University of Notre Dame
Browse
YeH072022D.pdf (8.16 MB)

III-Nitride Based High Electron Mobility Transistors for RF Applications

Download (8.16 MB)
thesis
posted on 2022-07-02, 00:00 authored by Hansheng Ye
Rapid development of wireless communication systems, including the deployment of 5G networks, calls for robust electronic components that can efficiently support the transmission of increasingly high data rates with wider bandwidths and at higher frequencies. III-nitride based high electron mobility transistors are ideal candidates for such systems due to their wide/ultra-wide bandgaps, high carrier concentrations, as well as high carrier velocities. This work explores and evaluates two separate approaches to advance beyond the performance of the conventional GaN HEMT technology. Fabricated AlGaN channel HEMTs intended for RF power applications have been measured in DC and RF from 25 °C to 150 °C. Mobility, effective velocity, and fT have been extracted at all measured temperatures. The temperature sensitivities of mobility and velocity are modest compared to devices composed of Si, GaAs and GaN channel. Ferroelectric gated GaN HEMTs are explored as potential candidates for RF/mm-wave switch applications. Hf0.5Zr0.5O2 is implemented in the gate stack on a standard AlGaN/GaN HEMT structure to utilize ferroelectric polarization in addition to the spontaneous and piezoelectric polarization provided by AlGaN/GaN. Counter-clockwise hysteresis has been demonstrated in DC measurements. Switch figure of merit of 1-2.1 THz has been achieved from 10 MHz to 67 GHz, which is among the highest in single channel three-terminal devices to the best of our knowledge. Regrown n+ GaN has also been explored experimentally as a replacement for the alloyed source/drain ohmic contacts to improve on-resistance. Simulation based effort is presented to demonstrate a multichannel design for further on-resistance improvement.

History

Date Modified

2022-08-06

Defense Date

2022-06-22

CIP Code

  • 14.1001

Research Director(s)

Patrick J. Fay

Committee Members

Suman Datta Anthony Hoffman Alan Seabaugh

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Alternate Identifier

1338160766

Library Record

6263777

OCLC Number

1338160766

Program Name

  • Electrical Engineering

Usage metrics

    Dissertations

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC