Effects of Increased Nitrogen and Phosphorus Availability on Plant Productivity and Nutrient Use at Multiple Ecological Scales in Northern Peatlands

Master's Thesis


The adaptive use of resources by plants is an important topic in ecology, and is generally expressed as a resource-use efficiency. Nitrogen-use efficiency (NUE), in particular, has been the subject of several studies, as nitrogen (N) is the primary growth-limiting factors in many terrestrial systems. in chapter three, we examined how anthropogenic increases in N and phosphorus (P) availability may affect plant NUE response at multiple ecological scales due to carbon and N allocation within the entire plant (the leaf, woody tissue, above- and belowground, and whole-plant) and changes in species composition within the community. We examined plant nutrient efficiency indices in fertilization experiments (6 g N m-2 yr-1, 2 g P m-2 yr-1, or a combination of N and P) in nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan. We further examined the evolutionary tradeoff of parameters such as N-productivity and the mean residence time (MRT) of N in biomass, and subsequent effects on NUE. Lastly, we examined the plant community response to environmental nutrient availability and N-uptake efficiency (plant N uptake/soil N availability). We found that N and P fertilization generally increased aboveground net primary productivity (ANPP) and tissue N concentration, although NUE response to nutrient addition was not straightforward. NUE differed by plant species, and across the ombrotrophic-minerotrophic gradient, and was often affected by the evolutionary tradeoff between N-productivity and MRT, where plants and communities were phenotypically and genetically adapted to maximize either N-productivity or MRT, but not both concurrently. However, N and P fertilization ubiquitously affected plant community N-uptake efficiency, and ultimately N-response efficiency, though the response to each nutrient was dependent on the plant species and community examined. Thus, plant community response to soil N availability may exert more important ecosystem controls than NUE, as significant changes in N-uptake efficiency at various ecological scales may affect ecosystem carbon and nutrient cycling processes.


Attribute NameValues
  • etd-04142004-112450

Author Colleen Marie Iversen
Advisor Dr. Scott D. Bridgham
Contributor Dr. Jennifer Tank, Committee Member
Contributor Dr. Gary Lamberti, Committee Member
Contributor Dr. David Lodge, Committee Member
Contributor Dr. Scott D. Bridgham, Committee Chair
Degree Level Master's Thesis
Degree Discipline Biological Sciences
Degree Name Master of Science
Defense Date
  • 2004-04-07

Submission Date 2004-04-14
  • United States of America






  • University of Notre Dame

  • English

Access Rights Open Access
Content License
  • All rights reserved


Please Note: You may encounter a delay before a download begins. Large or infrequently accessed files can take several minutes to retrieve from our archival storage system.


University of Notre Dame


At the request of the author, this graduate work is not available to the public.

If you have Notre Dame credentials you can view this file after you Log in.

Otherwise, you must request permission to view this file from the Publications Manager of the Graduate School.

Request Access