University of Notre Dame
Browse

File(s) under permanent embargo

Fundamental and Applied Studies of Microbial Fuel Cells for Sustainable Water and Wastewater Treatment

thesis
posted on 2009-12-03, 00:00 authored by Caitlyn Shea Butler
Water and wastewater treatment accounts for around 4% of energy consumption in the United States. The energy requirements for wastewater and water treatment, as they currently exist, add to the strain on limited fossil fuel resources. Microbial fuel cells (MFCs) can allow direct conversion of the chemical energy in wastewater to electrical energy, increasing the sustainability of wastewater treatment. To allow the implementation of MFCs, more efficient and cost-effective reactor configurations are needed. Also, a better understanding of the microbial communities that facilitate electron transfer in an MFC is required. Several novel MFC designs for water and wastewater treatment are described in this work. Hollow fiber membrane (HFM)-MFCs were developed and a prototype was demonstrated to sustain power production and removal of wastewater organics. An MFC for total nitrogen removal was proposed, and achieved nitrogen removal fluxes comparable to conventional treatment technologies. Additionally, an MFC with a biological cathode was shown to reduce perchlorate, an emerging drinking water contaminant. The role of microorganisms in bioelectrochemical processes was investigated through a variety of studies. First, oxygen crossover from the cathode to the anode was shown to decrease power densities, Coulombic efficiencies, and the abundance of electrode-respiring bacteria. Second, putative electrode-oxidizing bacteria, phylogenetically similar to iron-oxidizing bacteria, were identified in denitrifying and perchlorate-reducing biocathode communities. Finally, despite previous reports to the contrary, similar community structures and MFC performance were observed in MFCs operated at varying external resistances. This research developed novel MFC-based processes for energy-efficient water and wastewater treatment, and contributed to the fundamental understanding of microbial communities within these processes. These results will lead to improved MFC designs and advances the technology toward implementation.

History

Date Modified

2017-06-05

Defense Date

2009-11-10

Research Director(s)

Robert Nerenberg

Committee Members

Jeremy Fein Chongzheng Na Joshua Shrout

Degree

  • Doctor of Philosophy

Degree Level

  • Doctoral Dissertation

Language

  • English

Alternate Identifier

etd-12032009-152256

Publisher

University of Notre Dame

Program Name

  • Civil Engineering and Geological Sciences

Usage metrics

    Dissertations

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC