University of Notre Dame
Browse
OlsonJP122015D.pdf (1.12 MB)

A Density Functional Equation of State for Use in Astrophysical Phenomena

Download (1.12 MB)
thesis
posted on 2015-12-07, 00:00 authored by J. Pocahontas Olson

In this thesis, I present a new equation of state for use in simulating supernovae, black holes and neutron star mergers. It is the first such equation of state for astrophysical applications to use a density functional theory description for hadronic matter. The inclusion of thermal effects of matter enable nuclear Skyrme models, which have been highly tested and constrained at laboratory energy scales, to expand their domain to predictions of astronomical phenomena. Broadening the scope of these models can further confine parameter sets, using vastly different energy scales.

The new equation of state, titled the Notre Dame-Livermore Equation of State (NDL EoS), allows for the creation of a pion condensate at high density and pair production of all known baryonic and mesonic states at high temperature. The description of matter also allows for the possibility of the formation of a net proton excess (Ye > 0.5).

In addition to the density functional theory formulation for hadronic matter, the NDL EoS contains low and high density completions to better describe matter in these specific energy regimes. The low density description expands upon a Bowers and Wilson formulation, adding a transition through nuclear pasta phases, which are of particular importance in neutron star structure. These low density definitions have further been updated to include an improved treatment of the nuclear statistical equilibrium and the transition to heavy nuclei as the density approaches nuclear matter density. At high densities, matter is allowed to transition to a quark-gluon plasma (QGP) either as a first-order Gibbs transition, or a smooth crossover.

I identify predictions of the NDL EoS, contrasting them to existing equations of state and various Skyrme models of the NDL EoS. The observation of a heavy (two solar masses) neutron star restricts many descriptions of matter, and rules out several Skyrme parameter sets that had heretofore been entirely within the bounds set by nuclear experiments.

Finally, I present the results of core-collapse simulations, both with the original Bowers and Wilson equation of state and the NDL EoS, using the spherically symmetric Mayle and Wilson supernova code.

History

Date Modified

2017-06-05

Defense Date

2015-11-13

Research Director(s)

Grant Mathews

Committee Members

Stefan Frauendorf Terrence Rettig Christopher Kolda

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Language

  • English

Program Name

  • Physics

Usage metrics

    Dissertations

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC