University of Notre Dame
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on University of Notre Dame and we can't guarantee its availability, quality, security or accept any liability.

Kinetics and Mechanism of Nickel Oxide Reduction by Methane

journal contribution
posted on 2019-10-09, 00:00 authored by H. Chatilyan, K. Manukyan, S. Kharatyan
Nickel oxide reduction by methane is of particular importance in catalysis, extractive metallurgy, and clean power generation technologies. Despite extensive investigations of the NiO + CH4 reaction, many questions remain about its kinetics and molecular and structural transformation mechanisms. This work reports the reduction kinetics of bulk polycrystalline NiO by CH4 using a new calorimetric method. The method permits rapid, controllable heating of the NiO/Ni wires and continuous data (electrical power, the electrical resistivity of the wire, and temperature) acquisition with a frequency of 10 kHz. The method also allows arresting and preservation of the structure of the sample by programmed termination of electric power in thin specimens. This approach, coupled with ex situ electron microscopy, allows determination of the reaction rate and tracking of the ongoing structural transformations. The mechanism of NiO reduction by methane is suggested based on direct correlations between reaction kinetics and the observed microstructure transformations. The kinetic data treatment revealed that the nucleation−growth model describes the reaction kinetics. Ex situ microscopy observations of reacted specimens showed that the first nuclei rapidly accelerate the process. Pore formation occurs at the nucleation sites, and the porous structure then quickly grows into the bulk NiO. The second type of reduced Ni microstructure, compact layer, can be observed only on the outer surface of the wire. Based on kinetic data and microstructural observations, a mechanism of reduction was suggested according to which porous microstructure forms predominantly by NiO reduction with carbon. The compact layer observed on the outer surface of the wire forms through the diffusion-controlled hydrogen reduction.

History

Date Modified

2019-10-09

Language

  • English

Alternate Identifier

1932-7447

Publisher

American Chemical Society

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC