Flexible Thermoelectric Devices of Ultrahigh Power Factor by Scalable Printing and Interface Engineering



Printing is a versatile method to transform semiconducting nanoparticle inks into functional and flexible devices. In particular, thermoelectric nanoparticles are attractive building blocks to fabricate flexible devices for energy harvesting and cooling applications. However, the performance of printed devices are plagued by poor interfacial connections between nanoparticles and resulting low carrier mobility. While many rigid bulk materials have shown a thermoelectric figure of merit ZT greater than unity, it is an exacting challenge to develop flexible materials with ZT near unity. Here, a scalable screen-printing method to fabricate high-performance and flexible thermoelectric devices is reported. A tellurium-based nanosolder approach is employed to bridge the interfaces between the BiSbTe particles during the postprinting sintering process. The printed BiSbTe flexible films demonstrate an ultrahigh room-temperature power factor of 3 mW m−1 K−2 and ZT about 1, significantly higher than the best reported values for flexible films. A fully printed thermoelectric generator produces a high power density of 18.8 mW cm−2 achievable with a small temperature gradient of 80 °C. This screen-printing method, which directly transforms thermoelectric nanoparticles into high-performance and flexible devices, presents a significant leap to make thermoelectrics a commercially viable technology for a broad range of energy harvesting and cooling applications.


Attribute NameValues
  • Chaochao Dun

  • Nicholas Kempf

  • Mortaza Saeidi-Javash

  • Chinathambi Karthik

  • Joseph Richardson

  • Courtney Hollar

  • David Estrada

  • Yanliang Zhang

Journal or Work Title
  • Advanced Functional Materials

  • 1905796

First Page
  • 1

Last Page
  • 8

  • 16163028

Publication Date
  • 2019-07

  • Helios FIB

  • Advanced Science News

Date Created
  • 2020-04-03

  • English

Departments and Units
Record Visibility Public
Content License
  • All rights reserved

Digital Object Identifier


This DOI is the best way to cite this article.


This article has no files associated with it. Please access via the DOI.