We study a family of shallow water wave equations called the b-family equation. Known for having multi-peakon solutions, this family includes the Camassa-Holm equation and the Degasperis-Procesi equation as its most notable and only integrable members (using the perturbative symmetry definition). We show that the periodic and non-periodic Cauchy problem for the b-family equation is well-posed in Sobolev spaces with exponent greater than 3/2. Moreover, we find that the corresponding data-to-solution map is continuous on Sobolev spaces but not uniformly continuous. We prove that this map is not uniformly continuous using approximate solutions together with delicate commutator and multiplier estimates. The novelty of the proof lies in the fact that it makes no use of conserved quantities. Lastly, given a weaker topology, we show that the data-to-solution map is Holder continuous.
Analysis of a Family of Shallow Water Waves
Doctoral Dissertation
Abstract
Attribute Name | Values |
---|---|
URN |
|
Author | Katelyn Jean Grayshan |
Advisor | Richard Hind |
Contributor | Gerard Misiolek, Committee Member |
Contributor | Alex Himonas, Committee Member |
Contributor | Bei Hu, Committee Member |
Contributor | Richard Hind, Committee Member |
Degree Level | Doctoral Dissertation |
Degree Discipline | Mathematics |
Degree Name | Doctor of Philosophy |
Defense Date |
|
Submission Date | 2012-11-09 |
Country |
|
Subject |
|
Publisher |
|
Language |
|
Record Visibility | Public |
Content License |
|
Departments and Units |
Digital Object Identifier
This DOI is the best way to cite this doctoral dissertation.
Files
Thumbnail | File Name | Description | Size | Type | File Access | Actions |
---|---|---|---|---|---|---|
|
GrayshanKJ112012D.pdf | 1.2 MB | application/pdf | University of Notre Dame |
At the request of the author, this Doctoral Dissertation is not available to the public. If you have Notre Dame credentials you can view this file after you Log in. Otherwise, you must request permission to view this file from the Publications Manager of the Graduate School. |
1 entry found