Intercellular calcium signaling is regulated by morphogens during Drosophila wing development



Organ development is driven by a set of patterned inductive signals. However, how these signals are integrated to coordinate tissue patterning is still poorly understood. Calcium ions (Ca2+) are critical signaling components involved in signal integration and are regulated by a core Ca2+ signaling toolkit. Ca2+ signaling encodes a significant fraction of information in cells through both amplitude and frequency-dependent regulation of transcription factors and key regulatory enzymes. A range of intercellular Ca2+ transients, including coordinated oscillations, recently have been reported in Drosophila wing discs. In an accompanying paper, we show that impaired Ca2+ signaling impacts the final size and shape of the wing. Here, we discover specific spatiotemporal signatures of Ca2+ transients during wing disc development. To do so, we developed a new neural-network-based approach for registration of oscillatory signals in organs that frequently move during imaging, and a pipeline for spatiotemporal analysis of intercellular Ca2+ oscillations. As a specific test case, we further demonstrated that the morphogen pathway, Hedgehog, controls frequencies of Ca2+ oscillations uniformly in the tissue and is required for spatial patterning of oscillation amplitudes. Thus, the time-averaged dynamics of spontaneous intercellular Ca2+ transients reflect the morphogenetic signaling state of the tissue during development. This suggests a general mechanism of physiological signaling that provides a memory of morphogenetic patterns. Additionally, our study provides a powerful approach for registering and quantifying oscillatory dynamics in developing organs.


Attribute NameValues
  • Pavel A. Brodkiy

  • Qinfeng Wu

  • Francisco J. Huizar

  • Dharsan K. Soundarrajan

  • Cody Narciso

  • Megan evis

  • Ninfamaria Arredondo-Walsh

  • Jianxu Chen

  • Peixian Liang

  • Danny Z. Chen

  • Jeremiah James Zartman

Journal or Work Title
  • BioRxiv

Publication Date
  • 2017-09

  • Cold Spring Harbor

Date Created
  • 2018-10-29

  • English

Departments and Units
Record Visibility Public
Content License
  • All rights reserved

Digital Object Identifier


This DOI is the best way to cite this article.


This article has no files associated with it. Please access via the DOI.