University of Notre Dame
Browse
BakerD042011D.pdf (2.42 MB)

On the Advancement of Quantum Dot Solar Cell Performance through Enhanced Charge Carrier Dynamics

Download (2.42 MB)
thesis
posted on 2011-04-11, 00:00 authored by David Robert Baker
The quantum dot solar cell is one of the few solar technologies which promises to compete with fossil fuels, but work is still needed to increase its performance. Electron transfer kinetics at interfaces and limitations of the redox couple within the cell, are responsible for lowering power conversion efficiency. Several techniques which are able to increase electron transfer within the working electrode and at the counter electrode/electrolyte interface are discussed in this dissertation.

Trap sites on the surface of CdSe quantum dots are created when mercaptopropionic acid (MPA) is added to the suspension. The trap sites are emissive creating a loss pathway for photogenerated charges which will manifest as reduced photocurrent. MPA displaces amines on the surface of CdSe creating Se vacancies. Emission properties are controlled by the concentration of MPA. Because trap sites are generated, a more successful method to sensitize TiO2 films is the SILAR technique which directly grows quantum dots on the desired surface.

Anodically etched TiO2 nanotubes yield photocurrents 20% greater than TiO2 nanoparticles because of longer electron diffusion lengths. Peak incident photon to charge carrier efficiencies of TiO2 nanotube samples show a doubling of photocurrent in the visible region compared to nanoparticles. The TiO2 substrates are sensitized with CdS by the SILAR process which is found to utilize both the inside and outside surfaces of the TiO2 nanotubes.

Etched TiO2 nanotubes are removed from the underlying titanium foil in order to use spectroscopic techniques. Ultrafast transient absorption shows the extremely fast nature of charge injection from SILAR CdS into TiO2 nanotubes. Surface area analysis of TiO2 nanotube powder gives an area of 77m2/g, a value 1.5 times larger than traditional TiO2 nanoparticles.

By isolating the counter electrode with a salt bridge the effect of the polysulfide electrolyte is found to act as an electron scavenger on the working electrode. Though activity at the platinum counter electrode increases with the presence of polysulfides, the activity is too low to counteract scavenging at the working electrode. Cu2S, CoS and PbS electrochemically show promise as alternatives to platinum. Cu2S and CoS produce higher photocurrents and fill factors, greatly improving cell performance.

History

Date Modified

2017-06-05

Defense Date

2011-03-24

Research Director(s)

Prashant V. Kamat

Committee Members

Prashant V. Kamat William F. Schneider Eduardo E. Wolf

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Language

  • English

Alternate Identifier

etd-04112011-163621

Publisher

University of Notre Dame

Program Name

  • Chemical Engineering

Usage metrics

    Dissertations

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC