University of Notre Dame
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on University of Notre Dame and we can't guarantee its availability, quality, security or accept any liability.

Whole-Cell Biosensing by Siderophore-Based Molecular Recognition and Localized Surface Plasmon Resonance

journal contribution
posted on 2019-08-26, 00:00 authored by Jiayun Hu, Manuka Ghosh, Marvin J MillerMarvin J Miller, Paul BohnPaul Bohn
Selective whole-cell Acinetobacter baumannii detection using a biotinylated siderophore–Fe( iii ) complex in a localized surface plasmon resonance biosensing platform. A siderophore-based active bacterial pull-down strategy was integrated in a localized surface plasmon resonance (LSPR) sensing platform and subsequently tested by detecting whole-cell Acinetobacter baumannii . The LSPR-based whole-cell sensing approach was previously demonstrated with aptamer-based molecular recognition motifs, and here it is extended to the powerful siderophore system, which exploits the natural bacterial need to sequester Fe( iii ). Specifically, a biscatecholate–monohydroxamate mixed ligand siderophore linked to a biotin via three polyethylene glycol repeating units was synthesized and immobilized on Au trigonal nanoprisms of an LSPR sensor. The resulting surface-confined biotinylated siderophore subsequently chelated Fe( iii ), forming a siderophore–Fe( iii ) complex which was shown to be competent to recognize A. baumannii . Target bacteria were captured and then detected by measuring wavelength shifts in the LSPR extinction spectrum. This siderophore pull-down LSPR biosensor approach is rapid (≤3 h detection) and sensitive – with a limit of detection (LOD) of 80 bacterial cells and a linear wavelength shift over the range 4 × 10 2 to 4 × 10 6 cfu mL −1 . As intended by design, the siderophore-based biosensor was selective for A. baumannii over Pseudomonas aeruginosa , Escherichia coli , and Bacillus cereus , and was stable in ambient conditions for up to 2 weeks.

History

Date Modified

2019-10-28

Language

  • English

Alternate Identifier

17599679

Publisher

The Royal Society of Chemistry

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC