University of Notre Dame
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on University of Notre Dame and we can't guarantee its availability, quality, security or accept any liability.

Micro-heterogeneous regimes for gasless combustion of composite materials

journal contribution
posted on 2018-08-22, 00:00 authored by Alexander MukasyanAlexander Mukasyan, Alexander S. Rogachev, Christopher E. Shuck, Joshua M. Pauls
Reactive Ni/Al composite particles with different internal microstructures were fabricated by ball milling (BM). The propagation of gasless combustion waves through the compacted composite particle media was investigated using high-speed microscope video recording (HSMVR), with a resolution of 10 μm/pixel and 21.25 μs/frame. The microstructural combustion-wave characteristics, including hesitation time, propagation step size, instantaneous velocity, intraparticle reaction time, and average combustion-wave velocity, were studied as functions of measured internal microstructural parameters. The micro-heterogeneous relay-race combustion mechanism prevails across the investigated conditions. Decreasing the metal layer thicknesses in the composite particles leads to significant decrease in hesitation time, while only weakly affecting the instantaneous velocity. Characteristic times of hesitation and thermal relaxation defined two combustion front propagation regimes limited by interparticle heat transfer and by chemical reaction kinetics. Understanding the existence of these two discrete regimes allows us to effectively control the combustion parameters in this high-energy-density system.

History

Date Modified

2018-10-10

Language

  • English

Usage metrics

    Integrated Imaging Facility

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC