The Effect of Misspecifying Random-Effect Time-Varying Predictors as Fixed on Estimates of Other Parameters

Doctoral Dissertation

Abstract

Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. This dissertation illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, two procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these two procedures is compared.

Attributes

Attribute NameValues
Author Rachel Baird
Contributor Scott Maxwell, Research Director
Degree Level Doctoral Dissertation
Degree Discipline Psychology
Degree Name Doctor of Philosophy
Defense Date
  • 2016-07-08

Submission Date 2016-07-15
Subject
  • multilevel

  • time-varying predictor

  • time-varying covariate

  • longitudinal

Language
  • english

Access Rights Open Access
Content License
  • All rights reserved

Departments and Units

Files

Please Note: You may encounter a delay before a download begins. Large or infrequently accessed files can take several minutes to retrieve from our archival storage system.