Instabilities in Concave Surfaces

Master's Thesis


The brain is a highly complex organ that contains folds due to material instability. Previous idealized convex models of the brain don’t fully represent anatomy therefore requiring the simulation of concave surfaces. The purpose of this paper is to determine how instability characteristics change on concave geometries. The model used represents a soft bilayered material of a circular geometry inspired by the bronchi in the lungs which also experience instabilities. The usage of symmetry boundary conditions allow for the model to be quartered and run over varying degrees of concavity and stiffness ratios. The degree of concavity was varied by changing the radius of the model in the range of 1-10mm and the stiffness ratio was varied between 10-50. These simulations suggest that the concave model’s buckling point and wavelength trends are similar to those of flat and convex models. The thickness ratio trends appear to also follow trends of previous flat and convex models if these models presented data within a larger range of stiffness ratios comparable to the ones in this study. Refinement of our simulations to lower stiffness ratios comparable to anatomy would further confirm all results found within this study. The results from our simulations represent similar instability characteristics between flat, convex, and concave geometries which presents progress for the hope to find a unifying theory of instability between varying geometries under similar conditions.


Attribute NameValues
Author Katherine Lindsley
Contributor Maria A. Holland, Research Director
Degree Level Master's Thesis
Degree Discipline Bioengineering
Degree Name Master of Science in Bioengineering
Banner Code

Defense Date
  • 2021-11-18

Submission Date 2021-12-03
Record Visibility Public
Content License
  • All rights reserved

Departments and Units
Catalog Record

Digital Object Identifier


This DOI is the best way to cite this master's thesis.


Please Note: You may encounter a delay before a download begins. Large or infrequently accessed files can take several minutes to retrieve from our archival storage system.