minor hysteresis loops”, the Mk 3 resistive coil was used to supplement to

the superconducting magnet, and achieve a higher precision of the magnetic field.

This coil, as well as the earlier versions that were used for experiments at ILL and

ORNL, is described in further detail in Appendix A. A Cernox sensor and a nichrome

heater were mounted in direct contact with the sample disk, allowing an independent

temperature control of the sample to within ±10 mK throughout the minor loops.
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Prior to the minor hysteresis loops the sample was heated to a temperature above

the A phase, and then field-cooled to the center of the upper phase transition in a

constant field of 205 mT.

3.3 Experimental Results

A typical SkL diffraction pattern is given in Fig. 3.1. This shows the sum of the

scattered intensity as the SkL is rotated about the vertical axis to satisfy the Bragg

condition for each of the six peaks. Bragg peaks associated with the conical phase

are not visible in this geometry, and therefore do not contribute to the scattering.

Figure 3.2 shows the angular dependence of the intensity of a single peak, as both

the sample and applied field are rotated together through the Bragg condition. The

rotation is performed perpendicular to the Ewald sphere, eliminating the need for a

Lorentz correction of the angular peak width. This so-called rocking curve is well

fitted by a Lorentzian line shape, indicating that it is dominated by spatial or tem-

poral fluctuations of the SkL rather than experimental resolution [100]. We believe it

unlikely that these fluctuations are temporal like those associated with critical fluc-

tuations observed above Tc [47, 59, 68], but rather are a result of a finite skyrmion

correlation length along the field direction due to crystal mosaicity as reported in

other studies of MnSi [102].

Full width half maximum (FWHM) rocking curve widths ∆ω throughout the

conical to SkL transition are shown in Fig. 3.3. Here the horizontal axis is the

integrated intensity, where the maximal value corresponds to being fully in the SkL

phase and zero corresponds to being fully in the conical phase. The lowest intensity

where complete rocking curve measurements are feasible is roughly one tenth of the

maximal intensity. From the widths one can estimate the longitudinal correlation

length ζL = 2(qSkL∆ω)
−1, where qSkL = (0.388 ± 0.002) nm−1 is the magnitude of

the SkL scattering vector. As the rocking curve widths greatly exceed σR/qSkL =
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Figure 3.1. (a) Diffraction pattern of the SkL of MnSi at H = 195 mT.
This is a sum of measurements at different rocking angles, with peaks on
the horizontal axis appearing fainter as they were, on average, further from

the Bragg condition. Background scattering near the detector center
(q = 0) is masked off.

Figure 3.2. Rocking curve at H = 205 mT, midway along the upper
SkL-conical phase transition. The curve is fit to a Lorentzian distribution

with a width ∆ω = 2.44◦ ± 0.04◦ FWHM.
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Figure 3.3. Rocking curve widths, obtained from Lorentzian fits to the
data, along the upper SkL-conical phase transition for both increasing and

decreasing field sweeps.

0.3◦ FWHM obtained from Eq. (2.31), corrections to ∆ω due to the experimental

resolution are negligible. The measured widths yield values of ζL ranging from 130 nm

to 90 nm, indicating a reduction of the average SkL domain length along the field

direction by the introduction of conical phase regions within the sample. Similarly,

the lateral correlation length ζR can be estimated from FWHM of the Bragg peak

in the radial direction within the detector plane, ∆qR. Fits of the radial intensity

yields ∆qR ∼ 6.3 × 10−2 nm−1 fully within the SkL phase, increasing to ∼ 6.9 ×

10−2 nm−1 upon entering the conical phase [apart from a re-scaling of the vertical

axis, the behavior is near identical to that of the rocking curve widths in Fig. 4.4(c)].

Correcting for the comparatively poorer resolution within the detector plane yields

ζR = 2(∆q2R − σ2
R)

−1/2, with σR = 4.8 × 10−2 nm−1 obtained from Eq. (2.29). From

this, one finds a lateral correlation length decreasing from 50 to 40 nm upon leaving

the SkL phase. Together, these results suggest that the phase transition proceeds

locally, with nanoscale regions transitioning independently over a range of applied

78



fields.

The total integrated Bragg peak intensity is proportional to the number of scatter-

ers (skyrmions) in the system [102], and therefore the fraction of the sample volume

within the SkL phase. Within the detector plane integration is performed by sum-

ming counts in the pixels spanning a Bragg peak (see Fig.3.4). Integration along the

third dimension of reciprocal space is obtained from rocking curves. However, as the

applied field H is increased into the conical phase and the scattered intensity from

the SkL vanishes, the rocking curve widths only change modestly as seen in Fig. 3.3.

The SkL volume fraction is thus taken to be proportional to the rocking curve peak

intensity for studies of hysteresis associated with the SkL-conical phase transition.

While it is possible to make corrections for the systematic variation in the rocking

curve width in Fig. 3.3, this is a comparatively small effect and does not influence

the analysis of the data in a significant manner as we shall discuss later.

Figures 3.5 and 3.6 shows respectively a major and a minor hysteresis loop at

T = 28.1 K. In both cases, the intensity was normalized by the maximal observed

intensity, which corresponds to the entire sample being in the SkL phase. In the

major hysteresis loop, the field was swept from 130 mT to 240 mT and back. Both

end points are well inside the conical phase, and this loop covers the entire A phase.

Here, a clear separation of the two sweep directions is observed, with the SkL volume

fraction lagging in the direction the field is changing. Importantly, thermal relaxation

times in MnSi are much shorter than the SANS count times at the measurement

temperatures [106], and do not contribute to the hysteresis.

To confirm hysteretic behavior, a series of minor loops were measured, each of

which was centered on the high field phase transition into the conical state. Prior to

each minor loop, the sample was cooled from the paramagnetic state to the measure-

ment temperature in a constant field (205 mT), followed by a reduction of the field

to the starting point. From here, minor hysteresis loops were recorded by raising the
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Figure 3.4. Raw diffraction pattern from the SkL as magnetic field is
increased through the A Phase. All measurements shown correspond to the
28.1 K measurement at ANSTO. Also shown in red is the polar coordinate
box within which all pixels are summed to calculate the scattered intensity

for each data point in the hysteresis loops.
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Figure 3.5. Major hysteresis loop for T = 28.1 K recorded at PSI. Curves
shown are fits to an adapted Preisach model described in the text.

Figure 3.6. Minor hysteresis loop at the same temperature, centered
around 205 mT and with an field sweep range of 33 mT. Symbols are the
same as in Figure 3.5. Bottom left inset: Expanded view of the central part
of the loop. Top right inset: Schematic showing field sweep direction and
effective sweep range ∆Heff. Curves shown are fits to an adapted Preisach

model described in the text.
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Figure 3.7. Area of the minor and major hysteresis loops as a function of
the effective sweep range.

field to partially leave the SkL phase and then decreasing it to reenter. An example

of a minor loop is show in Fig. 3.6. Minor loops of four different lengths were

performed, and the area of each of these loops is plotted in Fig. 3.7. The areas are

plotted as a function of the effective length of the loop ∆Heff, defined as the separa-

tion between the two crossing points of the different field sweep directions illustrated

in the Fig. 3.6 inset, which were determined from fits to the data. As seen in Fig. 3.7,

the area of these loops grows superlinearly, following a power law ∝ ∆H1.45±0.1
eff . This

shows that as the loops grow longer, they must also become wider, and therefore nest

inside each other as expected for a true hysteresis.

To quantify the activation barrier for skyrmion formation and destruction, the

SANS hysteresis loops are analyzed using an adapted Preisach model. This is suitable

for transitions in bistable systems, where two phases coexist as local free energy

minima over some range of the external field [17]. In the region of bistability, the free
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TABLE 3.1

MAJOR HYSTERESIS LOOP FITS

Facility T (K) Hc1 (mT) σc1 (mT) Ha1 (mT)

ANSTO 27.8 188 ± 8 19 ± 2 1.1 ± 0.3

PSI 28.1 155.3 ± 0.2 12.5 ± 0.2 0.94 ± 0.14

ANSTO 28.1 160.2 ± 0.5 13.7 ± 0.3 1.1 ± 0.2

ANSTO 28.4 168 ± 9 21 ± 3 1.0 ± 0.3

Hc2 (mT) σc2 (mT) Ha2 (mT)

ANSTO 27.8 211 ± 3 14 ± 1 1.0 ± 0.2

PSI 28.1 204.4 ± 0.2 9.5 ± 0.2 0.96 ± 0.12

ANSTO 28.1 212.5 ± 0.4 12.0 ± 0.3 0.8 ± 0.2

ANSTO 28.4 200 ± 6 19 ± 2 0.7 ± 0.3

Preisach parameters obtained from fits to major hysteresis loops. Uncertainties indicate the
one sigma confidence interval provided by the fitting algorithm.

energy F is assumed to be linearly proportional to the magnetic field B:

F (B, T, . . .) = F (Bc, T, . . .)∓ (X −X0/2)(B −Bc). (3.1)

Here, X is an order parameter with dimensions of a magnetic moment, used to

distinguish the conical (X = 0) and skyrmion (X = X0) phases. The sign of the

second term in Eq. (4.5) corresponds to respectively the lower (-) and upper (+)

transition between the SkL and conical phases. The Preisach free energy as a function

of applied field is shown in Fig. 3.8(a). A similar picture was previously proposed

to describe temperature-quenched metastable SkL phases in MnSi [106].

The low- and high-field transitions are treated independently, with each one gov-

83



Bc

Ba Ba

(b)

Bc1−Ba1

Bc1

Bc1+Ba1

Bc2−Ba2

Bc2

Bc2+Ba2

Fr
ee

 e
ne

rg
y

Conical
(X = 0)

SkL
(X = X0)

Skyrmion phase

(a)

X = 0

X = X0

Order
parameter
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erned by a pair of parameters: the critical field (Bc1/c2) where the two phases have

the same free energy, and the height of the activation barrier (Ba1/a2) that inhibits

the transition. As the external magnetic field is increased from zero and approaches

the lower conical-to-SkL phase transition, the conical state free energy increases and

the SkL state free energy decreases. At B = Bc1 + Ba1, the conical phase minimum

vanishes and the system transitions to the skyrmion phase. For decreasing fields, the

transition occurs at B = Bc1 − Ba1. Similarly, the upper SkL-to-conical transition

occurs at B = Bc2±Ba2, where the situation is reversed and the conical and SkL free

energies respectively decrease and increase with increasing field. The Preisach model

is an inherently zero-temperature model, and a transition between the states only

occurs when one minima disappears and the system is no longer bistable. This is ap-

propriate for the SkL as reported activation barriers are much greater than kBT [132]

for T ≤ TN .

Preisach free energy curves produce perfectly rectangular hysteresis loops, cen-

tered around Bc and with width 2Ba, as shown in Fig. 3.8(b). Rounded loops are

obtained by considering the sample to be composed of microscopic, independently-

acting, “Preisach units”, each with its own Bc1/c2 and Ba1/a2. Since the magnetiza-

tion is approximately linear across both the upper and lower field phase transitions

[16], we express Bc1/c2 and Ba1/a2 in terms of the corresponding applied fields Hc1/c2

and Ha1/a2. To model the SANS hysteresis loops, Preisach units are assumed to

follow a Gaussian distribution in both critical and activation fields. These distribu-

tions are characterized by their mean values (Hc1/c2, Ha1/a2) and standard deviations

(σc1/c2, σa1/a2). The hysteretic behaviour of a system can be predicted given the

set of (Hc1/c2, Ha1/a2, σc1/c2, σa1/a2), and therefore we can use least squared fitting

to uniquely determine these parameters. Performing these predictions and fitting

such a large parameter space is quite an interesting computational problem and it is

discussed in detail in Appendix B.
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A fit to the PSI major hysteresis loop for T = 28.1 K is shown in Fig. 3.5, and the

resulting parameter values are summarized in Table 3.1. Values of σa1/a2 converge to

zero during the fit, and this parameter was therefore eliminated. This suggests that

the activation barrier has a constant value throughout the entirety of the illuminated

sample. Differences between the fit and the data near the maximum SkL volume

fraction are due to the assumed Gaussian Preisach distribution fitted to the data.

A skewed distribution, introducing additional degrees of freedom, could improve the

overall fit. However, the values of Ha, which is the principal variable of interest,

would most likely remain unchanged as they depend on the width of the hysteresis

(separation of up- and down-sweeps) at half SkL volume fraction, where the current

fits are very good. Finally, rescaling the data to account for the changing rocking

curve width previously discussed only effects the Preisach fits minimally. Specifically,

Hc1/Hc2 are shifted by ∼ 2% in opposite directions to increase the width of the SkL

phase, σc1/σc2 are both reduced by ∼ 5%, and Ha1/Ha2 remain within uncertainty

of the values in Table 3.1.

Also included in Table 3.1 are results of fits to the major loops recorded at ANSTO

at three different temperatures. The difference in the fitted values of Hc1/c2 at 28.1 K

may be attributed to variations in the remnant field of the cryomagnets used, sup-

ported by the similar separation between the upper and lower transitions for the

PSI and ANSTO results. The larger uncertainty on Hc1/Hc2 and greater values of

σc1/σc2 at 27.8 K and 28.4 K are due to the weaker scattering and therefore lower

statistics at these temperatures. Importantly, the least affected parameters are the

two activation fields, which remains consistent and with modest uncertainties across

all the measurements.

As the upper and lower phase transitions are treated entirely independently in

this model, some Preisach units could, in principle, return to the conical phase before

others have entered the SkL phase. At 28.1 K, where the separation of the tran-
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sition fields is much greater than σc1/c2, this rarely occurs. However, at 27.8 K and

28.4 K the transitions overlap significantly, preventing the intensity from reaching

the maximum at 28.1 K, which is reflected in the increased values of σc1/σc2. More

importantly, the good agreement between Ha1 and Ha2 supports a topological origin

for the activation barrier which should be similar for both phase transitions. Further

support for this conclusion comes from the consistent values of the activation fields

at different temperatures. This indicates that the finite temperature range of the

A Phase is not due to a significant reduction of the activation barrier, but rather a

convergence of the two critical fields as the energy separation between the conical

and SkL phases is reduced.

While applying the Preisach model does not require prior knowledge about the

nature of individual units, it is nonetheless relevant to consider their nature. In the

original application to ferromagnetic hysteresis, magnetic domains behave sufficiently

independent to be treated as Preisach units. By analogy, we anticipate that in the

present case they correspond to microscopic SkL domains, within which the cascade

of individual skyrmion formation occurs much faster than the measurement time.

In this way, each domain experiences the phase transition quasi-instantaneously and

independent of other domains. This is consistent with the longitudinal and lateral

correlation lengths discussed previously, providing a characteristic length scale for

the SkL domains of the order 100 and 50 nm, respectively. In such a scenario, varia-

tions of the local magnetic field due to crystal inhomogeneities and demagnetization

effects give rise to a range of different transition fields and therefore a non-zero σc.

This explanation is supported by the observations of Reimann et al. [117], where

demagnetization causes the SkL to form progressively as field increases, first along

the outside edges of the crystal before saturating to the center. An estimate of the

demagnetizing effects in our samples is discussed in Appendix C. It is likely that

both the distribution of SkL domains throughout the sample as well as their sizes
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TABLE 3.2

MINOR HYSTERESIS LOOP FITS

∆Heff (mT) Hc2 (mT) σc2 (mT) Ha2 (mT)

5.5 ± 1.0 203.6 ± 0.2 11.5 ± 0.2 0.18 ± 0.05

15 ± 2 204.8 ± 0.1 10.5 ± 0.1 0.16 ± 0.05

23 ± 5 205.1 ± 0.2 10.5 ± 0.1 0.25 ± 0.04

Preisach parameters obtained from minor hysteresis loops at T = 28.1 K (PSI).

depend on the field and temperature history, which may affect the activation barriers

observed in the SANS experiments. To explore this possibility Preisach model fits

were performed on the minor hysteresis loops, where the initial configuration was

obtained by a field cooling to the midpoint of the upper SkL-conical transition. In

contrast, the major loop has a starting point entirely within the conical phase. The

results of the minor loop fits are summarized in Table 3.2. While the values of Hc2

agree with those obtained from the major loop, Ha2 is reduced significantly, confirm-

ing that the barrier to create or destroy SkL domains depends on the field history.

We return to this point later.

3.4 Theoretical Modeling

To complement the SANS data, we established a collaboration with M. V. Mi-

los̆ević and R. M. Menezes from the University of Antwerp to perform atomistic spin

dynamics simulations of MnSi. These simulations were performed by R. M. Menezes

to investigate the transition between the conical and SkL states using a homemade

simulation code [127] as well as the Spirit package [101]. The extended Heisenberg
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Hamiltonian that describes the system of classical spins can be written as

H =− J
∑︂
⟨i,j⟩

ni · nj −
∑︂
⟨i,j⟩

Dij · (ni × nj)−
∑︂
i

µB · ni, (3.2)

where µi is the magnetic moment of the ith atomic site with |µi| = µ, and ni = µi/µ is

the ith spin orientation. Here J represents the first-neighbors exchange stiffness, Dij

is the DMI vector, B is the perpendicular external magnetic field, and ⟨i, j⟩ denotes

pairs of nearest-neighbor spins i and j. For the simulations, the parameters J =

1 meV and D = 0.18J were adopted, which are reasonable values for MnSi [58, 57].

Although intrinsic exchange and cubic anisotropies [11] may define a preferential

direction for the spin rotation in MnSi at zero field, such high-order contributions

are much weaker than the energy terms in Eq. 3.2 and were therefore neglected in

the calculations. Similarly, the small contribution from a dipolar interaction was also

not included [95, 48]. The dynamics of the spin system is governed by the Landau-

Lifshitz-Gilbert equation

∂ni

∂t
= − γ

(1 + α2)µi

[︁
ni ×Beff

i + αni × (ni ×Beff
i )

]︁
, (3.3)

where γ is the electron gyromagnetic ratio, α is the damping parameter and Beff
i =

−∂H/∂ni is the effective field.

The MnSi crystal, shown in Fig. 3.9, consists of a B20 structure (space-group

P213) with four Mn atoms and four Si atoms [60]. For the simulations, only Mn

magnetic moments were considered. The spin dynamics simulations were performed

in a mesh of N ×
√
3N × N unit cells with N = 26, and the SkL state consists

of two skyrmion tubes located at respectively the center and corners. The choice

of N was verified to minimize the SkL energy. Periodic boundary conditions were

considered along the three dimensions. To obtain the ground state of the spin model,

the energy of the considered states were minimized for different values of the applied
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Figure 3.9. Unit cell of the B20-structure of MnSi showing only the
location of the Manganese atoms. The magnetic field B was applied along

the [001] direction.

field B ∥ [001]. The choice of field direction parallel to one of the unit cell main axes

ensured that skyrmions form as uniform tubes within the simulation box. However,

the direction of the applied field is not expected to have much impact on the energetics

as long as a high-symmetry direction of the crystal is chosen. Figure 3.10(a) shows the

energy obtained in the simulations for the field-polarized ferromagnetic, conical and

SkL states, from where the ground state was found to be conical for µB < 0.007J

and 0.018J < µB < 0.028J , SkL for 0.007J < µB < 0.018J , and field-polarized

ferromagnetic for µB > 0.028J .

Next, the transition between the conical and SkL states was considered. At the

critical fields µBc1 = 0.007J and µBc2 = 0.018J , both states had approximately

the same energy. The activation barrier between the two states was calculated by

the geodesic nudged elastic band (GNEB) method [18, 127] and a climbing image

method [54], which allowed for a precise determination of the highest energy saddle

point along the minimal energy path connecting the two states. Here, the reaction

coordinate defines the normalized (geodesic) displacement along the formation path.

Figure. 3.10(b) shows the activation barrier calculated between the two states in both

critical fields. From this, our collaborators found that it is energetically favorable to
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Figure 3.10. (a) Energy per spin vs applied field for each state. The
ground state is indicated by the colored shading with blue for the conical
(Con) state, red for the SkL and green for the field-polarized ferromagnetic
(FM) state. (b) Minimal energy path between conical and SkL states for
µB = 0.007J and µB = 0.018J . (c) Topological charge as a function of the

reaction coordinate for µB = 0.018J . (d) Spin configurations in a
N ×

√
3N × 2N mesh along the formation path for µB = 0.018J , as

indicated in panel (b) (see also animated data in Supplemental Material in
Reference [3]).
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break the conical state locally in different stages, nucleating the skyrmions individu-

ally instead of the whole lattice at once (see also animated data in the Supplemental

Material in Reference [3]). Figure 3.10(c) shows the topological charge, given by [41]

Q =
1

4π

∫︂
n · (∂n

∂x
× ∂n

∂y
) dx dy, (3.4)

calculated along the formation path for each xy-layer of the sample for B = Bc2.

Notice that the tube of the first skyrmion was formed gradually, layer-by-layer, in

a conical background and the average topological charge approaches Q = 1, giving

rise to the first elongated maximum in the minimal energy path. This was consistent

with previous works suggesting that skyrmions are nucleated or annihilated by the

formation and subsequent motion of Bloch points (magnetic monopoles) [97, 121,

119]. After that, the second skyrmion was formed in a similar way, after which

the average topological charge approaches Q = 2 and the transition is completed.

Energetically equivalent paths were obtained for the first skyrmion nucleating either

at the center or the corners.

As recognized previously, the transitions between the SkL and conical states are

not expected to occur in a spatially homogeneous fashion. As a result, the average

energy per spin necessary to nucleate a single skyrmion depends on the lateral size of

the domains. An estimation of the activation barrier can be obtained by comparing

the energy separation ∆Ea = |ESkL − ECon| of the SkL and conical states near the

critical field, due to an activation field Ba equivalent to the one obtained from the

SANS experiments. Adjusting for the difference between the transition fields obtained

experimentally and from the simulations one findsBa ≈ (Bc2−Bc1)/50 ≈ 2×10−4J/µ,

and from there ∆Ea ≈ 10−5J . This value is roughly two orders of magnitude smaller

than the activation energy calculated in the GNEB simulation where the SkL was

formed in two steps. Therefore, to nucleate one skyrmion with a 100 times smaller

activation field in the simulations we need to consider a phase transition that occurs in
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100 times as many steps as previously. This is exactly equivalent to using a 100 times

larger simulation box, as the activation energy is given by the number of skyrmion

nucleations per area. Considering the SkL periodicity of 19 nm in MnSi [102], this

corresponds to skyrmion domains of order ∼ 0.05 µm2. This is the same order of

magnitude as the correlation length determined directly from the SANS rocking curve

widths.

As the formation barrier for the individual skyrmions along the reaction coordi-

nate are all roughly the same height (see Fig. 3.10(b)), once the system has sufficient

energy to overcome the initial barrier skyrmions will continue to nucleate in a cascade

until defects or demagnetization makes it energetically unfavorable. This limits the

size of the SkL domains, and we speculate that this mechanism is responsible for the

discrete Preisach units observed in the SANS measurements. This likely also explains

the difference in activation barrier between the major and minor loops. In the major

loops, new SkL domains are being pushed into the sample from the outside edge of

the crystal [117]. However, with the minor loops, since the loop starts with the SkL

volume fraction at ≈ 50%, the crystal is already “seeded” with SkL domains, so the

change of SkL volume fraction during the loop is due to the expansion/reduction of

already present domains formed during the field cooling. This results in a smaller

activation barrier, which persists since the crystal never reaches a fully saturated

conical or SkL phase throughout the minor loop. Spatially resolved measurements

would be required to confirm this picture.

The topological energy barrier for each skyrmion can be estimated by multiplying

∆Ea by the number of spins within a SkL unit cell, and increasing the length of the

skyrmions in the simulations to the thickness of the single crystal used in the SANS

experiments. Using the above relationship between Ba and J/µ with µ = 0.4µB [85],

this yields ∆Ea ≈ 7 eV per skyrmion. By the nature in which it was obtained, the

activation energy above should be considered as an estimate rather than an exact
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value. Taking into account that ∆Ea scales linearly with the sample thickness, our

estimate for MnSi is roughly 3–4 times greater than the ∼ 1.6 eV reported for zinc-

substituted Cu2OSeO3 [132]. This difference may be due to the higher temperature

(∼ 53 K vs ∼ 28 K) and lower fields (∼ 25 mT vs ∼ 180 mT) at which the A

phase exists in Cu2OSeO3. Skyrmions in GdOx/Gd/Co/Pt heterostructures were

also recently found to have a formation energy of ∼1.4 eV [139].

3.5 Conclusion

In summary, we presented the first direct observation of the hysteresis in the for-

mation and destruction of the skyrmion lattice in MnSi. The measured hysteresis

proves that skyrmion lattice and the conical phase are bistable over a finite range of

parameters, with a finite topological activation barrier inhibiting the phase transition

in either direction. This observation validates the topological stability of skyrmions.

Comparing the experimental data to the results of atomistic spin simulations indi-

cates that skyrmion lattice is formed progressively in smaller domains, containing

hundreds of skyrmions, with an activation barrier of several eV/mm for a single

skyrmion.

Our results advance the understanding of the nucleation mechanism of the SkL in

chiral magnets, and we expect that our findings will instigate further measurements of

topological energy barriers between different (chiral) magnetic states. Such studies

are key to understanding the evolution of magnetic states in bulk and ultrathin

materials and will establish definitively the feasibility of high-density devices based

on topological spin structures.
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CHAPTER 4

ANGLE DEPENDENT VORTEX LATTICE PHASE DIAGRAM IN MgB2

This Chapter is adapted from Leishman et al. [80], which has been submitted for

review at Physical Review B. Additions and modifications have been made for clarity

and to add further detail.

4.1 Introduction

Vortex matter in type-II superconductors is highly sensitive to the environment

provided by the host material. An example is the vortex lattice (VL) symmetry and

orientation, which is governed by anisotropies in the screening current plane perpen-

dicular to the applied field and the associated nonlocal vortex interactions [71, 72].

Such anisotropies may arise from the Fermi surface or, in non-s wave superconduc-

tors, from nodes in the superconducting gap. A rich VL phase diagram often arises

when this anisotropy is incommensurate with an equilateral triangular VL, as seen in

Nb with the applied field along the [100] crystalline direction [77, 78, 99]. However,

structural transitions between different VL configurations can also arise when the

field is applied perpendicular to a sixfold symmetric crystal plane. In such cases, the

free energy landscape is so isotropic that higher-order contributions to the screening

current plane anisotropy become relevant, affecting the orientation of the triangular

VL relative to the crystalline axes as seen in UPt3 [45, 10] and MgB2 [29, 30].

As discussed in Chapter 1.1, three different triangular VL phases (labeled F, L

and I) were observed in MgB2 for H ∥ c, distinguished by their orientation relative to

the crystalline axes [30]. These three phases are shown in the H−T plane of Fig. 4.1.
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Figure 4.1. Qualitative MgB2 VL phase diagram in the Ω = 0 (H ∥ c) and
T = 0 planes. The former was determined previously [30], and the latter is
discussed in this work. The VL L phase vanishes at the critical angle, Ω0.

Due to the hexagonal crystal structure of MgB2 and the s-wave pairing, the VL

free energy for H ∥ c can be expanded in term with anisotropies that are multiples

of six1 [137]. Moreover, as discussed in Chapter 1.1, the continuous rotation in the L

phase implies that at least the six- and twelvefold terms are sufficiently strong to in-

fluence the VL orientation, as the transition would otherwise be discontinuous. Here,

we have sought to explore the evolution of the VL phase diagram as the twelvefold

anisotropy is suppressed by rotating the applied field away from the c axis. We find

that the twelvefold anisotropy decreases linearly as the rotation angle is increased,

reducing the size of the L phase until it disappears entirely from the phase diagram

at a critical value. Above the critical angle, the VL undergoes a first order phase

transition directly from the F to I phase.

1Free energy terms that are not 6n rotation symmetric lead to a contradiction, as the total energy
of the triangular VL would no longer be constant under 30 degree rotations
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Figure 4.2. Experimental geometry, indicating the direction and rotation
axis of the magnetic field relative to the crystalline axes.

4.2 Experimental Details

The VL was studied using small-angle neutron scattering (SANS) [100]. The

SANS measurements were performed at the Bilby instrument [125] at the Australian

Nuclear Science and Technology Organization. Preliminary SANS measurements

were carried out at the NG7 beam line [46] at the National Institute of Standards

and Technology Center for Neutron Research.

The experimental geometry used for the SANS measurements is shown in Fig. 4.2.

Here the magnetic field is applied along the horizontal neutron beam direction, and

at an angle Ω relative to the crystalline c axis achieved by rotating the sample about

the vertical axis in situ. The SANS measurements used a neutron wavelength λn =

0.6 nm and bandwidth ∆λn/λn = 10%. All measurements were performed at 2 K.

Measurements were performed on a 200 µg single crystal of MgB2 grown using a

high pressure cubic anvil technique [65]. The crystal has a platelet geometry, roughly

1 mm × 1 mm wide and 50 µm thick along the c axis, and is isotopically enriched
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with 11B to reduce neutron absorption. The the superconducting critical temperature

of the sample is Tc ≈ 38 K, and the upper critical field increases from Hc2 = 3.1 T to

∼18 T as the field is rotated from the c axis (Ω = 0) to the basal plane (Ω = 90◦).[65]

4.3 Experimental Results

Figure 4.3(a) shows a VL diffraction pattern obtained for H ∥ c, with all six

Bragg peaks lying on a circle of radius q = 2π(2µ0H/
√
3Φ0)

1/2 where Φsc
0 = h/2e =

2069 Tnm2 is the superconducting flux quantum. Here, the field and crystal have

been rotated together through the Bragg condition of all six VL peaks. The crystal

was deliberately mounted with the a axis roughly 10◦ from the vertical to investigate

whether the degeneracy of the two VL domain orientations in the L phase can be

lifted by rotating the applied field away from the c axis. Specifically, at an applied

field of 0.5 T, one of the split peaks of the L phase would lie close to the vertical

axis of rotation, which is preferred by London theory [24], while the other would

lie off of it (see Fig. 4.4(a)). We anticipated that this difference would be enough

to measurably alter the fraction of the VL that was in each configuration, perhaps

eliminating the off-axis domains entirely.

The field rotation introduces a distortion of the VL due to the different penetration

depth within the basal plane vs perpendicular to it [24]. This is seen in the SANS

diffraction patterns in Fig. 4.3(b) as a relocation of the six Bragg peaks such that

they lie on an ellipse with the minor axis parallel to the axis of rotation. We note

that the diffraction patterns in Fig. 4.3 were obtained following a field cooling, which

for H ∥ c left the VL in a metastable F phase [30].

To test the effect of the field rotation on the VL phase diagram, measurements

were made with Ω = 0◦, 30◦, 45◦, 60◦, and 70◦ and fields between 0.3 T and 1.2 T.

Prior to each measurement, the magnitude of the applied field was oscillated about

the desired value to ensure that the VL was settled into an equilibrium state [81, 30].
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Figure 4.3. Vortex lattice diffraction patterns at H = 0.5 T and (a) H ∥ c
and (b) Ω = 45◦. The orientation of the crystalline axes is indicated in (a).
Both measurements were performed following a field cooling from above Tc.

Background scattering near the detector center is masked off.

As seen in Figs. 4.4(a)-4.4(d), the elliptical distortion increases with Ω. It is useful

to quantify this distortion by the geometric anisotropy of the ellipse ε, defined as the

ratio of its major and minor axes. At Ω = 90◦, ε is expected to reach the penetration

depth anisotropy [24]. To conserve beam time, not all VL peaks were rocked through

the Bragg condition for all measurements; however their location can be determined

from symmetry and the analysis discussed below, and are indicated by open circles

in Figs. 4.4(a)-4.4(d). Within the L phase, split Bragg peaks corresponding to the

two degenerate VL orientations are observed as seen in Figs. 4.4(a) and 4.4(c).

The angular rotation ∆φ of the VL Bragg peak as a function of field and Ω is

summarized in Fig. 4.5. At each Ω, the rotation is measured relative to the peak

position in the F phase at 0.3 T, corresponding to the projection of the a axis onto

the scattering plane, as shown in Figs. 4.4(c) and 4.4(d). For Ω = 0, we observe the

same VL rotation reported earlier [30], associated with the progression through the L
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Figure 4.4. Vortex lattice diffraction patterns at (a) H = 0.5 T and
Ω = 0◦, (b) 0.5 T and 45◦, (c) 0.85 T and 45◦, and (d) 1.2 T and 70◦. In all

cases only a single (in (a) and (c) split) peak fully satisfy the Bragg
condition. The other peaks are indicated by open circles in their predicted
locations. For each diffraction pattern the fitted geometric anisotropy (ε) is

indicated. All measurements were performed following a damped field
oscillation. Background scattering near the detector center is masked off.
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Figure 4.5. Rotation of the VL Bragg peaks around q = 0 as a function of
field for different Ω. Angles are measured with respect to the VL

orientation at 0.3 T (F phase). Error bars represent one standard deviation.

phase. In the L phase, where the VL Bragg peaks are split, we show the orientation

of the clockwise rotating domain. As Ω is increased, the VL distortion allows the

rotation of peaks which start near the minor axis to exceed the 30◦ range for the F to

I transition when H ∥ c. This is seen most clearly at Ω = 70◦, where the VL rotation

approaches 50◦ at 1.2 T.

The location of the VL peak positions in the SANS data are governed by two

separate effects: the VL rotation transition within the L phase, and the geometric

distortion due to the penetration depth anisotropy discussed above. To analyze the

progression of the rotation transition it is useful to first remove the effect of the geo-

metric distortion, which corresponds to mapping the VL Bragg peaks positions from

lying on an ellipse back onto a circle. Due to flux quantization, the area of the circle

in reciprocal space must be the same as the original ellipse, and the transformation

can treated as a squeeze mapping of all points (q′x, q
′
y) in the circle to all points (qx, qy)
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in the ellipse: ⎛⎜⎝ q′x

q′y

⎞⎟⎠ =

⎛⎜⎝ ε−1/2 0

0 ε1/2

⎞⎟⎠
⎛⎜⎝ qx

qy

⎞⎟⎠ . (4.1)

Converting to polar coordinates (q′, φ′) and (q, φ), and solving for ε yields a tran-

scendental equation that can be solved numerically given any point on the ellipse:

ε1/2 =
q′

q sinφ
sin

(︃
arccos

[︃
q cosφ

q′ ε1/2

]︃)︃
. (4.2)

Values of q and φ are determined from 2D Gaussian fits to VL Bragg peaks on the

SANS detector, and q′ is determined from the measurement performed at the same

applied field with Ω = 0. Once ε is determined, the re-scaled VL orientation φ′ is

given by

φ′ = arccos

[︃
q cosφ

q′ ε1/2

]︃
, (4.3)

Finally, the rescaled VL rotations can be calculated by subtracting the VL orientation

at 0.3 T

∆φ′(H,Ω) = φ′(H,Ω)− φ′(0.3 T,Ω), (4.4)

and are shown in Fig. 4.6. The transformation rescales the VL rotation so that

the phase transition always occurs in the range ∆φ′ = 0◦ to 30◦ for all Ω, consistent

with the L phase behavior for H ∥ c. It is important to note here that nowhere in

the squeeze mapping analysis have we specified that the rotations should fall on the

range ∆φ′ = 0◦ to 30◦. Rather, the fact these rotations do fall into that range serves

as verification that we are suitably isolating the behavior of the L phase from the

elliptical distortion.

From Fig. 4.6 it is clear that the VL phase diagram changes dramatically with

increasing Ω. Firstly, the onset of the rotation transition moves to higher fields,

indicating that the F phase (∆φ′ = 0◦) is expanding. Secondly, once the rotation

does begin, it occurs more rapidly at high Ω. Thirdly, the L phase (0◦ < ∆φ′ < 30◦)
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Figure 4.6. Rescaled VL rotation corresponding to Fig. 4.5 using
Eqs. (4.2) – (4.4), showing the evolution of VL rotation transition.

either becomes very narrow or vanishes entirely for Ω > 70◦. This would correspond

to a discontinuous phase transition directly from the F to the I phase (∆φ′ = 30◦).

The increasingly abrupt rotation transition is also evident in the extracted VL

distortion
√
ε, which is plotted as a function of field and Ω in Fig. 4.7. This graph

shows an abrupt jump in the slope of
√
ε versus field for Ω ≥ 60◦. Here we note

that the field dependence of ε at constant Ω is due to the gradual suppression of

superconductivity on the π-band.[29] This rise in ε with respect to field is similar to

phenomena observed in V3Si [27], 2H-NbSe2 [44], and Sr2RuO4 [74].

4.4 Discussion

As discussed in 1.1, the VL phase diagram in MgB2 can be modeled by a free

energy

δF (∆φ′) = K6 cos (6∆φ
′) +K12 cos (12∆φ

′), (4.5)
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Figure 4.7. Square root of the geometric distortion, ε, as a function of
field and field angle Ω. Linear fits to each curve are also shown.

containing six- and twelve-fold anisotropy terms. This expression is the same as

Equation 1.39, with the substitution that φ is our measurable quantity ∆φ. This form

of the free energy was originally proposed for H ∥ c where φ′ = φ [137, 30, 108], but

here it is generalized to non-zero Ω. In this model K12 is positive, and the continuous

rotation transition in the L phase occurs when the anisotropy ratio κ = K6/K12 is

varied between −4 and 4. Note that if K12 was negative, the VL would undergo a

discontinuous reorientation transition between the F and I phases when K6 changes

sign. For each measurement it is possible to calculate the anisotropy ratio

κ = −4 cos (6∆φ′), (4.6)

obtained from a minimization of the free energy in Eq. (4.5). This is shown in Fig. 4.8,

and is seen to mimic the behavior of the re-scaled rotation angle ∆φ′. We note

that actual values of κ most likely extend outside the ±4 range allowed by Eq. (4.6).

However, this does not affect the analysis below as it focuses on the region where κ

104



0.4 0.8 1.2
Applied Field (T)

-4

-2

0

2

4

An
is

ot
ro

py
 R

at
io

, κ

0.6 1.0

Figure 4.8. Anisotropy ratio, κ, as a function of field and field angle,
calculated from Equation 4.6.

is close to zero.

The increasingly abrupt transition seen in Figs. 4.6 and 4.8 suggests a reduction

and possible sign change ofK12 as Ω increases. It is possible to model the increasingly

rapid reorientation transition by Taylor expanding K6 to linear order around the

critical field H0 where K6, and thus κ, vanish:

K6(H) ≈ α6(H −H0) (4.7)

Here, α6 is an undetermined constant. The slope of κ with respect to field near the

transition at H = H0 is then an indirect measure of K12:

∂κ

∂H

⃓⃓⃓⃓
H=H0

=
α6

K12

, (4.8)

where we have taken K12 to be field independent. Figure 4.9 shows the inverse slope

(∂κ/∂H)−1 measured near κ = 0 for each Ω. The inverse slope depends linearly

105



0

0.04

0.08

0.12

Intercept: 83º +3º
-6º

0º 30º 60º 90º
Field Angle, Ω

(d
κ

/d
H

)-1
 (T

)

Figure 4.9. Inverse slope of the anisotropy ratio near κ = 0 as a function
of Ω. The linear fit is then extrapolated to a K12/α6 = 0 intercept of

Ω =
(︁
83+3

−6

)︁◦
.

on Ω, suggesting a functional form for K12:

K12(Ω) = α12(Ω− Ω0) (4.9)

Extrapolating to K12/α6 = 0, we find an estimate for Ω0 =
(︁
83+3

−6

)︁◦
. For values of

Ω > Ω0, K12 will be negative and the VL transition will become first-order between

the F and I phases. We note that it is possible that this is already the case at

Ω = 70◦, as the uncertainly on (∂κ/∂H)−1 at this angle extends to negative values.

Qualitatively similar behavior has been observed in YBCO [133], where a triangular

to square VL transition switches from second to first order at a critical angle of 10◦.

The much smaller Ω0 for YBCO is likely due to the highly two-dimensional nature of

this material, making in relatively more susceptible to field rotations away from the

c axis.

Finally, we return to the question of whether rotating the applied field away

from the c axis will break the VL domain degeneracy within the L phase. Such an
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effect was previously observed in TmNi2B2C where the VL undergoes a triangular

to square transition with a degenerate intermediate rhombic phase [36], and where

rotating the field away from the c axis by ≈ 10◦ is sufficient to suppress one of the

two rhombic domains [32]. In an ideal uniaxial superconductor with an isotropic

basal plane, London theory predicts that the two-fold anisotropy introduced by field

rotation will favor a VL orientation with Bragg peaks on the minor axis of the ellipse

in reciprocal space [24]. However, any real material will exhibit some basal plane

anisotropy which may compete with the uniaxial effect, and the relative strength

of the two will determine the VL orientation. As example one can consider NbSe2,

where the triangular VL is oriented in a manner corresponding to the maximal energy

according to the London theory [44].

In our SANS measurements the MgB2 crystal was mounted such that within

the L phase Bragg peaks for one of the domains lie near the vertical axis, as seen in

Fig. 4.4(a), and are thus favored by the uniaxial effect. However, peaks corresponding

to both L phase domains were clearly observed at Ω = 45◦and 0.6 T and at 60◦ and

0.9 T, indicating that the degeneracy is not readily lifted in MgB2. This suggests

that at these values of Ω the uniaxial anisotropy is weaker than K12, and that a

suppression of the degeneracy will only occur near Ω0. It is also consistent with the

inability of the uniaxial effect to cause a VL reorientation in the F phases to have

the Bragg peaks on the minor axis of the ellipse, since K6 and K12 are of the same

order of magnitude except in the immediate vicinity of H0 and Ω0. That said, the

uniaxial anisotropy does appear to lower the free energy of the F phase relative to

the I phase, causing H0 to shift to higher fields in Fig. 4.6 and 4.8 as Ω → Ω0. This

conclusion is supported by previous SANS measurements where the magnetic field

was rotated about the a∗ [111]. Here the L phase (rather than the F phase) is favored

by the uniaxial anisotropy, and at 0.4 T the critical angle is shifted to a lower value

Ω0 ∼ 70◦.
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4.5 Conclusion

In summary, we have demonstrated how the continuous (second order) VL ro-

tation transition observed in MgB2 for H ∥ c gradually evolves towards and finally

becomes discontinuous (first order) as the applied magnetic field is rotated away from

the c axis by ∼ 83◦. For rotation angles below this critical value, domain formation

in the intermediate L phase persists. We speculate that the long lived metastable

VL phases, attributed to domain formation in the L phase, will thus no longer occur

above the critical angle, and should be the subject of further SANS studies.
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CHAPTER 5

SKYRMION LATTICE DYNAMICS IN NOVEL CURRENT FIELDS

5.1 Motivation

Numerous SANS measurements have used electric current to drive motion of the

skyrmion lattice (SkL) in MnSi [63, 107]. However, since linear translation of the SkL

is not visible in reciprocal space, all of these experiments have relied on secondary

effects to convert the force exerted by the current into a net rotation of the SkL. Some

of the clever techniques used to achieve this include applying a thermal gradient across

the sample so the spin current density is no longer constant [63] and measuring SANS

only near the edge of the sample where the outermost skyrmions get pinned [107].

In these cases, it hard to decouple the impact of the current on the SkL from the

impact of the secondary effects. For this reason, we have sought to build a device

which could exert a net torque on the SkL without relying on other physics. In

pursuit of this, we have collaborated with W.-K. Kwok and U. Welp at Argonne

National Laboratory to build Corbino disks [28] out of single crystal MnSi (Fig. 5.1).

By driving current radially through the sample, the SkL will experience a Magnus

torque about the center of the disk which will drive the SkL into rotation.

The direct coupling between the current and the SkL enabled by this device

has numerous advantages. Firstly, we anticipate that the direct coupling will pro-

duce SANS-observable skyrmion motion at lower current densities than previously

reported. This opens the door to explore skyrmion motion at current densities that

are higher proportional to jc than previously observed. Furthermore, since the SkL
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Figure 5.1. A) Current flow through a Corbino disk of MnSi. B) Magnus
force FM exerted on the SkL.

alignment will now be determined by the balance between the Magnus torque and

the SkL-crystal lattice force, we will be able to map the free energy of the crystal

lattice interaction by measuring the rotation angle as a function of current. Finally,

the radial decay of current density through the Corbino device can be used as a probe

of the elastic properties of the SkL. Since the drag force will be greater at the center

than the outside edge, the drag force will exert a net compressive strain (or tensile

strain depending on current direction) on the lattice. Similarly, the radial decay of

the Magnus force will result in a net shear strain on the SkL. Pushed to the extreme,

these forces could even result in a breakdown of the crystallinity of the SkL, first into

domains, and then perhaps into a skyrmion-fluid phase by analogy to what occurs

in superconducting VLs [93]. Both of these effects could be independently observed

with SANS, as shown in Fig. 5.2.

The following chapter discusses the protocols that have been developed at Argonne

National Laboratory for constructing a Corbino device out of MnSi single crystals.
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Figure 5.2. A) Radially decaying Magnus force FM . B) Resultant
azimuthal broadening of SANS diffraction pattern due to shear strain. C)
Radially decaying drag force FD. B) Resultant radial broadening of SANS

diffraction pattern due to compressive/ shear strain.
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Additionally, magnetotransport measurements have been performed to characterize

the behavior of these devices at different temperatures and applied fields. Finally, a

prioritized list of future SANS experiments on these Corbino devices is discussed. Due

to the COVID-19 pandemic, these experiments have not yet been performed, however

they have been scheduled for the Summer of 2021 at the Insitut Laue Langevin and

the Paul Scherrer Institute.

5.2 Corbino Device Construction

5.2.1 Crystal Growth and Cutting

To produce single crystals of MnSi with suitable radii for a Corbino device, large

crystals have been grown via the Bridgman method [21]. This method produces long

cylindrical ingots with a radius determined by the inner diameter of the crucible (∼6

mm). From here, the ingot is then cut into circular slices using a diamond wire saw.

As these slices are eventually going to be polished very thin, it is important that

each disk be cut as thin as possible to minimize wasted crystal. On the other hand,

cutting the slices too thin risks fracturing the naturally delicate crystals during the

cutting process. Trial and error have found the optimal thickness to be between 1

and 1.5 mm.

5.2.2 Crystal Polishing

In order to minimize the total input current required to produce the critical

current density required to move the SkL, and to maximize the cooling of the sample

while in situ, it is critical to polish the sample as thin as possible. On the other

hand, SANS from the SkL is directly proportional to the illuminated sample volume,

and so polishing too thin may make measurements take unfeasibly long. Based on

experience with other SANS measurements of MnSi (Chapter 3), reasonable length
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Figure 5.3. Crystal mounting schematic for precise polishing of large MnSi
crystals.

measurements of the SkL can achieved with roughly 1 mm3 MnSi. Assuming the

maximum Bridgman ingot width of 6 mm, a reasonably strong SANS signal could

be produced from a 50 µm thick disk. However, to account for the additional sample

volume that will have to be masked off from the neutron beam to avoid background

scattering (e.g. all electrical contacts and temperature probes), samples have been

polished to roughly 200 µm.

In order to polish the crystal to such a large aspect ratio (roughly 30:1), precau-

tions must be taken. The developed procedure is as follows:

1. Ensure the starting faces are parallel. This is most easily accomplished by cutting
the second face immediately after the first, using the translation stage of the wire
saw to move the crystal exactly perpendicular to the blade between cuts.

2. Mount the disk to a sapphire substrate with a low-scattering adhesive. Sapphire is
an ideal substrate as it is near-invisible in SANS, and it provides extremely high
thermal conductivity at low temperatures for heat sinking. In the preliminary
work, Meller Optics, Inc sapphire windows have been used [2]. For adhesive,
Bostik glue diluted with acetone to reduce viscosity has been used.

3. Reinforce edges of crystal with a rigid adhesive. In order to ensure that the crystal
edges do not get rounded off and to minimize the risk of fracturing the entire
crystal during polishing, the disk needs to be supported on all sides by a hard
adhesive. Here, Lakeshore VGE-7031 varnish has been applied along the edges of
the crystal and allowed to cure overnight at room temperature. DO NOT attempt
to accelerate this cure via heating, as large bubbles will form and weaken the
support of the crystal.
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4. Mount the sapphire substrate onto the polishing puck using Crystalbond. It is very
important to press the sapphire into the Crystalbond firmly in order to ensure
that it is flush against the puck. At this point, the system should look like Fig.
5.3.

5. Level off the polishing surface Starting with a moderately smooth sandpaper (600
grit), polish the sample until the entire surface of the MnSi has made contact with
the polisher. MnSi becomes visibly shinier as it begins polishing, and so once the
entire surface of the disk is shiny the surface is now polishing uniformly.

6. Measure the starting crystal thickness At this point, it is good to take a preliminary
measurement of the thickness of the crystal. This can be accomplished in one of
two ways after removing the puck from the polisher.

Firstly, the mounted crystal-sapphire-puck system can be placed into an digital
caliper. It is good practice to protect the surface of the crystal from the blades
of the caliper by sandwiching a KimWipe or weighing paper between the sur-
faces. Repeating this measurement technique can provide a precise measurement
of the amount of material removed, however it is not easy to measure the absolute
thickness of the MnSi.

Alternatively, an optical microscope can be use to measure the absolute thickness
of the MnSi crystal due to the transparent nature of VGE varnish. This can be
done by focusing the microscope on the surface of the MnSi and then counting the
rotations of the fine focus adjustment required to focus on the sapphire substrate
underneath. This technique needs to be calibrated for each microscope using a
transparent object of known thickness (microscope cover glasses work well).

In practice, it is often useful to use a combination of these techniques, first the
microscope to determine the starting thickness of the crystal, then the caliper to
quickly and precisely measure the removed material.

7. Polish to desired thickness. From this point, polishing technique is a matter of
preference and patience. I normally polish to a thickness of roughly ∼500 µm
with 600 grit before switching to 1200 grit out of caution, checking the thickness
every 15-30 minutes depending on how fast the thickness is reducing. Here, it is
important to note that both the sandpaper and crystal become smoother through
polishing, so polishing rate will decay rapidly the longer a sheet of sandpaper is
used.

8. Remove from polishing puck. Once the desired thickness is achieved, return the
polishing puck to a hotplate and remove the sample.

5.2.3 Applying Electrical Contacts

To minimize Joule heating of the Corbino disk during operation, it is critical

that the current leads have a very low contact resistance to the crystal. MnSi like

114



most metals forms a thin, insulating oxide layer when exposed to atmosphere, which

inhibits easy electrical connection. Soldering with flux is an ideal technique for simul-

taneously removing the oxide layer from a metal and then applying a strong electrical

contact to the pure metal surface, however the high temperatures required to melt

tin-lead solders risks cracking thin crystals. For this reason, a protocol has been

developed for soldering indium to MnSi at much lower temperatures:

1. Preparation. Preheat a hot plate to 200 ◦C. Cut In 97/ Ag 3 solder into very small
pieces, roughly the size of desired contacts.

2. Place flux at desired contact points. Working under a microscope, use a sharp
point to place a small droplet of Indium Corp. Flux #3. This is an aggressive,
water soluble flux intended to be used on strong oxides like that of stainless steel,
however it works well on MnSi. Generally, it is best to start with minimal flux to
avoid causing the solder point to spread too broadly across the crystal surface.

3. Apply the solder. Use tweezers to place a piece of solder onto the droplet of flux.
The viscosity of the flux generally allows the solder to stick to the surface well
once placed.

4. Melt the solder. Once satisfied with the solder placement, transfer the sample to
the preheated hot plate and cover with a beaker to trap heat. Once the solder has
melted (∼10 minutes), remove from heat.

5. Rinse the sample. Once the sample has cooled for ∼5 minutes, use tweezers to
gently swirl the sample in room temperature deionized water to remove excess
flux.

6. Inspect the connection. Like any other good solder connection, the indium solder
point should be shiny, well adhered, and domed on the surface of the crystal. Bad
solder connections will bead up on the surface of the MnSi and fall off at the
slightest poke (or during the rinsing process).

In order to apply the outer ring Corbino contact, many separate solder connections

are made to the outside edge of the crystal (Fig. 5.4.B). These contacts must be

separate, for if they are allowed to touch during the soldering process the surface

tension of the molten indium will distort the contact placement. Once the solder

connections to the crystal are satisfactory, the current leads must be soldered into

position. This follows another procedure
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Figure 5.4. A) Polished MnSi crystal mounted onto a sapphire substrate.
Crystal is 350 microns thick. B) Solder points applied along the edges of
the crystal. C) Silver wire mounted and soldered. D) Cut wire, splitting it
into two separate contacts. E) All eight contacts applied to the crystal. F)

Contacts reinforced with silver epoxy.
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1. Position wire A silver wire is mounted to the sapphire substrate using EPOTEK
H20E epoxy such that it spans the crystal radially. This will provide the mechan-
ical support for the solder connection (Fig. 5.4.C).

2. Solder the wire Add slightly more solder and flux to the points on the wire where
the connection is to be made, and reheat on the 200 ◦C hotplate. After a few
minutes, the solder connection should be made (Fig. 5.4.C).

3. Inspect the connection After cooling, a shiny clean solder connection should be
rigidly holding the wire to both sides of the crystal. If connection is poor, reheat
and add slightly more flux.

4. Cut excess wire Once both connections seem good, cut the excess wire spanning
the crystal to produce two separate contacts (Fig. 5.4.D).

This process is repeated four times to produce eight separate radial contacts to

the crystal (Fig. 5.4.E). At this point, the contact resistance between each pairs of

wires should be checked to make sure all eight connections are good. If not, reheat

and try adding slightly more flux. Once all connections are good, they are reinforced

with a layer of EPOTEK H20E conductive epoxy to connect all the solder points

together and further ensure an even current distribution (Fig. 5.4.F).

For the central Corbino contact, one slightly larger solder point is made at the

center of the disk. Choice of wire to connect this contact is a bit more complicated

than for the outer wires. On one hand, this wire must be able to handle all the current

of the eight outer wires combined. However, the thicker this wire is made, the larger

the “shadow” it casts on the crystal underneath, and the more of our sample that has

to be masked off from the neutron beam. For these reasons, we have elected to use

a thin, high temperature superconducting (HTS) wire from Superpower to connect

to the central contact. This ribbon wire is mounted edge-on with Stycast epoxy to

minimize shadowing of the sample, and then an indium solder connection is made

(Fig. 5.5).

Finally, it is useful to add two voltage leads to the crystal so that its resistance

(and therefore temperature) can be monitored in situ. Since these leads will not carry

much current, contact resistances do not pose as much of a problem, and thin gold
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Figure 5.5. A) Top view of HTS wire soldered to Corbino disk. B) Side
view of HTS wire.

wires can be attached directly to the MnSi surface with EPOTEK conductive epoxy.

For experimental convenience, these contacts are placed in the shadow of the central

contact wire. Additionally, similar voltage probes have been added to the HTS wire

so that its resistance (or hopefully lack thereof) can be monitored during operation.

5.3 Device Characterization

In order to confirm that a Corbino device is performing adequately, it is necessary

to take several characterization measurements before the SANS experiment.

The first and easiest measurement to perform is to check the contact resistances

of the electrical leads. This can be done by using a digital multimeter to measure

the resistance between each pair of wires on the Corbino. By measuring all possible

pairs of wires (and by neglecting the resistance of the crystal which is negligible),

it is possible to determine the contact resistance of each wire. Contact resistances

for the current leads must be below 1 Ohm to ensure minimal Joule heating while

the device is in operation. Contact resistances for the voltage leads can be greater,

as much less current will be passing through them, however good quality contacts

should be connected to the crystal with less than 50 Ohms of resistance.
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Figure 5.6. R vs T curve for single crystal MnSi. Note the kink in
resistivity near 28 K corresponding to TN . For this sample, RRR ≈70.

The next step to characterizing the device is to confirm that the quality of the

MnSi single crystal has been maintained. This can be done by measuring the four

point resistance of the Corbino as it is cooled from room temperature to ∼2 K (Fig.

5.6). We can then calculate the residual-resistance ratio (RRR) as

RRR =
R(300K)

R(∼ 2K)
(5.1)

As long as the quality of the crystal has been maintained, the RRR of the Corbino

should be above RRR = 50.

Assuming the previous measurements are promising, the final step to characterize

the Corbino is to measure its four-point resistance as a function of temperature in

field in the A Phase. Specifically, R vs T curves should be performed at several fields

near the A Phase center (e.g. 0.19 T, 0.195 T, 0.20 T, 0.205 T, and 0.21 T etc). These

curves can then be used for temperature calibration during the SANS experiments.
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5.4 Future SANS Measurements

SANS experiments on the Corbino have been approved at ILL, PSI, and NIST.

The combination of these three experiments as well as the possibility to make adjust-

ments to the device between experiments should allow us to explore a wide parameter

space during this time. Below are a list of possible SANS measurements in order of

priority:

1. Locate the A Phase. Once the magnet is aligned, locate the center of the A phase
by performing temperature and field sweeps and searching for the maximal SANS
intensity. At the A phase center, apply a small current (∼5 mA) and measure the
four point resistance of the disk (Rcorbino). This resistance can then be compared
to the previous R vs T measurements to determine the true sample temperature.

2. Confirm SkL rotation at jc. Gradually increase current through the device while
monitoring Rcorbino to make sure that it does not leave the A Phase. At some point
it may become necessary to increase the cooling power of the cryostat by increasing
the exchange gas and/or reducing the setpoint of the variable temperature insert
(VTI). Near 0.5 A, the SkL near the center of the disk should start to rotate. It
may also be useful at this point to determine the maximal current at which Joule
heating causes the SANS signal to disappear (jmax).

3. Map the SkL-crystal interaction. Illuminating the entire disk, measure the SkL
rotation as a function of current from jc to jmax. This can later be used to plot
the interaction potential by integrating the Magnus torque along the rotation.

4. Search for deformations of the SkL. Precisely measure the radial and azimuthal
widths of the Bragg peak both with and without applied current. Additionally,
rocking curve measurements could be performed to determine the longitudinal
width of the Bragg peaks and determine if the skyrmions are being distorted
along the field direction when current is applied.

5. Measure the spatial variance of rotation. Place a small aperture in the neutron
beam and measure the rotation of the SkL as a function of radius within the disk.
This information will help distinguish between elastic deformation of the SkL and
fracturing of the SkL into microscopic domains.

6. Measure properties of the strained SkL A Phase Set the current to a fixed value
above jc. Perform temperature and field sweeps to determine if the shape of the
A Phase has changed, and/or if the activation barrier has changed.
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CHAPTER 6

CONCLUSION

In this dissertation we have discussed three projects where SANS has been pushed

to its limits to explore the energetics and symmetries of magnetic vortices.

In Chapter 3, we observed a small hysteresis effect associated with crossing the

SkL-conical phase transition in MnSi, and were able to demonstrate that this is a

direct result of the topological stability of individual skyrmions. The hysteresis was

then modelled with an adapted Preisach model, which showed that the activation

barrier was uniform throughout the entire crystal and was a function of the field

history. Finally, by comparing our activation barrier with atomistic spin simulations,

we were able to confirm that the SkL forms progressively in domains of hundreds of

skyrmions, with the topological energy barrier of several eV per skyrmion.

In Chapter 4 we discovered that the VL phase diagram of MgB2 changes dramati-

cally as the applied field is rotated away from the crystalline c axis. The domain-split

L phase shrinks as the field gets closer to the ab plane, and above a critical angle

Ω0 ≈ 83◦ disappears entirely. This can be understood as a result of a decreasing (and

possible sign change) of the 12 fold anisotropy in the VL plane. We suspect that this

loss of anisotropy will suppress the notable VL metastability in MgB2, but further

measurements are necessary.

Finally, in Chapter 5, we have described a new architecture of skyrmion device

which promises to efficiently convert electric current into rotation of the SkL. Con-

structing this Corbino device out of single crystal MnSi poses several technical chal-

lenges, and so a precise protocol has been developed at Argonne National Laboratory
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to achieve this. We believe that this device will enable SANS studies of several inter-

esting properties of the SkL, including a direct measurement of the SkL-crystal lattice

interaction potential and possible observation of elastic and/or plastic deformations

of the SkL.
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APPENDIX A

RESISTIVE FIELD COILS

A.1 Mk 1

This coil was designed for the first experiment our group performed on MnSi (ILL

June 2018). During the experiment, the coil was used to successfully wiggle the field

at faster rates than allowed by the cryomagnet. However, as the coil was ramped,

it was observed that usage of the coil was raising the temperature of the sample

enough to significantly reduce SkL scattered intensity. By measuring the change in

SANS intensity as a function of AC field frequency, it was determined that the coil

was heating the crystal both through the induction of eddy currents in the crystal

and direct thermal conduction of the heat produced by Joule heating of the copper

wire windings. In this design, the copper wires and sample disk were only separated

by a thin wall of PEEK plastic, so direct conduction of heat was significant. This

motivated the creation of the Mk 2. Note: The magnet wire for this coil broke

after the experiment at ILL and had to be repaired by soldering a new jumper wire

when the breakage was discovered at NIST in September 2019.

Field calibration: Field[Gauss] = 0.3917*Current[mA] - 0.03 Gauss

Windings: ∼650, ∼480/cm

Rcoil(@RT) : ≈ 50.5 Ω
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Figure A.1. Mk 1 resistive field coil. Bobbin has an oblong “horsetrack”
shape to accommodate the large oval shaped crystal of MnSi that was used

at ILL.

Figure A.2. Homogeneity of field in the Mk 1 coil. Hall probe was
translated along the central axis of the coil. For the hysteresis experiment
using this coil at ILL, the crystal was 3.5 mm thick and illuminated by a

neutron beam with a 1 mm diameter.
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A.2 Mk 2 aka The Gorgon

This coil was designed for use in the large bore cryostat at ORNL for our exper-

iment on MnSi in September 2018. In order to insulate the sample from the Joule

heating of the coil, the sample was attached to an alumina tube which was then

isolated from the rest of the holder by two, three-legged “spider” made of PEEK.

As an extra safety measure, a sapphire window was placed over top of the crystal,

sealing it inside. Since the sample space was now thermally isolated from the rest

of the sample stick, an additional Cernox sensor was mounted directly next to the

sample to monitor temperature, and nichrome wire was wound around the outside

of the alumina tube to serve as a heater. This heater wire was twisted around itself

before winding so that it wound not alter the magnetic field in the sample space. The

combination of the heater and Cernox sensor allows the temperature of the sample

to be independently controlled by a Lakeshore or similar temperature controller.

Field calibration: Field[Gauss] = 0.871*Current[mA] + 1.89 Gauss

Windings: ∼3500, ∼1100/cm

Rcoil(@RT) : ≈ 366 Ω

RCernox(@RT) : ≈ 91.2 Ω

Rheater(@RT) ≈ 53 Ω

A.3 Mk 3

The Mk 3, like the Mk 2, uses a spider system to thermally isolate the crystal from

the coil and has a Cernox sensor and nichrome heater for independent temperature

control. However, the Mk 3 has a much smaller diameter, making it suitable for most

cryomagnets.

Field calibration: Field[Gauss] = 0.5753*Current[mA] + 1.73 Gauss

Windings: ∼1000
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Figure A.3. Mk 2 resistive field coil. Coil has a much larger external
diameter than the Mk 1, making it only suitable for cryomagnets with bore
ϕ ≥ 50 mm. Mounted inside the coil is the large, roughly cylindrical crystal

of MnSi used ILL and ORNL.
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Figure A.4. Mk 3 resistive field coil. Coil has a much smaller external
diameter than the Mk 2, making it suitable for cryomagnets with bore ϕ ≥
25 mm. Mounted inside the coil is the smaller, roughly rectangular crystal

of MnSi used PSI and ANSTO.
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Rcoil(@RT) : ≈ 43.6 Ω

RCernox(@RT) : ≈ 118 Ω

Rheater(@RT) ≈ 43.6 Ω
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APPENDIX B

HYSTERESIS ANALYSIS SOFTWARE

Modelling the experimentally observed hysteresis with double-transition Preisach

model described in Chapter 3 is a particularly challenging computational problem.

The adapted Preisach model divides the illuminated MnSi into many microscopic

units, each of which acts independently of all others. Each unit can either be in the

SkL phase or the conical phase, and the fields at which a unit switches from one phase

to the other is given by Hc+Ha (Hc−Ha) for the increasing (decreasing) field sweep.

One way to visualize a hysteretic system is to plot the distribution of the units as a

function of Ha and Hc. The 2D space of (Ha, Hc) is known as the “Preisach plane.”

The usefulness of this approach to visualizing the hysteresis becomes apparent when

considering when field is increased from zero. Assuming that all units start in the

conical phase, for any given field H there is a line H−Ha that can be drawn through

the distribution separating the units in the SkL phase from those in the conical. As

we increase H, this line moves upward, and units that move across the line transition

into the SkL phase (Fig. B.1). If we reach a maximum field Hmax and then

begin decreasing the applied field, a new line H + Ha begins moving downwards,

transition units back into the conical phase. This line can obviously only transition

units that are currently in the SkL phase, so the line dividing the two phases becomes

the intersection of H + Ha with Hmax − Ha, which we shall call z(Ha) (Fig. B.2).

From here, it is easy to imagine how a complex field history, including many direction

changes could result in a very complex, sawtooth form for z(Ha). Making predictions

about the SANS response of the system therefore becomes a matter of determining
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Figure B.1. Distribution of Preisach units within the Preisach plane. The
line H −Ha separates the SkL units from the conical units for increasing

field sweeps.

the fraction of the Preisach distribution falls on either side of z(Ha).

For our analysis, we assumed that the shape of the Preisach distribution could be

estimated as a two dimensional Gaussian distribution, with a maximum located at

(H̄a, H̄c) and width given by the standard deviation in both directions σa and σc.

In the simple case of the major loops, the distribution starts entirely on one side of

z(Ha), and progresses entirely to the other side. To determine the fraction on either

side during the intermediate fields, the 2D Gaussian must be integrated up to z(Ha).

However, since our SANS major hysteresis loops cross two phase transitions, the

system has to be treated as two competing hysteresis loops, i.e. for any intermediate

field, the fraction of the sample in the SkL phase is the fraction of the sample that has

entered the SkL phase by crossing Hc1 minus that which has left the SkL phase by

crossing Hc2. This means that all eight Preisach parameters (H̄a1, H̄c1, σa1, σc1, H̄a2,

H̄c2, σa2, σc2) must be fit simultaneously to our data. Additionally, because of the
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Figure B.2. The effect of changing the field sweep direction from increasing
to decreasing at a maximum field Hmax. The line of separation z(Ha)

becomes more sawtooth-ed and complicated with each direction change.

two transitions, we cannot be sure from our SANS signal that the sample ever reaches

100% saturation into the SkL phase before reverting back to the conical phase. This

means that a ninth, normalization parameter (called N) must also be added to our

calculation.

Combining all of this, we find that we have to fit a nine parameter function to

our data, and for every possible solution in this nine dimensional space our algorithm

will have to numerically integrate a 2D Gaussian. This is obviously a non-trivial

computational challenge. Fortunately, there are a few tricks that I came up with to

make the computation converge to a solution more quickly and more consistently.

First, it was necessary to feed the fitting algorithm as much data as possible.

This meant giving the algorithm both the increasing and decreasing field sweeps at

the same time. I originally experimented with making the data three dimensional as

(Field, Direction, SANS signal), however this dramatically slowed the fitting. Even-
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tually, I figured out a sort of two-and-a-half dimensional approach, where I switched

the sign of the field for all points in the loop where magnetic field was decreasing,

and split the prediction function accordingly. This helped quite a bit.

The next trick I found was how to give the least squares optimization good starting

guesses for the Preisach parameters. I always started by assuming that the normal-

ization was correct on the data (N = 1). Therefore, the Hc’s can be extracted from

the points in the loop where the SANS intensity was at half maximum. Additionally,

the Ha’s can be extracted from the field separation of the two sweeps at these points.

Both these approximations tend to be good starting points for the fits.

The final trick that came in handy was the accidental discovery that σa1 = σa2 = 0.

I was having a very hard time getting my fits to converge consistently, and by running

the least squares fit with many randomized starting points I discovered that the H̄a’s

were strongly correlated with the corresponding σa’s. As it turns out, I believe it

is extremely difficult to separate these parameters without extensive minor loops. I

noticed however that if I plotted the fits in the (H̄a, σa) plane, they produced a sort

of quarter circle (see Fig. B.3). I decided it might be worth trying the intercepts of

this semicircle. It became clear that the H̄a = 0 intercept made no sense physically

as this would eliminate all hysteretic behavior. However, by fixing σa = 0 (and

therefore going to a Gaussian-Dirac Delta distribution), the fits converged beautifully

and rapidly. This has the added bonus of supporting the topological origin of H̄a.

The final code used for major loop fits is DoublePreisach2 5DLsqDirac.m1.

The minor loops were fit with a similar algorithm with a few modifications. Firstly,

since the sample was field cooled before the loop, its impossible to know the exact

starting shape of z(Ha). I decided to assume the simplest shape, which is a straight

horizontal line that bisects the Preisach distribution, i.e. z(Ha) = H̄c. Additionally,

1This file and all the other functions it calls is located in the ‘Eskildsen Group/ SANS/ MnSi
SkL Hysteresis Stuff/ grasp 3 20 allan copy’ folder on Box
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σa

Ha

Figure B.3. Cartoon of the distribution of the fitted H̄a and σa when the
Preisach fitting algorithm is run many times with randomized starting

values. The two parameters are highly coupled.

since I knew the high field transition minor loops would not be very sensitive to the

Preisach parameters of the lower transition, I restricted H̄a1, H̄c1, σa1, and σc1 to

all remain very close to the values determined from the major loops. Besides these

changes, the fitting process was the same. The function used to perform the final

minor loop fits is DoublePreisach2 5DMinorLsqDirac.m1.
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APPENDIX C

DEMAGNETIZATION ESTIMATION

In order to determine the how much of the phase transition broadening observed

in Chapter 3 could be explained by demagnetization effects, a script was written to

estimate the true, local magnetic field (B) as a function of applied field (µ0H0) for

different samples of MnSi. Specifically, we wished to determine:

B⃗ = µ0(M⃗ + H⃗) (C.1)

where

H⃗ = H⃗0 − N̂M⃗0 (C.2)

Here, N̂ is defined as the “demagnetization tensor”. Therefore, the true field B

within the sample is

B⃗ = µ0H⃗0 + µ0(1− N̂)M⃗0 (C.3)

Since we are only interested in a rough estimate of the scale of the demagnetization

across the sample, we now make several approximations. Firstly, we assume that we

only care about how the demagnetization affects the field magnitude in the external

applied field direction, as this component should dictate where we are in the phase

diagram. Setting the applied field along z, we are therefore interested in finding

Bz = µ0H0 + µ0(1− N̂)M⃗0 (C.4)
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Next, we assume that the magnetization of the sample is negligible in all directions

except for z. Therefore,

Bz = µ0H0 + µ0(1−Nzz)M0,z (C.5)

M0,z can be approximated from measured magnetization curves of MnSi, such as

that of Bauer and Pfleiderer [16]. Finally, we can calculate Nzz using the first-order

approximations derived by Joseph and Schlömann [64].

Two crystals of MnSi were considered in particular: the sample used at ILL,

which is roughly cylindrical in shape, and the sample used at PSI and ANSTO,

which is roughly a rectangular prism. MATLAB code1 was used to evaluate the

relevant expressions of Joseph and Schlömann [64] (cylinder for ILL and rectangular

for PSI/ANSTO) over a discrete set of points within the sample volume. These points

were selected such that they would be spaced equal-volumetrically from each other.

An example of the calculated local field is shown in Fig. C.1. Finally, to estimate

how much this demagnetization would broaden the observed phase transitions, the

distribution of field throughout the sample can be plotted as a histogram. This is

shown for the PSI crystal in Fig. C.2. This distribution of fields is fit decently well

by a Gaussian as shown in Fig. C.3. From the width of this distribution, it seems

that a large portion (although not all) of the observed transition broadening σc can

be explained by demagnetization effects.

1cylfield3D.m and prismfield3D.m, located in the ‘Eskildsen Group/ SANS/ MnSi SkL Hys-
teresis Stuff/ grasp 3 20 allan copy’ folder on Box
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Figure C.1. Magnetic field as a function of position in the central plane of
the rectangular PSI/ANSTO crystal. Applied field of µ0H = 0.2 T points

out of the page along the z axis.
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Figure C.2. Distribution of local magnetic field for the entire PSI/ANSTO
crystal (blue), as well as the portion of the sample that was illuminated

with a 1 mm diameter aperture for SANS (orange). Applied field is µ0H =
0.2 T.
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Figure C.3. Gaussian distribution fit to the local magnetic field in the
illuminated sample at PSI/ANSTO. Applied field is µ0H = 0.2 T.
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130. J. Wild, T. N. G. Meier, S. Pöllath, M. Kronseder, A. Bauer, A. Chacon,
M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Müller, A. Rosch, C. Pflei-
derer, and C. H. Back. Entropy-limited topological protection of skyrmions. Sci.
Adv., 3:e1701704, 2017.

131. H. J. Williams, J. H. Wernick, R. C. Sherwood, and G. K. Wertheim. Magnetic
Properties of the Monosilicides of Some 3 d Transition Elements. J. Appl. Phys.,
37(3):1256–1256, 1966.

132. M. N. Wilson, M. Crisanti, C. Barker, A. Štefančič, J. S. White, M. T. Birch,
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