University of Notre Dame
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on University of Notre Dame and we can't guarantee its availability, quality, security or accept any liability.

Sterically Shielded Hydrophilic Analogs of Indocyanine Green

journal contribution
posted on 2022-11-17, 00:00 authored by Bradley D SmithBradley D Smith, Dong-Hao Li, Rananjaya S. Gamage
A modular synthetic process enables two or four shielding arms to be appended strategically over the fluorochromes of near-infrared cyanine heptamethine dyes to create hydrophilic analogs of clinically approved indocyanine green. A key synthetic step is the facile substitution of a heptamethine 4′-Cl atom by a phenol bearing two triethylene glycol chains. The lead compound is a heptamethine dye with four shielding arms, and a series of comparative spectroscopy studies showed that the shielding arms (a) increased dye photostability and chemical stability and (b) inhibited dye self-aggregation and association with albumin protein. In mice, the dye cleared from the blood primarily through the renal pathway rather than the biliary pathway for ICG. This change in biodistribution reflects the much smaller hydrodynamic diameter of the shielded hydrophilic ICG analog compared to the 67 kDa size of the ICG/albumin complex. An attractive feature of versatile synthetic chemistry is the capability to systematically alter the dye’s hydrodynamic diameter. The sterically shielded hydrophilic ICG dye platform is well-suited for immediate incorporation into dynamic contrast-enhanced (DCE) spectroscopy or imaging protocols using the same cameras and detectors that have been optimized for ICG.

History

Date Modified

2022-11-17

Language

  • English

Publisher

American Chemical Society

Additional Groups

  • Integrated Imaging Facility

Usage metrics

    Chemistry and Biochemistry

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC