Mechanisms of mechanochemical synthesis of cesium lead halides: pathways toward stabilization of a-CsPbI3

Article

Abstract

Cesium lead iodide with cubic perovskite structure (a-CsPbI3) is gaining sig- nificant interest in photovoltaic applications due to its excellent absorbance of the visible solar light and other attractive optoelectronic properties. However, the synthesis of stable a-CsPbI3 poses a significant challenge. Mechanochemical synthesis is emerging as a suitable method for the preparation of cesium lead halides. This work investigates the ball milling-induced synthesis of cesium lead halides perovskite phase using halide mixing or doping approaches. The syn- thesis in the CsI ? PbI2, CsBr ? PbBr2, CsBr ? PbI2, and CsI ? PbI2 ? NdI3 mixtures and halide exchange reactions in the CsPbBr3 ? 3KI and CsBr ? PbBr2 ? 3KI systems are investigated to elucidate the mechanism of this process. Then, CsPb(I1-xBrx)3 and CsPb(1-y)NdyI3 materials with different x and y ratios are prepared, and their stability is probed in the air using light absorption spectroscopy. These results suggest that Nd doping is more efficient in the stabilization of the perovskite structure than partial replacement of iodine with bromine. Microstructure observations reveal the existence of two different product formation mechanisms depending on the mechanical properties of reactants. The results reveal that the milling temperature has a significant impact on the reaction kinetics. The produced particles nucleate and grow at the reactant interface and retard the synthesis reaction by creating a diffusion bar- rier. Extended milling reduces the product particle size and creates fresh contact between reactants, thus facilitating reaction completion

Attributes

Attribute NameValues
Creator
  • Eduard Aleksanyan

  • Ani Aprahamian

  • Alexander S. Mukasyan

  • Vachagan Harutyunyan

  • Khachatur Manukyan

Journal or Work Title
  • Journal of Materials Science

Volume
  • 55

Issue
  • 20

First Page
  • 8665

Last Page
  • 8678

ISSN
  • 15734803

Publication Date
  • 2020-04

Subject
  • Magellan SEM

Publisher
  • Springer

Date Created
  • 2020-11-18

Language
  • English

Departments and Units
Record Visibility Public
Content License
  • All rights reserved

Digital Object Identifier

doi:10.1007/s10853-020-04617-3

This DOI is the best way to cite this article.

Files

This article has no files associated with it. Please access via the DOI.