In-Situ Fabrication of g-C3N4/ZnO Nanocomposites for Photocatalytic Degradation of Methylene Blue: Synthesis Procedure Does Matter

Article

Abstract

The nanocomposite preparation procedure plays an important role in achieving a well-established heterostructured junction, and hence, an optimized photocatalytic activity. In this study, a series of g-C3N4/ZnO nanocomposites were prepared through two distinct procedures of a low-cost, environmentally-friendly, in-situ fabrication process, with urea and zinc acetate being the only precursor materials. The physicochemical properties of synthesized g-C3N4/ZnO composites were mainly characterized by XRD, UV–VIS diffuse reflectance spectroscopy (DRS), N2 adsorption-desorption, FTIR, TEM, and SEM. These nanocomposites’ photocatalytic properties were evaluated in methylene blue (MB) dye photodecomposition under UV and sunlight irradiation. Interestingly, compared with ZnO nanorods, g-C3N4/ZnO nanocomposites (x:1, obtained from urea and ZnO nanorods) exhibited weak photocatalytic activity likely due to a “shading effect”, while nanocomposites (x:1 CN, made from g-C3N4 and zinc acetate) showed enhanced photocatalytic activity that can be ascribed to the effective establishment of heterojunctions. A kinetics study showed that a maximum reaction rate constant of 0.1862 min-1 can be achieved under solar light illumination, which is three times higher than that of bare ZnO nanorods. The photocatalytic mechanism was revealed by determining reactive species through adding a series of scavengers. It suggested that reactive ∙O2− and h+ radicals played a major role in promoting dye photodegradation.

Attributes

Attribute NameValues
Creator
  • Min Wang

  • Zulei Zhang

  • Lei Li

  • X. Cao

Journal or Work Title
  • Nanomaterials

Volume
  • 9

Issue
  • 2

First Page
  • 215

Publication Date
  • 2019-02

Subject
  • Magellan SEM

  • Titan TEM

Publisher
  • MDPI

Date Created
  • 2019-09-24

Language
  • English

Departments and Units
Record Visibility and Access Public
Content License
  • All rights reserved

Digital Object Identifier

doi:10.3390/nano9020215

This DOI is the best way to cite this article.