University of Notre Dame
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on University of Notre Dame and we can't guarantee its availability, quality, security or accept any liability.

Mechanisms of mechanochemical synthesis of cesium lead halides: pathways toward stabilization of a-CsPbI3

journal contribution
posted on 2020-11-18, 00:00 authored by Alexander MukasyanAlexander Mukasyan, Ani Aprahamian, Eduard Aleksanyan, Khachatur Manukyan, Vachagan Harutyunyan
Cesium lead iodide with cubic perovskite structure (a-CsPbI3) is gaining sig- nificant interest in photovoltaic applications due to its excellent absorbance of the visible solar light and other attractive optoelectronic properties. However, the synthesis of stable a-CsPbI3 poses a significant challenge. Mechanochemical synthesis is emerging as a suitable method for the preparation of cesium lead halides. This work investigates the ball milling-induced synthesis of cesium lead halides perovskite phase using halide mixing or doping approaches. The syn- thesis in the CsI ? PbI2, CsBr ? PbBr2, CsBr ? PbI2, and CsI ? PbI2 ? NdI3 mixtures and halide exchange reactions in the CsPbBr3 ? 3KI and CsBr ? PbBr2 ? 3KI systems are investigated to elucidate the mechanism of this process. Then, CsPb(I1-xBrx)3 and CsPb(1-y)NdyI3 materials with different x and y ratios are prepared, and their stability is probed in the air using light absorption spectroscopy. These results suggest that Nd doping is more efficient in the stabilization of the perovskite structure than partial replacement of iodine with bromine. Microstructure observations reveal the existence of two different product formation mechanisms depending on the mechanical properties of reactants. The results reveal that the milling temperature has a significant impact on the reaction kinetics. The produced particles nucleate and grow at the reactant interface and retard the synthesis reaction by creating a diffusion bar- rier. Extended milling reduces the product particle size and creates fresh contact between reactants, thus facilitating reaction completion

History

Date Modified

2020-11-18

Language

  • English

Alternate Identifier

15734803

Publisher

Springer

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC